(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023015990
(43)【公開日】2023-02-01
(54)【発明の名称】光フィルタ、波長可変レーザ素子、波長可変レーザモジュール、および波長可変レーザモジュールの制御方法
(51)【国際特許分類】
H01S 5/14 20060101AFI20230125BHJP
H01S 5/026 20060101ALI20230125BHJP
H01S 5/0687 20060101ALI20230125BHJP
G02B 6/12 20060101ALI20230125BHJP
G02B 6/125 20060101ALI20230125BHJP
G02B 6/42 20060101ALI20230125BHJP
【FI】
H01S5/14
H01S5/026 612
H01S5/0687
H01S5/026 618
G02B6/12 341
G02B6/125
G02B6/12 361
G02B6/12 301
G02B6/42
【審査請求】未請求
【請求項の数】16
【出願形態】OL
(21)【出願番号】P 2022084531
(22)【出願日】2022-05-24
(31)【優先権主張番号】P 2021119770
(32)【優先日】2021-07-20
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2021197850
(32)【優先日】2021-12-06
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000002130
【氏名又は名称】住友電気工業株式会社
(71)【出願人】
【識別番号】504173471
【氏名又は名称】国立大学法人北海道大学
(74)【代理人】
【識別番号】100087480
【弁理士】
【氏名又は名称】片山 修平
(72)【発明者】
【氏名】河野 直哉
(72)【発明者】
【氏名】藤原 直樹
(72)【発明者】
【氏名】齊藤 晋聖
(72)【発明者】
【氏名】藤澤 剛
(72)【発明者】
【氏名】佐藤 孝憲
【テーマコード(参考)】
2H137
2H147
5F173
【Fターム(参考)】
2H137AB12
2H137BA34
2H137BA45
2H137BA46
2H137BA52
2H137BA53
2H137BB02
2H137BB12
2H137BC51
2H147AB03
2H147AB04
2H147AB16
2H147AC04
2H147BA06
2H147BA15
2H147BD02
2H147BD03
2H147BD07
2H147BE13
2H147BE15
2H147BE22
2H147CA11
2H147EA12A
2H147EA12B
2H147EA12C
2H147EA13A
2H147EA13C
2H147EA14B
5F173AA03
5F173AA42
5F173AB32
5F173AB43
5F173AB44
5F173AB45
5F173AB49
5F173AB50
5F173AD11
5F173AD15
5F173AD19
5F173AF03
5F173AH14
5F173AR03
5F173SA08
5F173SE01
5F173SF03
5F173SF33
5F173SF42
5F173SF62
(57)【要約】
【課題】光フィルタ、波長可変レーザ素子、波長可変レーザモジュール、および波長可変レーザモジュールの制御方法を提供する。
【解決手段】第1ループミラーと、第2ループミラーと、前記第1ループミラーおよび前記第2ループミラーと光学的に結合する第1導波路と、第1アクセス導波路と、を具備し、前記第1ループミラーは、第1ループ導波路と第1合分波器とを有し、前記第2ループミラーは、第2ループ導波路と第2合分波器とを有し、前記第1ループ導波路は、前記第1合分波器と光学的に結合し、前記第2ループ導波路は、前記第2合分波器と光学的に結合し、前記第1導波路は、前記第1合分波器および前記第2合分波器と光学的に結合し、前記第1アクセス導波路は、前記第1導波路と光学的に結合する光フィルタ。
【選択図】
図3
【特許請求の範囲】
【請求項1】
第1ループミラーと、
第2ループミラーと、
前記第1ループミラーおよび前記第2ループミラーと光学的に結合する第1導波路と、
第1アクセス導波路と、を具備し、
前記第1ループミラーは、第1ループ導波路と第1合分波器とを有し、
前記第2ループミラーは、第2ループ導波路と第2合分波器とを有し、
前記第1ループ導波路は、前記第1合分波器と光学的に結合し、
前記第2ループ導波路は、前記第2合分波器と光学的に結合し、
前記第1導波路は、前記第1合分波器および前記第2合分波器と光学的に結合し、
前記第1アクセス導波路は、前記第1導波路と光学的に結合する光フィルタ。
【請求項2】
前記第1ループミラーおよび前記第2ループミラーと光学的に結合する第2導波路と、
第2アクセス導波路と、を具備し、
前記第2導波路は、前記第1合分波器および前記第2合分波器と光学的に結合し、
前記第2アクセス導波路は前記第2導波路と光学的に結合する請求項1に記載の光フィルタ。
【請求項3】
前記第1合分波器の形状は対称であり、前記第2合分波器の形状は対称であり、前記第1導波路の形状と前記第2導波路の形状とは対称である請求項2に記載の光フィルタ。
【請求項4】
前記第1合分波器および前記第2合分波器は、2×2多モード干渉導波路または方向性結合器である請求項2または請求項3に記載の光フィルタ。
【請求項5】
前記第1合分波器および前記第2合分波器は、それぞれ2つの導波路を有する方向性結合器であり、
前記第1合分波器のうち前記第1ループ導波路側における前記2つの導波路の間の距離、ならびに前記第1導波路および前記第2導波路の側における前記距離は、前記第1合分波器の中央部における前記距離よりも大きく、
前記第2合分波器の前記第2ループ導波路側における前記2つの導波路の間の距離、ならびに前記第1導波路および前記第2導波路の側における前記距離は、前記第2合分波器の中央部における前記距離よりも大きい、請求項2または請求項3に記載の光フィルタ。
【請求項6】
前記第1合分波器の前記2つの導波路は、前記第1ループ導波路の側にベンドを有し、かつ前記第1導波路および前記第2導波路の側にベンドを有し、
前記第2合分波器の前記2つの導波路は、前記第2ループ導波路の側にベンドを有し、かつ前記第1導波路および前記第2導波路の側にベンドを有する請求項5に記載の光フィルタ。
【請求項7】
前記第1合分波器の前記2つの導波路のうち前記中央部は曲線状である請求項5に記載の光フィルタ。
【請求項8】
前記第1ループ導波路および前記第2ループ導波路のうち少なくとも一方に設けられ、前記第1ループ導波路および前記第2ループ導波路のうち前記少なくとも一方を伝搬する光の位相を調整する、位相調整部を具備する請求項2または請求項3に記載の光フィルタ。
【請求項9】
利得部と、
2つの光フィルタと、を具備し、
前記2つの光フィルタは、請求項8に記載の光フィルタであり、
前記2つの光フィルタの共振波長の間隔は互いに異なり、
前記利得部は光学利得を有し、かつ前記2つの光フィルタそれぞれの前記第1アクセス導波路に光学的に結合する波長可変レーザ素子。
【請求項10】
前記2つの光フィルタは、基板に形成され、
前記利得部と前記基板とは突き合わせ接続され、
前記利得部の前記基板とは反対側に設けられた反射鏡を具備する請求項9に記載の波長可変レーザ素子。
【請求項11】
III-V族化合物半導体で形成された基板を具備し、
前記利得部と前記2つの光フィルタとは、前記基板にモノリシック集積され、
前記2つの光フィルタのうち1つは、前記利得部の1つの端部側に位置し、
前記2つの光フィルタのうち別の1つは、前記利得部のもう1つの端部側に位置する請求項9に記載の波長可変レーザ素子。
【請求項12】
前記2つの光フィルタは、基板に形成され、
前記第1導波路、前記第2導波路、前記第1ループ導波路、前記第2ループ導波路、前記第1アクセス導波路、および前記第2アクセス導波路は、前記基板に形成されたシリコンの導波路であり、
前記2つの光フィルタのうち1つは、前記利得部の1つの端部側に位置し、
前記2つの光フィルタのうち別の1つは、前記利得部のもう1つの端部側に位置し、
前記利得部は、前記基板の表面に接合されている請求項9に記載の波長可変レーザ素子。
【請求項13】
請求項9に記載の波長可変レーザ素子と、
前記波長可変レーザ素子の第2アクセス導波路に光を入射する光源と、
前記波長可変レーザ素子の第2アクセス導波路に光学的に結合する受光素子と、を具備する波長可変レーザモジュール。
【請求項14】
請求項13に記載の波長可変レーザモジュールの制御方法であって、
光源から波長可変レーザ素子の第2アクセス導波路に光を入射する工程と、
前記第2アクセス導波路を透過する光の強度に基づき、前記第2アクセス導波路を伝搬する光の波長を制御する工程と、を有する波長可変レーザモジュールの制御方法。
【請求項15】
前記光の波長を制御する工程は、前記第2アクセス導波路を透過する光の強度に基づき、前記位相調整部を用いて前記第2アクセス導波路を伝搬する光の波長を制御する工程である請求項14に記載の波長可変レーザモジュールの制御方法。
【請求項16】
前記光の波長を制御する工程は、前記第2アクセス導波路を透過する光の強度に基づき、光源の出射光の波長を制御することで、前記第2アクセス導波路を伝搬する光の波長を制御する工程である請求項14に記載の波長可変レーザモジュールの制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は光フィルタ、波長可変レーザ素子、波長可変レーザモジュール、および波長可変レーザモジュールの制御方法に関するものである。
【背景技術】
【0002】
利得部と、光を反射するフィルタとを有する波長可変レーザ素子が知られている。複数のリング共振器とループミラーとでフィルタを形成する技術がある(例えば特許文献1)。2つに分岐した導波路とリング共振器とを光学的に結合することでフィルタを形成する技術がある(例えば特許文献2)。フィルタの特性を制御し、光の位相を変化させることで、レーザ素子の発振波長を調整する。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2016-102926号公報
【特許文献2】国際公開第2019/159808号
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし温度変化、および電流の注入などにより、フィルタの特性が経時変化することがある。フィルタの特性をモニタできない場合、フィルタの特性を正確に制御することが困難であり、発振波長も不安定になってしまう。そこで、特性をモニタすることが可能な光フィルタ、波長可変レーザ素子、波長可変レーザモジュール、および波長可変レーザモジュールの制御方法を提供することを目的とする。
【課題を解決するための手段】
【0005】
本開示に係る光フィルタは、第1ループミラーと、第2ループミラーと、前記第1ループミラーおよび前記第2ループミラーと光学的に結合する第1導波路と、第1アクセス導波路と、を具備し、前記第1ループミラーは、第1ループ導波路と第1合分波器とを有し、前記第2ループミラーは、第2ループ導波路と第2合分波器とを有し、前記第1ループ導波路は、前記第1合分波器と光学的に結合し、前記第2ループ導波路は、前記第2合分波器と光学的に結合し、前記第1導波路は、前記第1合分波器および前記第2合分波器と光学的に結合し、前記第1アクセス導波路は、前記第1導波路と光学的に結合する。
【0006】
本開示に係る波長可変レーザ素子は、利得部と、2つの光フィルタと、を具備し、前記2つの光フィルタは、上記の光フィルタであり、前記2つの光フィルタの共振波長の間隔は互いに異なり、前記利得部は光学利得を有し、かつ前記2つの光フィルタそれぞれの前記第1アクセス導波路に光学的に結合する。
【0007】
本開示に係る波長可変レーザモジュールは、上記の波長可変レーザ素子と、前記波長可変レーザ素子の第2アクセス導波路に光を入射する光源と、前記波長可変レーザ素子の第2アクセス導波路に光学的に結合する受光素子と、を具備する。
【0008】
本開示に係る波長可変レーザモジュールの制御方法は、光源から波長可変レーザ素子の第2アクセス導波路に光を入射する工程と、前記第2アクセス導波路を透過する光の強度に基づき、前記第2アクセス導波路を伝搬する光の波長を制御する工程と、を有する。
【発明の効果】
【0009】
本開示によれば、特性をモニタすることが可能な光フィルタ、波長可変レーザ素子、波長可変レーザモジュール、および波長可変レーザモジュールの制御方法を提供することが可能である。
