(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023158208
(43)【公開日】2023-10-26
(54)【発明の名称】半導体装置の製造方法、ノズルのクリーニング方法、基板処理装置、及びプログラム
(51)【国際特許分類】
H01L 21/31 20060101AFI20231019BHJP
【FI】
H01L21/31 B
【審査請求】有
【請求項の数】17
【出願形態】OL
(21)【出願番号】P 2023146899
(22)【出願日】2023-09-11
(62)【分割の表示】P 2021046573の分割
【原出願日】2021-03-19
(71)【出願人】
【識別番号】318009126
【氏名又は名称】株式会社KOKUSAI ELECTRIC
(74)【代理人】
【識別番号】110001519
【氏名又は名称】弁理士法人太陽国際特許事務所
(72)【発明者】
【氏名】花島 建夫
(72)【発明者】
【氏名】原田 和宏
(72)【発明者】
【氏名】牛田 卓朗
(57)【要約】
【課題】効果的にクリーニング後の残留元素を除去することで、成膜処理における膜厚変動を低減させる。
【解決手段】複数のノズルを有する反応管内で基板を処理して搬出した後で、(a)複数のノズルのうちの少なくとも一つのノズルにクリーニングガスを供給する工程と、(b)(a)の工程が行われた少なくとも一つのノズルに水素と酸素とを含むガスを供給する工程と、(c)(b)の工程の後に、反応管内に次の基板を搬入する工程と、を有する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
(a)基板に対してシリコン元素を含むガスを第1供給部から供給して、前記基板に膜を形成する工程と、
(b)(a)の後に、前記第1供給部に対してフッ素を含むガスを供給する工程と、
(c)(b)の後に、前記第1供給部に対して水素と酸素とを含むガスを供給する工程と、
を有する処理方法。
【請求項2】
(a)で、前記基板に対して反応ガスを第2供給部から供給し、
(b)で、前記第2供給部に対して前記フッ素を含むガスを供給し、
(c)で、前記第2供給部に対して前記水素と酸素とを含むガスを供給する
請求項1に記載の処理方法。
【請求項3】
(d)(b)の後に、前記第1供給部に対して、窒素と酸素とを含むガスを供給する工程と、
を有する請求項1に記載の処理方法。
【請求項4】
(a)では、前記第1供給部の他の供給部から、前記基板にガスを供給し、
(b)では、前記第1供給部と前記他の供給部に対して前記フッ素を含むガスを供給する
請求項1に記載の処理方法。
【請求項5】
(c)では、前記第1供給部と前記他の供給部に前記水素と酸素とを含むガスを供給する
請求項4に記載の処理方法。
【請求項6】
(b)では、前記第1供給部と前記他の供給部に対して同時期に、前記フッ素を含むガスを供給する
請求項4に記載の処理方法。
【請求項7】
前記フッ素を含むガスは、F2ガス及びNF3ガスの少なくともいずれかを含むガスである
請求項1乃至6のいずれか一項に記載の処理方法。
【請求項8】
(e)(b)と(d)とを交互に行う工程を更に有する
請求項3に記載の処理方法。
【請求項9】
(c)において、前記水素と酸素を含むガスが、前記第1供給部内で活性化するよう、ヒータにより前記第1供給部を加熱する
請求項1乃至8のいずれか一項に記載の処理方法。
【請求項10】
(c)において、前記第1供給部の主領域が実質的に均一な温度になるように加熱される
請求項9に記載の処理方法。
【請求項11】
前記ヒータは、前記基板を収容する処理室の前記ガスの流れ方向に沿って複数のゾーンに分割して構成され、
(c)では、前記複数のゾーンの内、少なくとも基板の処理領域に対応するゾーンの温度を実質的に同じ温度に制御する
請求項9に記載の処理方法。
【請求項12】
前記ヒータは、前記基板を収容する処理室の前記ガスの流れ方向に沿って複数のゾーンに分割して構成され、
(c)では、前記複数のゾーンの内、下端側のゾーンの温度を他のゾーンの温度よりも高い温度に制御する
請求項9に記載の処理方法。
【請求項13】
(c)において、前記水素と酸素を含むガスが、前記第1供給部内で活性化するよう、前記第1供給部に設けられた第2ヒータにより前記水素と酸素を含むガスを加熱する
請求項1乃至8のいずれか一項に記載の処理方法。
【請求項14】
(c)において、前記基板を収容する反応管の外側で、第2ヒータにより、前記水素と酸素を含むガスを加熱して活性化する
請求項1乃至13のいずれか一項に記載の処理方法。
【請求項15】
(a)基板に対してシリコン元素を含むガスを第1供給部から供給して、前記基板に膜を形成する工程と、
(b)(a)の後に、前記第1供給部に対してフッ素を含むガスを供給する工程と、
(c)(b)の後に、前記第1供給部に対して水素と酸素とを含むガスを供給する工程と、
を行った後に、前記基板に膜を形成する工程と、
を有する半導体装置の製造方法。
【請求項16】
基板に対してシリコン元素を含むガスと、フッ素を含むガスを供給することが可能なよう構成された第1供給部と、
前記第1供給部に対して水素と酸素とを含むガスを供給する水素酸素含有ガス供給系と、
(a)基板に対して前記シリコン元素を含むガスを前記第1供給部から供給して、前記基板に膜を形成する処理と、
(b)(a)の後に、前記第1供給部に対して前記フッ素を含むガスを供給する処理と、
(c)(b)の後に、前記第1供給部に対して前記水素と酸素とを含むガスを供給する処理と、
を行わせるように、前記第1供給部と前記水素酸素含有ガス供給系を制御することが可能なよう構成される制御部と、
を有する基板処理装置。
【請求項17】
(a)基板に対してシリコン元素を含むガスを第1供給部から供給して、前記基板に膜を形成させる手順と、
(b)(a)の後に、前記第1供給部に対してフッ素を含むガスを供給させる手順と、
(c)(b)の後に、前記第1供給部に対して水素と酸素とを含むガスを供給させる手順と、
をコンピュータによって基板処理装置に実行させるプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、半導体装置の製造方法、ノズルのクリーニング方法、基板処理装置、及びプログラムに関する。
【背景技術】
【0002】
半導体装置の製造工程の一工程として、処理容器内で基板を処理する工程が行われることがある(たとえば特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
半導体製造装置の運用において、成膜処理を重ねていくことで、反応室内の累積膜がストレスにより剥がれ落ち、パーティクルなどの問題を引き起こす場合がある。そのためある程度の膜が累積したら、膜を除去するためクリーニングを実施することがある。近年における、クリーニング手段としては、反応ガスを用いて累積膜を除去するガスクリーニングによる運用がある。
【0005】
クリーニングガスとしては、たとえばF2やNF3などのフッ素(F)を含むガスを用いる方法がある。この方法では、クリーニング完了後においてクリーニングガスに含まれるフッ素等の元素が残留し、成膜処理の阻害要因となる場合がある。この場合、クリーニング前後の成膜処理において膜厚が変動するなどの課題が生ずることがある。この課題への対策としては、NH3ガスなどを用いたトリートメントによる残留元素除去手段や、累積膜を重ねてコーティングすることによる残留元素の封じ込めなどの手段を講じて対応とすることがある。
【0006】
本開示は、効果的にクリーニング後の残留元素を除去することで、成膜処理における膜厚変動を低減させる手段を提供する。
【課題を解決するための手段】
【0007】
本開示の一態様によれば、
複数のノズルを有する反応管内で基板を処理して搬出した後で、
(a)前記複数のノズルのうちの少なくとも一つのノズルにクリーニングガスを供給する工程と、
(b)前記(a)の工程が行われた前記少なくとも一つのノズルに水素と酸素とを含むガスを供給する工程と、
