(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023133123
(43)【公開日】2023-09-22
(54)【発明の名称】面発光レーザ素子、検出装置及び移動体
(51)【国際特許分類】
H01S 5/183 20060101AFI20230914BHJP
H01S 5/0239 20210101ALI20230914BHJP
H01L 33/04 20100101ALI20230914BHJP
H01S 5/343 20060101ALI20230914BHJP
G01C 3/06 20060101ALI20230914BHJP
【FI】
H01S5/183
H01S5/0239
H01L33/04
H01S5/343
G01C3/06 120Q
【審査請求】未請求
【請求項の数】15
【出願形態】OL
(21)【出願番号】P 2022204673
(22)【出願日】2022-12-21
(31)【優先権主張番号】P 2022037461
(32)【優先日】2022-03-10
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000006747
【氏名又は名称】株式会社リコー
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100107515
【弁理士】
【氏名又は名称】廣田 浩一
(72)【発明者】
【氏名】鈴木 亮一郎
【テーマコード(参考)】
2F112
5F173
5F241
【Fターム(参考)】
2F112AD01
2F112BA20
2F112CA05
2F112CA12
2F112DA21
2F112DA25
2F112EA05
5F173AC03
5F173AC13
5F173AC35
5F173AC42
5F173AF04
5F173AF12
5F173AF38
5F173AF96
5F173AG12
5F173AG20
5F173AH03
5F173AP05
5F173AP09
5F173AP33
5F173AP45
5F173AR14
5F241CA05
5F241CA08
5F241CA12
5F241CA65
5F241CA66
5F241CB11
5F241CB28
(57)【要約】
【課題】高い出力を得ることができる面発光レーザ素子、検出装置及び移動体を提供する。
【解決手段】面発光レーザ素子は、第1反射鏡及び第2反射鏡と、前記第1反射鏡と前記第2反射鏡との間にある共振器領域と、を有し、前記共振器領域は、結晶歪を含む複数の活性層と、前記複数の活性層の間にあるトンネル接合層と、前記第1反射鏡と前記活性層との間、前記複数の活性層の間、または前記活性層と前記第2反射鏡との間の少なくともいずれかにある歪緩和層と、を有し、前記歪緩和層は、前記活性層とは逆の結晶歪を含む。
【選択図】
図2
【特許請求の範囲】
【請求項1】
第1反射鏡及び第2反射鏡と、
前記第1反射鏡と前記第2反射鏡との間にある共振器領域と、
を有し、
前記共振器領域は、
結晶歪を含む複数の活性層と、
前記複数の活性層の間にあるトンネル接合層と、
前記第1反射鏡と前記活性層との間、前記複数の活性層の間、または前記活性層と前記第2反射鏡との間の少なくともいずれかにある歪緩和層と、
を有し、
前記歪緩和層は、前記活性層とは逆の結晶歪を含むことを特徴とする面発光レーザ素子。
【請求項2】
前記共振器領域は、スペーサ層を複数有し、
前記複数のスペーサ層の少なくとも一部が前記歪緩和層であることを特徴とする請求項1に記載の面発光レーザ素子。
【請求項3】
前記共振器領域は、複数の積層体を有し、
前記積層体の各々は、
複数の前記スペーサ層の1つである第1スペーサ層と、
複数の前記スペーサ層の他の1つである第2スペーサ層と、
前記複数の活性層の1つであり、前記第1スペーサ層と前記第2スペーサ層の間にある前記活性層と、
を有し、
前記積層体において、前記第1スペーサ層および前記第2スペーサ層の少なくとも一部が前記歪緩和層であることを特徴とする請求項2に記載の面発光レーザ素子。
【請求項4】
前記活性層から発せられる光の波長をλとし、前記積層体の個数をn(nは2以上の自然数)としたとき、
前記共振器領域の全体の光学的厚さはnλ/2であることを特徴とする請求項3に記載の面発光レーザ素子。
【請求項5】
前記積層体の各々の光学的厚さはλ/2以下であることを特徴とする請求項3に記載の面発光レーザ素子。
【請求項6】
前記共振器領域に含まれる前記活性層の結晶歪量の合計をεとしたとき、前記共振器領域に含まれる前記活性層と逆の結晶歪量の合計は、-1.1ε~-0.9εの範囲内にあることを特徴とする請求項1乃至5のいずれか1項に記載の面発光レーザ素子。
【請求項7】
前記活性層及びトンネル接合層の合計の結晶歪の量は、108%・nm以下であることを特徴とする請求項1乃至5のいずれか1項に記載の面発光レーザ素子。
【請求項8】
前記活性層の結晶歪の量は、36%・nm以下であることを特徴とする請求項1乃至5のいずれか1項に記載の面発光レーザ素子。
【請求項9】
前記歪緩和層は、Pを含有することを特徴とする請求項1乃至5のいずれか1項に記載の面発光レーザ素子。
【請求項10】
前記歪緩和層は、AlGaAsP層又はAlGaInAsP層であることを特徴とする請求項9に記載の面発光レーザ素子。
【請求項11】
前記歪緩和層は、AlGaInP層又はGaInP層であることを特徴とする請求項9に記載の面発光レーザ素子。
【請求項12】
前記歪緩和層を構成するIII族元素中のAl組成比は65%以下であることを特徴とする請求項1乃至5のいずれか1項に記載の面発光レーザ素子。
【請求項13】
請求項1乃至5のいずれか1項に記載の面発光レーザ素子と、
前記面発光レーザ素子から発せられ対象物で反射された光を検出する検出部と、
を備えることを特徴とする検出装置。
【請求項14】
前記検出部からの信号に基づき前記対象物との距離を算出する算出部をさらに備えることを特徴とする請求項13に記載の検出装置。
【請求項15】
請求項14に記載の検出装置を備えることを特徴とする移動体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、面発光レーザ素子、検出装置及び移動体に関する。
【背景技術】
【0002】
面発光レーザ(VCSEL:Vertical Cavity Surface Emitting LASER)は、基板面に対し垂直方向に光を出射する半導体レーザである。面発光レーザは、端面発光型の半導体レーザと比較して、低価格、低消費電力、小型であって高性能であること、また2次元的に集積化しやすいといった特徴を有している。
【0003】