【図面の簡単な説明】
【0010】
【
図1A】
図1Aは、第1実施形態に係る光フィルタを例示する平面図である。
【
図2A】
図2Aは、光フィルタの反射特性を例示する図である。
【
図2B】
図2Bは、光フィルタの反射特性を例示する図である。
【
図3】
図3は、第2実施形態に係る光フィルタを例示する平面図である。
【
図6】
図6は、第1の変形例に係る光フィルタを例示する平面図である。
【
図7】
図7は、第2の変形例に係る光フィルタを例示する平面図である。
【
図8】
図8は、第3実施形態に係る波長可変レーザ素子を例示する平面図である。
【
図10】
図10は、光フィルタの反射特性を例示する図である。
【
図11】
図11は、第4実施形態に係る波長可変レーザ素子を例示する平面図である。
【
図14】
図14は、第6実施形態に係る波長可変レーザモジュールを例示する図である。
【
図15】
図15は、制御部のハードウェア構成を示すブロック図である。
【
図19】
図19は、第7実施形態に係る光フィルタを例示する平面図である。
【発明を実施するための形態】
【0011】
[本開示の実施形態の説明]
最初に本開示の実施形態の内容を列記して説明する。
【0012】
本開示の一形態は、(1)第1ループミラーと、第2ループミラーと、前記第1ループミラーおよび前記第2ループミラーと光学的に結合する第1導波路と、第1アクセス導波路と、を具備し、前記第1ループミラーは、第1ループ導波路と第1合分波器とを有し、前記第2ループミラーは、第2ループ導波路と第2合分波器とを有し、前記第1ループ導波路は、前記第1合分波器と光学的に結合し、前記第2ループ導波路は、前記第2合分波器と光学的に結合し、前記第1導波路は、前記第1合分波器および前記第2合分波器と光学的に結合し、前記第1アクセス導波路は、前記第1導波路と光学的に結合する光フィルタである。第1アクセス導波路に光を入射すると、共振波長を有する光は、第1アクセス導波路に反射される。共振波長以外の波長を有する光は透過する。第1アクセス導波路を伝搬する反射光および透過光を用いて、光フィルタの特性をモニタすることができる。
(2)前記第1ループミラーおよび前記第2ループミラーと光学的に結合する第2導波路と、第2アクセス導波路と、を具備し、前記第2導波路は、前記第1合分波器および前記第2合分波器と光学的に結合し、前記第2アクセス導波路は前記第2導波路と光学的に結合してもよい。第1アクセス導波路および第2アクセス導波路のうち一方を伝搬する反射光および透過光を用いて、光フィルタの特性をモニタすることができる。
(3)前記第1合分波器の形状は対称であり、前記第2合分波器の形状は対称であり、前記第1導波路の形状と前記第2導波路の形状とは対称でもよい。第1アクセス導波路に励振される共振モードの共振波長は、第2アクセス導波路に励振される共振モードの共振波長に等しい。第1アクセス導波路に励振される共振モードのFSRは、第2アクセス導波路に励振される共振モードのFSRに等しい。第1アクセス導波路および第2アクセス導波路のうち一方を伝搬する光の共振波長およびFSRを測定することで、光フィルタの特性をモニタすることができる。
(4)前記第1合分波器および前記第2合分波器は、2×2多モード干渉導波路または方向性結合器でもよい。第1導波路から第1ループミラーおよび第2ループミラーに入射する光は、第1導波路に反射される。第1導波路に結合する第1アクセス導波路に、共振モードが励振される。第2導波路から第1ループミラーおよび第2ループミラーに入射する光は、第2導波路に反射される。第2導波路に結合する第2アクセス導波路に、共振モードが励振される。2つの共振モードのうち1つを第1アクセス導波路から取り出し、もう1つを第2アクセス導波路から取り出すことができる。
(5)前記第1合分波器および前記第2合分波器は、それぞれ2つの導波路を有する方向性結合器であり、前記第1合分波器のうち前記第1ループ導波路側における前記2つの導波路の間の距離、ならびに前記第1導波路および前記第2導波路の側における前記距離は、前記第1合分波器の中央部における前記距離よりも大きく、前記第2合分波器の前記第2ループ導波路側における前記2つの導波路の間の距離、ならびに前記第1導波路および前記第2導波路の側における前記距離は、前記第2合分波器の中央部における前記距離よりも大きくてもよい。第1分波器および第2分波器において、広い波長帯域にわたって光の分配が均等に近くなる。クロストークの波長依存性を改善し、広い波長帯域でクロストークを低く抑制することができる。
(6)前記第1合分波器の前記2つの導波路は、前記第1ループ導波路の側にベンドを有し、かつ前記第1導波路および前記第2導波路の側にベンドを有し、前記第2合分波器の前記2つの導波路は、前記第2ループ導波路の側にベンドを有し、かつ前記第1導波路および前記第2導波路の側にベンドを有してもよい。第1分波器および第2分波器において、中央部の第1導波路と第2導波路との距離に比べて、ベンドでの第1導波路と第2導波路との距離が大きい。第1分波器および第2分波器において、広い波長帯域にわたって光の分配が均等に近くなる。クロストークの波長依存性を改善し、広い波長帯域でクロストークを低く抑制することができる。
(7)前記第1合分波器の前記2つの導波路のうち前記中央部は曲線状でもよい。中央部の曲線部分における導波路間の距離に比べて、中央部から離れた部分での距離は大きくなる。第1合分波器において、広い波長帯域にわたって光の分配が均等に近くなる。クロストークの波長依存性を改善し、広い波長帯域でクロストークを低く抑制することができる。
(8)前記第1ループ導波路および前記第2ループ導波路のうち少なくとも一方に設けられ、前記第1ループ導波路および前記第2ループ導波路のうち前記少なくとも一方を伝搬する光の位相を調整する、位相調整部を具備してもよい。光の位相を調整することで、光の波長を変化させることができる。
(9)利得部と、2つの光フィルタと、を具備し、前記2つの光フィルタは、上記の光フィルタであり、前記2つの光フィルタの共振波長の間隔は互いに異なり、前記利得部は光学利得を有し、かつ前記2つの光フィルタそれぞれの前記第1アクセス導波路に光学的に結合する波長可変レーザ素子である。利得部の出射光は、第1アクセス導波路を伝搬し、光フィルタで反射される。2つの光フィルタのバーニア効果によって、波長可変レーザ素子がレーザ発振する。第2アクセス導波路を伝搬する光を用いて、光フィルタの特性をモニタすることができる。
(10)前記2つの光フィルタは、基板に形成され、前記利得部と前記基板とは突き合わせ接続され、前記利得部の前記基板とは反対側に設けられた反射鏡を具備してもよい。利得部の出射光は、第1アクセス導波路を伝搬し、光フィルタと反射鏡とで反射される。波長可変レーザ素子がレーザ発振する。第2アクセス導波路を伝搬する光を用いて、光フィルタの特性をモニタすることができる。
(11)III-V族化合物半導体で形成された基板を具備し、前記利得部と前記2つの光フィルタとは、前記基板にモノリシック集積され、前記2つの光フィルタのうち1つは、前記利得部の1つの端部側に位置し、前記2つの光フィルタのうち別の1つは、前記利得部のもう1つの端部側に位置してもよい。利得部の出射光は、第1アクセス導波路を伝搬し、2つの光フィルタで反射される。波長可変レーザ素子がレーザ発振する。第2アクセス導波路を伝搬する光を用いて、光フィルタの特性をモニタすることができる。
(12)前記2つの光フィルタは、基板に形成され、前記第1導波路、前記第2導波路、前記第1ループ導波路、前記第2ループ導波路、前記第1アクセス導波路、および前記第2アクセス導波路は、前記基板に形成されたシリコンの導波路であり、前記2つの光フィルタのうち1つは、前記利得部の1つの端部側に位置し、前記2つの光フィルタのうち別の1つは、前記利得部のもう1つの端部側に位置し、前記利得部は、前記基板の表面に接合されてもよい。利得部の出射光は、第1アクセス導波路を伝搬し、2つの光フィルタで反射される。波長可変レーザ素子がレーザ発振する。第2アクセス導波路を伝搬する光を用いて、光フィルタの特性をモニタすることができる。
(13)上記の波長可変レーザ素子と、前記波長可変レーザ素子の第2アクセス導波路に光を入射する光源と、前記波長可変レーザ素子の第2アクセス導波路に光学的に結合する受光素子と、を具備する波長可変レーザモジュールである。利得部の出射光は、第1アクセス導波路を伝搬し、光フィルタで反射される。2つの光フィルタのバーニア効果によって、波長可変レーザ素子がレーザ発振する。第2アクセス導波路を伝搬する光を用いて、光フィルタの特性をモニタすることができる。
(14)上記の波長可変レーザモジュールの制御方法であって、光源から波長可変レーザ素子の第2アクセス導波路に光を入射する工程と、前記第2アクセス導波路を透過する光の強度に基づき、前記第2アクセス導波路を伝搬する光の波長を制御する工程と、を有する波長可変レーザモジュールの制御方法である。利得部の出射光は、第1アクセス導波路を伝搬し、光フィルタで反射される。2つの光フィルタのバーニア効果によって、波長可変レーザ素子がレーザ発振する。第2アクセス導波路を伝搬する光を用いて、光フィルタの特性をモニタすることができる。
(15)前記光の波長を制御する工程は、前記第2アクセス導波路を透過する光の強度に基づき、前記位相調整部を用いて前記第2アクセス導波路を伝搬する光の波長を制御する工程でもよい。第2アクセス導波路を伝搬する光を用いて、光フィルタの特性をモニタすることができる。
(16)前記光の波長を制御する工程は、前記第2アクセス導波路を透過する光の強度に基づき、光源の出射光の波長を制御することで、前記第2アクセス導波路を伝搬する光の波長を制御する工程でもよい。第2アクセス導波路を伝搬する光を用いて、光フィルタの特性をモニタすることができる。
【0013】
[本開示の実施形態の詳細]
本開示の実施形態に係る光フィルタ、波長可変レーザ素子、波長可変レーザモジュール、および波長可変レーザモジュールの制御方法の具体例を、以下に図面を参照しつつ説明する。なお、本開示はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0014】
<第1実施形態>
図1Aは、第1実施形態に係る光フィルタ100を例示する平面図である。
図1Aに示すように、光フィルタ100は、シリコン(Si)系のフィルタ素子であり、アクセス導波路10(第1アクセス導波路)、導波路12(第1導波路)、2つのループミラー20および25を備える。
【0015】
基板30の上面は、XY平面に広がる。基板30の2つの辺は、X軸方向に延伸する。基板30の2つの辺は、Y軸方向に延伸する。X軸方向はY軸方向に直交する。Z軸方向は、基板30の厚さ方向であり、X軸方向およびY軸方向に直交する。基板30のX軸方向の1つの端部を端部30aとし、もう1つの端部を端部30bとする。
【0016】
アクセス導波路10、導波路12、2つのループミラー20および25は、基板30に形成されている。ループミラー20(第1ループミラー)は、基板30の端部30a側に位置する。ループミラー25(第2ループミラー)は、端部30b側に位置し、ループミラー20に対向する。導波路12は、X軸方向に延伸し、ループミラー20とループミラー25との間に位置し、ループミラー20とループミラー25とに接続されている。
【0017】
ループミラー20は、ループ導波路22(第1ループ導波路)と合分波器24(第1合分波器)とを有する。ループミラー25は、ループ導波路26(第2ループ導波路)と合分波器28(第2合分波器)とを有する。2つのループミラー20および25と、導波路12とは、共振器11を形成する。
【0018】
図1Aの例における合分波器24および28は、例えば3dBの1入力2出力(1×2)多モード干渉導波路(MMI:Multi Mode Interference)である。合分波器24および28は、1×2MMI以外に例えばY分岐導波路でもよい。合分波器24および28は、それぞれ1つの入力端と2つの出力端を有する。導波路12の第1の端部は、合分波器24の入力端に光学的に結合する。導波路12の第2の端部は、合分波器28の入力端に光学的に結合する。
【0019】
ループミラー20のループ導波路22は、ループ状の光導波路である。ループ導波路22の第1の端部は、合分波器24の第1の出力端24cに光学的に結合する。ループ導波路22の第2の端部は、合分波器24の第2の出力端24dに光学的に結合する。ループミラー20は、合分波器24の入力端から光が入力されると、合分波器24の入力端に光を反射する反射構造である。
【0020】