(c)前記(b)の工程の後に、前記反応管内に次の基板を搬入する工程と、
を有する技術が提供される。
【発明の効果】
【0008】
本開示によれば、効果的にクリーニング後の残留元素を除去することで、成膜処理における膜厚変動を低減させることが可能となる。
【図面の簡単な説明】
【0009】
【
図1】本開示の一態様で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。
【
図2】本開示の一態様で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を
図1のA-A線断面図で示す図である。
【
図3】本開示の一態様で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。
【
図4】比較例における成膜安定性の結果を示すグラフ。
【
図5】実施例における成膜安定性の結果を示すグラフ。
【
図6】比較例における残留フッ素失活を示す模式図。
【
図7】実施例における残留フッ素失活を示す模式図。
【発明を実施するための形態】
【0010】
<本開示の一態様>
以下、本開示の一態様について、適宜、図面を用いて説明する。なお、以下の説明において用いられる図面は、いずれも模式的なものであり、図面上の各要素の寸法の関係、各要素の比率等は、現実のものとは必ずしも一致していない。また、複数の図面の相互間においても、各要素の寸法の関係、各要素の比率等は必ずしも一致していない。
【0011】
本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。また、上記した所定の層や膜が形成されたウエハ又は基板を「半導体装置」と称する。
【0012】
(1)基板処理装置の構成
図1に示すように、処理炉202は加熱機構(温度調整部)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板に支持されることにより垂直に据え付けられている。ヒータ207は、ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
【0013】
ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、たとえば石英(SiO2)又は炭化シリコン(SiC)等の耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド209が配設されている。マニホールド209は、たとえばステンレス鋼(SUS)等の金属材料により構成され、上端及び下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。反応管203はヒータ207と同様に垂直に据え付けられている。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成される。処理容器の筒中空部には処理室201が形成される。処理室201は、基板としてのウエハ200を収容可能に構成されている。この処理室201内でウエハ200に対する処理が行われる。
【0014】
処理室201内には、第1供給部、第2供給部、第3供給部としてのノズル249a,249b,249cが、マニホールド209の側壁を貫通するようにそれぞれ設けられている。ノズル249a,249b,249cを、それぞれ、第1ノズル、第2ノズル、第3ノズルとも称する。ノズル249a,249b,249cは、それぞれ、石英又はSiC等の非金属材料である耐熱性材料により構成されている。ノズル249a,249b,249cは、それぞれ、複数種のガスの供給に用いられる共用ノズルとして構成されている。
【0015】
ノズル249a,249b,249cには、第1配管、第2配管、第3配管としてのガス供給管232a,232b,232cがそれぞれ接続されている。ガス供給管232a,232b,232cは、それぞれ、複数種のガスの供給に用いられる共用配管として構成されている。ガス供給管232a,232b,232cには、ガス流の上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a,241b,241c及び開閉弁であるバルブ243a,243b,243cがそれぞれ設けられている。
【0016】
ガス供給管232aのバルブ243aの下流側には、ガス供給管232d,232e,232f,232g,232nがこの順に接続されている。ガス供給管232d,232e,232f,232g,232nには、ガス流の上流側から順に、MFC241d,241e,241f,241g,241n及びバルブ243d,243e,243f,243g,243nがそれぞれ設けられている。なお、ガス供給管232d,232eのバルブ243d,243eの下流側には、第2ヒータ207aが装着されている。
【0017】
ガス供給管232bのバルブ243bよりも下流側には、ガス供給管232h,232i,232j,232oがこの順に接続されている。ガス供給管232h,232i,232j,232oには、ガス流の上流側から順に、MFC241h,241i,241j,241o及びバルブ243h,243i,243j,243oが設けられている。なお、ガス供給管232b,232hのバルブ243b,243hの下流側には、第2ヒータ207bが装着されている。
【0018】
ガス供給管232cのバルブ243cよりも下流側には、ガス供給管232k,232l,232m,232pがこの順に接続されている。ガス供給管232k,232l,232m,232pには、ガス流の上流側から順に、MFC241k,241l,241m,241p及びバルブ243k,243l,243m,243pが設けられている。なお、ガス供給管232c,232kのバルブ243c,243kの下流側には、第2ヒータ207cが装着されている。
【0019】
ガス供給管232a~232pは、金属材料により構成されている。なお、上述したマニホールド209の素材や、後述するシールキャップ219、回転軸255、排気管231の素材も、ガス供給管232a~232mと同様の素材とすることができる。
【0020】
図2に示すように、ノズル249a,249b,249cは、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の配列方向上方に向かって立ち上がるようにそれぞれ設けられている。すなわち、ノズル249a,249b,249cは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにそれぞれ設けられている。ノズル249a、249b,249cの側面には、ガスを供給するガス供給孔250a,250b,250cがそれぞれ設けられている。ガス供給孔250a,250b,250cは、それぞれが、平面視においてウエハ200の中心に向かって開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250a,250b,250cは、反応管203の下部から上部にわたって複数設けられている。
【0021】
ガス供給管232aからは、原料ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。原料ガスとは、気体状態の原料、たとえば、常温常圧下で液体状態である原料を気化することで得られるガスや、常温常圧下で気体状態である原料等のことである。
【0022】
ガス供給管232b,232d,232kからは、第1の反応ガスが、MFC241b,241d,241k、バルブ243b,243d,243k、ノズル249b,249a,249cをそれぞれ介して処理室201内へ供給される。
【0023】
ガス供給管232c,232e,232hからは、第2の反応ガスが、それぞれ、MFC241c,241e,241h、バルブ243c,243e,243h、ノズル249c,249a,249bを介して処理室201内へ供給される。なお、第2の反応ガスは、第1の反応ガスとは異なる分子のガスであってもよいし、同じ分子のガスであってもよい。以下の説明では、第2の反応ガスは、第1の反応ガスとは異なる分子のガスを用いる例について記す。
