IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士フイルム株式会社の特許一覧

特開2023-165900磁気記録媒体および磁気記録再生装置
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023165900
(43)【公開日】2023-11-17
(54)【発明の名称】磁気記録媒体および磁気記録再生装置
(51)【国際特許分類】
   G11B 5/70 20060101AFI20231110BHJP
   G11B 5/714 20060101ALI20231110BHJP
   G11B 5/708 20060101ALI20231110BHJP
   G11B 5/702 20060101ALI20231110BHJP
   G11B 5/738 20060101ALI20231110BHJP
   G11B 5/735 20060101ALI20231110BHJP
   G11B 5/78 20060101ALI20231110BHJP
   G11B 5/84 20060101ALI20231110BHJP
【FI】
G11B5/70
G11B5/714
G11B5/708
G11B5/702
G11B5/738
G11B5/735
G11B5/78
G11B5/84 C
【審査請求】有
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2023165486
(22)【出願日】2023-09-27
(62)【分割の表示】P 2020181397の分割
【原出願日】2019-09-17
(71)【出願人】
【識別番号】306037311
【氏名又は名称】富士フイルム株式会社
(74)【代理人】
【識別番号】110000109
【氏名又は名称】弁理士法人特許事務所サイクス
(72)【発明者】
【氏名】小沢 栄貴
(72)【発明者】
【氏名】笠田 成人
(57)【要約】
【課題】長期保管後の走行安定性に優れる磁気記録媒体を提供すること。
【解決手段】非磁性支持体と強磁性粉末を含む磁性層とを有する磁気記録媒体であって、上記磁性層を70atmの圧力で押圧した後の磁性層の表面ゼータ電位の等電点が5.5以上である磁気記録媒体。この磁気記録媒体を含む磁気記録再生装置。
【選択図】なし
【特許請求の範囲】
【請求項1】
非磁性支持体と強磁性粉末を含む磁性層とを有する磁気記録媒体であって、
前記強磁性粉末の平均粒子サイズは、5nm以上25nm以下であり、
前記磁性層を70atmの圧力で押圧した後の該磁性層の表面ゼータ電位の等電点が5.5以上7.0以下である磁気記録媒体。
【請求項2】
前記強磁性粉末の平均粒子サイズは、5nm以上20nm以下である、請求項1に記載の磁気記録媒体。
【請求項3】
前記磁性層は、無機酸化物系粒子を含む、請求項1または2に記載の磁気記録媒体。
【請求項4】
前記無機酸化物系粒子は、無機酸化物とポリマーとの複合粒子である、請求項3に記載の磁気記録媒体。
【請求項5】
前記磁性層は、酸性基を有する結合剤を含む、請求項1~4のいずれか1項に記載の磁気記録媒体。
【請求項6】
前記酸性基は、スルホン酸基およびその塩からなる群から選ばれる少なくとも一種の酸性基である、請求項5に記載の磁気記録媒体。
【請求項7】
前記非磁性支持体と前記磁性層との間に、非磁性粉末を含む非磁性層を有する、請求項1~6のいずれか1項に記載の磁気記録媒体。
【請求項8】
前記非磁性支持体の前記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有する、請求項1~7のいずれか1項に記載の磁気記録媒体。
【請求項9】
磁気テープである、請求項1~8のいずれか1項に記載の磁気記録媒体。
【請求項10】
請求項1~9のいずれか1項に記載の磁気記録媒体と、
磁気ヘッドと、
を含む磁気記録再生装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気記録媒体および磁気記録再生装置に関する。
【背景技術】
【0002】