面発光レーザは、活性層を含む共振器領域と、共振器領域の上下に設けられた上部ブラッグ反射鏡及び下部ブラッグ反射鏡とからなる共振器構造を有している。よって、共振器領域は、発振波長λの光を得るために、共振器領域において波長λの光が共振するように所定の光学的厚さで形成されている。上部ブラッグ反射鏡及び下部ブラッグ反射鏡は、屈折率の異なる材料、即ち、低屈折率材料と高屈折率材料とを交互に積層することにより形成された分布ブラッグ反射鏡(Distributed Bragg Reflector:DBR)により形成されている。DBRにおいては、波長λにおいて高い反射率が得られるように、低屈折率材料及び高屈折率材料は、各材料の屈折率を考慮した光学的な膜厚がλ/4となるように形成されている。
【0004】
また、マルチジャンクション型面発光レーザが知られている。マルチジャンクション型面発光レーザは、活性層を含む共振器領域を積層方向に複数組備える。マルチジャンクション型面発光レーザにより、高出力なレーザ光出力が可能になる。マルチジャンクション型面発光レーザは、カスケード型面発光レーザともよばれる場合がある。マルチジャンクション型面発光レーザでは、活性層が多いほど、光出力を高くすることができる。また、活性層の間にトンネル接合層を設けることで、各々の活性層に均等にキャリアを注入することができるため、効果的にレーザ出力を高くすることができる。
【発明の概要】
【発明が解決しようとする課題】
【0005】
面発光レーザを含む半導体レーザでは、活性層に圧縮方向の結晶歪を持たせることで、レーザ動作時の光学利得が改善し、発振閾値電流の低減、光出力の増加が可能になる。ところが、マルチジャンクション型面発光レーザにおいて、出力の向上のために活性層を多くすると、それだけ結晶歪が蓄積し、共振器領域の結晶歪が大きくなる。そして、活性層の合計厚さが臨界膜厚を超えると、ミスフィット転位等の結晶欠陥が生じてしまう。このため、従来の面発光レーザでは、マルチジャンクション構造を採用しても、高出力化が困難である。
【0006】
結晶歪に関し、非特許文献1には結晶歪による活性層の層数の制限を示唆する記載がある。また、特許文献1にはトンネル接合層にGaInNAs、GaNAs、GaPSb等を用いることが記載されている。しかしながら、これらの従来技術によっても、面発光レーザ素子の高出力化は困難である。
【0007】
本発明は、高い出力を得ることができる面発光レーザ素子、検出装置及び移動体を提供することを目的とする。
【課題を解決するための手段】
【0008】
開示の技術の一態様によれば、面発光レーザ素子は、第1反射鏡及び第2反射鏡と、前記第1反射鏡と前記第2反射鏡との間にある共振器領域と、を有し、前記共振器領域は、結晶歪を含む複数の活性層と、前記複数の活性層の間にあるトンネル接合層と、前記第1反射鏡と前記活性層との間、前記複数の活性層の間、または前記活性層と前記第2反射鏡との間の少なくともいずれかにある歪緩和層と、を有し、前記歪緩和層は、前記活性層とは逆の結晶歪を含む。
【発明の効果】
【0009】
開示の技術によれば、高い出力を得ることができる。
【図面の簡単な説明】
【0010】
【
図1】第1実施形態に係る面発光レーザ素子を示す断面図である。
【
図2】第1実施形態に係る面発光レーザ素子の要部を示す断面図である。
【
図3】第3実施形態に係る面発光レーザ素子を示す断面図である。
【
図4】第3実施形態に係る面発光レーザ素子の要部を示す断面図である。
【
図5】第4実施形態に係る距離測定装置を示す図である。
【
図7】第6実施形態に係る光学検査装置の概略構成を例示する図である。
【
図8】第6実施形態に係る光学検査装置のブロック構成を例示する図である。
【発明を実施するための形態】
【0011】
以下、本開示の実施形態について添付の図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省くことがある。
【0012】
(第1実施形態)
まず、第1実施形態について説明する。第1実施形態は面発光レーザ素子に関する。
図1は、第1実施形態に係る面発光レーザ素子を示す断面図である。
【0013】
第1実施形態に係る面発光レーザ素子100は、発振波長λが940nmの面発光レーザ素子である。面発光レーザ素子100は、主として、基板101と、下部DBR102と、共振器領域103と、上部DBR104と、コンタクト層105と、下部電極106と、上部電極107とを有する。下部DBR102は基板101の上にあり、共振器領域103は下部DBR102の上にあり、上部DBR104は共振器領域103の上にあり、コンタクト層105は上部DBR104の上にある。下部DBR102、共振器領域103、上部DBR104及びコンタクト層105は、基板101の上面に半導体層を積層することで形成されている。下部電極106は基板101の裏面に設けられ、上部電極107はコンタクト層105の表面に設けられている。面発光レーザ素子100は、共振器領域103から上方にレーザ光を出射する。面発光レーザ素子100は、上面出射型の垂直共振器型面発光レーザ(Vertical Cavity Surface Emitting Laser:VCSEL)素子である。
【0014】
基板101は、半導体基板であるn-GaAs基板により形成されている。下部DBR102は、各層がλ/4の光学的厚さで35.5ペアのn-Al
0.1Ga
0.9As高屈折率層102aとn-Al
0.9Ga
0.1As低屈折率層102bとを交互に積層することにより形成されている(
図2参照)。つまり、下部DBR102は、36個のn-Al
0.1Ga
0.9As高屈折率層102aと、35個のn-Al
0.9Ga
0.1As低屈折率層102bとを含む。
【0015】
共振器領域103は、互いに積層された3個の積層体10を有する。共振器領域103は、更に、厚さ方向で隣り合う積層体10の間にトンネル接合層20を有する。積層体10は、下部スペーサ層11と、活性層12と、上部スペーサ層13とを有する。積層体10において、活性層12は下部スペーサ層11の上にあり、上部スペーサ層13は活性層12の上にある。トンネル接合層20は、p型層21と、n型層22とを有する(
図2参照)。n型層22はp型層21の上にある。
【0016】
下部スペーサ層11及び上部スペーサ層13は、例えばAl0.65Ga0.35As0.925P0.075層である。活性層12は、交互に積層されたGaInAs量子井戸層及びAlGaAs障壁層を含む量子井戸構造を有する。例えば、GaInAs量子井戸層の厚さは8nmである。1個の活性層12に含まれるGaInAs量子井戸層の数は、例えば3層である。このような組成の活性層12の格子定数は、基板101を構成するGaAsの格子定数よりも大きい。一方、下部スペーサ層11及び上部スペーサ層13を構成するAl0.65Ga0.35As0.925P0.075の格子定数は、GaAsの格子定数よりも小さい。下部スペーサ層11及び上部スペーサ層13の厚さは、積層体10の位置にもよるが、合計で80nm程度である。詳細は後述するが、本実施形態では、GaInAs量子井戸層はGaAs基板に対して0.9%の圧縮方向の結晶歪を含有する。第1実施形態では、下部スペーサ層11及び上部スペーサ層13は歪緩和層の一例である。