【0024】
ガス供給管232f,232i,232lからは、クリーニングガスが、それぞれ、MFC241f,241i,241l、バルブ243f,243i,243l、ガス供給管232a,232b,232c、ノズル249a,249b,249cを介して処理室201内へ供給される。
【0025】
ガス供給管232g,232j,232mからは、添加ガスが、それぞれ、MFC241g,241j,241m、バルブ243g、ガス供給管232a,232b,232c、ノズル249a,249b,249cを介して処理室201内へ供給される。
【0026】
ガス供給管232n,232o,232pからは、不活性ガスとして、たとえば、窒素(N2)ガスが、それぞれ、MFC241n,241o,241p、バルブ243n,243o,243p、ガス供給管232a,232b,232c、ノズル249a,249b,249cを介して処理室201内へ供給される。N2ガスは、パージガス、キャリアガス、希釈ガス等として作用する。
【0027】
主に、ガス供給管232a、MFC241a、バルブ243a、ノズル249aにより、原料ガス供給系が構成される。主に、ガス供給管232b,232d,232k、MFC241b,241d,241k、バルブ243a,243b,243c、ノズル249a,249b,249cにより、第1の反応ガス供給系が構成される。主に、ガス供給管232c,232e,232h、MFC241c,241e,241h、バルブ243c,243e,243h、ガス供給管232c,232a,232b、ノズル249c,249a,249bにより、第2の反応ガス供給系が構成される。なお、第1の反応ガス供給系及び第2の反応ガス供給系をまとめて反応ガス供給系と捉えて考えてもよい。主に、ガス供給管232f,232i,232l、MFC241f,241i,241l、バルブ243f,243i,243lにより、クリーニングガス供給系が構成される。ガス供給管232a,232b,232c、ノズル249a,249b,249cをクリーニングガス供給系に含めて考えてもよい。主に、ガス供給管232g,232j,232m、MFC241g,241j,241m、バルブ243g,243j,243m、ガス供給管232a,232b,232c、ノズル249a,249b,249cにより、添加ガス供給系が構成される。主に、ガス供給管232n,232o,232p、MFC241n,241o,241p、バルブ243n,243o,241p、ガス供給管232a,232b,232c、ノズル249a,249b,249cにより、不活性ガス供給系が構成される。
【0028】
上述の各種供給系のうち、いずれか、あるいは、全ての供給系は、バルブ243a~243pやMFC241a~241p等が集積されてなる集積型供給システム248として構成されていてもよい。集積型供給システム248は、ガス供給管232a~232pのそれぞれに対して接続され、ガス供給管232a~232p内への各種ガスの供給動作、すなわち、バルブ243a~243pの開閉動作やMFC241a~241pによる流量調整動作等が、後述するコントローラ121によって制御されるように構成されている。集積型供給システム248は、一体型、あるいは、分割型の集積ユニットとして構成されており、ガス供給管232a~232p等に対して集積ユニット単位で着脱を行うことができ、集積型供給システム248のメンテナンス、交換、増設等を、集積ユニット単位で行うことが可能なように構成されている。
【0029】
反応管203の側壁下方には、処理室201内の雰囲気を排気する排気口231aが設けられている。排気口231aは、反応管203の側壁の下部より上部に沿って、すなわち、ウエハ配列領域に沿って設けられていてもよい。排気口231aには排気管231が接続されている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245及び圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気及び真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されている。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。
【0030】
マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、たとえばSUS等の金属材料により構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219の下方には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ウエハ200を処理室201内外に搬入及び搬出(搬送)する搬送装置(搬送機構)として構成されている。マニホールド209の下方には、シールキャップ219を降下させボート217を処理室201内から搬出した状態で、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタ219sが設けられている。シャッタ219sは、たとえばSUS等の金属材料により構成され、円盤状に形成されている。シャッタ219sの上面には、マニホールド209の下端と当接するシール部材としてのOリング220cが設けられている。シャッタ219sの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構115sにより制御される。
【0031】
基板支持具としてのボート217は、複数枚、たとえば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、たとえば石英やSiC等の耐熱性材料により構成される。ボート217の下部には、たとえば石英やSiC等の耐熱性材料により構成される断熱板218が多段に支持されている。
【0032】
反応管203内には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、反応管203の内壁に沿って設けられている。
【0033】
図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、たとえばタッチパネル等として構成された入出力装置122が接続されている。
【0034】
記憶装置121cは、たとえばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する成膜の手順や条件等が記載されたプロセスレシピや、後述するクリーニングの手順や条件等が記載されたクリーニングレシピが、読み出し可能に格納されている。プロセスレシピは、後述する成膜における各手順をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。クリーニングレシピは、後述するクリーニングにおける各手順を、コントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピ、クリーニングレシピ、制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピやクリーニングレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、又は、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
【0035】
I/Oポート121dは、上述のMFC241a~241p、バルブ243a~243p、圧力センサ245、APCバルブ244、真空ポンプ246、温度センサ263、ヒータ207、第2ヒータ207a~207c、回転機構267、ボートエレベータ115、シャッタ開閉機構115s等に接続されている。
【0036】
CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC241a~241pによる各種ガスの流量調整動作、バルブ243a~243pの開閉動作、APCバルブ244の開閉動作及び圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動及び停止、温度センサ263に基づくヒータ207の温度調整動作、第2ヒータ207a~207cの温度調整動作、回転機構267によるボート217の回転及び回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、シャッタ開閉機構115sによるシャッタ219sの開閉動作等を制御することが可能なように構成されている。
【0037】
上記した制御部としてのコントローラ121は、(a)反応管203内で基板(ウエハ200)を処理して搬出した後で、前記少なくとも一つのノズルにクリーニングガスを供給する処理と、(b)前記(a)の工程が行われた前記少なくとも一つのノズルに水素と酸素とを含むガスを供給する処理と、(c)前記(b)の工程の後に、反応管203内に次の基板(ウエハ200)を搬入する処理と、を行わせるように、搬送機構、クリーニングガスを供給するクリーニングガス供給系及び水素と酸素とを含むガスを供給する反応ガス供給系を制御することが可能なよう構成される。
【0038】
コントローラ121は、外部記憶装置123に格納された上述のプログラム、すなわち、
(a)複数のノズル249a,249b,249cを有する反応管203内で基板(ウエハ200)を処理して搬出した後の前記複数のノズル249a,249b,249cのうちの少なくとも一つのノズルにクリーニングガスを供給する手順と、
(b)前記(a)の手順が行われた前記少なくとも一つのノズルに水素と酸素とを含むガスを供給する手順と、
(c)前記(b)の手順の後に、前記反応管203内に次の基板(ウエハ200)を搬入する手順と、
をコンピュータによって基板処理装置に実行させるプログラム
を、コンピュータにインストールすることにより構成することができる。外部記憶装置123は、たとえば、HDD等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ等を含む。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、又は、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
【0039】
(2)半導体装置の製造方法
上述の基板処理装置を用いた、本開示の半導体装置の製造方法は、
複数のノズル249a,249b,249cを有する反応管203内で基板(ウエハ200)を処理して搬出した後で、
(a)前記複数のノズル249a,249b,249cのうちの少なくとも一つのノズルにクリーニングガスを供給する工程と、
(b)前記(a)の工程が行われた前記少なくとも一つのノズルに水素と酸素とを含むガスを供給する工程と、
(c)前記(b)の工程の後に、前記反応管203内に次の基板(ウエハ200)を搬入する工程と、
を有する。
【0040】
ここで、上記製造方法における「複数のノズル」とは、上述の基板処理装置では3本であるが、2本以上であれば特に限定されない。
【0041】
(2-1)基板(ウエハ200)の処理
上記製造方法において、前記工程(a)に先立つ反応管203内での基板(ウエハ200)の処理は、たとえば、
反応管203内のウエハ200に対して、ガス供給管232a及びノズル249aを介して、原料ガスを供給するステップ1と、
反応管203内への原料ガスの供給を停止した上で、ガス供給管232n及びノズル249aを介して、パージガスを供給しつつ、反応管203内を真空排気して処理室内に残留する原料ガスを排除するステップ2と、
反応管203内のウエハ200に対して、ガス供給管232b及びノズル249bを介して第1の反応ガスを供給しつつ、ガス供給管232c及びノズル249cを介して第2の反応ガスを供給するステップ3と、
反応管203内への第1の反応ガスおよび第2の反応ガスの供給を停止した上で、ガス供給管232o,232p及びノズル249b,249cを介して、パージガスとしてのN2ガスを供給しつつ、反応管203内を真空排気して処理室内に残留する第1の反応ガス及び第2の反応ガスを排除するステップ4と、
を非同時に行うサイクルを所定回数(n回、nは1以上の整数)行うことにより、ウエハ200上に、膜として、所定元素を含む膜を形成する成膜処理とすることができる。ステップ2及びステップ4における排気処理は、排気口231aから排気管231を通じて行われる。
【0042】
なお、原料ガスとしては、たとえば、膜を構成する主元素(所定元素)としてのSi及びハロゲン元素を含むハロシラン系ガスが用いられる。ハロシランとは、ハロゲン基を有するシランのことである。ハロゲン基には、クロロ基、フルオロ基、ブロモ基、ヨード基等が含まれる。すなわち、ハロゲン基には、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)等のハロゲン元素が含まれる。ハロシラン系ガスとしては、たとえば、Si及びClを含む原料ガス、すなわち、クロロシラン系ガスを用いることができる。クロロシラン系ガスは、Siソースとして作用する。クロロシラン系ガスとしては、たとえば、ヘキサクロロジシラン(Si2Cl6、略称:HCDS)ガスを用いることができる。HCDSガスは、上述の処理条件下においてそれ単独で固体となる元素(Si)を含むガス、すなわち、上述の処理条件下においてそれ単独で膜を堆積させることができるガスである。
【0043】
第1の反応ガスとしては、たとえば、水素(H)含有ガスが用いられる。H含有ガスとしては、たとえば、水素(H2)ガス、活性化した水素を含むガスを用いることができる。
【0044】
第2の反応ガスとしては、たとえば、酸素(O)含有ガスが用いられる。O含有ガスとしては、たとえば、酸素(O2)ガス、水(H2O)ガス、オゾン(O3)ガス、活性化した酸素を含むガスを用いることができる。
【0045】
上述の成膜処理を、下記のように表記する。なお、「P/V」とは、ステップ2及びステップ4のパージ処理及び排気処理を表す。
(原料ガス→P/V→第1の反応ガス+第2の反応ガス→P/V)×n
【0046】
(2-2)クリーニング処理
上記製造方法において、前記工程(a)のクリーニング処理は、たとえば、クリーニングガスを、ノズル249a,249b,249cのうちの少なくとも一つから反応管203内に供給することで実施することができる。クリーニングガスとしては、たとえば、フッ素(F)含有ガスが用いられる。フッ素含有ガスとしては、たとえば、フッ素(F2)ガス又は三フッ化窒素(NF3)ガスを用いることができる。以下では、クリーニングガスとして、F2ガスを用いる例をについて記述する。
【0047】
たとえば、原料ガスを供給したノズル249aから供給する場合には、ガス供給管232fからノズル249aを介してクリーニングガスを供給することができる。この場合、前記工程(a)の間は、他のノズル249b,249cにはクリーニングガスを供給しないことが望ましい。こうすることで、たとえば石英製のノズルを使用する場合、クリーニングガスを流さないノズルはフッ素含有ガスによるエッチングが抑制できるため、結果としてノズルの寿命を延ばすことができる。
【0048】
一方、前記工程(a)の間、クリーニングガスを供給しない他のノズル249b,249cへのガスの供給量を実質的にゼロとすることが望ましい。こうすることで、ノズル249aから供給されたクリーニングガスが他のノズル249b,249cへ流入することで、クリーニングガスが供給されないノズルのクリーニング処理を行うことが可能となる。
【0049】