近年、各種データを記録し保管するためのデータストレージ用記録媒体として、磁気記録媒体が広く用いられている(例えば特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2019-008849号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
磁気記録媒体に記録されたデータの再生は、通常、磁気記録媒体を磁気記録再生装置内で走行させながら、磁気ヘッドを磁性層表面と接触させ摺動させて磁性層に記録されたデータを読み取ることによって行われる。しかし、磁気記録媒体が走行安定性に劣るものであると、オフトラックにより再生出力が低下してしまう。そのため、磁気記録媒体には、走行安定性に優れることが望まれる。
【0005】
磁気記録媒体等の各種記録媒体に記録されるデータは、アクセス頻度(再生頻度)に応じて、ホットデータ、ウォームデータ、コールドデータと呼ばれる。アクセス頻度は、ホットデータ、ウォームデータ、コールドデータの順に低くなり、アクセス頻度が低いデータ(例えばコールドデータ)を記録し長期間保管することは、アーカイブ(archive)と呼ばれる。近年の情報量の飛躍的な増大および各種情報のデジタル化に伴い、アーカイブのために記録媒体に記録し保管されるデータ量は増大しているため、アーカイブに適した記録再生システムに対する注目が高まりつつある。
【0006】
上記のような長期保管後、データを再生する際に優れた走行安定性を示すことができる磁気記録媒体は、アーカイブ用記録媒体として好適である。
【0007】
以上に鑑み、本発明の一態様は、長期保管後の走行安定性に優れる磁気記録媒体を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の一態様は、
非磁性支持体と強磁性粉末を含む磁性層とを有する磁気記録媒体であって、
上記磁性層を70atmの圧力で押圧した後の磁性層の表面ゼータ電位の等電点(以下、「押圧後の磁性層の表面ゼータ電位の等電点」または「押圧後等電点」とも記載する。)が5.5以上である磁気記録媒体、
に関する。単位に関して、1atm=101325Pa(パスカル)=101325N(ニュートン)/mである。
【0009】
一形態では、上記等電点は、5.5以上7.0以下であることができる。
【0010】
一形態では、上記磁性層は、無機酸化物系粒子を含むことができる。
【0011】
一形態では、上記無機酸化物系粒子は、無機酸化物とポリマーとの複合粒子であることができる。
【0012】
一態様では、上記磁性層は、酸性基を有する結合剤を含むことができる。
【0013】
一態様では、上記酸性基は、スルホン酸基およびその塩からなる群から選ばれる少なくとも一種の酸性基であることができる。
【0014】
一形態では、上記磁気記録媒体は、上記非磁性支持体と上記磁性層との間に、非磁性粉末を含む非磁性層を有することができる。
【0015】
一形態では、上記磁気記録媒体は、上記非磁性支持体の上記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有することができる。
【0016】
一形態では、上記磁気記録媒体は、磁気テープであることができる。
【0017】
本発明の一態様は、上記磁気記録媒体と、磁気ヘッドと、を含む磁気記録再生装置に関する。
【発明の効果】
【0018】
本発明の一態様によれば、長期保管後の走行安定性に優れる磁気記録媒体を提供することができる。また、本発明の一態様によれば、上記磁気記録媒体を含む磁気記録再生装置を提供することができる。
【発明を実施するための形態】
【0019】
[磁気記録媒体]
本発明の一態様は、非磁性支持体と強磁性粉末を含む磁性層とを有する磁気記録媒体であって、上記磁性層を70atmの圧力で押圧した後の磁性層の表面ゼータ電位の等電点が5.5以上である磁気記録媒体に関する。
【0020】
<押圧後の磁性層の表面ゼータ電位の等電点>
