IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 古河電気工業株式会社の特許一覧

<>
  • 特開-端子 図1A
  • 特開-端子 図1B
  • 特開-端子 図1C
  • 特開-端子 図2
  • 特開-端子 図3
  • 特開-端子 図4
  • 特開-端子 図5
  • 特開-端子 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023148021
(43)【公開日】2023-10-13
(54)【発明の名称】端子
(51)【国際特許分類】
   H01R 4/62 20060101AFI20231005BHJP
   H01R 43/16 20060101ALI20231005BHJP
   H01R 4/58 20060101ALI20231005BHJP
   H01R 13/03 20060101ALI20231005BHJP
【FI】
H01R4/62 A
H01R43/16
H01R4/58 A
H01R13/03 A
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2022055843
(22)【出願日】2022-03-30
(71)【出願人】
【識別番号】000005290
【氏名又は名称】古河電気工業株式会社
(74)【代理人】
【識別番号】100114292
【弁理士】
【氏名又は名称】来間 清志
(74)【代理人】
【識別番号】100205659
【弁理士】
【氏名又は名称】齋藤 拓也
(72)【発明者】
【氏名】関谷 茂樹
(72)【発明者】
【氏名】北河 秀一
【テーマコード(参考)】
5E063
【Fターム(参考)】
5E063GA02
5E063GA06
5E063GA10
5E063XA02
5E063XA20
(57)【要約】
【課題】Al系材料およびCu系材料が接合する接合部に割れが起こり難い端子を提供する。
【解決手段】端子1は、Al系材料からなる第1接続部11と、Cu系材料からなる第2接続部12を有し、第1接続部11の第1端部11aおよび第2接続部12の第2端部12aが接合して接合面3が形成され、接合面3の中心位置Cを通り長手方向Xに沿った縦断面で見て、第1接続部11は、接合面3を始端とする、Al系材料の平均結晶粒径が3μm以下となる微結晶領域の終端位置が、中心位置Cから長手方向Xに、接合面3の円相当直径Dの3%離れた第1位置41と、円相当直径Dの15%離れた第2位置42とで画定される第1領域51にあり、かつ、微結晶領域を第1中央域61と第1外周域62に区画するとき、第1中央域61におけるAl系材料の平均結晶粒径に対する、第1外周域におけるAl系材料の平均結晶粒径の比が0.75以上1.25以下の範囲にある。
【選択図】図1B
【特許請求の範囲】
【請求項1】
Al系材料からなり、導線に接続される第1接続部と、
Cu系材料からなり、他の導体部材が連結される第2接続部と、
を有し、
前記第1接続部の中実部分である第1端部、および前記第2接続部の中実部分である第2端部を、互いに対向させた状態で接合して、前記第1端部の第1対向面と前記第2端部の第2対向面の間に接合面が形成されている端子であって、
前記接合面の中心位置を通り、前記端子の長手方向に沿って切断したときの縦断面で見て、
前記第1接続部は、
前記接合面を始端とする、Al系材料の平均結晶粒径が3μm以下となる微結晶領域の終端位置が、前記接合面の中心位置を起点として、前記端子の長手方向に前記接合面の円相当直径の3%に相当する寸法だけ離れた第1位置と、前記接合面の円相当直径の15%に相当する寸法だけ離れた第2位置とで画定される第1領域内にあり、かつ、
前記微結晶領域を、第1中央域と、前記第1中央域の周りに位置する第1外周域とに区画するとき、前記第1中央域における前記Al系材料の平均結晶粒径に対する、前記第1外周域における前記Al系材料の平均結晶粒径の比が0.75以上1.25以下の範囲にある、端子。
【請求項2】
前記第1接続部の前記第1端部および前記第2接続部の前記第2端部は、いずれも略円柱形状を有する、請求項1に記載の端子。
【請求項3】
前記縦断面で見て、
前記第2接続部は、
前記接合面の中心位置と、前記端子の長手方向に前記接合面の円相当直径の3%に相当する寸法だけ離れた第5位置とで区画される第2領域におけるCu系材料の平均結晶粒径に対する、前記接合面の中心位置を起点として、前記端子の長手方向に前記接合面の円相当直径の15%に相当する寸法だけ離れた第6位置と、前記接合面の円相当直径の20%に相当する寸法だけ離れた第7位置とで画定される第3領域におけるCu系材料の平均結晶粒径の比が0.75以上1.25以下の範囲にある、請求項1または2に記載の端子。
【請求項4】
前記縦断面で見て、前記接合面が表出した線である接合線の長さ寸法が、前記第1接続部の前記第1端部の円相当直径および前記第2接続部の前記第2端部の円相当直径のうち、小さい方の円相当直径に対して0.6%以上21.1%以下の寸法分だけ大きい、請求項1から3のいずれか1項に記載の端子。
【請求項5】
前記縦断面で見て、前記接合面が表出した線である接合線と、前記第1接続部の前記第1端部の外周面が表出した線である第1外周線および前記第2接続部の前記第2端部の外周面が表出した線である第2外周線のうちのいずれかの外周線とのなす接合端位置での角度の平均が、78°以上88°以下の範囲である、請求項1から4のいずれか1項に記載の端子。
【請求項6】
前記縦断面で見て、前記接合面が表出した線である接合線は、前記長手方向について前記接合面の円相当直径の2%以上に相当する大きさの接合範囲に広がり、かつ、
前記接合範囲の少なくとも一部に、前記長手方向に対して垂直な垂線と、前記接合線との交点が2点以上形成される範囲を有する、請求項1から5のいずれか1項に記載の端子。
【請求項7】
前記縦断面にて、前記端子の長手方向に沿って走査させてWDX分析を行なったとき、AlおよびCuの検出強度は、いずれも分析した全元素の検出強度の合計に対する強度比にして、90%以下となる領域の走査長さが、5μm以下である、請求項1から6のいずれか1項に記載の端子。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、端子に関し、特に電線端末接続や電線接続に用いられる端子に関する。
【背景技術】
【0002】
通常、配電用電線には導電率の高い銅系導体および銅系端子が用いられている。近年では、軽量化の観点から、アルミニウム系導体が用いられることがある。また、アルミニウム系導体の端末接続には、アルミニウム系端子が用いられることがある。アルミニウム系導体にアルミニウム系端子を装着したアルミニウム系端子付きアルミニウム系導体ケーブルを他の接続部材にボルトなどで締結することによって、電気回路を作り、電流を流すことができる。
【0003】