また、前記工程(a)は、クリーニングガスを、ノズル249a,249b,249cの全てから反応管203内に供給することで実施することができる。すなわち、ガス供給管232f,232i,232l及びノズル249a,249b,249cをそれぞれ介してクリーニングガスを反応管203内に供給することで、反応管203内のクリーニング処理の均一性を向上させることができる。また、この場合、全てのノズル249a,249b,249cから同時期にクリーニングガスを反応管203内に供給することとしてもよい。このように、全てのノズル249a,249b,249cから同時期にクリーニングガスが供給されることで、残留フッ素や、後述する工程(b)で生じた反応生成物(たとえば、HF)等がクリーニングガスを供給していないノズルに侵入してフッ素が残留することを抑制することができる。このとき、全てのノズル249a,249b,249cからクリーニングガスが反応管203内に供給されている時期があれば、各ノズルにおけるクリーニングガスの供給開始タイミング及び供給終了タイミングは一致していなくてもよいが、他のノズルへの残留フッ素やHF等の侵入を防ぐ観点からは、各ノズルのでのクリーニングガスの供給終了タイミングは一致させることが望ましく、さらには開始タイミングも一致させることがより望ましい。
【0050】
なお、複数のノズルのうち、前記工程(a)が行われたノズルに対しては、添加ガスを供給することが望ましい。たとえば、ノズル249aからクリーニングガスが供給される場合は、ガス供給管232g及びノズル249aを介して反応管203内に添加ガスが供給される。また、ノズル249bからクリーニングガスが供給される場合は、ガス供給管232j及びノズル249bを介して反応管203内に添加ガスが供給される。さらに、ノズル249cからクリーニングガスが供給される場合は、ガス供給管232m及びノズル249cを介して反応管203内に添加ガスが供給される。
【0051】
なお、添加ガスとしては、窒素(N)と酸素(O)を含む酸化窒素系ガスが用いられる。酸化窒素系ガスは、それ単体ではクリーニング作用を奏しないが、クリーニングガスと反応することで、たとえばフッ素ラジカルやハロゲン化ニトロシル化合物等の活性種を生成し、クリーニングガスのクリーニング作用を向上させるように作用する。酸化窒素系ガスとしては、たとえば、一酸化窒素(NO)ガスを用いることができる。このように、供給することで、たとえばクリーニングガスと添加ガスとによりフッ素ラジカル(・F)を生成することができるため、クリーニング処理の効率を向上させることができる。
【0052】
なお、前記工程(a)が行われたノズルに対して添加ガスを供給する場合は、クリーニングガスの供給と、添加ガスとの供給とは同時に行わず、交互に行うことが望ましい。これにより、たとえばクリーニングガスと添加ガスとが直接反応することを抑制することができ、生成されるフッ素ラジカル(・F)の量を抑制することで、たとえば石英製のノズルのエッチングを抑制することが可能となる。
【0053】
このようにクリーニングガスの供給と、添加ガスの供給を交互に行う処理は、下記(処理A)、(処理B)のように表すことができる。なお、クリーニング処理のパターンは後述のようにいくつかのパターンが有る。
(処理A):(クリーニングガス→P/V→添加ガス→P/V)×n
(処理B):(添加ガス→P/V→クリーニングガス→P/V)×n
【0054】
<クリーニング処理パターン1>
(処理A)又は(処理B)を複数のノズルの一つ以上に対して行うように構成してもよい。複数のノズルそれぞれに対して、(処理A)又は(処理B)を行うように構成してもよい。一つ以上のノズルに対して、(処理A)又は(処理B)を行うことにより、ノズル内で、クリーニングガスと添加ガスを所定量、混合させることができ、ノズル内のクリーニングを行うことができる。ここで、所定量とは、たとえば、ノズル内に吸着する等して残留したクリーニングガスと、後から供給される添加ガスとが反応する量を意味する。
【0055】
<クリーニング処理パターン2>
また、全てのノズルに対して、同時に(処理A)又は(処理B)を行うように構成してもよい。全てのノズルに対して同時に行うことにより、全てのノズルやその周辺のクリーニング速度を揃えることができる。
【0056】
<クリーニング処理パターン3>
また、一つのノズルに対して(処理A)を行い、他のノズルに対して(処理B)を行うように構成してもよい。具体的には、ノズル249bでは(処理A)を行わせるとともに、ノズル249cでは、(処理B)を行わせるように構成する。このように構成することにより、反応管203内に、クリーニングガスと添加ガスが同時に供給することができる。クリーニングガスと添加ガスとを同時に供給することにより、反応管203内のクリーニング処理の効率を向上させることができる。また、クリーニングガスと、添加ガスの供給位置が、順番に変わることにより、複数のノズル内や、反応管203内のクリーニングの偏りを抑制することができ、ノズル内と、反応管203内を均一にクリーニングすることが可能となる。
【0057】
なお、このとき、ノズル249aには、不活性ガスを継続して供給する(処理C)を行わせてもよい。ノズル249aで不活性ガスを継続して供給することにより、ノズル249bから供給されるガスと、ノズル249cから供給されるガスと、を反応管203内のノズル側で急激に反応することを抑制することができる。また、ノズル249aから供給される不活性ガスが、ノズル249bとノズル249cから供給されるガスのガイドとして作用させることが可能となり、反応管203内のクリーニング均一化に寄与させることが可能となる。なお、ノズル249aでは、(処理A)又は(処理B)を行わせてもよい。また、(処理A)又は(処理B)と、(処理C)とを順番に行うように構成してもよい。
【0058】
なお、クリーニング処理は、上述の処理パターンを複数組み合わせて行ってもよい。
【0059】
(2-3)フッ素失活処理
上記製造方法において、前記工程(b)のフッ素失活処理は、たとえば、水素と酸素とを含むガスを、前記工程(a)でクリーニングガスを反応管203内に供給したノズルに供給することで実施することができる。ここで、「水素と酸素とを含むガス」とは、水素(H2)ガスと酸素(O2)ガスとを、それぞれ別のガス供給管から供給して少なくともノズルで混合されて得られる混合ガスであることが望ましいが、水蒸気(H2O)や過酸化水素(H2O2)のように、一分子中に水素(H)原子と酸素(O)原子とを含むガスであってもよい。たとえば、H2ガスとO2ガスとの混合ガスによって、反応管内に残留するフッ素(F2)あるいはフッ素イオン(F-)を除去するメカニズムを表す反応式は、下記のとおりであると考えられる。
【0060】
3H2+O2+F2→2HF+2H2O
【0061】
2H2+O2+2F-→2HF+2OH-
【0062】
また、H2ガスとO2ガスとの混合ガスによって生じた水(H2O)によって、以下の反応が起こると考えられる。
【0063】
H2O+F-→HF+OH-
【0064】
ここで、第1の反応ガスとしてのH2ガスと第2の反応ガスとしてのO2ガスとを別のガス供給管から供給することで、それぞれのMFCで流量を調節することで、ノズル内や反応管内に残留するフッ素の化学的状態に応じたフッ素除去処理を行うことが可能となる。たとえば、第1の反応ガスと第2の反応ガスそれぞれの流量比をノズル内や反応管内に残留するフッ素の状態に応じて変更する。また、残留フッ素を除去する部材に応じて、流量比を変更するように調整してもよい。ここで、部材とは、ノズルや反応管である。たとえば、ノズル内の残留フッ素を除去する工程と、反応管内に残留するフッ素を除去する工程と、で流量比を異ならせるように構成してもよい。また、工程ごとの流量を異なるように構成してもよい。
【0065】
たとえば、ノズル249aからクリーニングガスを供給した場合には、ガス供給管232dから第1の反応ガスが、及び、ガス供給管232eから第2の反応ガスがそれぞれ供給されて、ノズル249aから混合ガスとして反応管203内に供給される。また、ノズル249bからクリーニングガスを供給した場合には、ガス供給管232bから第1の反応ガスが、及び、ガス供給管232hから第2の反応ガスがそれぞれ供給されて、ノズル249aから混合ガスとして反応管203内に供給される。さらに、ノズル249cからクリーニングガスを供給した場合には、ガス供給管232kから第1の反応ガスが、及び、ガス供給管232cから第2の反応ガスがそれぞれ供給されて、ノズル249aから混合ガスとして反応管203内に供給される。