上記の磁性層を押圧する圧力70atmは、押圧により磁性層の表面に加わる面圧である。20m/minの速度で磁気記録媒体を走行させながら、2つのロール間を通過させることにより、磁性層の表面に70atmの面圧が加えられる。走行中の磁気記録媒体には、走行方向に0.5N/mの張力が加えられる。例えば、テープ状の磁気記録媒体(即ち磁気テープ)については、走行中の磁気テープの長手方向に0.5N/mの張力が加えられる。上記押圧は、磁気記録媒体を2つのロール間を合計6回通過させ、各ロール間を通過する際にそれぞれ70atmの面圧を加えて行う。上記ロールとしては、金属ロールを使用し、ロールは加熱しない。押圧を行う環境は、雰囲気温度20~25℃、相対湿度40~60%の環境とする。上記の押圧が行われる磁気記録媒体は、相対湿度40~60%の室温環境下での10年以上の長期保管も、かかる長期保管に相当する保管またはかかる長期保管に相当する加速試験も行われていない磁気記録媒体とする。この点は、特記しない限り、本発明および本明細書に記載の磁気記録媒体に関する各種物性についても同様とする。
以上の押圧は、例えば、磁気記録媒体の製造のために使用されるカレンダ処理機を利用して行うことができる。例えば、磁気テープカートリッジに収容されている磁気テープを取り出し、カレンダ処理機においてカレンダロール間を通過させることにより、磁気テープを70atmの圧力で押圧することができる。
【0021】
本発明者は、長期保管後の走行安定性に優れる磁気記録媒体を提供すべく鋭意検討を重ねる中で、アーカイブの一例に相当する加速試験としては、磁性層を70atmの圧力で押圧することが適切であるとの結論を得た。以下に、この点について更に説明する。
例えば、磁気テープは、通常、磁気テープカートリッジ内にリールに巻き取られた状態で収容される。したがって、アクセス頻度が低いデータが記録された後の磁気テープの長期間の保管も、磁気テープカートリッジに収容された状態で行われる。リールに巻き取られた磁気テープは、磁性層表面とバックコート層(バックコート層を有する場合)または非磁性支持体の磁性層側とは反対側の表面(バックコート層を有さない場合)とが接触しているため、磁気テープカートリッジ内で磁性層は押圧された状態にある。本発明者は、各種シミュレーションを行った結果、雰囲気温度20~25℃、相対湿度40~60%の環境(アーカイブでの保管環境の一例)における約10年の長期保管(アーカイブの一例)に相当する加速試験としては、磁性層を70atmの圧力で押圧することが適切であると判断するに至った。そこで本発明者が、磁性層を70atmで押圧した後に走行安定性試験を行い、この試験の結果に基づき鋭意検討を重ねた結果、押圧後等電点が5.5以上の磁気記録媒体は、磁性層を70atmで押圧した後の走行安定性、即ち上記長期保管後に相当する状態での走行安定性に優れることが判明した。この点は、先に示した特開2019-008849号公報(特許文献1)に記載されていない、従来知られていなかった新たな知見を得た。
【0022】
以下に、上記押圧後等電点の測定方法について説明する。なお本発明および本明細書において、「磁性層(の)表面」とは、磁気記録媒体の磁性層側表面と同義である。
本発明および本明細書において、磁性層の表面ゼータ電位の等電点とは、流動電位法(流動電流法とも呼ばれる。)により測定される表面ゼータ電位がゼロになるときのpHの値をいう。測定対象の磁気記録媒体からサンプルを切り出し、磁性層の表面が電解液と接するようにサンプルを測定セル内に配置する。表面ゼータ電位は、測定セルに圧力を変化させて電解液を流し、各圧力での流動電位を測定した後、以下の算出式より求められる。
【0023】
【数1】
【0024】
圧力は、0~400000Pa(0~400mbar)の範囲で変化させる。電解液を測定セルに流して流動電位を測定して表面ゼータ電位を算出することを、pHの異なる電解液(pH9から約0.5刻みでpH3まで)を用いて行う。測定点は、pH9の測定点から始まりpH3の13点目の測定点までの合計13点となる。こうして各pHの測定点について、表面ゼータ電位が求められる。pHが下がるにしたがい表面ゼータ電位の値は小さくなるため、pHが9から3まで下がる中で、表面ゼータ電位の極性が変化(プラスの値からマイナスの値に変化)する2つの測定点が現れる場合がある。そのような2つの測定点が現れた場合には、それら2つの測定点の表面ゼータ電位とpHの関係を示す直線(一次関数)を用いて、表面ゼータ電位の値がゼロになるpHを、内挿により求める。