しかしながら、アルミニウム系端子付きアルミニウム系導体ケーブルを、他の接続部材にボルトなどで締結し、これらを連結した状態で繰り返し電流を流すと、電流に応じて端子と他の接続部材の連結部の周辺が発熱したり放熱したりすることで、連結部の周辺の温度が変化する。このとき、端子と他の接続部材の連結部は、ミクロな視点で見ると、熱膨張および熱収縮を繰り返すことで、端子の表面がずれて新しい接触面が露出し、露出した部分が酸化するため、端子と他の接続部材との間の接触抵抗が上昇する。さらに、アルミニウムは熱膨張係数が大きいことで、熱膨張によるサイズの変化が大きくなるため、端子と他の接続部材との間の接触抵抗がより上昇しやすい。その結果、端子と他の接続部材との間の接触抵抗が増大して温度が上昇するため、発火事故を防ぐ対策をとる必要が生じうる。
【0004】
そこで、他の接続部材に接続する接続部に銅系材料を用いた、アルミニウム系端子が知られている。例えば、特許文献1には、銅製の端子羽子板部の対向端部に設けた対向アルミニウム棒の対向端部の直径より若干大きい直径の凹所内に、アルミニウム棒の対向端部を接合し、両者の接合部の周囲に形成された溝に防蝕用材料を介在せしめてなる、銅-アルミニウム端子が記載されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】実開昭53-85586号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1に記載されている銅-アルミニウム端子は、銅とアルミニウムを摩擦圧接により接合した端子であり、アルミニウム棒(アルミニウム系導線)と接続する導線接続部にアルミニウム系材料を用いるとともに、他の接続部材に接続する端子羽子板部には銅系材料を用いており、これらの対向面を接合面で接合している。
【0007】
しかし、屋内配線を施工する際には、端子を設置して導線を配策することができるスペースが限られており、端子を他の接続部材に接続した後で、導線を引っ張ったり曲げたりして配策する場合がある。このとき、端子にも導線と同様に曲げによる負荷が掛かることで、端子の接合部にクラックが発生して割れる恐れがある。そこで、電線の配策時の曲げに耐久できる端子が求められている。
【0008】
この点、特許文献1に記載されている銅-アルミニウム端子は、接合された界面の状態に関する記載がないことからも明らかなように、端子を他の接続部材に接続した後で、導線を引っ張ったり曲げたりしたときの耐久性に着目するものではない。しかしながら、特許文献1に記載されるような、アルミニウムなどのAl系材料と銅などのCu系材料とを摩擦圧接により接合した端子では、これらの接合部が、曲げや引っ張りに対して弱くなりやすい。
【0009】
よって、本発明の目的は、Al系材料およびCu系材料が接合する接合部に割れが起こり難い端子を提供することにある。
【課題を解決するための手段】
【0010】
上記目的を達成するため、本発明の要旨構成は、以下のとおりである。
【0011】
(1)Al系材料からなり、導線に接続される第1接続部と、Cu系材料からなり、他の導体部材が連結される第2接続部と、を有し、前記第1接続部の中実部分である第1端部、および前記第2接続部の中実部分である第2端部を、互いに対向させた状態で接合して、前記第1端部の第1対向面と前記第2端部の第2対向面の間に接合面が形成されている端子であって、前記接合面の中心位置を通り、前記端子の長手方向に沿って切断したときの縦断面で見て、前記第1接続部は、前記接合面を始端とする、Al系材料の平均結晶粒径が3μm以下となる微結晶領域の終端位置が、前記接合面の中心位置を起点として、前記端子の長手方向に前記接合面の円相当直径の3%に相当する寸法だけ離れた第1位置と、前記接合面の円相当直径の15%に相当する寸法だけ離れた第2位置とで画定される第1領域内にあり、かつ、前記微結晶領域を、第1中央域と、前記第1中央域の周りに位置する第1外周域とに区画するとき、前記第1中央域における前記Al系材料の平均結晶粒径に対する、前記第1外周域における前記Al系材料の平均結晶粒径の比が0.75以上1.25以下の範囲にある、端子。
【0012】
(2)前記第1接続部の前記第1端部および前記第2接続部の前記第2端部は、いずれも略円柱形状を有する、上記(1)に記載の端子。
【0013】
(3)前記縦断面で見て、前記第2接続部は、前記接合面の中心位置と、前記端子の長手方向に前記接合面の円相当直径の3%に相当する寸法だけ離れた第5位置とで区画される第2領域におけるCu系材料の平均結晶粒径に対する、前記接合面の中心位置を起点として、前記端子の長手方向に前記接合面の円相当直径の15%に相当する寸法だけ離れた第6位置と、前記接合面の円相当直径の20%に相当する寸法だけ離れた第7位置とで画定される第3領域におけるCu系材料の平均結晶粒径の比が0.75以上1.25以下の範囲にある、上記(1)または(2)に記載の端子。
【0014】
(4)前記縦断面で見て、前記接合面が表出した線である接合線の長さ寸法が、前記第1接続部の前記第1端部の円相当直径および前記第2接続部の前記第2端部の円相当直径のうち、小さい方の円相当直径に対して0.6%以上21.1%以下の寸法分だけ大きい、上記(1)から(3)のいずれか1項に記載の端子。
【0015】
(5)前記縦断面で見て、前記接合面が表出した線である接合線と、前記第1接続部の前記第1端部の外周面が表出した線である第1外周線および前記第2接続部の前記第2端部の外周面が表出した線である第2外周線のうちのいずれかの外周線とのなす接合端位置での角度の平均が、78°以上88°以下の範囲である、上記(1)から(4)のいずれか1項に記載の端子。
【0016】
(6)前記縦断面で見て、前記接合面が表出した線である接合線は、前記長手方向について前記接合面の円相当直径の2%以上に相当する大きさの接合範囲に広がり、かつ、前記接合範囲の少なくとも一部に、前記長手方向に対して垂直な垂線と、前記接合線との交点が2点以上形成される範囲を有する、上記(1)から(5)のいずれか1項に記載の端子。
【0017】
(7)前記縦断面にて、前記端子の長手方向に沿って走査させてWDX分析を行なったとき、AlおよびCuの検出強度は、いずれも分析した全元素の検出強度の合計に対する強度比にして、90%以下となる領域の走査長さが、5μm以下である、上記(1)から(6)のいずれか1項に記載の端子。
【発明の効果】
【0018】
本発明によれば、Al系材料およびCu系材料が接合する接合部に割れが起こり難い端子を提供することができる。
【図面の簡単な説明】
【0019】
図1A図1Aは、第1実施形態の端子の斜視図である。
図1B図1Bは、第1実施形態の端子の第1領域、第2領域および第3領域を示す図であって、図1Aの仮想平面Pにおける縦断面図である。
図1C図1Cは、第1実施形態の端子の第1中央域および第1外周域を示す図であって、図1Aの仮想平面Pにおける縦断面図である。
図2図2は、第2実施形態の端子の内部構造を示した縦断面図である。
図3図3は、曲面によって構成される接合面の、接合前および接合後の一例を示した要部の縦断面図であって、図3(a)が接合前の状態を示す縦断面図、図3(b)が接合後の状態を示す縦断面図である。