【0066】
ここで、前記工程(a)において、クリーニングガスを、ノズル249a,249b,249cの全てから反応管203内に供給する場合、ノズル249a,249b,249cの全てから第1の反応ガスと第2の反応ガスとの混合ガスを反応管203内に供給することで、反応管203内のフッ素除去処理をより確実に実施することができる。すなわち、いずれか一つのノズルに供給した場合に、他のノズルに残留フッ素や、反応生成物が入りこむ可能性(ノズル内へ逆流)があるが、全てのノズルから供給することで、このようなノズル内への逆流を抑制することができる。
【0067】
なお、この工程(b)においては、水素と酸素とを含むガスがノズル249a,249b,249c内で活性化するように、反応管203を加熱するヒータ207によりこれら複数のノズル249a,249b,249cを加熱することが望ましい。このように、H2ガスとO2ガスとを加熱して反応させることにより、水(H2O)の他に、水酸基活性種(・OH)、酸素活性種(・O)、水素活性種(・O)のような複数の種類の活性種を発生させることができる。よって、反応管203内に残留するフッ素が、複数の化学的状態で存在していたとしても、複数の活性種により、フッ素含有ガスが供給されたノズル249a,249b,249c内に残留するフッ素を失活させて、フッ素を除去することができる。
【0068】
なお、上述のように反応管203を加熱するヒータ207によりこれら複数のノズル249a,249b,249cを加熱する場合には、これら複数のノズル249a,249b,249cの主領域が実質的に均一な温度になるように加熱される。好ましくは、複数のノズル249a,249b、249cの主領域において、第1の反応ガスと第2の反応ガスとが、上述の反応が生じるように、複数のノズル249a,249b、249cが加熱される。具体的には、複数のノズル249a,249b、249cの主領域249dが、ヒータ207の端部よりも内側に配置するように、複数のノズル249a,249b、249cとヒータ207の少なくともいずれかが配置される。ここで、ノズル249a,249b,249cの主領域249dとは、各種ガスが基板(ウエハ200)、好ましくは製品基板に供給される領域、換言すると、基板(ウエハ200)が反応管203内で各種処理に供される領域をいう。なお、この、各種ガスが基板(ウエハ200)に供給される領域には、ノズル249a,249b,249cにおいてガスが放出されるガス供給孔250a,250b,250cが設けられていない部分も含まれていることが望ましい。さらには、このガス供給孔250a,250b,250cが設けられる領域は少なくともヒータ207と対向していることが望ましい。また、実質的に均一な温度とは、たとえば、当該領域内で最も高い温度の箇所と最も低い温度の箇所との温度差が3℃以内であることをいう。このように、ノズル249a,249b,249cの主領域を実質的に均一な温度になるように加熱することで、ノズル249a,249b,249cの主領域内でのフッ素失活処理を均一に実施することができる。また、ノズル249a,249b,249cの主領域249d内で生成された複数の種類の活性種を、反応管203の少なくともウエハ200が載置される処理領域に供給することが可能となる。これにより、反応管203の処理領域のクリーニングを均一に実施することができる。
【0069】
ここで、前記ヒータ207は、前記複数のノズル249a,249b,249c内の前記ガスの流れ方向に沿って複数のゾーンに分割して構成され、前記工程(a)と前記工程(b)とでは、前記複数のゾーンの温度制御を異ならせるように、温度を変更することが望ましい。たとえば、
図1に示す反応管203において、垂直方向に複数のゾーンに分割して、制御部(コントローラ121)はその複数のゾーンごとにヒータ207の温度制御を可能とすることが望ましい。
【0070】
たとえば、前記工程(a)のクリーニング処理では、上方側に位置するゾーンの温度を、下方側に位置するゾーンの温度より高くなるような、温度傾斜を設けるような温度制御をすることが望ましい。このような温度傾斜を設けることにより、ノズルの上方側や、反応管の上方側に到達するクリーニングガスの量が少なくなったとしても、上方側の温度を高くすることにより、クリーニングガスの反応性向上させることができ、ノズルや反応管の上方側から、下方側まで均一なクリーニング処理が可能となる。なお、前記工程(a)の後に、添加ガスを供給する工程を設ける場合には、同様の温度傾斜を設けるような温度制御が望ましい。
【0071】
また、前記工程(b)のフッ素失活処理では、全てのゾーンを実質的に同じ温度になるように制御することが可能である。こうすることで、全てのゾーンに対応するノズル249a,249b,249c内のフッ素失活処理が可能となる。なお、ここでいう実質的に均一な温度とは、たとえば、最も高い温度のゾーンと最も低い温度のゾーンとの温度差が3℃以内であることをいう。
【0072】
一方、
図1に示すように、ノズル249a,249b,249c内のガスの流動方向か下から上へ向かっているような場合には、前記工程(b)のフッ素失活処理では、下端側のゾーンの温度を他のゾーンの温度よりも高い温度に制御することが望ましい。これにより、水素酸素含有ガスを下端側のゾーン、換言すると上流側のゾーンで予備加熱することになり、反応管203内での好適反応温度までの加熱時間を短縮することができる。
【0073】
なお、第1の反応ガスを供給するガス供給管232dのバルブ243d及び第2の反応ガスを供給するガス供給管232eのバルブ243eの下流に設けられている第2ヒータ207aにより、第1の反応ガス及び第2の反応ガスをそれぞれ予備加熱することで、ノズル249aに至るまでのガス供給管232a内の残留フッ素の除去を行うことができる。同様に、第1の反応ガスを供給するガス供給管232bのバルブ243b及び第2の反応ガスを供給するガス供給管232hのバルブ243hの下流に設けられている第2ヒータ207bにより、第1の反応ガス及び第2の反応ガスをそれぞれ予備加熱することで、ノズル249bに至るまでのガス供給管232b内の残留フッ素の除去を行うことができる。さらに、第1の反応ガスを供給するガス供給管232kのバルブ243k及び第2の反応ガスを供給するガス供給管232cのバルブ243cの下流に設けられている第2ヒータ207cにより、第1の反応ガス及び第2の反応ガスをそれぞれ予備加熱することで、ノズル249cに至るまでのガス供給管232c内の残留フッ素の除去を行うことができる。なお、ここでは、第1の反応ガスと第2の反応ガスとのそれぞれを別々のガス供給管内で加熱する例を示したが、第1の反応ガスと第2の反応ガスとを混合後に加熱するように構成してもよい。
【0074】
上述の工程(a)及び工程(b)による半導体装置のクリーニング方法で、クリーニングガスによって反応管203内及びノズル249a,249b,249c内でのクリーニング処理及びフッ素失活処理が可能となる。
【0075】
(2-4)再度の基板(ウエハ200)の処理
前記工程(a)及び(b)によって反応管203内及びノズル249a,249b,249c内でのクリーニング処理及びフッ素失活処理が完了したら、前記工程(c)として、前記反応管203内に次の基板(ウエハ200)が搬入される。搬入された次の基板(ウエハ200)については、前記(2-1)で述べた基板(ウエハ200)の処理が行われる。
【実施例0076】
以下、本願の半導体装置の製造方法の実施例を説明する。
【0077】
なお、以下の記述における「75~200℃」のような数値範囲の表記は、下限値及び上限値がその範囲に含まれることを意味する。よって、たとえば、「75~200℃」とは「75℃以上200℃以下」を意味する。他の数値範囲についても同様である。