ループミラー25のループ導波路26は、ループ状の光導波路である。ループ導波路26の第1の端部は、合分波器28の第1の出力端28cに光学的に結合する。ループ導波路26の第2の端部は、合分波器28の第2の出力端28dに光学的に結合する。ループミラー25は、合分波器28の入力端から光が入力されると、合分波器28の入力端に光を反射する反射構造である。
【0021】
アクセス導波路10と導波路12とはY軸方向において並ぶ。アクセス導波路10の端部10aは、基板30の端部30aに位置する。アクセス導波路10のもう1つの端部10bは、基板30の端部30bに位置する。アクセス導波路10は、X軸方向に延伸し、かつ導波路12に近づくように湾曲する。アクセス導波路10は、導波路12から距離gをあけて離間し、導波路12に光学的に結合する。距離gは、例えば数百nmである。
【0022】
図1Bは、
図1Aの線A-Aに沿った断面図であり、アクセス導波路10の断面を図示する。導波路12、ループ導波路22および26の断面も
図1Bと同様である。基板30は、SOI(Silicon on Insulator)基板であり、基板32、クラッド層33および導波路コア34を有する。基板30は、例えばSiで形成されている。クラッド層33は、例えば酸化シリコン(SiO
2)で形成されており、基板30の1つの面を覆う。導波路コア34は、例えばSiで形成されており、基板30から離間し、クラッド層33の内側に埋め込まれている。基板32の上面から導波路コア34の下端までの距離は例えば2μmである。導波路コア34のY軸方向の幅は、例えば0.44μmである。導波路コア34の厚さは、例えば0.22μmである。
【0023】
アクセス導波路10の端部10aおよび10bのうち一方(例えば端部10a)を、光フィルタ100の入射ポートとする。光フィルタ100の外部に配置した不図示の光源から、
図1Aに矢印A1で示すように端部10aを通じて光フィルタ100に光を入射する。アクセス導波路10に光が入射することで、共振器11に共振モードが励振する。
図1Aに矢印A2で示すように、共振波長を有する光(反射光)は、アクセス導波路10の端部10aに向けて反射され、端部10aから光フィルタ100の外部に出射される。矢印A3で示すように、共振波長以外の波長を有する光(透過光)は、光フィルタ100を透過し、アクセス導波路10の端部10bから光フィルタ100の外部に出射される。
【0024】
より詳細には、光はアクセス導波路10を伝搬し、アクセス導波路10から導波路12に乗り移る。導波路12を伝搬する光は、合分波器24の2つの出力端24cおよび24dに分配され、ループ導波路22を伝搬する。分配される光の強度は1:1であり、位相は等しい。ループ導波路22を右回りに伝搬する光と、ループ導波路22を左回りに伝搬する光とは、同位相で合流して、合分波器24から導波路12に入射する。
【0025】
導波路12を伝搬する光は、合分波器28の2つの出力端28cおよび28dに分配され、ループ導波路26を伝搬する。ループ導波路26を右回りに伝搬する光と、ループ導波路26を左回りに伝搬する光とは、同位相で合流して、合分波器28から導波路12に入射する。
【0026】
共振器11の共振波長は、2つのループミラー20および25を一周したときの光の位相の変化が2πn(nは整数)になる波長である。共振波長を有する光は、導波路12からアクセス導波路10に乗り移り、
図1Aに矢印A2で示すようにアクセス導波路10の端部10aに向けて反射される。共振波長以外の波長を有する光は、
図1Aに矢印A3で示すように、アクセス導波路10の端部10bから出射される。
【0027】
すなわち、光フィルタ100は、共振波長の光を反射し、共振波長以外の波長を有する光を透過させるフィルタである。フォトダイオードなどの受光素子で光フィルタ100の反射光または透過光を受光することで、光フィルタ100の特性をモニタすることができる。
【0028】
図2Aおよび
図2Bは、光フィルタ100の反射特性を例示する図である。横軸は、光の波長を表す。縦軸は、光フィルタ100の反射率を表す。
図2Aおよび
図2Bに示すように、共振器11の共振波長において反射率はピークを示す。隣接する2つの共振波長間の間隔(自由スペクトル領域、FSR:Free Spectral Range)は、共振器11(導波路12、ループミラー20および25)の光路長で決まる。
図2Aにおける共振波長は、
図2Bにおける共振波長と等しい。
図2AにおけるFSRは、
図2BにおけるFSRに等しい。
図2Aおよび
図2BのFSRの値をFSR1とする。
【0029】
一方、
図2Aのピークの幅は、
図2Bのピークの幅よりも広い。ピークの幅は、共振器11のQ値で決まる。Q値は、アクセス導波路10と共振器11との結合率で決まる。アクセス導波路10と導波路12との距離gを小さくすると、アクセス導波路10と導波路12との結合率が高くなり、Q値は低くなる。Q値が低くなると、
図2Aのようにピークは広く、緩やかになる。距離gを大きくすると、結合率が低くなり、Q値は高くなる。
図2Bのようにピークは狭く、鋭くなる。
【0030】
第1実施形態によれば、光フィルタ100は、アクセス導波路10、導波路12、ループミラー20および25を有する。導波路12と、ループミラー20および25とは、光学的に結合し、共振器11を形成する。アクセス導波路10の端部10aに光を入射すると、共振波長を有する光は共振器11によって反射され、アクセス導波路10の端部10aに入射される。共振波長以外の波長を有する光は、光フィルタ100を透過し、アクセス導波路10の端部10bから出射される。光フィルタ100の反射光または透過光を検知することで、光フィルタ100の特性をモニタすることができる。
【0031】
アクセス導波路10に入射する光の波長を変えながら、光フィルタ100の反射率または透過率を測定する。
図2Aおよび
図2Bのように、反射率が最大になる波長が共振波長である。反射率スペクトルを測定することで、共振波長、および反射率のピークの間隔(FSR)を、直接的に測定することができる。アクセス導波路10と導波路12との距離gを変化させることで、Q値および結合率を調節することができる。
図2Aおよび
図2Bのようにピークの形状を変えることができる。透過光を用いて光フィルタ100の特性をモニタしてもよい。透過率が最低になる波長が、共振波長である。
【0032】
光フィルタ100の屈折率は経時変化することがある。屈折率の変化によって、光導波路の屈折率が変化することがある。屈折率の変化によって、光フィルタ100の特性が変化する。アクセス導波路10を伝搬する光を用いて、光フィルタ100の特性を直接的にモニタすることが可能である。反射率を測定することで、共振波長のシフトなどといった特性の変化を正確に検出することができる。
【0033】
図1Bに示すように、光フィルタ100の光導波路は、Siの導波路コア34を有する。導波路コア34は、クラッド層33に囲まれている。Siの屈折率は約3.5である。SiO
2の屈折率は約1.4である。クラッド層33に比べて高い屈折率を有する導波路コア34に、光を強く閉じ込めることができる。アクセス導波路10、ループ導波路22および26のように、屈曲した光導波路における光の損失が抑制される。光フィルタ100の光導波路は、
図1BのようにSiで形成された導波路でもよいし、
図12で述べるような化合物半導体で形成された導波路でもよい。
図8などで示すように、光導波路に電極35が設けられてもよい。ループ導波路22の形状は、ループ導波路26と同一でもよし、異なってもよい。
【0034】
<第2実施形態>
図3は、第2実施形態に係る光フィルタ200を例示する平面図である。第1実施形態と同じ構成については説明を省略する。
図3に示すように、光フィルタ200は、2つのアクセス導波路10および16、2つの導波路12および14、2つのループミラー20および25を備える。導波路12、ループミラー20および25は、共振器11を形成する。導波路14、ループミラー20および25は、共振器13を形成する。光フィルタ200の光導波路は、
図1Bと同じ構成を有する。
【0035】
Y軸方向における基板30の1つの端部(
図3の下側の端部)からもう1つの端部(
図3の上側の端部)に向けて、アクセス導波路10、導波路12、導波路14、およびアクセス導波路16が順に並ぶ。アクセス導波路10と導波路12とは、互いに近づくように湾曲する。アクセス導波路10は、導波路12と光学的に結合し、かつ距離g1をあけて離間する。アクセス導波路16と導波路14とは、互いに近づくように湾曲する。アクセス導波路16は、導波路14と光学的に結合し、かつ距離g2をあけて離間する。
【0036】
アクセス導波路10の端部10aおよびアクセス導波路16の端部16aは、基板30の端部30aに位置する。アクセス導波路10の端部10bおよびアクセス導波路16の端部16bは、基板30の端部30bに位置する。
【0037】
導波路12および14は、X軸方向においてループミラー20とループミラー25との間に位置し、ループミラー20とループミラー25とに接続されている。導波路12と導波路14とが並ぶY軸方向(
図3の上下方向)において、導波路12と導波路14とは対称である。言い換えれば、X軸に関して導波路12と導波路14とは対称である。つまり、導波路14をX軸に関して折り返すと、導波路12に重なる。
【0038】
合分波器24および28は、それぞれ3dBの2×2MMIカプラである。導波路12の第1の端部は、合分波器24の第1の入力端24aに光学的に結合する。導波路12の第2の端部は、合分波器28の第1の入力端28aに光学的に結合する。導波路14の第1の端部は、合分波器24の第2の入力端24bに光学的に結合する。導波路14の第2の端部は、合分波器28の第2の入力端28bに光学的に結合する。
【0039】
図3の上下方向において合分波器24の形状は対称である。つまり、合分波器24の形状は、X軸に関して対称である。合分波器24と同様に、合分波器28の形状は上下方向において対称である。
【0040】
光フィルタ200の外部に配置した不図示の光源から、
図3に矢印A1で示すようにアクセス導波路10の1つの端部(例えば端部10a)に光を入射する。矢印A4で示すように、アクセス導波路16の1つの端部(例えば端部16b)に光を入射する。
【0041】
アクセス導波路10に入射された光は、導波路12に乗り移る。導波路12を伝搬する光は、合分波器24および28に入射する。導波路12から合分波器24に入射した光は、合分波器24の2つの出力端24cおよび24dに分配され、ループ導波路22を伝搬する。分配される光の強度の比は1:1である。出力端24cから出力される光の位相に対して、出力端24dから出力される光の位相は90°遅延する。出力端24cから右回りにループ導波路22を伝搬する光は、90°の位相遅延を伴って合分波器24の入力端24aに戻り、導波路12に入射する。出力端24dから左回りにループ導波路22を伝搬する光は、合分波器24の入力端24aに戻り、導波路12に入射する。すなわち、導波路12からループ導波路22に入射する光は、原理的には導波路14に入射せずに、入力端24aを通じて導波路12に反射される。
【0042】
導波路12から合分波器28に入射した光は、合分波器28の2つの出力端28cおよび28dに、強度の比が1:1、位相差90°で分配され、ループ導波路26を伝搬する。導波路12からループ導波路26に入射する光は、原理的には導波路14に入射せずに、導波路12に反射される。導波路12の光は、アクセス導波路10に乗り移り、端部10aに向けて伝搬する。
【0043】
アクセス導波路16に入射された光は、導波路14に乗り移り、合分波器24および28に入射する。導波路14から合分波器24に入射した光は、合分波器24の2つの出力端24cおよび24dに、強度の比が1:1、位相差90°で分配され、ループ導波路22を伝搬する。導波路14からループ導波路22に入射する光は、原理的には導波路12に入射せずに、導波路14に反射される。導波路14から合分波器28を通じてループ導波路26に入射する光は、原理的には導波路12に入射せずに、導波路14に反射される。導波路14の光は、アクセス導波路16に乗り移り、端部16bに向けて伝搬する。
【0044】
すなわち、
図3に矢印A1で示すようにアクセス導波路10の端部10aから光を入射することで、共振器11の共振モードを励振することができる。共振器11の共振モードは、ループ導波路22および26、導波路12を伝搬し、矢印A2で示すようにアクセス導波路10の端部10aに向けて反射される。共振器11の共振モードは、導波路14およびアクセス導波路16には伝搬しない。アクセス導波路10を伝搬する光のうち共振波長以外の波長を有する光は、矢印A3で示すように光フィルタ200を透過し、端部10bから光フィルタ200の外部に出射される。
【0045】