図4図4は、曲面によって構成される接合面の、接合前および接合後の他の例を示した要部の縦断面図であって、図4(a)が接合前の状態を示す縦断面図、図4(b)が接合後の状態を示す縦断面図である。
図5図5は、曲面によって構成される接合面の、接合前および接合後の他の例を示した要部の縦断面図であって、図5(a)が接合前の状態を示す縦断面図、図5(b)が接合後の状態を示す縦断面図である。
図6図6は、端子についての3点曲げ評価の方法を説明するための図である。
【発明を実施するための形態】
【0020】
以下、本発明の具体的な実施形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。
【0021】
<第1の実施形態>
図1Aは、第1実施形態の端子の斜視図である。また、図1Bは、第1実施形態の端子の第1領域、第2領域および第3領域を示す図であって、図1Aの仮想平面Pにおける縦断面図である。また、図1Cは、第1実施形態の端子の第1中央域および第1外周域を示す図であって、図1Aの仮想平面Pにおける縦断面図である。
【0022】
端子1は、Al系材料からなり、導線7に接続される第1接続部11と、Cu系材料からなり、他の導体部材8が連結される第2接続部12と、を有し、第1接続部11の中実部分である第1端部11a、および第2接続部12の中実部分である第2端部12aを、互いに対向させた状態で接合して、第1端部11aの第1対向面31と第2端部12aの第2対向面32の間に接合面3が形成されている端子1であって、接合面3の中心位置Cを通り、端子1の長手方向Xに沿って切断したときの縦断面で見て、第1接続部11は、接合面3を始端とする、Al系材料の平均結晶粒径が3μm以下となる微結晶領域の終端位置が、接合面3の中心位置Cを起点として、端子1の長手方向Xに接合面3の円相当直径Dの3%に相当する寸法だけ離れた第1位置41と、接合面3の円相当直径Dの15%に相当する寸法だけ離れた第2位置42とで画定される第1領域51内にあり、かつ、微結晶領域を、第1中央域61と、第1中央域61の周りに位置する第1外周域62とに区画するとき、第1中央域61におけるAl系材料の平均結晶粒径に対する、第1外周域62におけるAl系材料の平均結晶粒径の比が0.75以上1.25以下の範囲にある。
【0023】
この端子1では、Al系材料からなる第1接続部11のうち、Cu系材料からなる第2接続部12との接合面3の周辺において、Al系材料の微細な結晶粒が存在する領域が広がっており、かつ、接合面3の近傍の微結晶領域において、第1中央域61におけるAl系材料の粒径と、その周りに位置する第1外周域62におけるAl系材料の粒径とが、ほぼ同等の大きさになる。このように、Cu系材料との接合面3やその周辺に、Al系材料の微細な結晶粒が存在する領域が広がることで、端子1を引っ張ったり曲げたりしたときの変形に対し、Al系材料およびCu系材料の接合部分を十分に耐久させることができる。これは、Cu系材料との接合面3やその周辺における、Al系材料の結晶粒径が微細かつ均一であれば、端子1を引っ張ったり曲げたりしたときの変形に対して、局所的に変形することなく、端子1の全体で緩やかに変形できるためであると考えられる。
【0024】
加えて、この端子1では、Al系材料からなる第1接続部11と、Cu系材料からなる第2接続部12が接合面3で接合されており、他の導体部材8が連結される第2接続部12がCu系材料によって構成されるため、他の導体部材8との間の接触抵抗を小さくすることができる。
【0025】
したがって、この端子1によることで、Al系材料およびCu系材料が接合する接合部に割れが起こり難い端子1を提供することができる。
【0026】
[端子の構成について]
図1Aに示すように、端子1は、Al系材料からなり、導線7に接続される第1接続部11と、Cu系材料からなり、他の導体部材8が連結される第2接続部12と、を有する。
【0027】
第1接続部11を構成するAl系材料としては、純アルミニウムやアルミニウム合金を用いることができる。ここで、第1接続部11の導電性を高める観点では、Al系材料として純アルミニウムを用いることが好ましい。他方で、第1接続部11の耐久強度を高くする観点では、Al系材料としてアルミニウム合金を用いることが好ましい。純アルミニウムとしては、工業用純アルミニウムを挙げることができ、例えば、アルミニウムの他に、Fe(鉄)を0.3重量%以下、Si(ケイ素)を0.1重量%以下、その他の元素を合計で0.1重量%以下含むものを用いることができる。他方で、アルミニウム合金としては、第1接続部11の導電性を低下させない観点から、添加元素が少ないことが好ましく、例えば、Fe(鉄)、Si(ケイ素)、Cu(銅)、Mg(マグネシウム)、Mn(マンガン)、Cr(クロム)、Zn(亜鉛)、Ti(チタン)をそれぞれ1重量%以下含み、その他の元素を合計で0.1重量%以下含むものを用いることができる。
【0028】
第2接続部12を構成するCu系材料としては、純銅や銅合金を用いることができる。ここで、第2接続部12の導電性を高める観点では、Cu系材料として純銅を用いることが好ましい。他方で、第2接続部12の耐久強度を高くする観点では、Cu系材料として銅合金を用いることが好ましい。純銅としては、タフピッチ銅や無酸素銅を挙げることができ、例えば、銅の他に、その他の元素を合計で0.1重量%以下含むものを用いることができる。他方で、銅合金は、第2接続部12の導電性を低下させない観点から、添加元素が少ないことが好ましく、例えば、Sn(錫)またはCr(クロム)をそれぞれ1重量%以下含んだものや、黄銅を用いることができる。
【0029】
この端子1では、図1Bに示すように、第1接続部11の中実部分である第1端部11aと、第2接続部12の中実部分である第2端部12aとが、互いに対向した状態で接合されており、このとき対向する面である、第1端部11aの第1対向面31と、第2端部12aの第2対向面32との間に、接合面3が形成されている。
【0030】
ここで、第1端部11aの第1対向面31と、第2端部12aの第2対向面32は、いずれも略円形状を有するとともに、略同心になるように配置されることが好ましい。特に、第1接続部11の第1端部11aおよび第2接続部12の第2端部12aは、いずれも略円柱形状を有することがより好ましい。このように、第1対向面31および第2対向面32が略円形状を有し、より好ましくは第1端部11aおよび第2端部12aが略円柱形状を有することで、摩擦圧接による第1接続部11および第2接続部12の接合の際に、第1端部11aおよび第2端部12aが均等に加熱されるようになるため、結晶粒をより均一に存在させることができる。
【0031】
第1端部11aの第1対向面31と、第2端部12aの第2対向面32は、いずれも円相当直径で、25mm以下であることが好ましい。第1対向面31および第2対向面32の円相当直径が25mmを超えると、第1接続部11および第2接続部12を接合した後の冷却が不十分になりやすくなることで、接合面3の近傍における結晶粒径が不均一になるため、端子1を引っ張ったり曲げたりしたときの変形に対する耐久性が低下しやすい。なお、第1対向面31および第2対向面32の円相当直径の下限は、特に限定されないが、例えば7mm以上としてもよい。