【0078】
<実験概要>
実施例及び比較例においては、まずウエハ上に膜を形成する成膜処理を数回実施した後、前記した工程(a)のクリーニング処理と添加ガスを供給する処理とを交互に数回繰り返した。そして、前記した工程(b)のフッ素失活処理を行ってから、再度成膜処理を繰り返し実施した。各成膜処理で得られたウエハにつき、膜厚を測定した。
【0079】
<成膜処理>
前記(2-1)で言及した下記の成膜処理を実施した。なお、成膜処理に先立つセッティングや初期クリーニング等の処置は割愛する。
【0080】
(原料ガス→P/V→第1の反応ガス+第2の反応ガス→P/V)×n
【0081】
まず、反応管203内にウエハ200を搬入してから、ステップ1として、ガス供給管232a(第1配管)及びノズル249a(第1ノズル)から、原料ガスとしてHCDSガスを反応管203内に供給した。
【0082】
次に、ステップ2として、ガス供給管232nから第1配管及び第1ノズルを介して、パージガスとしてのN2ガスを供給しつつ(あるいは供給せずに)、反応管203内を真空排気して処理室内に残留する原料ガスを排除した。
【0083】
そして、ステップ3として、反応管203内のウエハ200に対して、ガス供給管232b(第2配管)及びノズル249b(第2ノズル)を介して第1の反応ガスとしてのH2ガスを供給しつつ、ガス供給管232c(第3配管)及びノズル249c(第3ノズル)を介して第2の反応ガスとしてのO2ガスを供給した。
【0084】
最後に、ステップ4として、ガス供給管232oから第2配管及び第2ノズルを介してパージガスを供給し、同時にガス供給管232pから第3配管及び第3ノズルを介してパージガスを供給しつつ、反応管203内を真空排気して処理室内に残留する第1の反応ガス及び第2の反応ガスを排除した。
【0085】
上記のステップ1~ステップ4を、所定回数繰り返した。また、各ステップにおける処理条件は下記のとおりとした。
原料ガス供給流量:0.01~2slm、好ましくは0.1~1slm
パージガス供給流量:0~10slm
第1の反応ガス供給流量:0.1~10slm
第2の反応ガス供給流量:0.1~10slm
各ガス供給時間:1~120秒、好ましくは1~60秒
処理温度:250~800℃、好ましくは400~700℃
処理圧力:1~2666Pa、好ましくは67~1333Pa
【0086】
<クリーニング処理>
成膜処理を完了したウエハを搬出したのち、前記(2-2)で言及したクリーニング処理を、第1ノズル、第2ノズル及び第3ノズルの全てを用いて実施した。ここでは、それぞれのノズルに対して、以下の処理を行った。それぞれ処理は並行して行われる。
第1ノズル(ノズル249a):処理C
第2ノズル(ノズル249b):処理A
第3ノズル(ノズル249c):処理B
【0087】
すなわち、ガス供給管232nから第1配管及び第1ノズルを介して不活性ガスとしてのN2ガスをクリーニング処理中、継続して供給する。また、ガス供給管232i、ガス供給管232jから第2配管及び第2ノズルを介して処理Aの順序に対応するようにクリーニングガスとしてのF2ガスと、添加ガスとしてのNOガスと、を順次供給する。また、ガス供給管232l、ガス供給管232mから第3配管及び第3ノズルを介して処理Bの順序に対応するように、クリーニングガスと添加ガスと、を順次供給する。ここで、処理Aと処理Bはそれぞれのノズルで同時に実行した。
【0088】
上記のクリーニングガス供給及び添加ガス供給を、所定回数繰り返した。また、処理条件は下記のとおりとした。
クリーニングガス供給流量:1~20slm、好ましくは5~15slm
添加ガス供給流量:0.1~2slm、好ましくは0.5~1.5slm
各ガス供給時間:10~120秒、好ましくは20~40秒
処理温度:250~400℃、好ましくは、250~350℃
処理圧力:1~1000Torr、好ましくは10~500Torr
【0089】
<フッ素失活処理>
上記クリーニング処理の後、前記(2-3)で言及したフッ素失活処理を、第1ノズル、第2ノズル及び第3ノズルの全てを用いて実施した。
【0090】
まず、ガス供給管232dから第1の反応ガスとしてのH2ガスを、及び、ガス供給管232eから第2の反応ガスとしてのO2ガスを、いずれも第1配管及び第1ノズルを介して、反応管203内へ供給した。同時に、ガス供給管232bから第1の反応ガスを、及び、ガス供給管232hから第2の反応ガスを、いずれも第2配管及び第2ノズルを介して、反応管203内へ供給した。さらに同時に、ガス供給管232kから第1の反応ガスを、及び、ガス供給管232cから第2の反応ガスを、いずれも第1配管及び第1ノズルを介して、反応管203内へ供給した。第1の反応ガスと第2の反応ガスとの供給流量の比率はほぼ1:1とした。その他の処理条件は下記のとおりとした。
第1の反応ガス供給流量:1~10slm
第2の反応ガス供給流量:1~10slm
各ガス供給時間:30~300分、好ましくは100~150分
処理温度:600~800℃
処理圧力:5~133Pa、好ましくは5~30Pa
【0091】
なお、比較例においては、第1配管及び第1ノズルからは第1の反応ガスも第2の反応ガスも供給せず、第2配管及び第2ノズルからはガス供給管232bからの第1の反応ガスのみを供給し、第3配管及び第3ノズルからはガス供給管232cからの第2の反応ガスのみを供給した。
【0092】
<結果>
比較例及び実施例における成膜安定性の結果を、
図4及び
図5にそれぞれ示す。なお、
図4及び
図5においては、グラフの縦軸はウエハ200の膜厚(基準膜厚に対する増減を単位オングストロームで表す。)を表し、横軸は成膜処理の回数を表す。また、両図の破線は基準膜厚を示す。さらに、両図において、クリーニング処理及びフッ素失活処理を行った時点を矢印で示す。
【0093】
比較例では、3回目の成膜処理の後でクリーニング処理及びフッ素失活処理を行ったところ、直後から膜厚が基準膜厚より0.5程度低下した。特に処理回数41回目以降で膜厚の低下がさらに顕著となった。
【0094】
一方、実施例では、6回目の成膜処理の後でクリーニング処理及びフッ素失活処理を行ったところ、直後に膜厚が低下するものの、低下量は0.1に満たなかった。そして処理回数14回目に達した以降で膜厚が安定した。
【0095】
比較例では、
図6の模式図に示すように、ノズル249b(第2ノズル)から第1の反応ガスのみが供給され、また、ノズル249c(第3ノズル)から第2の反応ガスのみが供給され、ノズル249a(第1ノズル)からは第1の反応ガスも第2の反応ガスも供給されなかった。その結果、反応管203内の処理室201及び排気管231を含む図中のBで示す領域では、第1の反応ガスと第2の反応ガスとが十分に混合できているためフッ素失活処理が十分に行われる。しかし、図中のAで示すノズル249a,249b,249cの近傍領域では第1の反応ガスと第2の反応ガスとの混合が不十分なためフッ素失活処理が十分に行われずに、以後の成膜処理に悪影響を与えたものと推察される。
【0096】
一方、実施例では、
図7の模式図に示すように、ノズル249a(第1ノズル)、ノズル249b(第2ノズル)及びノズル249c(第3ノズル)の全てから第1の反応ガスと第2の反応ガスとの両方が供給された。その結果、図中のB領域はもちろん、A領域においても第1の反応ガスと第2の反応ガスとが十分に混合できているためフッ素失活処理が十分に行われ、以後の成膜処理が良好に行われることとなったと推察される。
【0097】
<本開示の他の態様>
以上、本開示の態様を具体的に説明した。しかしながら、本開示の態様は上述の態様に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
【0098】
成膜処理では、以下に示すガス供給シーケンスによりウエハ200上に膜を形成するようにしてもよい。以下に示す材料が形成されたノズルや反応管に対しても、上述のクリーニング処理を好適に適用できる。
【0099】