矢印A4で示すようにアクセス導波路16の端部16bから光を入射することで、共振器13の共振モードを励振することができる。共振器13の共振モードは、ループ導波路22および26、導波路14を伝搬し、矢印A5で示すようにアクセス導波路16の端部16bに向けて反射される。共振器13の共振モードは、導波路12およびアクセス導波路10には伝搬しない。アクセス導波路16を伝搬する光のうち共振波長以外の波長を有する光は、矢印A6で示すように光フィルタ200を透過して、端部16aから外部に出射される。
【0046】
X軸に関して、合分波器24が対称であり、合分波器28が対称であり、導波路12と導波路14とが対称である場合、共振器11の共振モードの共振波長と共振器13の共振モードの共振波長とは、原理的に一致する。共振器11の共振モードのFSRと共振器13の共振モードのFSRとは、原理的に一致する。共振器11の共振モードおよび共振器13の共振モードのうち、一方の共振波長およびFSRがわかれば、もう一方の共振波長およびFSRもわかる。
【0047】
アクセス導波路16を伝搬する光フィルタ200の反射光または透過光を受光素子で検知し、共振器13の共振モードの共振波長およびFSRを測定する。この測定の結果から、アクセス導波路10の反射光および透過光を検知せずに、共振器11の共振モードの共振波長およびFSRもモニタすることが可能である。アクセス導波路16を光フィルタ200の特性をモニタするために使用し、アクセス導波路10をモニタ以外の用途、例えばレーザ発振に使用することができる。
【0048】
図4Aから
図5Cは、光フィルタ200の特性を例示する図であり、特性のシミュレーション結果である。横軸は、光の波長を表す。縦軸は、反射率および透過率(反射率/透過率(a.u.))を表す。実線は、透過率を表す。破線は、反射率を表す。点線は、アクセス導波路10とアクセス導波路16との間のクロストークを表す。合分波器24および28それぞれの分配比が、光の波長に応じて変化することで、クロストークが生じることがある。
図4Aから
図4Cは、アクセス導波路10を用いて取得される、反射率のスペクトルおよび透過率のスペクトルである。
図4Aから
図4Cにおいて、クロストークは、アクセス導波路10への入射光(
図3の矢印A3)の強度に対する、アクセス導波路16からの出射光(矢印A5)の強度の比である。
図5Aから
図5Cは、アクセス導波路16を用いて取得される、反射率のスペクトルおよび透過率のスペクトルである。
図5Aから
図5Cにおいて、クロストークは、アクセス導波路16への入射光(
図3の矢印A4)に対する、アクセス導波路10からの出射光(矢印A3)の比である。
【0049】
図4Aおよび
図5Aの例では、アクセス導波路10と導波路12との距離g1を300nmとする。
図4Bおよび
図5Bの例では、距離g1を250nmとする。
図4Cおよび
図5Cの例では、距離g1を350nmとする。いずれの例でもアクセス導波路16と導波路14との距離g2は300nmである。
【0050】
図4Aから
図5Cに示すように、1548nmから1552nmまでの範囲の4つの波長において、反射率は極大値を有し、透過率は極小値を有する。当該波長が共振波長である。6つの例において、共振波長およびFSRは互いに等しい。
【0051】
図4Cにおける反射率のスペクトルのピークは、
図4Aおよび
図4Bのピークに比べて急峻である。
図4Aのピークは、
図4Bのピークに比べて急峻である。
図4Bのピークは、
図4Aおよび
図4Cのピークに比べて緩やかである。アクセス導波路10と導波路12との距離g1を小さくすると、スペクトルのピークの形状は緩やかになる。距離g1を小さくすると、結合率が高くなり、Q値が低くなるためである。距離g1を大きくすると、ピークの形状は急峻になる。距離g1を大きくすると、結合率が低くなり、Q値が高くなるためである。
図5Aから
図5Cにおいて、アクセス導波路16と導波路14との距離g2は一定である。結合率およびQ値が一定であるため、スペクトルのピークの形状もほぼ一定である。また、反射率が最大で1なのに対して、クロストークは反射率より2桁以上小さい。
【0052】
第2実施形態によれば、光フィルタ200は、アクセス導波路10および16、導波路12および14、ループミラー20および25を有する。ループミラー20および25、導波路12は、共振器11を形成する。ループミラー20および25、導波路14は、共振器13を形成する。アクセス導波路10の端部10aから光を入射すると、共振波長の光はアクセス導波路10の端部10aに反射される。アクセス導波路16の端部16bから光を入射すると、共振波長の光はアクセス導波路16の端部16bに反射される。共振波長以外の波長を有する光は、光フィルタ200を透過し、アクセス導波路10および16を伝搬する。
【0053】
アクセス導波路10および16のうち一方を伝搬する、光フィルタ200の反射光または透過光を検知することで、光フィルタ200の特性をモニタすることができる。例えばアクセス導波路16をモニタリングに用い、アクセス導波路10をモニタリングとは別の用途に用いることができる。
【0054】
導波路12と導波路14とが並ぶY軸方向において、導波路12と導波路14とは対称である。合分波器24の形状は対称である。合分波器28の形状は対称である。共振器11の共振モードの共振波長は、共振器13の共振モードの共振波長に一致する。共振器11の共振モードのFSRは、共振器13の共振モードのFSRに一致する。アクセス導波路16を用いて共振器13の共振モードの共振波長およびFSRを測定することで、共振器11の共振モードの共振波長およびFSRもモニタすることができる。アクセス導波路10をモニタリングとは別の用途に用いることができる。合分波器24の形状は、合分波器24自身の中心に対して点対称でもよい。合分波器28の形状は、合分波器28自身の中心に対して点対称でもよい。
【0055】
光フィルタ200の経時変化によって、光導波路の屈折率が変化することがある。ピークの波長(共振波長)など光フィルタ200の特性が変化する。アクセス導波路16を伝搬する光を用いて、光フィルタ200の特性のモニタリングが可能であるため、特性の変化を正確に検出することができる。
【0056】
合分波器24および28は、2×2MMIでもよいし、方向性結合器でもよい。アクセス導波路10に光を入射することで励振する共振モードは、ループミラー20および25、導波路12およびアクセス導波路10を伝搬するが、導波路14およびアクセス導波路12には伝搬しない。アクセス導波路16に光を入射することで励振する共振モードは、ループミラー20および25、導波路14およびアクセス導波路16を伝搬するが、導波路12およびアクセス導波路10には伝搬しない。2つの共振モードのうち1つを、1つのアクセス導波路から取り出すことができる。
【0057】
アクセス導波路10と導波路12との距離g1により、アクセス導波路10と導波路12との結合率が定まる。
図4Aから
図4Cに示すように、距離g1を変えることで、スペクトルの形状を変えることができる。アクセス導波路16と導波路14との距離g2により、アクセス導波路16と導波路14との結合率が定まる。距離g1とは独立に距離g2を定めることができる。したがって、共振器11のスペクトルの形状と、共振器13のスペクトルの形状とを、互いに独立に調整することができる。アクセス導波路10と導波路12との結合率を、アクセス導波路16と導波路14との結合率と等しくしてもよいし、異なる大きさとしてもよい。高い強度を有する光が共振器11および13を伝搬することで、非線形的な光学効果が発生し、特性が不安定になる恐れがある。共振器11および13内の光の強度が適切な大きさになるように、距離g1およびg2を変化させ、結合率を調整することができる。合分波器の分配比が設計値からずれることで、モニタ用の光と発振用の光との間で混入(クロストーク)が生じる恐れもある。合分波器の分配比の実際の大きさに応じて、結合率を調整することもできる。
【0058】
(変形例)
図6は、第1の変形例に係る光フィルタ200aを例示する平面図である。導波路12および14は、湾曲しておらず、X軸方向に平行に延伸する。他の構成は
図3と同じである。
【0059】
図7は、第2の変形例に係る光フィルタ200bを例示する平面図である。合分波器24および28として、MMIに代えて方向性結合器を用いる。方向性結合器においては、2つの光導波路が光の波長程度の距離まで近づいている。方向性結合器は、2×2MMIと同様に光を分配する。他の構成は
図3と同じである。
【0060】
<第3実施形態>
図8は、第3実施形態に係る波長可変レーザ素子300を例示する平面図である。第1実施形態または第2実施形態と同じ構成については説明を省略する。
図8に示すように、波長可変レーザ素子300は、利得部40およびフィルタ素子310を備える。フィルタ素子310は、Siなどで形成されたパッシブ素子であり、基板30を有する。
【0061】
利得部40は、III-V族化合物半導体で形成された発光素子であり、フィルタ素子310の基板30の端部30aに突き合わせ接続され、フィルタ素子310と光学的に結合する。利得部40のフィルタ素子310とは反対側に、反射鏡59が設けられている。反射鏡59は、例えば分布ブラッグ反射鏡(DBR:Distributed Bragg Reflector)である。利得部40と反射鏡59とは、モノリシックに集積された集積素子を形成する。
【0062】
(フィルタ素子)
フィルタ素子310は、導波路15、合分波器17、および2つの光フィルタ200-1および200-2を有する。光フィルタ200-1および200-2は、それぞれ
図6の光フィルタ200と同じ構成を有する。光フィルタ200-1は、アクセス導波路10-1および16-1を有する。光フィルタ200-2は、アクセス導波路10-2および16-2を有する。光フィルタ200-1と光フィルタ200-2とは、Y軸方向に並ぶ。
【0063】
導波路15は、X軸方向に延伸する。導波路15の第1の端部は、基板30の端部30aに位置する。導波路15の第2の端部は、合分波器17の入力端に光学的に結合されている。合分波器17は、例えば3dBの1×2MMIカプラである。合分波器17の第1の出力端には、光フィルタ200-1のアクセス導波路10-1の1つの端部が光学的に結合している。合分波器17の第2の出力端には、光フィルタ200-2のアクセス導波路10-2の1つの端部が光学的に結合している。
【0064】
アクセス導波路10-1の端部10c、アクセス導波路10-2の端部10d、アクセス導波路16-1の端部16b、およびアクセス導波路16-2の端部16dは、基板30の端部30bに位置する。アクセス導波路16-1の端部16aおよびアクセス導波路16-2の端部16cは、基板30の端部30aに位置する。
【0065】
光フィルタ200-1のループ導波路の光路長が、光フィルタ200-2のループ導波路の光路長と異なることにより、光フィルタ200-1のFSRは、光フィルタ200-2のFSRとは異なる。
【0066】
光フィルタ200-1の2つのループ導波路、アクセス導波路10-1、および光フィルタ200-2の2つのループ導波路のそれぞれには、電極35(位相調整部)が設けられている。光フィルタ200-1および200-2の光導波路のうち、電極35が設けられていない部分は、
図1Bと同じ構成を有する。
【0067】
図9Aは、
図8の線B-Bに沿った断面図であり、光フィルタ200-1のアクセス導波路10-1の断面を図示している。第1実施形態の
図1Bと同じ構成については説明を省略する。
図9Aに示すように、クラッド層33に、基板32側から順に導波路コア34および電極35が埋め込まれている。電極35は、導波路コア34から離間し、導波路コア34よりも上側に位置する。電極35は、ニッケル(Ni)とクロム(Cr)との合金(ニクロム)などの金属で形成されており、ヒータとして機能する。電極35に電流を流すことで、電極35は発熱する。導波路コア34が電極35によって加熱されることで、導波路コア34の屈折率が変化し、導波路コア34を伝搬する光の位相を調整することができる。フィルタ素子310の光導波路のうち、電極35が設けられた部分は、
図9Aと同じ構成を有する。
【0068】
(利得部)
図9Bは、
図8の線C-Cに沿った断面図であり、利得部40の断面を図示している。
図9Bに示すように、利得部40は、基板42、クラッド層43、45および46、活性層44、コンタクト層47、埋込層48、および電流ブロック層49を有する。利得部40の活性層44は、導波路15の導波路コア34と同じ高さに位置し、導波路コア34に対向する。
【0069】