【0017】
p型層21は、p型不純物の濃度が1019cm-3以上のp++-GaAs層であり、n型層22は、n型不純物の濃度が1019cm-3以上のn++-GaAs層である。p型層21及びn型層22は互いに積層することでトンネル接合が形成されている。n型層22における伝導帯の電子がp型層21における価電子帯に向かい、バンド間でトンネル電流が流れる。トンネル接合層20は、電流を担う電荷の極性をn型からp型に変換する。
【0018】
上部DBR104は、各層がλ/4の光学的厚さで20ペアのp-Al
0.1Ga
0.9As高屈折率層104aとp-Al
0.9Ga
0.1As低屈折率層104bとを交互に積層することにより形成されている(
図2参照)。つまり、上部DBR104は、20個のp-Al
0.1Ga
0.9As高屈折率層104aと、20個のp-Al
0.9Ga
0.1As低屈折率層104bとを含む。
【0019】
面発光レーザ素子100は、最も上方の積層体10と最も下方のp-Al0.1Ga0.9As高屈折率層104aとの間に、電流狭窄層108を有する。電流狭窄層108は、選択酸化領域108aと、電流狭窄領域108bとを含む。電流狭窄領域108bは選択酸化領域108aにより囲まれている。電流狭窄層108は、例えばp-AlAsの選択的な酸化により形成されている。電流狭窄層108の下側の一部分は共振器領域103に含まれ、電流狭窄層108の上側の一部分は上部DBR104に含まれる。
【0020】
コンタクト層105は、p+-GaAsにより形成されている。コンタクト層105、上部DBR104、共振器領域103及び下部DBR102の一部にメサ109が形成されている。面発光レーザ素子100は、メサ109の側面と、下部DBR102の上面とを覆う保護層151を有する。保護層151は、例えば、SiN等の誘電体から形成されている。更に、メサ109の形成のために半導体層が除去された領域には、ポリイミド等の樹脂材料を埋め込むことにより、樹脂層152が形成されている。
【0021】
ここで、共振器領域103について更に詳細に説明する。
図2は、第1実施形態に係る面発光レーザ素子100の要部を示す断面図である。
図2中の断面構造の右側に示す波形は、規格化された縦モードの波形を模式的に示す。
【0022】
面発光レーザ素子100では、積層体10の各々の光学的厚さがλ/2以下であり、各活性層12に規格化された縦モードの腹が位置する。
【0023】
最も下方の積層体10については、当該積層体10と、当該積層体10の直上のp型層21との合計の光学的厚さがλ/2である。そして、当該積層体10と下部DBR102との境界に規格化された縦モードの節が位置し、当該積層体10の直上のトンネル接合層20に含まれるp型層21とn型層22との境界に節が位置する。従って、当該積層体10と、当該積層体10の直上のp型層21とが1つのλ/2共振器のように機能する。
【0024】
中央の積層体10については、当該積層体10と、当該積層体10の直下のn型層22と、当該積層体10の直上のp型層21との合計の光学的厚さがλ/2である。そして、当該積層体10の直下のトンネル接合層20に含まれるp型層21とn型層22との境界に節が位置し、当該積層体10の直上のトンネル接合層20に含まれるp型層21とn型層22との境界に節が位置する。従って、当該積層体10と、当該積層体10の直下のn型層22と、当該積層体10の直上のp型層21とが1つのλ/2共振器のように機能する。
【0025】
最も上方の積層体10については、当該積層体10と、当該積層体10の直下のn型層22と、当該積層体10の直上の電流狭窄層108の一部分との合計の光学的厚さがλ/2である。そして、当該積層体10の直下のトンネル接合層20に含まれるp型層21とn型層22との境界に節が位置し、当該積層体10の直上の電流狭窄層108の一部分に節が位置する。従って、当該積層体10と、当該積層体10の直下のn型層22と、当該積層体10の直上の電流狭窄層108の一部分とが1つのλ/2共振器のように機能する。
【0026】
そして、共振器領域103の光学的厚さは3λ/2となっている。
【0027】
一般に、基板の表面にエピタキシャル成長した半導体層に生じる、基板の表面に平行な方向(面内方向)の結晶歪ε//は、次の式(1)で表される。ただし、aepiは半導体層の格子定数であり、asubは基板の格子定数である。
【0028】
ε//=-(aepi-asub)/asub ・・・(1)
【0029】
格子定数aepiが格子定数asubよりも大きい場合、結晶歪ε//は負となる。この場合、半導体層には圧縮方向の結晶歪(圧縮歪)が生じる。一方、格子定数aepiが格子定数asubよりも小さい場合、結晶歪ε//は正となる。この場合、半導体層には引張方向の結晶歪(引張歪)が生じる。
【0030】
本実施形態では、上述のように、活性層12の格子定数が、基板101を構成するGaAsの格子定数よりも大きく、下部スペーサ層11及び上部スペーサ層13の格子定数が、GaAsの格子定数よりも小さい。従って、活性層12は圧縮歪を含み、下部スペーサ層11及び上部スペーサ層13は引張歪を含む。つまり、面内方向において下部スペーサ層11及び上部スペーサ層13は活性層12とは逆方向の結晶歪を含む。従って、各積層体10の内部において、活性層12の結晶歪と、下部スペーサ層11及び上部スペーサ層13の結晶歪とが互いに打ち消し合う。
【0031】
本実施形態では、活性層12に含まれるGaInAs量子井戸層は、0.9%の圧縮方向の結晶歪を含有し、その厚さは8nmである。従って、活性層12が3層のGaInAs量子井戸層を有する場合、互いに積層された3層の量子井戸層を含む活性層12における圧縮歪の合計は、3×0.9%×8nmで21.6%・nmである。従って、1個の積層体10内において、下部スペーサ層11及び上部スペーサ層13が合計で21.6%・nmの引張歪を含んでいれば、結晶歪を相殺することができる。例えば下部スペーサ層11及び上部スペーサ層13の合計の厚さが80nmである場合、下部スペーサ層11及び上部スペーサ層13が合計で0.27%の引張歪を含んでいれば、各積層体10内において、結晶歪を相殺することができる。例えば、下部スペーサ層11及び上部スペーサ層13がAlGaAsP層である場合、V族元素中のP組成比が7.5%であれば、結晶歪を相殺することができる。なお、AlGaAs障壁層の格子定数はGaAs基板の格子定数と同程度であるため、その結晶歪は考慮しなくてもよい。