【0032】
第1接続部11は、図1Bに示すような、接合面3の中心位置Cを通り、端子1の長手方向Xに沿って切断したときの縦断面で見て、接合面3を始端とする、Al系材料の平均結晶粒径が3μm以下となる微結晶領域の終端位置が、接合面3の中心位置Cを起点として、端子1の長手方向Xに接合面3の円相当直径Dの3%に相当する寸法だけ離れた第1位置41と、接合面3の円相当直径Dの15%に相当する寸法だけ離れた第2位置42とで画定される第1領域51内にあるように構成される。これにより、接合面3から第1領域51内の位置までの範囲に、Al系材料の微細な結晶粒が存在する領域が広がるため、端子1を引っ張ったり曲げたりしたときの変形に対し、特にCu系材料より柔らかく、かつ耐久性の小さい接合面3の近傍にあるAl系材料を、十分に耐久させることができる。このような、接合面3から第1領域51内までの範囲にAl系材料の微細な結晶粒が存在する微細構造は、例えば、第1接続部11および第2接続部12を接合する際に接合面3の近傍を水冷などで冷却することで得ることができる。他方で、この微結晶領域の終端位置が、接合面3の中心位置Cを起点として、端子1の長手方向Xに接合面3の円相当直径Dの3%以上15%以下の範囲になく、かつ、長手方向Xに接合面3の円相当直径Dの15%超の範囲にもない場合、接合面3の近傍におけるAl系材料の結晶粒径が大きくなるため、引っ張ったり曲げたりしたときの変形に十分に耐久できずに端子1が破壊する恐れがある。また、この微結晶領域の終端位置が、長手方向Xに接合面3の円相当直径Dの15%超の範囲にある場合、接合面3の近傍が必要以上に加熱されることで、アルミニウムと銅の金属間化合物が生成して接合面3の近傍が脆くなるため、引っ張ったり曲げたりしたときの変形に十分に耐久できずに端子1が破壊する恐れがある。従って、この微結晶領域の終端位置は、接合面3の中心位置Cを起点として、端子1の長手方向Xに、接合面3の円相当直径Dの5%以上12%以下の範囲にあることが好ましく、接合面3の円相当直径Dの6%以上10%以下の範囲にあることがより好ましい。
【0033】
なお、この微結晶領域の終端位置は、接合面3の中心位置Cを通るように長手方向Xに沿って切断したときの端子1の縦断面について、1000倍の光学顕微鏡を用いて横105μm×縦80μmの観察領域で、接合面3の中心位置Cを通り、かつ端子1の長手方向Xに沿った中心線Cを含むように撮影し、得られる画像について、接合面3が表出した線である接合線を長手方向Xに平行移動させた線で、中心位置Cから円相当直径Dの1%ごとに区分して、Al系材料の平均結晶粒径をそれぞれ測定したときに、平均結晶粒径が3μm以下となる区画のうち、接合面3から最も遠い区画における終端の位置とすることができる。すなわち、縦断面を、中心位置Cから、接合面3の円相当直径Dの0%超1%以下の区画、1%超2%以下の区画、の要領で1%ごとに区分して測定されるAl系材料の平均結晶粒径を求めていき、最初に平均結晶粒径が3μm超であった区画と、それより円相当直径Dの1%だけ小さい区画との境界の位置を、この微結晶領域の終端位置とすることができる。例えば、接合面3の円相当直径Dの10%以下の区画における平均結晶粒径がすべて3μm以下であり、接合面3の円相当直径Dの10%超11%以下の区画における平均結晶粒径が3.5μmであった場合、この微結晶領域の終端位置は、接合面3の円相当直径Dの10%となる。
【0034】
また、接合面3の円相当直径Dは、端子1の長手方向Xに対して垂直な断面を研磨面として、Al系材料の側からCu系材料の側に、長手方向Xに向かって研磨していき、研磨面の全面がCu系材料に変わった瞬間の断面を鏡面に仕上げて光学顕微鏡で撮影し、得られる画像を解析することで接合面3の面積を求め、この接合面3の面積と等しい面積を有する円の直径を、円相当直径Dとすることができる。また、端子1の外観を目視で観察して、接合面3が円形状であることが明らかな場合には、接合面3の直径を直接ノギスで測定してもよい。
【0035】
第1接続部11のうち、Al系材料の平均結晶粒径が3μm以下となる微結晶領域を、図1Cに示すように、第1中央域61と、第1中央域61の周りに位置する第1外周域62とに区画するとき、第1中央域61におけるAl系材料の平均結晶粒径に対する、第1外周域62におけるAl系材料の平均結晶粒径の比が0.75以上1.25以下の範囲にあるように構成される。これにより、微結晶領域において、第1中央域61におけるAl系材料の粒径と、その周りに位置する第1外周域62におけるAl系材料の粒径とが、ほぼ同等の大きさになることで、端子1を引っ張ったり曲げたりしたときの変形に対し、局所的な変形が起こり難くなり、それにより端子が全体的に変形するようになるため、Al系材料およびCu系材料の接合部分を十分に耐久させることができる。他方で、第1中央域61におけるAl系材料の平均結晶粒径に対する、第1外周域62におけるAl系材料の平均結晶粒径の比が0.75未満または1.25超であると、微結晶領域における結晶粒径が不均一になることで、引っ張ったり曲げたりしたときの変形に十分に耐久できずに端子1が破壊する恐れがある。第1中央域61におけるAl系材料の平均結晶粒径に対する、第1外周域62におけるAl系材料の平均結晶粒径の比は、0.85以上1.15以下の範囲が好ましく、0.90以上1.10以下の範囲がより好ましい。
【0036】
ここで、第1中央域61は、Al系材料の微結晶領域のうち、中心寄りの領域に設定される。より具体的に、第1中央域61は、接合面3の中心位置Cを通り、端子1の長手方向Xに沿った中心線Cの位置やその近傍であり、中心線Cの位置から円相当直径Dの5%(D/20)に相当する寸法だけ外周面21の側にある第3位置43によって囲まれる領域に設定される。他方で、第1外周域62は、Al系材料の微結晶領域のうち、外周面21寄りの領域に設定することができる。より具体的に、第1外周域62は、第1外周線21aから円相当直径Dの5%(D/20)に相当する寸法だけ中心線Cの側にある第4位置44と、第1外周線21aによって囲まれる領域に設定される。
【0037】
ここで、第1中央域61におけるAl系材料の平均結晶粒径は、上述の微結晶領域の終端位置を求める際に用いた縦断面の画像のうち、微結晶領域にあたる部分の第1中央域61に、結晶粒界が50個跨るような線分を長手方向Xに沿って引き、その線分のうち結晶粒界を跨いでいる部分の長さを50で割ることで求めることができる。ここで、中心線Cに沿って結晶粒界が50個跨るような線分を引けなかった場合は、同様に撮影した複数の画像を用いてもよく、同じ画像に複数の線分を引いてもよい。また、第1外周域62におけるAl系材料の平均結晶粒径についても同様に、接合面3の中心位置Cを通るように長手方向Xに沿って端子1を切断したときの第1外周域62を含む縦断面について、1000倍の光学顕微鏡を用いて横105μm×縦80μmの観察領域で撮影し、微結晶領域にあたる部分の第1外周域62に、結晶粒界が50個跨るような線分を長手方向Xに沿って引き、その線分のうち結晶粒界を跨いでいる部分の長さを50で割ることで求めることができる。