(Si含有原料ガス→炭素含有ガス→窒化ガス→酸化ガス(第2の反応ガス))×n ⇒ SiOCN
(Si含有原料ガス→酸化ガス(第2の反応ガス)→窒化ガス)×n ⇒ SiON
(Si含有原料ガス→窒化ガス→酸化ガス(第2の反応ガス))×n ⇒ SiON
(Si含有原料ガス→窒化ガス)×n ⇒ SiN
ここで、炭素含有ガスは、たとえばプロピレンガス(C3H6ガス)であり、窒化ガスは、たとえばアンモニアガス(NH3ガス)である。
【0100】
各処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、各処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の膜を、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、各処理を迅速に開始できるようになる。
【0101】
上述のレシピは、新たに作成する場合に限らず、たとえば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更してもよい。
【0102】
上述の態様では、クリーニングガスとして、フッ素含有ガスとして、F2ガスやNF3ガスを例に説明した。本開示は、上述の態様に限定されず、たとえば、フッ化水素(HF)ガス、四フッ化炭素(CF4)、三フッ化塩素(ClF3)、等のガスが挙げられる。なお、クリーニングガスには、F2、NF3、HF、CF4、ClF3の少なくとも1つ以上が含まれていることが好ましい。
【0103】
上述の態様では、クリーニングガスとして、フッ素を含むガスを用いてクリーニングする例について説明した。本開示は、上述の態様に限定されず、たとえば、ハロゲン元素を含むクリーニングガスを用いる場合にも適用できる可能がある。ここで、ハロゲン元素とは、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)である。
【0104】
上述の態様では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて膜を形成する例について説明した。本開示は上述の態様に限定されず、たとえば、一度に1枚又は数枚の基板を処理する枚葉式の基板処理装置を用いて膜を形成する場合にも、好適に適用できる。また、上述の態様では、ホットウォール型の処理炉を有する基板処理装置を用いて膜を形成する例について説明した。本開示は上述の態様に限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて膜を形成する場合にも、好適に適用できる。
【0105】
これらの基板処理装置を用いる場合においても、上述の態様と同様な処理手順、処理条件にて各処理を行うことができ、上述の態様と同様の効果が得られる。
【0106】
また、上述の態様は、適宜組み合わせて用いることができる。このときの処理手順、処理条件は、たとえば、上述の態様の処理手順、処理条件と同様とすることができる。
【0107】
<本開示の好ましい態様>
以下、本開示の好ましい態様について付記する。
【0108】
(付記1)
本開示の一態様によれば、
複数のノズルを有する反応管内で基板を処理して搬出した後で、
(a)前記複数のノズルのうちの少なくとも一つのノズルにクリーニングガスを供給する工程と、
(b)前記(a)の工程が行われた前記少なくとも一つのノズルに水素と酸素とを含むガスを供給する工程と、
(c)前記(b)の工程の後に、前記反応管内に次の基板を搬入する工程と、
を有する半導体装置の製造方法が提供される。
【0109】
(付記2)
付記1に記載の方法であって、好ましくは、
前記(a)の工程において、前記複数のノズルの内、前記少なくとも一つのノズル以外のノズルには前記クリーニングガスを供給しないように形成されている。
【0110】
(付記3)
付記1又は2に記載の方法であって、好ましくは、
前記(a)の工程では、前記複数のノズルの内、前記少なくとも一つのノズル以外のノズルへのガスの供給量を実質的にゼロとする。
【0111】
(付記4)
付記1に記載の方法であって、好ましくは、
前記複数のノズルの全てに対して、前記工程(a)を行う。
【0112】
(付記5)
付記1又は付記4に記載の方法であって、好ましくは、
前記複数のノズル全てに対して、同時期に前記工程(a)を行う。
【0113】
(付記6)
付記1~5のいずれか1項に記載の方法であって、好ましくは、
(d)前記複数のノズルの内、前記工程(a)が行われたノズルに対して、窒素と酸素とを含むガスを供給する工程を更に有する。
【0114】
(付記7)
付記6に記載の方法であって、好ましくは、
(e)前記工程(a)と前記工程(d)とを交互に行う。
【0115】
(付記8)
付記1~7のいずれか1項に記載の方法であって、好ましくは、
(f)前記工程(b)において、前記水素と酸素を含むガスが、前記ノズル内で活性化するよう、ヒータにより前記複数のノズルを加熱する。
【0116】
(付記9)
付記8に記載の方法であって、好ましくは、
前記工程(f)では、前記複数のノズルの主領域が実質的に均一な温度になるように加熱される。
【0117】
(付記10)
付記8又は付記9に記載の方法であって、好ましくは、
前記工程(f)では、前記反応管内の前記基板が位置する領域に対応する位置に配置された前記ヒータにより加熱される。
【0118】
(付記11)
付記10に記載の方法であって、好ましくは、
前記基板は、製品基板である。
【0119】
(付記12)
付記8に記載の方法であって、好ましくは、
前記複数のノズルの少なくとも孔が設けられた領域は、前記ヒータと対向する位置となるように前記複数のノズルと前記ヒータとのいずれか一方又は両方が配置される。
【0120】
(付記13)
付記8~12に記載の方法であって、好ましくは、
前記ヒータは、前記複数のノズル内の前記ガスの流れ方向に沿って複数のゾーンに分割して構成され、
(g)前記工程(a)と前記工程(b)とでは、前記複数のゾーンの温度制御を異ならせるように、温度を変更する。
【0121】
(付記14)
付記13に記載の方法であって、好ましくは、
前記工程(b)では、前記複数のゾーンの内、少なくとも基板の処理領域に対応するゾーンの温度を実質的に同じ温度に制御する。
【0122】
(付記15)
付記13に記載の方法であって、好ましくは、
前記工程(b)では、前記複数のゾーンの内、下端側のゾーンの温度を他のゾーンの温度よりも高い温度に制御する。
【0123】
(付記16)
付記1~15のいずれかに記載の方法であって、好ましくは、
(h)前記反応管の外側で、第2ヒータにより、前記水素と酸素を含むガスを加熱する工程を更に有する。
【0124】
(付記17)
本開示の更に他の態様によれば、
複数のノズルを有する反応管内で基板を処理して搬出した後で、
(a)前記複数のノズルのうちの少なくとも一つのノズルにクリーニングガスを供給する工程と、
(b)前記(a)の工程が行われた前記少なくとも一つのノズルに水素と酸素とを含むガスを供給する工程と、
を有するノズルのクリーニング方法が提供される。
【0125】
(付記18)
本開示の更に他の態様によれば、
内部で基板が処理される反応管と、
前記反応管内に対し基板を搬入及び搬出する搬送機構と、
前記反応管に各種のガスを供給する複数のノズルと、
前記複数のノズルのうちの少なくとも一つのノズルにクリーニングガスを供給するクリーニングガス供給系と、
前記少なくとも一つのノズルに対して水素と酸素とを含むガスを供給する水素酸素含有ガス供給系と、
付記1の各処理(各工程)を行わせるように、前記搬送機構、前記クリーニングガス供給系及び前記水素酸素含有ガス供給系を制御することが可能なよう構成される制御部と、
を有する基板処理装置が提供される。
【0126】
(付記19)
本開示の更に他の態様によれば、
付記1の各手順(各工程)をコンピュータによって基板処理装置に実行させるプログラム、又は、該プログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。