【0032】
活性層12に含まれる量子井戸層の数は3層に限定されない。活性層12に含まれる量子井戸層の数が1層の場合、1層の量子井戸層を含む活性層12における圧縮歪の合計は、1×0.9%×8nmで7.2%・nmである。従って、下部スペーサ層11及び上部スペーサ層13の合計の厚さが80nmである場合、下部スペーサ層11及び上部スペーサ層13が合計で0.09%の引張歪を含んでいれば、各積層体10内において、結晶歪を相殺することができる。下部スペーサ層11及び上部スペーサ層13がAlGaAsP層である場合、V族元素中のP組成比が2.5%であれば、結晶歪を相殺することができる。また、活性層12に含まれる量子井戸層の数が5層の場合、互いに積層された5層の量子井戸層を含む活性層12における圧縮歪の合計は、5×0.9%×8nmで36%・nmである。従って、下部スペーサ層11及び上部スペーサ層13の合計の厚さが80nmである場合、下部スペーサ層11及び上部スペーサ層13が合計で0.45%の引張歪を含んでいれば、各積層体10内において、結晶歪を相殺することができる。下部スペーサ層11及び上部スペーサ層13がAlGaAsP層である場合、V族元素中のP組成比が13%であれば、結晶歪を相殺することができる。
【0033】
このように、第1実施形態によれば、マルチジャンクション構造を採用しながら、結晶歪の蓄積を抑制することができる。従って、第1実施形態によれば、高出力化を実現することができる。
【0034】
なお、共振器領域103に含まれる活性層12の結晶歪量の合計をεactiveとしたとき、共振器領域103に含まれる下部スペーサ層11及び上部スペーサ層13の結晶歪の量の合計は、-1.1εactive~-0.9εactiveの範囲内にあることが好ましい。
【0035】
また、障壁層によって結晶歪を補償しようとする場合、圧縮歪を含む量子井戸層と引張歪を含む障壁層とが直接接触しながら繰り返し積層されるため、成長ウインドウが狭くなる。ただし、成長ウインドウへの影響が小さい範囲で、下部スペーサ層11及び上部スペーサ層13だけでなく、障壁層によっても結晶歪の一部を補償するようにしてもよい。この場合には、下部スペーサ層11及び上部スペーサ層13によって補償する引張歪の量が減少してもよい。この場合は、共振器領域103に含まれる活性層12の量子井戸層の結晶歪量の合計をεactiveとして、共振器領域103に含まれる、量子井戸層と逆の結晶歪の量の合計が-1.1εactive~-0.9εactiveの範囲内になることが好ましい。
【0036】
また、本実施形態では、λ/2のピッチで活性層12が配置され、λ/2共振器として機能する部分が複数設けられている。このため、活性層12の間での温度ばらつきを抑制することができる。例えば、下部電極106の下方にヒートシンクが設けられた場合、最も上方の活性層12においても、最も下方の活性層12と同程度の放熱性を得ることができる。放熱性の低下は、キャリアリークに伴う利得の低下及び連続駆動時の特性劣化等を引き起こすおそれがあり、また、温度ばらつきは活性層12の間での特性寄与ばらつきを引き起こすおそれがあるが、本実施形態によれば、これらを抑制することができる。例えば、λのピッチで活性層が配置され、λ共振器として機能する部分を複数有する面発光レーザ素子と比べて、放熱性の観点で良好な特性を得ることができる。この効果は、特に面発光レーザ素子が高密度アレイ化された場合に顕著である。
【0037】
更に、本実施形態では、活性層12のピッチがλ/2であるため、電流狭窄層108から最も離れた活性層12においても横方向キャリア拡散を抑制することができ、各活性層12において高い利得を得ることができる。
【0038】
本実施形態では、共振器領域103が、λ/2共振器として機能する部分を複数(3個)含んでおり、下部DBR102の最上層がn-Al0.1Ga0.9As高屈折率層102aであり、上部DBR104の最下層がp-Al0.1Ga0.9As高屈折率層104aである。従って、共振器領域103は、全体として低屈折率層となる材料で構成される。ただし、活性層12の材料は、出力しようとする光の波長により決定されるため、屈折率を調整できる部分は下部スペーサ層11及び上部スペーサ層13である。
【0039】
下部スペーサ層11及び上部スペーサ層13がAlGaAs層である場合、III族元素中のAl組成比が高いほど、下部スペーサ層11及び上部スペーサ層13の屈折率が低くなる。その一方で、III族元素中のAl組成比が高いほど、AlGaAs層中の微量の酸素に起因して非発光再結合中心が形成されやすく、特性及び信頼性上が低下するおそれがある。これに対し、下部スペーサ層11及び上部スペーサ層13がAlGaAsP層である場合には、V族元素中のP組成比が高いほど、下部スペーサ層11及び上部スペーサ層13の屈折率が低くなる。従って、III族元素中のAl組成比が高くなくても、十分に低い屈折率を得ることができる。例えば、Al組成比が65%であっても、P組成比が7.5%であれば、十分に低い屈折率を得ることができる。例えば、Al組成比が60%であっても、P組成比が13%であれば、十分に低い屈折率を得ることができる。下部スペーサ層11及び上部スペーサ層13を構成するIII族元素中のAl組成比は、非発光再結合中心の形成の抑制の観点から65%以下であることが好ましい。
【0040】
更に、下部スペーサ層11及び上部スペーサ層13がAlGaAsP層である場合には、AlGaAs層である場合と比べて、キャリアの横方向拡散を低減しやすい。下部スペーサ層11及び上部スペーサ層13はAlGaInAsP層であってもよい。
【0041】
本実施形態では、共振器領域103に含まれるスペーサ層(下部スペーサ層11、上部スペーサ層13)の全てが、活性層12と逆方向の歪を含む歪緩和層であるが、スペーサ層の少なくとも一部が歪緩和層であればよい。例えば、下部スペーサ層11及び上部スペーサ層13の一方が活性層と逆方向の結晶歪を含み、他方が結晶歪を含まない形態でもよく、1つのスペーサ層が活性層と逆方向の結晶歪を含む層と結晶歪を含まない層を有する形態でもよい。また、複数の積層体10のうちの一部のみが歪緩和層を有する形態でもよく、また、共振器領域103における最も下の下部スペーサ層11と最も上の上部スペーサ層13のみが結晶歪を含む等の形態であってもよい。ただし、各々の積層体10に含まれるスペーサ層の少なくとも一部が歪緩和層を有する形態とすることで、蓄積される歪をより低減して積層体を複数積層できるため、効果的である。
【0042】
(面発光レーザ素子の製造方法)