【0038】
第1接続部11に接続される導線7は、特に限定されず、単独の素線によって構成されてもよく、複数の素線を撚り合わせた撚線であってもよく、複数の素線を束ねた束線であってもよい。導線7の材料の一例として、純アルミニウムおよびアルミニウム合金を含むAl系材料を挙げることができる。
【0039】
第2接続部12は、図1Bに示すように、接合面3の中心位置Cを通るように、端子1の長手方向Xに沿って切断したときの縦断面で見て、接合面3の中心位置Cと、そこから端子1の長手方向Xに接合面3の円相当直径Dの3%に相当する寸法だけ離れた第5位置45とで区画される第2領域52におけるCu系材料の平均結晶粒径に対する、接合面3の中心位置Cを起点として、端子1の長手方向Xに接合面3の円相当直径Dの15%に相当する寸法だけ離れた第6位置46と、接合面3の円相当直径Dの20%に相当する寸法だけ離れた第7位置47とで画定される第3領域53におけるCu系材料の平均結晶粒径の比が、0.75以上1.25以下の範囲にあることが好ましい。これにより、接合面3の近傍である第2領域52と、接合面3から十分に離れていて接合時の熱の影響を受けない第3領域53との間で、Cu系材料の平均結晶粒径がほぼ同等の大きさになることで、接合面3の付近における摩擦熱の影響が小さいことが表わされるため、アルミニウムと銅の金属間化合物を生成し難くして、端子1を引っ張ったり曲げたりしたときの変形に対し、Al系材料およびCu系材料の接合部分を十分に耐久させることができる。
【0040】
第2接続部12は、接合面3から離隔した位置(図1の端子1では、接合面3に対して長手方向Xの他端側)に、板状接続部12bを備える。板状接続部12bは、貫通穴Sを備え、ボルトなどの締結部材9を挿通して、他の導体部材8に機械的かつ電気的に接続することができる。
【0041】
第1接続部11および第2接続部12は、接合面3の中心位置Cを通るように長手方向Xに沿って切断したときの縦断面にて、端子1の長手方向Xに沿って走査させてWDX分析を行なったとき、AlおよびCuの検出強度は、いずれも分析した全元素の検出強度の合計に対する強度比にして、90%以下となる領域の走査長さが、5μm以下であることが好ましい。これにより、接合面3において適度にCu原子およびAl原子が拡散するため、第1接続部11および第2接続部12の接合強度をより高めることができる。他方で、AlおよびCuの検出強度が90%以下となる領域の走査長さが5μmを超えると、接合面3の近傍にアルミニウムと銅の脆い金属間化合物が生成することで、金属間化合物が生成した場所を起点にクラックが入りやすくなるため、第1接続部11および第2接続部12の接合強度が小さくなる傾向にある。
【0042】
[端子の製造方法について]
次に、端子1の製造方法について説明する。
【0043】
まず、第1旋盤加工工程では、第2接続部12となる銅丸棒の端面に旋盤加工を行ない、後述する突起や溝を、第2端部12aとなる部分に形成することができる。この第1旋盤加工工程は、図1に示されるような、略円柱形状を有する第2端部12aを備えた態様では行わなくてもよい。
【0044】
第1旋盤加工工程の後に行なわれる摩擦圧接工程では、第1接続部11となるアルミニウム丸棒と、第2接続部12となる銅丸棒とを、互いに対向させた状態で摩擦圧接装置の治具に設置し、アルミニウム丸棒および銅丸棒を相対的に回転させながら、これらを押し込むことで摩擦により加熱した後、より大きなアップセット圧力で押し込むことで接合する。特に、本発明の端子1では、アルミニウム丸棒および銅丸棒の外周部の周速が速いことに起因する、外周部の摩擦熱を抑え、それにより生じていた外周部の結晶粒の粗大化を抑制するために、アルミニウム丸棒および銅丸棒を摩擦により加熱する際に、アルミニウム丸棒および銅丸棒が接触する部分に水を噴射することで、摩擦圧接により接合される部分の外周を水冷しながら、摩擦圧接を行なう。これにより、接合面3における結晶粒径を、ほぼ均一に制御することができる。
【0045】
摩擦圧接工程の後に行なわれる第2旋盤加工工程では、第1接続部11のうち第2接続部12が接合されていない側の端部を、旋盤加工によって中空になるように切削し、導線7の端部を圧着により接続する導線接続部11bを形成する。
【0046】
第2旋盤加工工程の後に行なわれる熱処理工程では、熱処理を施して第1接続部11を軟化させる。これにより、後工程での圧着工程で、比較的弱い力で導線7を第1接続部11に圧着できるようになるため、端子1側での通電ON時の応力緩和量を減らすとともに、導線7を圧着した部分での接合を、より強化および維持することができる。
【0047】
熱処理工程の後に行なわれる第1鍛造工程では、第2接続部12のうち第1接続部11が接合されていない側の端部を、金型に入れて圧縮することで、第2接続部12に板状接続部12bを形成する。
【0048】
第1鍛造工程の後に行なわれる打ち抜き工程では、打ち抜きによって板状接続部12bに貫通穴Sを設ける。
【0049】
打ち抜き工程の後に行なわれるめっき工程では、第1接続部11および第2接続部12の表面にめっきを施すことで、端子1を作製する。より具体的には、第1接続部11および第2接続部12の表面に、密着性向上のためCu下地めっきを施した後、最表層にはSnめっきを施す。
【0050】
さらに、得られる端子1にアルミ電線を接続するために、以下の工程が行なわれる。
【0051】
まず、コンパウンド挿入工程では、導線7と導線接続部11bとの密着性の向上のために、導線接続部11bの内面にコンパウンド材を挿入する。コンパウンド材は、主に鉱油および亜鉛粉末で構成され、導線7と導線接続部11bとを良好に接続するために用いられる。より具体的に、コンパウンド材は、アルミニウム圧着端子付きアルミニウム電線の良好な導電性の確保や、導線7の酸化被膜および導線接続部11bの酸化被膜の破壊、圧着部の防水などの役割を果たす。
【0052】
コンパウンド挿入工程の後に行なわれる圧着工程では、導線7を導線接続部11bに挿入し、圧着工具を用いて導線接続部11bに一方向から力を掛けることで、導線7と導線接続部11bとを圧着する。導線接続部11bの窪んだ部分である圧着凹部の窪み量が大きいほど、換言すると圧着時の押込み力が大きいほど、導線7と導線接続部11bは強固に接合される。
【0053】
<第2の実施形態>
図2は、第2実施形態の端子の内部構造を示した縦断面図である。なお、図2に示す各構成部材は、図1に示す端子1の構成部材と同じ場合には、同じ符号を付している。
【0054】
第1の実施形態で示した端子1では、第1接続部11および第2接続部12の直径(線径)が等しい態様について示したが、これに限定されない。例えば、図2の端子1Aに示すように、第1接続部11および第2接続部12は、異なる直径を有していてもよい。
【0055】