基板42の上面に、クラッド層43、活性層44およびクラッド層45が順に積層され、これらの半導体層がメサ41を形成する。メサ41は、基板42からZ軸方向に突出し、かつX軸方向に延伸する。メサ41の上端のY軸方向の幅は、例えば1.5μmである。メサ41のY軸方向の両側に埋込層48が設けられている。埋込層48の上に電流ブロック層49が設けられている。2つの埋込層48および2つの電流ブロック層49が、Y軸方向両側からメサ41を挟む。1つの埋込層48の側面からもう1つの埋込層48の側面までの幅は、例えば3μmである。クラッド層46、およびコンタクト層47は、この順にクラッド層45および電流ブロック層49の上に積層されている。基板42の上面からコンタクト層47の上面までの高さは、例えば3μmである。
【0070】
絶縁膜38は、基板42の上面、メサ41の側面およびメサ41の上面を覆う。絶縁膜38はメサ41の上面に開口部を有する。電極37は、メサ41の上に設けられ、絶縁膜38の開口部から露出するコンタクト層47の上面に接触する。基板42のメサ41とは反対側の底面に電極36が設けられている。
【0071】
基板42、クラッド層43、および電流ブロック層49は、例えばn型のインジウムリン(InP)で形成されている。クラッド層45および46は、例えばp型のInPで形成されている。コンタクト層47は、例えばp型のインジウムガリウム砒素(InGaAs)で形成されている。活性層44は、例えば交互に積層された複数の井戸層およびバリア層を含み、多重量子井戸構造(MQW:Multi Quantum Well)を有する。井戸層およびバリア層は、例えばアンドープのインジウムガリウム砒素リン(i-InGaAsP)で形成される。半導体層は、上記以外のIII-V族化合物半導体で形成されてもよい。
【0072】
絶縁膜38は、窒化シリコン(SiN)などの絶縁体で形成されている。電極36は、例えば基板42から順に金、ゲルマニウム、およびニッケルを積層した積層体(Au/Ge/Ni)で形成されたn型電極である。電極37は、例えばコンタクト層47側から順にチタン、白金、および金を積層した積層体(Ti/Pt/Au)で形成されたp型電極である。
【0073】
電極36および37に電圧を印加することで、利得部40に電流を注入する。メサ41の両側にはn型の基板42、p型の埋込層48、n型の電流ブロック層49およびp型のクラッド層46が積層されているため、電流はメサ41の外側には流れにくく、メサ41に選択的に流れる。活性層44に電流が注入されることで、利得部40は光を出射する。
【0074】
図8に矢印A7で示すように、利得部40からフィルタ素子310に入射する光は、導波路15を伝搬し、合分波器17でアクセス導波路10-1とアクセス導波路10-2とに分配される。アクセス導波路10-1に光が伝搬すると、光フィルタ200-1において共振モードが励振され、アクセス導波路10-1に光が反射される。アクセス導波路10-2に光が伝搬すると、光フィルタ200-2において共振モードが励振され、アクセス導波路10-2に光が反射される。光フィルタ200-1の反射光および光フィルタ200-2の反射光は、合分波器17で合波され、矢印A8で示すように導波路15を伝搬する。光がフィルタ素子310と反射鏡59とで繰り返し反射されることで、波長可変レーザ素子300はレーザ発振する。
【0075】
光フィルタ200-1の反射スペクトルのFSRは、光フィルタ200-2の反射スペクトルのFSRとは異なる。光フィルタ200-1のFSRは、例えば
図2Aおよび
図2Bに示したFSR1である。
図10は、光フィルタ200-2の反射特性を例示する図である。光フィルタ200-2のFSR2は、光フィルタ200-1のFSR1よりも大きい。2つの光フィルタ200-1および200-2によるバーニア効果を利用し、レーザ発振を行う。光フィルタ200-1の共振波長と、光フィルタ200-2の共振波長とが一致する波長において、波長可変レーザ素子300はレーザ発振する。
図8に矢印A9およびA10で示すように、レーザ光は、アクセス導波路10-1および10-2を伝搬し、端部10cおよび10dから、波長可変レーザ素子300の外側に出射される。レーザ光は、アクセス導波路16-1および16-2を伝搬しない。
【0076】
利得部40から光を出射させるとともに、波長可変レーザ素子300の外部の光源から、アクセス導波路16-1および16-2に光を入射する。光フィルタ200-1および200-2に共振モードが励振し、アクセス導波路16-1および16-2に反射光が反射される。例えば矢印A11に示すように、アクセス導波路16-1の端部16aから光を入射する。矢印A12で示すように、光フィルタ200-1の反射光が端部16aから出射される。矢印A13で示すように、光フィルタ200-1の透過光は端部16bから出射される。矢印A14およびA15で示すように、アクセス導波路16-2の端部16cから光を入射すると、光フィルタ200-2の反射光が端部16cから出射される。矢印A16で示すように、光フィルタ200-2の透過光は端部16dから出射される。
【0077】
アクセス導波路16-1に生じる共振モードの共振波長およびFSRは、アクセス導波路10-1に生じる共振モードの共振波長およびFSRに一致する。アクセス導波路16-2に生じる共振モードの共振波長およびFSRは、アクセス導波路10-2に生じる共振モードの共振波長およびFSRに一致する。例えば、アクセス導波路16-1を伝搬する光フィルタ200-1の透過光、およびアクセス導波路16-2を伝搬する光フィルタ200-2の透過光のスペクトルを測定することで、光フィルタ200-1および200-2の特性をモニタすることができる。アクセス導波路10-1を伝搬する反射光およびアクセス導波路10-2を伝搬する反射光は、特性のモニタには使用せず、レーザ発振に使用する。
【0078】
第3実施形態によれば、利得部40は、フィルタ素子310に突き合わせ接続され、光フィルタ200-1のアクセス導波路10-1および光フィルタ200-2のアクセス導波路10-2に光学的に結合する。アクセス導波路10-1および10-2を通じて、利得部40から光フィルタ200-1および200-2に光を入射し、光フィルタ200-1および200-2から利得部40に光を反射させる。光フィルタ200-1および200-2と反射鏡59との間で光を反射させることで、レーザ発振が可能である。
【0079】
アクセス導波路16-1を伝搬する光を用いて光フィルタ200-1の特性をモニタし、アクセス導波路16-2を伝搬する光を用いて光フィルタ200-2の特性をモニタすることができる。アクセス導波路16-1および16-2には、利得部40の出射光が伝搬せず、光フィルタの反射光および透過光が伝搬する。レーザ発振とは独立して、光フィルタ200-1および200-2の特性を直接的にモニタすることができる。光フィルタ200-1および200-2の特性を調整することで、波長可変レーザ素子300の発振波長を正確に制御することができる。
【0080】
電極35に電流を流し、第1アクセス導波路10-1およびループ導波路を加熱することで、導波路の屈折率を変化させる。屈折率の変化により光路長も変化するため、光の位相を調整することができる。光フィルタ200-1および200-1の反射光の波長を調整することができる。電極35に流れる電流と、屈折率との関係は線形であるため、屈折率を高い精度で制御することができる。
【0081】
例えば電極35による加熱により、導波路コア34が劣化することがある。こうした経時変化によって、光フィルタ200-1および200-2の特性が変化する。第3実施形態によれば、光フィルタ200-1および200-2の特性をモニタし、例えば共振波長のシフトといった特性の変化を検出することができる。特性の変化に対応して、電極35に印加する電圧を調整するなどして共振波長を制御する。光フィルタ200-1および200-2の反射率がピークになる波長において、波長可変レーザ素子300をレーザ発振することができる。発振波長を正確かつ安定して制御することが可能である。
【0082】
アクセス導波路16-1には、端部16aおよび16bのうち1つから光を入射すればよい。アクセス導波路16-2には、端部16cおよび16dのうち1つから光を入射すればよい。電極35は、例えばアクセス導波路10-2に設けられてもよい。フィルタ素子310は、SOI基板で形成され、Siの光導波路を有するものとしたが、Si以外に例えば化合物半導体で形成されてもよい。
【0083】
<第4実施形態>
図11は、第4実施形態に係る波長可変レーザ素子400を例示する平面図である。第1実施形態から第3実施形態のいずれかと同一の構成については説明を省略する。波長可変レーザ素子400においては、利得部40、2つの光フィルタ200-1および200-2が、1つの基板42にモノリシック集積されている。利得部40は、
図9Bと同じ構成を有する。基板42のX軸方向の1つの端部を端部42aとし、もう1つの端部を端部42bとする。
【0084】
図11に示すように、X軸方向において、利得部40の片側に光フィルタ200-1が位置し、もう一方の側に光フィルタ200-2が位置する。光フィルタ200-1のアクセス導波路10-1と光フィルタ200-2のアクセス導波路10-2とは、X軸方向において対向する。アクセス導波路10-1の1つの端部は、利得部40に光学的に結合する。アクセス導波路10-1のもう1つの端部は、基板42の端部42aには達しない。アクセス導波路10-2の1つの端部10eは、基板42の端部42bに位置し、波長可変レーザ素子400の出射ポートとして機能する。アクセス導波路10-2のもう1つの端部は利得部40に光学的に結合する。
【0085】
光フィルタ200-1のアクセス導波路16-1の端部16a、および光フィルタ200-2のアクセス導波路16-2の端部16cは、基板42の端部42aに位置する。アクセス導波路16-1の端部16bおよびアクセス導波路16-2の端部16dは、基板42の端部42bに位置する。光フィルタ200-1のFSRは、光フィルタ200-2のFSRとは異なる。
【0086】
図12は、
図11の線D-Dに沿った断面図であり、光フィルタ200-1のループ導波路のうち電極35が設けられた部分の断面を図示している。
図12に示すように、基板42の上面に、クラッド層50、コア層51、およびクラッド層52がこの順に積層されている。クラッド層50、コア層51、およびクラッド層52は、ハイメサ型の光導波路を形成する。コア層51は、利得部40の活性層44と同じ高さに位置する。Y軸方向におけるクラッド層50、コア層51、およびクラッド層52の幅は、利得部40のメサ41の幅に等しく、例えば1.5μmである。基板42の上面からクラッド層52の上面までの高さは、例えば3μmである。
【0087】
絶縁膜38は、基板42の上面、クラッド層50、コア層51およびクラッド層52の側面、およびクラッド層52の上面を覆う。クラッド層52の上であって絶縁膜38の上面に電極35が設けられている。基板42のクラッド層50とは反対側の裏面に電極36が設けられている。
【0088】
クラッド層50は、例えばn型InPで形成されている。コア層51は、例えばInGaAsPで形成されている。クラッド層52は、例えばp型InPで形成されている。絶縁膜38は、例えばSiNで形成されている。電極35は、ニクロムなどの金属で形成されている。光フィルタ200-1および200-2の光導波路のうち電極35が設けられた部分は、
図12と同じ構成を有する。光導波路のうち電極35が設けられていない部分は、
図12から電極35を取り除いた構成を有する。
【0089】
電極36および37に電圧を印加し、利得部40に電流を注入することで、利得部40は光を出射する。
図11に矢印A17およびA19で示すように、光は利得部40のX軸方向の両端から出射され、アクセス導波路10-1および10-2を伝搬する。矢印A18およびA20で示すように、光フィルタ200-1および200-2は、利得部40側に向けて光を反射する。2つの光フィルタ200-1および200-2によって光が繰り返し反射されることで、波長可変レーザ素子400がレーザ発振する。2つの光フィルタ200-1および200-2のバーニア効果によって、発振波長が定まる。矢印A21で示すように、レーザ光は、アクセス導波路10-2の端部10eから波長可変レーザ素子400の外側に出射される。電極35を用いて光フィルタ200-1および200-2における光の位相を調整することで、発振波長を変化させることができる。
【0090】