次に、第1実施形態に係る面発光レーザ素子100の製造方法について説明する。面発光レーザ素子100を製造する際には、半導体層は、有機金属化学成長(Metal Organic Chemical Vapor Deposition:MOCVD)法又は電子線エピタキシ(Molecular Beam Epitaxy:MBE)法等によるエピタキシャル成長により形成する。具体的には、基板101の上に、下部DBR102、共振器領域103、上部DBR104及びコンタクト層105を順に結晶成長により形成する。なお、共振器領域103及び上部DBR104の境界部分に電流狭窄層108となるp-AlAs層を形成する。
【0043】
次に、p-AlAs層の側面が露出するまで、半導体層をエッチングにより除去することにより、メサ109を形成する。メサ109を形成する際のエッチングは、ドライエッチング法を用いることができる。メサ109の上面から見た形状は、円形の他に、楕円形、正方形、長方形の矩形等の任意の形状とすることができる。
【0044】
メサ109を形成した後、水蒸気中で熱処理することにより、側面の露出している電流狭窄層108となるp-AlAs層が側面より酸化されAlxOy等の絶縁物となり、選択酸化領域108aが形成される。このようにp-AlAs層に選択酸化領域108aを形成することにより、p-AlAs層において酸化されていない中心部分が電流狭窄領域108bとなり、駆動電流の経路を中心部分の電流狭窄領域108bに制限することができる。このような構造は、電流狭窄構造とよばれることがある。
【0045】
次に、メサ109の側面及び上面を含む全面に、SiN等の誘電体により保護層151を形成する。更に、メサ109を形成する際に、半導体層がエッチングされた領域にポリイミドを埋め込むことにより平坦化し、樹脂層152を形成する。この後、コンタクト層105の上の保護層151及び樹脂層152を除去し、コンタクト層105上のレーザ光が出射される領域の周囲に、p側個別電極となる上部電極107を形成する。また、基板101の裏面にはn側共通電極となる下部電極106を形成する。
【0046】
本実施形態においては、メサ109を形成することにより露出した半導体層の側面及びメサ109の周囲の底面を保護層151により保護するため、面発光レーザ素子100の信頼性を向上させることができる。特に、半導体層が腐食されやすいAlを含む半導体層である場合には、効果を発揮する。
【0047】
なお、上部DBR104に含まれる最下層のp-Al0.1Ga0.9As高屈折率層104aと、共振器領域103に含まれる最上層の上部スペーサ層13とが直接接して、電流狭窄層108が最下層のp-Al0.1Ga0.9As高屈折率層104aより上方に設けられていてもよい。この場合、面発光レーザ素子100は、共振器領域103に含まれる最上層の上部スペーサ層13の光学的厚さの調整等により、規格化された縦モードの節がp-Al0.1Ga0.9As高屈折率層104aと上部スペーサ層13との境界に位置するように構成される。また、この場合には、電流狭窄層108の全体が上部DBR104に含まれ、共振器領域103は電流狭窄層108を含まない。
【0048】
(第2実施形態)
次に、第2実施形態について説明する。第2実施形態に係る面発光レーザ素子は、第1実施形態と同じく、940nmトンネルジャンクションVCSELデバイス構造を有するが、トンネル接合層20の材料が異なる。第1実施形態では、p型層21がp++-GaAs層であり、n型層22がn++-GaAs層であるのに対し、第2実施形態では、p型層21がp++-GaInAs層であり、n型層22がn++-GaInAs層である。p型層21がp++-GaInAs層であり、n型層22がn++-GaInAs層であることで、第1実施形態と比較して、バンドギャップエネルギーが減少する。このため、同一のドープ濃度でより、トンネル障壁の電気抵抗が低減し、トンネル電流が流れやすくなる。別の見方として、同一のトンネル電流固定で考える場合は、よりドープ濃度を低減できる。ドープ濃度を低減すると光吸収損失が低減できるため、レーザ光出力が向上する利点がある。
【0049】
なお、GaInAs層がトンネル接合層20に用いられた場合、第1実施形態における活性層12に関して説明したように、圧縮歪が蓄積するおそれがある。上述のように、第1実施形態では、3層の量子井戸層を含む活性層12における圧縮歪の合計は21.6%・nmであり、1層の量子井戸層を含む活性層12における圧縮歪の合計は7.2%・nmであり、5層の量子井戸層を含む活性層12における圧縮歪の合計は36%・nmである。
【0050】
第2実施形態においては、GaInAs層を含むトンネル接合層20の圧縮歪も考慮される。トンネル接合層20は、p型層21及びn型層22の2つのGaInAs層を含む。また、最大のIn組成は活性層と同じであるため、量子井戸層の1層の歪量の最大値は0.9%である。In組成がこれよりも高い場合、量子井戸層での発光がトンネル接合層20に吸収されるのため、最大のIn組成は活性層と同じとする。p型層21及びn型層22の各々の厚さは10nm~20nmである。p型層21及びn型層22の各々の厚さが10nm以上であれば、トンネル接合の機能が満たされる。p型層21及びn型層22のいずれかの厚さが20nmを超えると、光吸収が生じるおそれがある。このため、トンネル接合層20が2組ある場合、圧縮歪の合計は、最大で、2組×0.9%×40nmで72%・nmになる。
【0051】
そして、量子井戸層の歪量とトンネル接合層の歪量を足し合わせると、最大合計で108%・nmになる。スペーサ層の厚さが合計80nmの場合、1.35%の引張歪を含んでいれば結晶歪を相殺することができる。
【0052】
(第3実施形態)
次に、第3実施形態について説明する。第3実施形態は、主として材料系及び発振波長λの点で第1実施形態と相違する。
図3は、第3実施形態に係る面発光レーザ素子を示す断面図である。
【0053】
第3実施形態に係る面発光レーザ素子200は、発振波長λが680nmの面発光レーザ素子である。面発光レーザ素子200は、主として、基板101と、下部DBR202と、共振器領域203と、上部DBR204と、コンタクト層105と、下部電極106と、上部電極107とを有する。下部DBR202は基板101の上にあり、共振器領域203は下部DBR202の上にあり、上部DBR204は共振器領域203の上にあり、コンタクト層105は上部DBR104の上にある。下部DBR202、共振器領域203、上部DBR204及びコンタクト層105は、基板101の上面に半導体層を積層することで形成されている。面発光レーザ素子200は、共振器領域203から上方にレーザ光を出射する。面発光レーザ素子200は、上面出射型のVCSEL素子である。