より具体的に、第1接続部11および第2接続部12は、接合面3Aの中心位置Cを通るように長手方向Xに沿って切断したときの縦断面で見て、接合面3Aが表出した線である接合線30Aの長さ寸法が、第1接続部11の第1端部11aの円相当直径Dおよび第2接続部12の第2端部12aの円相当直径Dのうち、小さい方の円相当直径に対して、0.6%以上21.1%以下の寸法分だけ大きいことが好ましい。特に、円相当直径DおよびDのうち小さい方の円相当直径に対して、接合線30Aの長さ寸法を0.6%以上の寸法分だけ大きくすることで、より大きな曲げ負荷に対しても耐久することができる。他方で、円相当直径DおよびDのうち小さい方の円相当直径に対して、接合線30Aの長さ寸法を21.1%の寸法分より大きくすると、第1接続部11および第2接続部12を摩擦圧接する際に負荷される力が分散するため、接合面3Aに割れが生じやすくなる。特に、円相当直径DおよびDのうち小さい方の円相当直径に対して、接合線30Aの長さ寸法を2.0%以上11.0%以下の寸法分だけ大きいことがより好ましい。
【0056】
接合線30Aは、第1接続部11の第1対向面31Aと第2接続部12の第2対向面32Aのうち、これらが対向する部分に形成される接合面3Aが、図2に示されるような縦断面に表出してなるものである。そのため、本実施態様の端子1Aでは、図2に示されるように、第1対向面31Aや第2対向面32Aの一部(図2では第1対向面31Aの一部)に、接合線30Aに含まれない部分を有する。
【0057】
第1の実施形態で示した端子1では、第1接続部11および第2接続部12の接合面3は、第1端部11aの外周面21および第2端部12aの外周面22に対して垂直な平面になるように構成される態様について示したが、これに限定されない。例えば、図2の端子1Aに示すように、第1接続部11および第2接続部12の接合面3Aは、第1端部11aの外周面21または第2端部12aの外周面22に対して非垂直に構成されていてもよい。
【0058】
特に、図2(a)に示すように、端子1Aは、接合面3Aの中心位置Cを通るように長手方向Xに沿って切断したときの縦断面で見て、接合面3Aが表出した線である接合線30Aと、第1接続部11の第1端部11aの外周面21が表出した線である第1外周線21aおよび第2接続部12の第2端部12aの外周面22が表出した線である第2外周線22aのうちのいずれかの外周線とのなす、接合端位置T、Tでの角度θ、θの平均である平均接合角度が、78°以上88°以下の範囲であることが好ましい。これにより、第1接続部11および第2接続部12の接合強度をより高めることができる。他方で、平均接合角度が88°を超えると、曲げによる最大の引張応力は端子1Aの外周面21、22やその近傍で生じるため、この部分で生じたクラックが端子1Aの内部に伝わりやすく、割れが進行しやすくなる。従って、平均接合角度は、78°以上84°以下であることがより好ましい。
【0059】
ここで、接合端位置T、Tは、それぞれ、第1外周線21aおよび第2外周線22aのうち内側にある外周線(図2(a)では第2外周線22a)と、接合線30Aとが交わる位置のことであり、両方の外周線上にそれぞれ位置する。また、接合端位置T、Tでの角度θ、θは、それぞれ外周線と接合線30Aとがなす角度であるが、当該角度が90°を超える鈍角(例えば95°)になる場合は、図2(a)の記載にかかわらず、外周線の延長線と、接合線30Aとがなす鋭角(例えば85°)を指すものとする。
【0060】
第1の実施形態で示した端子1では、第1接続部11および第2接続部12の接合面3は、平面によって構成される態様について示したが、これに限定されない。例えば、図2の端子1Aに示すように、第1接続部11および第2接続部12の接合面3Aは、曲面によって構成されていてもよい。接合面3Aが突起やうねり等を有する曲面によって構成されることで、端子1Aの外周面21、22やその近傍でクラックが生じても、クラック先端における引張応力が分散されるため、クラックを端子1Aの内部に伝わり難くすることができる。
【0061】
特に、図2(b)に示すように、端子1Aは、接合面3Aの中心位置Cを通るように長手方向Xに沿って切断したときの縦断面で見て、接合面3Aが表出した線である接合線30Aは、長手方向Xについて接合面3Aの円相当直径の2%以上に相当する大きさの接合範囲54に広がっていてもよい。このとき、端子1Aは、接合面3Aが存在する範囲である接合範囲54の少なくとも一部に、長手方向Xに対して垂直な垂線Qと、接合線30Aとの交点が2点以上形成される範囲を有することが好ましい。例えば、図2(b)の端子1Aでは、この範囲にある長手方向Xに対して垂直な垂線Qと、接合線30Aとの交点として、交点M、Mを有するように構成される。ここで、接合線30Aとの交点が2点以上ある範囲の一端または両端は、接合範囲54の一端または両端と重なっていてもよい。なお、接合面3Aの円相当直径は、第1接続部11の第1端部11aの円相当直径Dおよび第2接続部12の第2端部12aの円相当直径Dのうち、小さい方の円相当直径とすることができる。
【0062】
また、中心位置Cから交点Mおよび交点Mへのクラックの伝播を抑制する観点では、中心位置Cから交点Mおよび交点Mまでの直線距離は、それぞれ均等であることが好ましく、それぞれ短いことが好ましい。また、中心位置Cから交点Mおよび交点Mまでの直線距離の最大値は、それぞれ、第1接続部11の第1端部11aの円相当直径Dおよび第2接続部12の第2端部12aの円相当直径Dのうち、小さい方の円相当直径に対して、3分の1以下であることが好ましい。他方で、端子1Aの外周面21、22の近傍に交点M、Mがあると、製造条件によってその位置に空隙が存在しやすくなり、クラックの伝播を促進してしまうため、中心位置Cから交点Mまたは交点Mまでの直線距離は、第1接続部11の第1端部11aの円相当直径Dおよび第2接続部12の第2端部12aの円相当直径Dのうち、小さい方の円相当直径に対して、10分の1以上であることが好ましい。
【0063】
このような、曲面によって構成される接合面3Aは、第1接続部11の第1端部11aとなるAl系材料の端面および第2接続部12の第2端部12aとなるCu系材料の端面のうち一方または両方に旋盤加工を行ない、第1端部11aや第2端部12aとなる部分に突起や溝を形成することで、作製することができる。
【0064】
例えば、図3(a)に示すように、Cu系材料のうち第2端部12aとなる部分に旋盤加工を行ない、突起12cとして直径Lおよび高さHの台部分を有する円形台を形成した場合、図3(b)に示すように、端子1Bとして、第2端部12aに凸部12c´を有するとともに、接合面3Bが表出した線である接合線30Bが存在する範囲である接合範囲54に、長手方向Xに対して垂直な垂線Qとの間で、交点M、Mを有するものを得ることができる。
【0065】