図11に矢印A22で示すように、外部の光源から、端部16aを通じて光フィルタ200-1のアクセス導波路16-1に光を入射する。矢印A23で示すように、端部16dを通じて光フィルタ200-2のアクセス導波路16-2に光を入射する。共振波長を有する光は、光フィルタ200-1および200-2で反射される。矢印A24およびA25で示すように、反射光は端部16aまたは16dから出射される。共振波長以外の波長を有する光は、光フィルタ200-1および200-2を透過する。矢印A26およびA27で示すように、透過光は端部16bまたは16cから出射される。アクセス導波路16-1および16-2を伝搬する透過光または反射光を用いて、光フィルタ200-1および200-2の特性をモニタすることができる。
【0091】
第4実施形態によれば、利得部40と、2つの光フィルタ200-1および200-2とが、モノリシック集積されている。利得部40の出射光は、アクセス導波路10-1および10-2を伝搬し、光フィルタ200-1および200-2で反射される。光フィルタ200-1および200-2で光が反射されることで、波長可変レーザ素子400はレーザ発振する。アクセス導波路16-1を伝搬する光を用いて光フィルタ200-1の特性をモニタし、アクセス導波路16-2を伝搬する光を用いて光フィルタ200-2の特性をモニタすることができる。レーザ発振とは独立して、光フィルタ200-1および200-2の特性をモニタすることで、発振波長を正確かつ安定して制御することが可能である。
【0092】
図12に示すように、ハイメサ構造の光導波路をSiNの絶縁膜38で覆うことで、光の損失を抑制することができる。特に、ハイメサ構造のループ導波路を用いることで、光の損失を抑制することができる。
【0093】
<第5実施形態>
第5実施形態に係る波長可変レーザ素子の平面図は、
図11と同じである。第1実施形態から第4実施形態のいずれかと同一の構成については説明を省略する。第5実施形態では、利得部40、光フィルタ200-1、および光フィルタ200-2は、第4実施形態の基板42の代わりに、モノリシックに基板30の上に集積されている。光フィルタ200-1および200-2の構成は、
図3と同じである。光導波路のうち電極35が設けられた部分は、
図9Aと同じ構成を有する。光導波路のうち電極35が設けられていない部分は、
図1Bと同じ構成を有する。
【0094】
光フィルタ200-1のアクセス導波路10-1と光フィルタ200-2のアクセス導波路10-2とは、1つの光導波路を形成する。光フィルタ200-1と光フィルタ200-2とに共有されるアクセス導波路を、アクセス導波路10-1と記載することがある。アクセス導波路10-1の上に利得部40が設けられている。
【0095】
図13は、
図11の線E-Eに沿った断面図であり、利得部40およびアクセス導波路10-1の断面を図示している。
図13に示すように、基板30は、SOI基板であり、基板32、クラッド層33(ボックス層)およびSi層39を有する。基板32、クラッド層33およびSi層39は、Z軸方向にこの順に積層されている。Si層39の厚さは、例えば0.22μmである。Si層39に導波路コア34が設けられている。導波路コア34の幅は、例えば0.5μmである。Si層39のうち、導波路コア34のY軸方向の両側には凹部39aが設けられている。凹部39aの底面はSi層39で形成されている。凹部39aの外側には、導波路コア34と同程度の厚さのSi層39が広がる。Si層39のクラッド層33とは反対側の面に、利得部40が接合されている。第5実施形態における波長可変レーザ素子は、ハイブリッド型のレーザ素子である。
【0096】
利得部40は、クラッド層53およびクラッド層55、活性層54、コンタクト層56を有する。クラッド層53は、基板30のSi層39の上面に接合されている。クラッド層53の上に、活性層54、クラッド層55およびコンタクト層56がこの順に積層されている。活性層54、クラッド層55およびコンタクト層56は、Z軸方向に突出し、例えば高さ2μmのメサ41aを形成する。クラッド層53は、XY平面内のメサ41aの外側に広がる。利得部40は、Z軸方向において導波路コア34、および凹部39aに重なる。利得部40のクラッド層53と基板30のSi層39とは直接に接触してもよい。クラッド層53とSi層39との間に絶縁膜が設けられてもよい。利得部40は、アクセス導波路上に、アクセス導波路に沿ったテーパ部を有してもよい。
【0097】
絶縁膜38は、基板30の上面、クラッド層53の上面およびメサ41aを覆う。絶縁膜38は、コンタクト層56の上に開口部を有し、クラッド層53の上に開口部を有する。2つの電極57は、メサ41aの両側に位置し、絶縁膜38の開口部から露出するクラッド層53の上面に設けられている。電極58は、絶縁膜38の開口部から露出するコンタクト層56の上面に設けられている。
【0098】
クラッド層53は、例えばn型のInPで形成されている。活性層54は、例えばアルミニウムガリウムインジウム砒素(AlGaInAs)で形成され、多重量子井戸構造を有する。クラッド層55は、例えばp型のInPで形成されている。コンタクト層56は、例えばp型のInGaAsで形成されている。電極57は、金、ゲルマニウムおよびニッケルの積層体(Au/Ge/Ni)などの金属で形成されている。電極58は、チタン、白金、および金の積層体(Ti/Pt/Au)などの金属で形成されている。
【0099】
第5実施形態によれば、利得部40の出射光は、アクセス導波路10-1および10-2を伝搬し、光フィルタ200-1および200-2で反射される。波長可変レーザ素子400はレーザ発振する。アクセス導波路16-1を伝搬する光を用いて光フィルタ200-1の特性をモニタし、アクセス導波路16-2を伝搬する光を用いて光フィルタ200-2の特性をモニタすることができる。レーザ発振とは独立して、光フィルタ200-1および200-2の特性をモニタすることで、発振波長を正確かつ安定して制御することが可能である。
【0100】
<第6実施形態>
図14は、第6実施形態に係る波長可変レーザモジュール600を例示する図である。波長可変レーザモジュール600は、波長可変レーザ素子610、制御部60、電源61、および光源62を備える。
【0101】
波長可変レーザ素子610は、第4実施形態または第5実施形態に係る波長可変レーザ素子と同じ構成を有し、かつ受光素子75および76を備える。光フィルタ200-1および200-2、利得部40、受光素子75および76は、基板42または基板30にモノリシック集積されている。受光素子75は、光フィルタ200-1のアクセス導波路16-1の途中に設けられ、アクセス導波路16-1と光学的に結合する。受光素子76は、光フィルタ200-2のアクセス導波路16-2の途中に設けられ、アクセス導波路16-2と光学的に結合する。受光素子75および76は、波長可変レーザ素子610の外部に設けられてもよい。
【0102】
光源62は、例えば波長可変レーザ素子である。
図14中の点線は、光源62の出射光の経路である。レンズ63、アイソレータ64、ビームスプリッタ65、ハーフミラー66、およびミラー67は、Y軸方向に沿って光源62に近い側からこの順に配置される。レンズ63は光源62の光の出射口に対向する。
【0103】
受光素子68は、X軸方向においてビームスプリッタ65に対向する。受光素子68、75および76は、それぞれフォトダイオードを備える。各フォトダイオードは、入射される光の強度の応じた電気信号(電流)を出力する。
【0104】
ミラー69は、X軸方向においてハーフミラー66に対向する。ミラー70は、Y軸方向においてハーフミラー69に対向し、かつX軸方向においてレンズ71、およびアクセス導波路16-1の端部16aに対向する。ミラー70、レンズ71、端部16aは、この順に並ぶ。
【0105】
ミラー72は、X軸方向においてミラー67に対向する。ミラー73は、Y軸方向においてハーフミラー72に対向し、かつX軸方向においてレンズ74、およびアクセス導波路16-2の端部16dに対向する。端部16d、レンズ74、およびミラー73は、この順に並ぶ。
【0106】
光源62の出射光は、レンズ63、アイソレータ64、ビームスプリッタ65、ハーフミラー66、およびミラー67に順に入射する。ビームスプリッタ65は、光の一部を受光素子68に向けて反射させる。受光素子68は、光の強度の応じた電流を出力する。
【0107】
ハーフミラー66は、光の一部をミラー69に向けて反射させる。光は、ミラー69および70で反射され、レンズ71を透過し、端部16aからアクセス導波路16-1に入射する。受光素子75は、光フィルタ200-1の透過光の強度に応じた電流を出力する。
【0108】
ビームスプリッタ65およびハーフミラー66を透過する光は、ミラー67、72および73で反射され、レンズ74を透過し、端部16dを通じてアクセス導波路16-2に入射する。受光素子76は、光フィルタ200-2の透過光の強度に応じた電流を出力する。
【0109】
制御部60は、コンピュータなどを備える制御装置である。制御部60は、電源61、光源62、受光素子68、75および76と電気的に接続されている。制御部60は、光源制御部80、レーザ素子制御部81、位相制御部82、および記憶制御部83として機能する。
【0110】
光源制御部80は、光源62の光のオン・オフを切り替え、かつ光の波長を制御する。位相制御部82は、電源61から波長可変レーザ素子610の電極35に印加する電圧を制御することで、波長可変レーザ素子610を伝搬する光の位相および波長を制御する。レーザ素子制御部81は、電源61から波長可変レーザ素子610の利得部40に印加する電圧を制御する。記憶制御部83は、記憶装置86を制御し、データの書き込みおよび読み出しなどを行う。
【0111】
図15は、制御部60のハードウェア構成を示すブロック図である。
図15に示すように、制御部60は、CPU(Central Processing Unit、中央演算処理装置)84、RAM(Random Access Memory)85、記憶装置86、インターフェース87を備える。CPU84、RAM85、記憶装置86およびインターフェース87は互いにバスなどで接続されている。RAM85は、プログラムおよびデータなどを一時的に記憶する揮発性メモリである。記憶装置86は、ROM(Read Only Memory)、フラッシュメモリなどのソリッド・ステート・ドライブ(SSD:Solid State Drive)、ハードディスクドライブ(HDD:Hard Disc Drive)などである。記憶装置86は、後述のデータテーブル、
図16A、
図16Bおよび
図18で示す処理のプログラムなどを記憶する。
【0112】
CPU80がRAM86に記憶されるプログラムを実行することにより、制御部60に
図14の光源制御部80、レーザ素子制御部81、位相制御部82、および記憶制御部83などが実現される。制御部60の各部は、回路などのハードウェアでもよい。
【0113】
図16Aおよび
図16Bは、制御部60が実行する処理を例示するフローチャートである。
図16Aの処理は、例えば波長可変レーザ素子610の製造時の検査として行われる。
【0114】
図16Aに示すように、レーザ素子制御部81は電源61を用いて波長可変レーザ素子610の利得部40に電流を注入し、利得部40から光を出射させる(ステップS10)。アクセス導波路10-2の端部10eから出射される光の波長を不図示の波長計で測定する。位相制御部82は、電源61を用いて電極35に電圧を印加する。電極35に電流が流れることで、波長可変レーザ素子610を伝搬する光の波長が変化する。位相制御部82は、光の波長を取得し、波長が所望の大きさになるように、電圧を制御する。複数の波長について、上記の動作を繰り返す。記憶制御部83は、波長と電圧との関係を記憶装置86に記憶させる(ステップS11)。表1は、波長と電圧との関係の例である。記憶装置86は、表1のようなテーブルを記憶する。
【表1】
【0115】
光源制御部80は、光源62から光を出射させる(ステップS12)。光の波長をλm1、λm2、およびλm3などとする。これらの波長は、例えば表1に記載された波長の近傍の波長であり、波長の変化に対して透過率が急激に変化する範囲の波長であることが好ましい。光源62の出射光は、受光素子68、波長可変レーザ素子610のアクセス導波路16-1および16-2に入射する。光フィルタ200-1の透過光は受光素子75に入射する。光フィルタ200-2の透過光は受光素子76に入射する。受光素子68は、光源62からの出射直後の光強度に応じた電流I0を出力する。受光素子75は、光フィルタ200-1の透過光の強度に応じた電流I1を出力する。受光素子75は、光フィルタ200-2の透過光の強度に応じた電流I2を出力する。
【0116】
位相制御部82は、表1の各波長に対応する電圧を電極35に印加する。記憶制御部83は、波長ごとに電流I0、I1およびI2の値を取得し、光フィルタ200-1の透過率I1/I0、および光フィルタ200-2の透過率I2/I0を算出する。記憶制御部83は、波長ごとの透過率を記憶装置86に記憶させる(ステップS13)。表2は、波長ごとの透過率の例である。以上で