【0054】
基板101は、半導体基板であるn-GaAs基板により形成されている。下部DBR202は、各層がλ/4の光学的厚さで45ペアのn-Al
0.5Ga
0.5As高屈折率層202aとn-Al
0.9Ga
0.1As低屈折率層202bとを交互に積層することにより形成されている(
図4参照)。つまり、下部DBR202は、45個のn-Al
0.5Ga
0.5As高屈折率層202aと、45個のn-Al
0.9Ga
0.1As低屈折率層202bとを含む。
【0055】
共振器領域203は、互いに積層された3個の積層体30を有する。共振器領域203は、更に、厚さ方向で隣り合う積層体30の間にトンネル接合層40を有する。積層体30は、下部スペーサ層31と、活性層32と、上部スペーサ層33とを有する。積層体30において、活性層32は下部スペーサ層31の上にあり、上部スペーサ層33は活性層32の上にある。トンネル接合層40は、p型層41と、n型層42とを有する(
図4参照)。n型層42はp型層41の上にある。
【0056】
下部スペーサ層31及び上部スペーサ層33は、例えば(Al0.7Ga0.3)0.52In0.48P層である。活性層32は、交互に積層されたGaInP量子井戸層及び(Al0.5Ga0.5)0.51In0.49P障壁層を含む量子井戸構造を有する。例えば、GaInP量子井戸層の厚さは8nmである。1個の活性層32に含まれるGaInP量子井戸層の数は、例えば3層である。このような組成の活性層32の格子定数は、基板101を構成するGaAsの格子定数よりも大きい。一方、下部スペーサ層31及び上部スペーサ層33を構成する(Al0.7Ga0.3)0.52In0.48Pの格子定数は、GaAsの格子定数よりも小さい。下部スペーサ層31及び上部スペーサ層33の厚さは、積層体30の位置にもよるが、合計で60nm程度である。本実施形態では、GaInP量子井戸層はGaAs基板に対して0.5%の圧縮方向の結晶歪を含有する。
【0057】
p型層41は、p型不純物の濃度が1019cm-3以上のp++-(Al0.2Ga0.8)0.51In0.49P層であり、n型層42は、n型不純物の濃度が1019cm-3以上のn++-(Al0.2Ga0.8)0.51In0.49P層である。p型層41及びn型層42は、互いにトンネル接合している。n型層42における伝導帯の電子がp型層41における価電子帯に向かい、バンド間でトンネル電流が流れる。トンネル接合層40は、電流を担う電荷の極性をn型からp型に変換する。
【0058】
上部DBR204は、各層がλ/4の光学的厚さで32ペアのp-Al
0.5Ga
0.5As高屈折率層204aとp-Al
0.9Ga
0.1As低屈折率層204bとを交互に積層することにより形成されている(
図4参照)。つまり、上部DBR204は、32個のp-Al
0.5Ga
0.5As高屈折率層204aと、32個のp-Al
0.9Ga
0.1As低屈折率層204bとを含む。
【0059】
面発光レーザ素子200は、最も上方の積層体30と最も下方のp-Al0.5Ga0.5As高屈折率層204aとの間に、電流狭窄層108を有する。電流狭窄層108は、選択酸化領域108aと、電流狭窄領域108bとを含む。電流狭窄層108の下側の一部分は共振器領域203に含まれ、電流狭窄層108の上側の一部分は上部DBR204に含まれる。
【0060】
コンタクト層105は、p-GaAsにより形成されている。コンタクト層105、上部DBR204、共振器領域203及び下部DBR202の一部にメサ209が形成されている。面発光レーザ素子200は、メサ209の側面と、下部DBR202の上面とを覆う保護層151を有する。更に、メサ109の形成のために半導体層が除去された領域には、ポリイミド等の樹脂材料を埋め込むことにより、樹脂層152が形成されている。
【0061】
ここで、共振器領域203について更に詳細に説明する。
図4は、第3実施形態に係る面発光レーザ素子200の要部を示す断面図である。
図4中の断面構造の右側に示す波形は、規格化された縦モードの波形を模式的に示す。
【0062】
面発光レーザ素子200では、積層体30の各々の光学的厚さがλ/2以下であり、各活性層32に規格化された縦モードの腹が位置する。
【0063】
最も下方の積層体30については、当該積層体30と、当該積層体30の直上のp型層41との合計の光学的厚さがλ/2である。そして、当該積層体30と下部DBR202との境界に規格化された縦モードの節が位置し、当該積層体30の直上のトンネル接合層40に含まれるp型層41とn型層42との境界に節が位置する。従って、当該積層体30と、当該積層体30の直上のp型層41とが1つのλ/2共振器のように機能する。
【0064】
中央の積層体30については、当該積層体30と、当該積層体30の直下のn型層42と、当該積層体30の直上のp型層41との合計の光学的厚さがλ/2である。そして、当該積層体30の直下のトンネル接合層40に含まれるp型層41とn型層42との境界に節が位置し、当該積層体30の直上のトンネル接合層40に含まれるp型層41とn型層42との境界に節が位置する。従って、当該積層体30と、当該積層体30の直下のn型層42と、当該積層体30の直上のp型層41とが1つのλ/2共振器のように機能する。
【0065】
最も上方の積層体30については、当該積層体30と、当該積層体30の直下のn型層42と、当該積層体30の直上の電流狭窄層108の一部分との合計の光学的厚さがλ/2である。そして、当該積層体30の直下のトンネル接合層40に含まれるp型層41とn型層42との境界に節が位置し、当該積層体30の直上の電流狭窄層108の一部分に節が位置する。従って、当該積層体30と、当該積層体30の直下のn型層42と、当該積層体30の直上の電流狭窄層108の一部分とが1つのλ/2共振器のように機能する。
【0066】
そして、共振器領域203の光学的厚さは3λ/2となっている。
【0067】
本実施形態では、上述のように、活性層32の格子定数が、基板101を構成するGaAsの格子定数よりも大きく、下部スペーサ層31及び上部スペーサ層33の格子定数が、GaAsの格子定数よりも小さい。従って、活性層32は圧縮歪を含み、下部スペーサ層31及び上部スペーサ層33は引張歪を含む。つまり、面内方向において下部スペーサ層31及び上部スペーサ層33は活性層32とは逆方向の結晶歪を含む。従って、各積層体30の内部において、活性層32の結晶歪と、下部スペーサ層31及び上部スペーサ層33の結晶歪とが互いに打ち消し合う。
【0068】