また、図4(a)に示すように、Cu系材料のうち第2端部12aとなる部分に旋盤加工を行ない、突起12dとして高さHの円錐を形成した場合、高さHを適切に調節することで、図4(b)に示すように、端子1Cとして、第2端部12aに凸部12d´を有するとともに、接合面3Cが表出した線である接合線30Cと、第1端部11aの外周面21が表出した線である第1外周線21aおよび第2接続部12の第2端部12aの外周面22が表出した線である第2外周線22aとのなす接合端位置T、Tでの角度θ、θの平均が、上述の角度θ、θと同様の範囲にあり、例えば78°以上88°以下の範囲にあるものを得ることができる。また、この端子1Cは、接合線30Cが存在する範囲である接合範囲54に、長手方向Xに対して垂直な垂線Qとの間で、交点M、Mを有することができる。
【0066】
また、図5(a)に示すように、Cu系材料のうち第2端部12aとなる部分に旋盤加工を行ない、溝12eとして溝深さE、溝幅Lおよび溝内側壁面の径Lを有する円形溝を形成した場合、図5(b)に示すように、端子1Dとして、第1端部11aに凹部12e´を有するとともに、接合面3Dが表出した線である接合線30Dは、接合線30Dが存在する範囲である接合範囲54に、長手方向Xに対して垂直な垂線Qとの間で、交点M、M、M、M10を有するものを得ることができる。
【0067】
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。
【実施例0068】
次に、本発明の効果をさらに明確にするために、本発明例および比較例について説明するが、本発明はこれら実施例に限定されるものではない。
【0069】
(本発明例1~20および比較例1~6)
線径19mmの合金番号1070-O材のアルミニウム丸棒と、線径19mmの合金番号1100-O材の銅丸棒を準備し、以下の工程にて端子を作製した。ただし、本発明例11については、アルミニウム丸棒としてアルミニウム合金番号6101の丸棒を用いた。また、本発明例12については、銅丸棒として黄銅C2600の丸棒を用いた。また、本発明例13については、アルミニウム丸棒および銅丸棒として、それぞれ線径8mmの丸棒を用いた。また、本発明例14については、アルミニウム丸棒および銅丸棒として、それぞれ線径25mmの丸棒を用いた。
【0070】
まず、本発明例15~20では、第1旋盤加工工程として、銅丸棒の端面に旋盤加工を行ない、表1に記載される高さHの円錐や、表1に記載される直径Lおよび高さHの台部分を有する円形台、表1に記載される溝深さE、溝幅Lおよび溝の内側壁面の径Lを有する円形溝を、突起や溝として第2端部12aとなる部分に形成した。他の本発明例および比較例では、第1旋盤加工工程は行なわなかった。
【0071】
次に、摩擦圧接工程として、第1接続部11となるアルミニウム丸棒と、第2接続部12となる銅丸棒とを、互いに対向させた状態で摩擦圧接装置の治具に設置し、アルミニウム丸棒および銅丸棒を、表1に記載される回転数で相対的に回転させるとともに、表1の「アルミニウム丸棒および銅丸棒が接触する部分への水噴射の有無」欄が「有」になっている例については、アルミニウム丸棒および銅丸棒が接触する部分に水を噴射しながら、これらを表1に記載される回転押込圧力および押込時間で押し込むことで、摩擦により加熱した。その後、表1に記載される時間で回転を停止させてから、表1に記載されるアップセット圧力で押し込むことで、アルミニウム丸棒および銅丸棒を接合した。
【0072】
摩擦圧接工程の後、第2旋盤加工工程として、第1接続部11のうち第2接続部12が接合されていない側の端部を、旋盤加工によって中空になるように切削して、導線接続部11bを形成した。次いで、熱処理工程として350℃の加熱温度および2時間の保持時間で熱処理を行なって第1接続部11を軟化させた。
【0073】
その後、第1鍛造工程として、第2接続部12のうち第1接続部11が接合されていない側の端部を、金型に入れて圧縮することで、第2接続部12に板状接続部12bを形成した。形成された板状接続部12bには、打ち抜き工程として、打ち抜きによって板状接続部12bに貫通穴Sを設けた。
【0074】
次いで、めっき工程として、第1接続部11および第2接続部12の表面に、密着性向上のためCu下地めっきを施した後、最表層にはSnめっきを施すことで、端子1を作製した。
【0075】
[各種測定および評価方法]
上記本発明例および比較例に係る端子を用いて、下記に示す特性評価を行なった。各特性の評価条件は下記のとおりである。
【0076】
[1]材料組織に関する測定
[1-1]第1接続部の微結晶領域の終端位置の測定
得られる端子について、接合面の中心位置を通るように長手方向に沿って縦断面を切り出し、接合面を含む縦断面の周囲を樹脂で埋めて、湿式研磨およびバフ研磨によって試料表面を鏡面に仕上げた後、電解研磨およびアノーダイジング処理を行って、解析試料を得た。この解析試料のうち接合界面の周辺を、偏光板を挿入した光学顕微鏡を用いて撮影し、得られる画像について、接合面から円相当直径の0%超1%以下の範囲にある区画、1%超2%以下の範囲にある区画、の要領で、接合面から円相当直径の1%ごとに区分してAl系材料の平均結晶粒径をそれぞれ測定したときに、平均結晶粒径が3μm以下であり微結晶領域にあたる区画のうち、接合面を始端としたときの、接合面から最も遠い区画における終端位置を求めた。ここで、微結晶領域の終端位置は、接合面の円相当直径の大きさを100%としたときの相対値で表した。結果を表2に示す。
【0077】
[1-2]微結晶領域における、第1中央域におけるAl系材料の平均結晶粒径に対する、第1外周域におけるAl系材料の平均結晶粒径の比の測定
上記[1-1]で得られる画像のうち、平均結晶粒径が3μm以下となる区画である微結晶領域の部分に、第1中央域に含まれる線分として、中心線に沿った結晶粒界が50個跨るような線分を長手方向に沿って引き、その線分のうち結晶粒界を跨いでいる部分の長さを50で割ることで、中心線の位置におけるAl系材料の平均結晶粒径を求めた。また、第1外周域におけるAl系材料の平均結晶粒径についても同様に、接合面の中心位置を通るように長手方向に沿って端子を切断したときの第1外周域を含む縦断面について、1000倍の光学顕微鏡を用いて横105μm×縦80μmの観察領域で撮影し、微結晶領域にあたる部分の第1外周域に、接合面の外周から円相当直径の5%に相当する寸法だけ内側にある第4位置を通る、結晶粒界が50個跨るような線分を長手方向に沿って引き、その線分のうち結晶粒界を跨いでいる部分の長さを50で割ることで求めた。そして、得られる第1中央域におけるAl系材料の平均結晶粒径と、第1外周域におけるAl系材料の平均結晶粒径の値から、これらの比を求めた。結果を表2に示す。
【0078】
[1-3]第2接続部における、第2領域のCu系材料の平均結晶粒径に対する、第3領域のCu系材料の平均結晶粒径の比の測定
上記[1-1]で得られる解析試料のうち、接合面の周辺を、偏光板を挿入した光学顕微鏡を用いて撮影し、得られる画像について、接合面が表出した線である接合線を長手方向に平行移動させた線で、接合面の中心位置から、接合面から円相当直径の0%超1%以下の範囲にある区画、1%超2%以下の範囲にある区画、の要領で、円相当直径の1%ごとに20%まで区分してCu系材料の平均結晶粒径をそれぞれ測定したときの、0%超3%以下の範囲にある区画である第2領域におけるCu系材料の平均結晶粒径と、15%超20%以下の範囲にある区画である第3領域におけるCu系材料の平均結晶粒径を求めた。そして、得られる第2領域におけるCu系材料の平均結晶粒径と、第3領域におけるCu系材料の平均結晶粒径の値から、これらの比を求めた。結果を表2に示す。