図16Aの処理は終了する。
【表2】
【0117】
図17は、透過率のスペクトルを例示する図である。横軸は波長を表す。縦軸は光フィルタの透過率を表す。経時変化などで、透過率が実線から破線にシフトすることがある。
図17の実線の例では、波長λ1において透過率が極小になる。波長λm1において、透過率はI1a/I0aである。破線の例では、波長λp1において透過率が極小になる。波長λn1において、透過率はI1a/I0aである。透過率のシフトによって、波長に対応する透過率の値は変わるが、スペクトルの形状は変わらない。実線の例では、透過率が極小になる波長λ1と透過率がI1a/I0aになる波長λm1との間隔は、Δλ1である。破線の例でも、透過率が極小になる波長λp1と透過率がI1a/I0aになる波長λn1との間隔も、Δλ1である。
【0118】
図16Bの処理は、例えば波長可変レーザ素子610を動作させる際に行われる。透過率が
図17の実線の状態で
図16Aの処理が行われ、その後に透過率は経時的に
図17の破線にΔλ2の波長分だけシフトしたものとする。
【0119】
図16Bに示すように、位相制御部82は、表1に示す波長と電圧との関係に基づいて、電極35に印加する電圧を定め、電極35に印加する(ステップS14)。光源制御部80は、光源62から光を出射させる(ステップS15)。位相制御部82は、透過率I1/I0およびI2/I0を取得し、透過率に基づいて電圧を定める(ステップS16)。透過率が、表2に示すI1a/I0aになるように、位相制御部82は電極35に印加する電圧を制御する。
【0120】
透過率のスペクトルは、
図17の実線から破線へとシフトしている。透過率I1a/I0aに対応する波長はλn1である。波長λm1と波長λn1との間隔をΔλ2とする。λn1とλm1との間隔Δλ2に対応する分だけ、電極35への印加電圧を変化させる(ステップS17)。波長λn1からΔλ2離れた波長λm1に共振波長が調整され、透過率が波長λ1で極小値になる。透過率が極小になるように、光フィルタ200-1の特性が調整される。光フィルタ200-2についても同様の処理によって調整される。この処理により、
図17に示すように、光フィルタ200-1および200-2の透過率が極小になり、反射率は極大になる。波長可変レーザ素子610の発振波長をλ1に正確かつ安定して調整することができる。
【0121】
第6実施形態によれば、受光素子75は、光フィルタ200-1のアクセス導波路16-1の透過光の強度を測定する。受光素子76は、光フィルタ200-2のアクセス導波路16-2の透過光の強度を測定する。光フィルタ200-1の光の透過率、および光フィルタ200-2の光の透過率に基づいて、電極35に印加する電圧を調整し、光の波長を制御する。波長を例えば光フィルタ200-1および200-2の共振波長であるλ1に制御する。透過率がピークになる波長において、波長可変レーザ素子610をレーザ発振することができる。言い換えれば、透過光の強度に基づいて、発振波長を制御することができる。
【0122】
図16Aおよび
図16Bの例では、2つの光フィルタ200-1および200-2両方の特性を制御する。光フィルタ200-1および200-2の特性を独立に制御してもよい。波長可変レーザ素子610は、
図8に示した構成を有してもよい。
【0123】
(変形例)
図18Aは、透過率のスペクトルを例示する図である。
図18Aの実線は、波長可変レーザ素子610の製造直後の光フィルタのスペクトルである。実線および破線の例はいずれも、波長λ1で極小値を有する。破線は、経時変化後のスペクトルであり、実線に比べて透過率が変化している。透過率を製造直後の
図16Aの処理で得られた値(例えばI1a/I0a)に定めても、波長が所望の値λ1にならないことがある。
【0124】
図18Bは、制御部60が実行する処理を例示するフローチャートであり、
図16Bの処理に代えて、波長可変レーザモジュール600の動作時に行われる。
図16Aの処理は変形例においても実施する。
【0125】
位相制御部82は、表1に示す波長と電圧との関係に基づいて、電極35に印加する電圧を定め、例えば波長λ1に対応する電圧V1を電極35に印加する(ステップS14)。光源制御部80は、光源62から光を出射させ、
図18Bに示すように光の波長を例えばλaからλbまでの範囲で変化させる(波長ディザリング、ステップS15a)。波長λaは波長λ1より小さい。波長λbは波長λ1より大きい。光源制御部80は、透過率I1/I0およびI2/I0を取得し、透過率に基づいて光源62の出射光の波長を定める(ステップS17)。すなわち、透過率が極小値になるように、光源制御部80は、光源62に印加する電圧を制御する。以上で処理は終了する。この処理により、
図18Aに示すように透過率が極小になり、反射率は極大になる波長λ1において、波長可変レーザ素子610をレーザ発振することができる。
【0126】
変形例によれば、光源62の出射光の波長を変化させ、透過率が最小になる波長を発見する。共振波長がシフトした場合でも、透過率の大きさが変化した場合でも、光フィルタ200-1および200-2の特性を調整し、発振波長を制御することが可能である。
【0127】
<第7実施形態>
第7実施形態においては、合分波器として方向性結合器を用いることで、光フィルタにおけるクロストークの波長依存性を抑え、クロストークを低く抑制する。
図19は、第7実施形態に係る光フィルタ700を例示する平面図である。第1実施形態から第6実施形態と同じ構成については説明を省略する。
【0128】
XY平面内において、光フィルタ700は点Pについて点対称である。ループミラー20および合分波器24は、基板30の1つの頂点に向けて延伸する。ループミラー25および合分波器28は、基板30の当該頂点に対角線方向で対向する頂点に向けて延伸する。
【0129】
ループ導波路22および26は、例えば円弧状である。ループ導波路22および26の曲率半径R1は、例えば15μmである。ループ導波路と合分波器との接続部分の曲率半径R2は、例えば13.675μmである。アクセス導波路10および16の屈曲する部分の曲率半径R3は、例えば15μmである。アクセス導波路10と導波路12とが並行する部分の長さ、およびアクセス導波路16と導波路14とが並行する部分の長さ(長さL1)は、例えば2μmである。
【0130】
図19の点線は合分波器24および28と他の構成との境界を示す仮想の線分である。
図19に示すように、合分波器24および合分波器28は、それぞれ結合度が3dBの方向性結合器である。合分波器24は
図19中で下に凸である。合分波器28は上に凸である。
【0131】
合分波器24は2つの導波路19および21を有する。導波路19は、ループ導波路22と導波路12とに接続されている。導波路21は、ループ導波路22と導波路14とに接続されている。合分波器28は2つの導波路27および29を有する。導波路27は、ループ導波路26と導波路12とに接続されている。導波路29は、ループ導波路26と導波路14とに接続されている。
【0132】
図20Aは、合分波器28を拡大した図である。導波路27のうち、導波路12に近い側(
図20Aでは左側)を領域27aとし、ループ導波路26に近い側(
図20Aでは右側)を領域27bとし、中央部を領域27cとする。導波路29は、導波路27と同様に領域29a、29bおよび29cを有する。導波路27および29の幅は、例えば0.4μmである。すべての領域において幅は一定である。
【0133】
領域27cおよび29cは、円弧など曲線の形状を有する。
図20A中の点線は領域27cと領域29cとの中点を表す。点線の曲率半径は、例えば30.5μmである。点線の長さ(円弧長)L2は、例えば数μm、数十μmである。
【0134】
領域27a、27c、29aおよび29cは、領域27cおよび29cとは異なる形状を有し、ベンド型の導波路である。一例としては、領域27a、27c、29aおよび29cはS字状に屈曲したSベンドである。
【0135】
導波路27は、領域27aおよび27cにおいて導波路29から遠ざかるように設けられている。中央部(領域27cおよび29c)における導波路27と導波路29との間の距離(ギャップg3)は例えば0.25μmである。Sベンド(領域27a、29a、27bおよび29c)における導波路27と導波路29との間の距離(ギャップg4)は、ギャップg3より大きい。中央部から離れるほどギャップg4は大きくなり、例えばギャップg3の2倍(0.5μm)以上になる。合分波器24の導波路19は、導波路29と同じ形状を有する。合分波器24の導波路21は、導波路27と同じ形状を有する。
【0136】
図20Bは、領域27bを拡大した図である。領域27bのうち左半分を領域27b1とし、右半分を領域27b2とする。領域27b1の形状と領域27b2の形状とは点対称であり、例えば円弧である。領域27b1の長さは、領域27b2の長さと等しい。領域27b1の曲率半径、および領域27b2の曲率半径は、例えば15μmである。領域27b1と領域27b2の中心間の距離L3は、例えば1μmである。領域27b1の形状と領域27b2の形状とは異なってもよい。言い換えれば、合分波器の1つの導波路は左右対称でもよいし、非対称でもよい。
【0137】
図21Aおよび
図21Bは光フィルタ700を例示する模式図であり、アクセス導波路から光を入射する例である。電磁場が分布する部分を網掛けで図示している。
図21Aではアクセス導波路10の左端(端部10a)から光を入射する。共振器11の共振モードが励振される。反射光Rがアクセス導波路10の端部10aに向けて反射される。透過光Tはアクセス導波路10の端部10bに向けて伝搬する。
【0138】
理想的には、ループ導波路を左回りに伝搬して導波路12に入射する光と、ループ導波路を右回りに伝搬して導波路12に入射する光とは、互いに同位相であり、重ね合わせられる。一方、ループ導波路を左回りに伝搬して導波路14に入射する光と、ループ導波路を右回りに伝搬して導波路14に入射する光とは、互いに逆位相であり、打ち消しあう。すなわち、共振器11の共振モードは、導波路12およびアクセス導波路10を伝搬するが、導波路14およびアクセス導波路16には伝搬しない。しかし、光が導波路14およびアクセス導波路16に漏洩することがある。導波路14にリークしてアクセス導波路16の端部16aに向けて伝搬する光をクロストークXT1とする。導波路14にリークしてアクセス導波路16の端部16bに向けて伝搬する光をクロストークXT2とする。
【0139】
図21Bではアクセス導波路16の右端(端部16b)から光を入射する。共振器13の共振モードが励振される。反射光Rがアクセス導波路16の端部16aに向けて反射される。透過光Tはアクセス導波路16の端部16bに向けて伝搬する。光が導波路12およびアクセス導波路10に漏洩することがある。アクセス導波路10の端部10bに向けて伝搬する光をクロストークXT1とする。アクセス導波路10の端部10aに向けて伝搬する光をクロストークXT2とする。
【0140】
第2実施形態などで説明したように、アクセス導波路10および16のうち一方から共振モードの光を取り出し、もう一方を伝搬する光を用いて、光フィルタ700の特性をモニタする。2つのアクセス導波路間でクロストークを低く抑制することが重要である。クロストークは、合分波器における光の分配の不均衡に起因して発生する。
【0141】
図22Aおよび
図22Bは、合分波器の特性を例示する図である。
図22Aおよび
図22Bは、合分波器の2つの導波路のうち1つに光を入射したときの、当該1つの導波路への光の透過率Tbar、もう1つの導波路への光の透過率Tcross、および分配比をシミュレーションした結果である。横軸は光の波長を表しており、波長の範囲は1530nmから1570nmである。左の縦軸は各導波路への光の透過率を表す。右の縦軸は、2つの導波路間の光の不均衡を表す。図中の実線はTbarを表す。点線はTcrossを表す。破線は不均衡を表す。
【0142】
不均衡とは、分配比の常用対数(10×log
10(Tbar/Tcross))の絶対値である。2つの導波路に光が同じ比率で分配される(Tbar=Tcross)ならば、不均衡は0になる。TbarおよびTcrossのうち1つがもう1つよりも大きいと、不均衡が増加する。導波路コアの屈折率は2.76とし、クラッド層の屈折率は1.44としている。アクセス導波路10と導波路12とのギャップg1、およびアクセス導波路16と導波路14とのギャップg2は200nmである(
図3参照)。
【0143】
図22Aは、2つの直線状の導波路が方向性結合器として機能する例である。