本実施形態では、活性層32に含まれるGaInP量子井戸層は、0.5%の圧縮方向の結晶歪を含有し、その厚さは8nmである。従って、活性層32が3層のGaInP量子井戸層を有する場合、互いに積層された3層の量子井戸層を含む活性層32における圧縮歪の合計は、3×0.5%×8nmで12%・nmである。従って、1個の積層体30内において、下部スペーサ層31及び上部スペーサ層33が合計で12%・nmの引張歪を含んでいれば、結晶歪を相殺することができる。例えば下部スペーサ層31及び上部スペーサ層33の合計の厚さが60nmである場合、下部スペーサ層31及び上部スペーサ層33が合計で0.2%の引張歪を含んでいれば、各積層体30内において、結晶歪を相殺することができる。例えば、下部スペーサ層31及び上部スペーサ層33がAlGaInP層である場合、III族元素中のIn組成比が48%であれば、結晶歪を相殺することができる。なお、(Al0.5Ga0.5)0.51In0.49P障壁層の格子定数はGaAs基板の格子定数と同程度であるため、その結晶歪は考慮しなくてもよい。
【0069】
このように、第3実施形態によっても、マルチジャンクション構造を採用しながら、結晶歪の蓄積を抑制することができる。従って、第3実施形態によっても、高出力化を実現することができる。
【0070】
第3実施形態に係る面発光レーザ素子200は、第1実施形態に係る面発光レーザ素子100と同様の方法により製造することができる。
【0071】
なお、第3実施形態においては、活性層32におけるIII族元素中のIn組成比の調整により、活性層32が引張歪を含むようにすることもできる。また、下部スペーサ層31及び上部スペーサ層33におけるIII族元素中のIn組成比の調整により、下部スペーサ層31及び上部スペーサ層33が圧縮歪を含むようにすることもできる。下部スペーサ層31及び上部スペーサ層33はGaInP層であってもよい。
【0072】
本開示において、1個の活性層における圧縮歪の合計は特に限定されず、例えば36%・nm以下である。
【0073】
また、共振器領域に含まれる積層体の数は3個に限定されず、1個又は2個であってもよく、4個以上であってもよい。積層体の数がn個(nは自然数)の場合、共振器領域の全体の光学的厚さはnλ/2である。
【0074】
また、面発光レーザ素子が出射する光の波長は特に限定されない。例えば、波長が780nm、808nm、980nm、1060nm、1200nm、1300nm又は1500nmの光を面発光レーザ素子が出射してもよい。
【0075】
(第4実施形態)
次に、第4実施形態について説明する。第4実施形態は距離測定装置に関する。
図5は、第4実施形態に係る距離測定装置を示す図である。距離測定装置は検出装置の一例である。
【0076】
第4実施形態に係る距離測定装置400は、TOF(Time of Flight)法の距離測定装置である。距離測定装置400は、発光素子410と、受光素子420と、駆動回路430とを有する。発光素子410は、発光ビーム(照射光411)を測距の測距対象物450へと向けて照射する。受光素子420は、測距対象物450からの反射光421を受光する。駆動回路430は、発光素子410を駆動するとともに、発光ビームの発光タイミングと、受光素子420による反射光421の受光タイミングとの時間差を検出することにより、測距対象物450までの往復の距離を算出する。駆動回路430は算出部の一例である。
【0077】
発光素子410は、第1実施形態に係る面発光レーザ素子100、第2実施形態に係る面発光レーザ素子又は第3実施形態に係る面発光レーザ素子200を複数含んでもよい。パルスの繰り返し周波数は、例えば数kHzから数10MHzの範囲である。
【0078】
受光素子420は、例えば、フォトダイオード(PD)、アバランシェフォトダイオード(APD)又は単一光子アバランシェダイオード(SPAD)である。受光素子420は、アレイ状に配列された受光素子を複数含んでもよい。受光素子420は検出部の一例である。
【0079】
TOF法での測距では、測距対象物からの信号とノイズを分離することが重要である。より遠くにある測距対象物を測定する場合、及びより反射率の低い測距対象物を測定する場合には、より高感度の受光素子を用いて対象物からの信号を得ることが好ましい。しかしながら、より高感度の受光素子を用いると、背景光ノイズ又はショットノイズを誤検出する可能性が高くなる。信号とノイズとを分離するために、受光信号のしきい値を上げることも考えられるが、その分だけ発光ビームのピーク出力を高くしなければ、測距対象物からの信号光を受光しにくくなる。
【0080】
第1実施形態に係る面発光レーザ素子100、第2実施形態に係る面発光レーザ素子又は第3実施形態に係る面発光レーザ素子200によれば、高出力の光パルスを出力することができる。第4実施形態に係る距離測定装置によれば、ピーク出力の高い光パルスにより、検出の高精度化と長距離化とを両立することができる。
【0081】
(第5実施形態)
次に、第5実施形態について説明する。第5実施形態は移動体に関する。
図6は、第5実施形態に係る移動体の一例としての自動車を示す図である。第5実施形態に係る移動体の一例としての自動車500の前面上方(例えばフロントグラスの上部)には、第4実施形態で説明した距離測定装置400が設けられている。距離測定装置400は、自動車500の周囲の物体502までの距離を計測する。距離測定装置400の計測結果は、自動車500の有する制御部に入力され、制御部はこの計測結果に基づいて、移動体の動作の制御を行う。若しくは、制御部は、距離測定装置400の計測結果に基づいて、自動車500の運転者501へ向けて自動車500内に設けられた表示部に警告表示を行ってもよい。
【0082】
このように、第5実施形態では、距離測定装置400を自動車500に設けることで、高精度に自動車500の周辺の物体502の位置を認識することができる。なお、距離測定装置400の搭載位置は、自動車500の上部前方に限定されず、側面や後方に搭載されてもよい。また、この例では、距離測定装置400を自動車500に設けたが、距離測定装置400を航空機又は船舶に設けてもよい。また、ドローン及びロボット等の、運転者が存在しない、自律移動を行う移動体に設けてもよい。
【0083】
(第6実施形態)
次に、第6実施形態について説明する。第6実施形態は光学検査装置に関する。
図7は、第6実施形態に係る光学検査装置の概略構成を例示する図である。
図8は、第6実施形態に係る光学検査装置のブロック構成を例示する図である。
【0084】
第6実施形態に係る光学検査装置600は、一例として、拡散光トモグラフィー(diffuse optical tomography:DOT)に用いられる。DOTは、例えば生体等の被検体(散乱体)に光を照射し、被検体内を伝播した光を検出して、被検体内部の光学特性を推定する技術である。特に、脳内の血流を検出することで、うつ症状の鑑別診断補助やリハビリテーションの補助機器として利用が期待されている。