【0079】
[2]接合面の形状に関する測定および評価
上記[1-1]で得られる解析試料のうち、接合面の周辺を、光学顕微鏡を用いて撮影し、得られる画像について、スケールを参照して、接合面が表出した線である接合線の長さ寸法を算出した。また、第1接続部の第1端部の円相当直径と、第2接続部の第2端部の円相当直径をそれぞれ求め、これらのうち小さい方の円相当直径に対して、接合線の長さ寸法が大きくなっている割合を求めた。
【0080】
また、この画像から、接合面が表出した線である接合線と、接合線の両側にある第1端部または第2端部の外周面が表出した線である外周線(第1外周線または第2外周線)とのなす角度である接合端位置での角度の平均を求めて、第1端部および第2端部の平均接合角度とした。ここで、外周線と接合線とがなす角度が鈍角になる場合は、外周線の延長線と、接合線とがなす鋭角を、接合端位置での角度とした。
【0081】
また、この画像から、接合線の存在範囲である接合範囲の長手方向に沿った大きさを測定し、接合面の円相当直径を100%としたときの相対値を求めた。また、この接合範囲における、長手方向に対して垂直な垂線と、接合線との交点が2点以上形成される範囲の有無を調べた。結果を表2に示す。
【0082】
[3]AlおよびCuの検出強度が90%以下となる領域の走査長さの測定
得られた端子の、接合面の中心位置を通るように長手方向に沿って切断した縦断面について、接合面の中心位置を通る長手方向に平行な線(中心線)上において、接合面を横切るように長さ100μmの範囲を指定し、日本電子株式会社製の電子プローブマイクロアナライザー(EPMA)を用いて、WDX分析を行なった。得られたデータから、接合面近傍の中心線における、AlおよびCuの検出強度が、いずれも分析した全元素の検出強度の合計に対する強度比にして、どちらも90%以下の強度比で検出される領域の走査長さを測定した。結果を表2に示す。
【0083】
[4]3点曲げ試験の評価
JIS Z2248に沿って、図6に示す配置で、3点曲げ方法により曲げ強さを測定した。より具体的には、供試材の下側に設けた2個の治具R、Rで、接合面が治具Rおよび治具Rとの間で等間隔になるように供試材を固定し、上側から引張試験機のヘッドに取り付けられた治具Rで接合部に荷重Fを掛けて、供試材を治具Rに沿った形状に変形させた際の、接合部やその近傍へのクラックの有無を評価した。ここで、供試材としては、導線接続部にはアルミニウム導線を挿入して圧着し、板状接続部には他の導体部材である銅板材をボルト締めで固定したものを用いた。この供試材では、接合面からのアルミニウム導線および銅板材の延出距離が同じになるように、導線および他の導体部材を構成した。また、下側の治具R、Rは、いずれも先端が曲率半径50mmを有する円柱形状のもの(奥行20mm)を用い、100mmの間隔をおいて配置した。他方で、上側の治具Rは、先端が表1に記載される曲率半径を有する円柱形状のもの(奥行20mm)を用いた。また、上側の治具Rの押し込み変位量は、端子の厚さ分とした。なお、得られた端子の接合部やその近傍に段差がある場合は、研削機ややすりを用いて段差を取り除いたものを、供試材として用いた。
【0084】
試験後の供試材の目視観察で、クラックが発生しなかったものは、所定の曲率半径での曲げに耐久できたものとして「○」と評価した。一方、試験後の供試材の目視観察で、クラックが発生したものは、所定の曲率半径での曲げに耐久できなかったものとして「×」と評価した。結果を表2に示す。
【0085】
【表1】
【0086】
【表2】
【0087】
表1および表2の結果から、本発明例1~20の端子は、微結晶領域の終端位置が第1領域内にあるとともに、この微結晶領域における、第1中央域におけるAl系材料の平均結晶粒径に対する、第1外周域におけるAl系材料の平均結晶粒径の比がいずれも0.75以上1.25以下の範囲にあったため、曲率半径100mmの治具Rに沿って曲げたときの3点曲げ試験の評価において「〇」と評価されるものであった。
【0088】
他方で、比較例1、2、3、5の端子は、微結晶領域の終端位置が第1領域よりも接合面の側にあり、本発明の適正範囲外であった。そのため、比較例1、2、3、5の端子は、曲率半径100mmの治具Rに沿って曲げたときの3点曲げ試験の評価において「×」と評価されていた。
【0089】
また、比較例4の端子は、微結晶領域の終端位置が第1領域よりも導線の側にあり、本発明の適正範囲外であった。また、微結晶領域における、第1中央域におけるAl系材料の平均結晶粒径に対する、第1外周域におけるAl系材料の平均結晶粒径の比が1.25を超えている点でも、本発明の適正範囲外であった。そのため、比較例4の端子は、曲率半径100mmの治具Rに沿って曲げたときの3点曲げ試験の評価において「×」と評価されていた。
【0090】
また、比較例6の端子は、微結晶領域における、第1中央域におけるAl系材料の平均結晶粒径に対する、第1外周域におけるAl系材料の平均結晶粒径の比が1.25を超えており、本発明の適正範囲外であった。そのため、比較例6の端子は、曲率半径100mmの治具Rに沿って曲げたときの3点曲げ試験の評価において「×」と評価されていた。
【0091】
この結果から、本発明例の端子は、微結晶領域の終端位置が第1領域内にあるとともに、この微結晶領域における、第1中央域におけるAl系材料の平均結晶粒径に対する、第1外周域におけるAl系材料の平均結晶粒径の比が、いずれも0.75以上1.25以下の範囲にあったときに、曲げや引っ張りによる割れが起こり難いことが確認された。
【符号の説明】
【0092】
1、1A~1D 端子
11 第1接続部
11a 第1端部
11b 導線接続部
12 第2接続部
12a 第2端部
12b 板状接続部
12c、12d 突起
12c’、12d’ 凸部
12e 溝
12e’ 凹部
21 第1端部の外周面
21a 第1外周線
22 第2端部の外周面
22a 第2外周線
3、3A 接合面
30A 接合線
31、31A 第1対向面
32、32A 第2対向面
41 第1位置
42 第2位置
43 第3位置
44 第4位置
45 第5位置
46 第6位置
47 第7位置
48 接合範囲の一方の端
49 接合範囲の他方の端
51 第1領域
52 第2領域
53 第3領域
54 接合範囲
61 第1中央域
62 第1外周域
7 導線
8 他の導体部材
9 締結部材
C 中心線
接合面の中心位置
D 接合面の円相当直径
E 溝深さ
F 荷重
H 突起の高さ
突起の直径
溝幅
溝内側壁面の径
~M10 垂線と接合線との交点
P 接合面の中心位置を通り、かつ端子の長手方向に沿った仮想平面
Q 長手方向に対して垂直な垂線
~R 治具
S 貫通穴
~T 接合端位置
X 端子の長手方向
θ~θ 接合端位置での角度
図1A
図1B
図1C
図2
図3
図4
図5
図6