図20Aの点線の曲率半径を無限大とすることで、直線の導波路を想定したシミュレーションを行う。導波路の長さは3.88μmである。
図22Aに示すように、波長が1547.5nmにおいてTbar=Tcross=50%である。波長が1547.5nmにおいて、不均衡は0になる。波長が短いほどTcrossは小さくなり、Tbarは大きくなる。波長が長いほどTbarは小さくなり、Tcrossは大きくなる。波長が1547.5nmから離れるほど不均衡が増加し、1545nm以下、および1550nm以上の波長帯域で0.1dBを越える。
【0144】
図22Aに示すように、1547.5nmより短波長の帯域では、Tbarが高く、Tcrossが低い。そのような波長帯域では、例えばアクセス導波路10から光を入射したとき、ループ導波路26を左回りに伝搬する光(Tbarに対応する)が強く、ループ導波路26を右回りに伝搬する光(Tcrossに対応する)は弱い。したがって、これらの光が打ち消しあわず、導波路14にも伝搬し、アクセス導波路16に遷移することになる。ループ導波路22を伝搬する光も打ち消しあわない。1547.5nmより長波長の帯域では、Tbarが低く、Tcrossが高い。ループ導波路26を右回りに伝搬する光が強く、ループ導波路26を左回りに伝搬する光は弱い。このため光が打ち消しあわず、導波路14に伝搬する。アクセス導波路16から光を入射すると、光が導波路12にも伝搬し、アクセス導波路10に漏洩する。
【0145】
図22Bは、
図20Aの合分波器28のように、2つの導波路が両端にベンドを有する例である。
図20Aにおける点線の曲率半径を30.5μmとし、長さL2を10.8μmとしている。ギャップg1およびg2は、200nmである。
図21Bの例では、1530nmから1570nmの波長帯域において、TbarおよびTcrossは50%±1%の範囲内である。導波路間の不均衡は、上記の波長帯域にわたって0.1dB以下である。
【0146】
例えばアクセス導波路10から光を入射したとき、ループ導波路26を左回りに伝搬する光の強度は、ループ導波路26を右回りに伝搬する光の強度と同程度である。したがって、これらの光が打ち消しあい、導波路14に伝搬しにくい。ループ導波路22を伝搬する2つの光も打ち消しあい、導波路14に伝搬しにくい。導波路14からアクセス導波路16に遷移する光も抑制される。アクセス導波路16から光を入射したとき、光は導波路12に伝搬しにくく、アクセス導波路10にも光が漏洩しにくい。
【0147】
図23Aから
図24Bは、光フィルタの周波数特性を例示する図である。横軸は光の波長を表す。縦軸は光の強度を表す。図中の実線は透過光Tの強度を表す。点線は反射光Rの強度を表す。破線はクロストークXT1の強度を表す。一点鎖線はクロストークXT2の強度を表す。
【0148】
図23Aおよび
図23Bは、合分波器が2つの直線状の導波路で形成された例であり、
図22Aの例に対応する。
図23Aにおいては、アクセス導波路10から光を入射する。
図23Bにおいては、アクセス導波路16から光を入射する。
【0149】
図23Aおよび
図23Bに示すように、共振周波数(および共振波長)で透過強度は極小になり、反射強度は極大になる。共振周波数でクロストークXT1およびXT2は極大になる。波長がおよそ1545nmから1553nmの範囲では、クロストークXT1およびXT2は-30dB以下である。しかし、波長が1545nm未満または1553nmを上回る場合、クロストークXT1およびXT2が-30dB以上になる。
【0150】
図22Aに示すように合分波器において光が不均衡に分配される。アクセス導波路10から光を入射すると、アクセス導波路16にも光が伝搬する。アクセス導波路16から光を入射すると、アクセス導波路10にも光が伝搬する。
図23Aおよび
図23BのようにクロストークXT1およびXT2が増加する。
【0151】
図24Aおよび
図24Bは、合分波器が
図20Aに示すようにベンドを有する例であり、
図22Bの例に対応する。
図24Aにおいては、アクセス導波路10から光を入射する。
図24Bにおいては、アクセス導波路16から光を入射する。
図24Aおよび
図24Bに示すように、1530nmから1570nmの帯域にわたって、クロストークXT1およびXT2が-30dB以下に抑制される。
【0152】
図22Bに示すように合分波器において光が均等に近い比率で分配される。アクセス導波路10から光を入射すると、アクセス導波路16に光が伝搬しにくい。アクセス導波路16から光を入射すると、アクセス導波路10に光が伝搬しにくい。
図24Aおよび
図24Bのように、クロストークの波長依存性を抑え、広い波長帯域においてクロストークを低く抑制することができる。
【0153】
第7実施形態によれば、合分波器24は、2つの導波路19および導波路21を有する方向性結合器である。合分波器28は、2つの導波路27および導波路21を有する方向性結合器である。合分波器24および28のそれぞれにおいて、導波路間の距離が変化する。
図20Aに示すように、合分波器28の両端の領域29aおよび29bにおけるギャップg4は、合分波器28の中央の領域29cにおけるギャップg3より大きい。合分波器24においても、両端の領域におけるギャップが、中央部のギャップより大きい。
【0154】
導波路19および導波路21がカーブする形状を有する場合に、合分波器24の導波路19を伝搬する光と、導波路21を伝搬する光との間に位相不整合が生じる。導波路19および導波路21がカーブする形状を有する場合に、合分波器28の導波路27を伝搬する光と、導波路29を伝搬する光との間に位相不整合が生じる。
図22Bに示すように、1530nmから1570nmの波長帯域にわたって、合分波器からループ導波路への光の透過率TbarおよびTcrossが50%付近である。光の分配の波長依存性が改善する。ループ導波路を一周した光が打ち消しあうため、クロストークが低く抑制される。より詳細には、
図24Aおよび
図24Bに示すように、クロストークの波長依存性を低減し、広い波長帯域にわたってクロストークを低く抑制することができる。広帯域で2つの共振モードを独立に発生させることができ、例えばレーザ光の発振と特性のモニタとを同時に行うことができる。
【0155】
図20Aに示すように、合分波器28は、中央部に円弧状の領域27cおよび29cを有する。合分波器28は、1つの端部に領域27aおよび29aを有し、反対の端部に領域27bおよび29bを有する。領域27a、27c、29aおよび29cはSベンドである。合分波器24は、合分波器28と同様に円弧状の領域とSベンドとを有する。中央の領域における2つの導波路間のギャップg3に比べて、Sベンドにおけるギャップg4は大きい。広い波長帯域にわたって光を等分配することができる。クロストークを低く抑制することが可能である。
【0156】
図20Aに示すように、合分波器の中央部における2つの導波路間のギャップg3に比べ、両端のベンドのそれぞれにおけるギャップg4が大きい。ギャップg4は、中央部から離れるほど大きくなり、ギャップg3の2倍以上、3倍以上などでもよい。
【0157】
合分波器の形状は
図20Aの例に限定されない。中央の領域は円弧でもよいし、円弧以外の曲線でもよい。Sベンドは、2つの円弧を接続したような形状である。Sベンドは、例えばサインカーブでもよい。合分波器の両端の領域はSベンドでもよいし、Sベンド以外のベンドでもよい。合分波器の導波路は、異なる形状のベンドを有してもよい。例えば合分波器28の導波路27において、領域27aと領域27bとは互いに異なる形状でもよい。
【0158】
図19に示す点Pに関して光フィルタ700は点対称である。合分波器24は下に凸であり、合分波器28は上に凸である。導波路12から合分波器24に入力する光は、合分波器24の外周側で膨らむ導波路19を経由して伝搬する。導波路12から合分波器28に入力する光は、合分波器28の内周側に向かって膨らむ導波路27を経由して伝搬する。導波路14から合分波器24に入力する光は、合分波器24の導波路21の内周側を伝搬する。導波路14から合分波器28に入力する光は、合分波器28の導波路29の外周側を伝搬する。ループミラー20および25をめぐり導波路12に戻る光の位相変化量と、ループミラー20および25をめぐり導波路14に戻る光の位相変化量とが一致する。共振器11の共振波長と共振器13の共振波長とが一致する。共振器11のFSRと共振器13のFSRとが一致する。
【0159】
アクセス導波路10と導波路12との間のギャップ(
図3の距離g1に対応)、アクセス導波路16と導波路14との間のギャップ(
図3の距離g2に対応)を調整することで、共振器のフィネスを制御することができる。アクセス導波路10と導波路12とが並行する部分の長さ、およびアクセス導波路16と導波路14とが並行する部分の長さL1を調整することによっても、フィネスを制御することができる。
【0160】
図22Bに示すように、Cバンド(波長1530nmから1565nm)全域を含む帯域において光を等分配に近づけ、
図24Aおよび
図24Bに示すようにクロストークを低く抑制する。導波路の長さなどを変えることで、他の波長帯域において特性を改善することもできる。光フィルタ700の導波路は、
図1BのようにSiの導波路コアを有する光導波路でもよいし、
図12のようにIII-V族化合物半導体で形成されたハイメサ構造の光導波路でもよい。導波路に位相調整用の電極を設けてもよい。光フィルタ700を波長可変レーザ素子に組み込んでもよい。
【0161】
以上、本開示の実施形態について詳述したが、本開示は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本開示の要旨の範囲内において、種々の変形・変更が可能である。
【0162】
<付記1>
前記第1導波路、前記第2導波路、前記第1ループ導波路、前記第2ループ導波路、前記第1アクセス導波路、および前記第2アクセス導波路は、シリコンで形成されてもよい。光の損失を抑制することができる。
【0163】
<付記2>
第1クラッド層、コア層、および第2クラッド層を具備し、前記第1クラッド層、前記コア層、および前記第2クラッド層は、III-V族化合物半導体で形成され、前記第1クラッド層、前記コア層、および前記第2クラッド層がこの順に積層されることでメサを形成し、前記第1導波路、前記第2導波路、前記第1ループ導波路、前記第2ループ導波路、前記第1アクセス導波路、および前記第2アクセス導波路は、前記メサを含んでもよい。光の損失を抑制することができる。
<付記3>
前記位相調整部は、電気信号が入力されることで発熱するヒータでもよい。屈折率の変化によって光の位相を調整し、光の波長を変化させることができる。
【0164】
<付記4>
波長可変レーザモジュールの制御プログラムであって、コンピュータに、光源から波長可変レーザ素子の第2アクセス導波路に光を入射させる処理と、前記第2アクセス導波路を透過する光の強度に基づき、前記第2アクセス導波路を伝搬する光の波長を制御する処理と、を実行させる波長可変レーザモジュールの制御プログラムである。利得部の出射光は、第1アクセス導波路を伝搬し、光フィルタで反射される。2つの光フィルタのバーニア効果によって、波長可変レーザ素子がレーザ発振する。第2アクセス導波路を伝搬する光を用いて、光フィルタの特性をモニタすることができる。
【符号の説明】
【0165】
10、10-1、10-2、16、16-1、16-2 アクセス導波路
10a、10b、10c、10d、10e、16a、16b、16c、16d 端部
11、13 共振器
12、14、15、19、21、29 導波路
20、25 ループミラー
22、26 ループ導波路
17、24、28 合分波器
27a、27b、27b1、27b2、27c、29a、29b、29c 領域
24a、24b、28a、28b 入力端
24c、24d、28c、28d 出力端
30、32、42 基板
33、43、45、46、50、52、53、55 クラッド層
34 導波路コア
35、36、37、57、58 電極
38 絶縁膜
39a 凹部
40 利得部
41、41a メサ
44、54 活性層
48 埋込層
49 電流ブロック層
47、56 コンタクト層
51 コア層
59 反射鏡
60 制御部
62 光源
63、71、74 レンズ
64 アイソレータ
65 ビームスプリッタ
66 ハーフミラー
67、69、70、72、73 ミラー
68、75、76 受光素子
80 光源制御部
81 レーザ素子制御部
82 位相制御部
83 記憶制御部
84 CPU
85 RAM
86 記憶装置
87 インターフェース
100、200、200a、200b、200-1、200-2、700 光フィルタ
300、400、610 波長可変レーザ素子
310 フィルタ素子
600 波長可変レーザモジュール