【0085】
光学検査装置600は、光学センサ610、制御部620、計算部630、表示部640等を備えている。光学センサ610は、複数の光源モジュール611を含む照射系と、複数の検出モジュール612を含む検出系とを備えている。照射系は、対象物に光を照射する機能を有し、検出系は照射系から対象物に照射され対象物内を伝播した光を検出する機能を有している。複数の光源モジュール611及び複数の検出モジュール612は、それぞれ制御部620に対して電気配線を介して接続されている。
【0086】
制御部620は、例えば、
図8に示すように、中央処理装置621、スイッチ部622、電流制御部623、A/D変換部624、演算部625及び記録部626等を備えている。制御部620では、中央処理装置621からの情報によって、スイッチ部622が制御され、発光する光源モジュール611が選択される。このとき、スイッチ部622を介して光源モジュール611に供給される電流が電流制御部623で所望の値に制御される。検出モジュール612での検出結果(データ)は、A/D変換部624でA/D変換され、演算部625で平均化処理等の演算が行われる。演算部625での演算結果は、順次、記録部626に記録される。
【0087】
光源モジュール611の光源として、第1実施形態に係る面発光レーザ素子100、第2実施形態に係る面発光レーザ素子又は第3実施形態に係る面発光レーザ素子200を含む面発光レーザが用いられる。本実施形態では、面発光レーザの出射光の波長は、780nm帯及び900nm帯のいずれかとするか、780nm帯と900nm帯の2種類の面発光レーザから選択可能な構成とすることが好ましい。上述のように、第1実施形態に係る面発光レーザ素子100、第2実施形態に係る面発光レーザ素子又は第3実施形態に係る面発光レーザ素子200は従来の面発光レーザ素子に比べて高出力である。このため、第1実施形態に係る面発光レーザ素子100、第2実施形態に係る面発光レーザ素子又は第3実施形態に係る面発光レーザ素子200を含む面発光レーザを光学検査装置600に適用することで、より精度の高い計測が可能となる。
【0088】
以上、好ましい実施の形態等について詳説したが、上述した実施の形態等に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態等に種々の変形及び置換を加えることができる。
【0089】
本開示の態様は、例えば、以下のとおりである。
<1>
第1反射鏡及び第2反射鏡と、
前記第1反射鏡と前記第2反射鏡との間にある共振器領域と、
を有し、
前記共振器領域は、
結晶歪を含む複数の活性層と、
前記複数の活性層の間にあるトンネル接合層と、
前記第1反射鏡と前記活性層との間、前記複数の活性層の間、または前記活性層と前記第2反射鏡との間の少なくともいずれかにある歪緩和層と、
を有し、
前記歪緩和層は、前記活性層とは逆の結晶歪を含むことを特徴とする面発光レーザ素子。
<2>
前記共振器領域は、スペーサ層を複数有し、
前記複数のスペーサ層の少なくとも一部が前記歪緩和層であることを特徴とする前記<1)に記載の面発光レーザ素子。
<3>
前記共振器領域は、複数の積層体を有し、
前記積層体の各々は、
複数の前記スペーサ層の1つである第1スペーサ層と、
複数の前記スペーサ層の他の1つである第2スペーサ層と、
前記複数の活性層の1つであり、前記第1スペーサ層と前記第2スペーサ層の間にある前記活性層と、
を有し、
前記積層体において、前記第1スペーサ層および前記第2スペーサ層の少なくとも一部が前記歪緩和層であることを特徴とする前記<2>に記載の面発光レーザ素子。
<4>
前記活性層から発せられる光の波長をλとし、前記積層体の個数をn(nは2以上の自然数)としたとき、
前記共振器領域の全体の光学的厚さはnλ/2であることを特徴とする前記<3>に記載の面発光レーザ素子。
<5>
前記積層体の各々の光学的厚さはλ/2以下であることを特徴とする前記<3>に記載の面発光レーザ素子。
<6>
前記共振器領域に含まれる前記活性層の結晶歪量の合計をεとしたとき、前記共振器領域に含まれる前記活性層と逆の結晶歪量の合計は、-1.1ε~-0.9εの範囲内にあることを特徴とする前記<1>から<5>のいずれかに記載の面発光レーザ素子。
<7>
前記活性層及びトンネル接合層の合計の結晶歪の量は、108%・nm以下であることを特徴とする前記<1>から<6>のいずれかに記載の面発光レーザ素子。
<8>
前記活性層の結晶歪の量は、36%・nm以下であることを特徴とする前記<1>から<7>のいずれかに記載の面発光レーザ素子。
<9>
前記歪緩和層は、Pを含有することを特徴とする前記<1>から<8>のいずれかに記載の面発光レーザ素子。
<10>
前記歪緩和層は、AlGaAsP層又はAlGaInAsP層であることを特徴とする前記<9>に記載の面発光レーザ素子。
<11>
前記歪緩和層は、AlGaInP層又はGaInP層であることを特徴とする前記<9>に記載の面発光レーザ素子。
<12>
前記歪緩和層を構成するIII族元素中のAl組成比は65%以下であることを特徴とする前記<1>から<11>のいずれかに記載の面発光レーザ素子。
<13>
前記<1>から<12>のいずれかに記載の面発光レーザ素子と、
前記面発光レーザ素子から発せられ対象物で反射された光を検出する検出部と、
を備えることを特徴とする検出装置。
<14>
前記検出部からの信号に基づき前記対象物との距離を算出する算出部をさらに備えることを特徴とする前記<13>に記載の検出装置。
<15>
前記<14>に記載の検出装置を備えることを特徴とする移動体。
【符号の説明】
【0090】
100、200 面発光レーザ素子
10、30 積層体
11、31 下部スペーサ層
12、32 活性層
13、33 上部スペーサ層
20、40 トンネル接合層
21、41 p型層
22、42 n型層
102、202 下部DBR
103、203 共振器領域
104、204 上部DBR
400 距離測定装置
430 駆動回路(算出部)
500 自動車(移動体)
600 光学検査装置
【先行技術文献】
【特許文献】
【0091】
【非特許文献】
【0092】
【非特許文献1】"Multi-junction vertical-cavity surface-emitting lasers in the 800-1100nm wavelength range", Proc. SPIE 11704, Vertical-Cavity Surface-Emitting Lasers XXV, 117040B (5 March 2021)
【非特許文献2】半導体レーザ 応用物理学会編 オーム社