一方、pHが9から3まで下がる中で求められる表面ゼータ電位がすべてプラスの値の場合には、最終の測定点である13点目の測定点(pH3)および12点目の測定点の表面ゼータ電位とpHの関係を示す直線(一次関数)を用いて、表面ゼータ電位の値がゼロになるpHを、外挿により求める。他方、pHが9から3まで下がる中で求められる表面ゼータ電位がすべてマイナスの値の場合には、最初の測定点である1点目の測定点(pH9)および12点目の測定点の表面ゼータ電位とpHの関係を示す直線(一次関数)を用いて、表面ゼータ電位の値がゼロになるpHを、外挿により求める。こうして、流動電位法により測定される磁性層の表面ゼータ電位の値がゼロになるときのpHが求められる。
以上の測定を、上記押圧後の磁気記録媒体から切り出した異なるサンプルを用いて室温で合計3回行い、各回の測定において表面ゼータ電位の値がゼロになるときのpHを求める。電解液の粘度および比誘電率としては、室温での測定値を用いる。本発明および本明細書において、「室温」は、20~27℃の範囲とする。磁性層について、こうして求められた3つのpHの算術平均を、測定対象の磁気記録媒体の押圧後の磁性層の表面ゼータ電位の等電点とする。pH9の電解液としては、1mmol/LのKCl水溶液を、0.1mol/LのKOH水溶液を用いてpH9に調整したものを用いる。その他のpHの電解液は、こうして調整されたpH9の電解液を、0.1mol/LのHCl水溶液を用いてpH調整したものを用いる。上記方法によって測定される表面ゼータ電位の等電点は、上記押圧後の磁性層の表面について求められる等電点である。
【0025】
上記磁気記録媒体の押圧後の磁性層の表面ゼータ電位の等電点は、長期保管後の走行安定性の向上の観点から、5.5以上である。長期保管後に磁気記録媒体に記録されたデータを再生する際、磁性層表面と磁気ヘッドとの接触状態が不安定になると、走行安定性が低下してしまう。これに対し、上記押圧後の磁性層の表面ゼータ電位の等電点(即ち長期保管に相当する状態に置かれた磁性層の表面ゼータ電位の等電点)が5.5以上、即ち中性付近~塩基性のpH領域にある磁気記録媒体では、磁性層表面と磁気ヘッドとが電気化学的に反応し難いこと、および/または、磁性層表面と磁気ヘッドとが接触して磁性層表面が削れることにより発生した削れ屑が磁気ヘッドに固着し難いこと、が、磁性層表面と磁気ヘッドとの接触状態を安定化することに寄与すると推察される。ただし、上記の推察および本明細書に記載のその他の推察に、本発明は何ら限定されるものではない。
長期保管後の走行安定性の更なる向上の観点から、上記磁気記録媒体の押圧後の磁性層の表面ゼータ電位の等電点は、5.7以上であることが好ましく、6.0以上であることがより好ましい。磁性層の表面ゼータ電位の等電点は、詳細を後述するように、磁性層形成のために使用される成分の種類、磁性層の形成工程等によって制御することができる。制御の容易性等の観点からは、磁性層の表面ゼータ電位の等電点は、7.0以下であることが好ましく、6.7以下であることがより好ましく、6.5以下であることが更に好ましい。
以下、上記磁気記録媒体について、更に詳細に説明する。
【0026】
<磁性層>
(強磁性粉末)
磁性層に含まれる強磁性粉末としては、各種磁気記録媒体の磁性層において用いられる強磁性粉末として公知の強磁性粉末を一種または二種以上組み合わせて使用することができる。強磁性粉末として平均粒子サイズの小さいものを使用することは記録密度向上の観点から好ましい。この点から、強磁性粉末の平均粒子サイズは50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることが更に好ましく、35nm以下であることが一層好ましく、30nm以下であることがより一層好ましく、25nm以下であることが更に一層好ましく、20nm以下であることがなお一層好ましい。一方、磁化の安定性の観点からは、強磁性粉末の平均粒子サイズは5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることが更に好ましく、15nm以上であることが一層好ましく、20nm以上であることがより一層好ましい。
【0027】
六方晶フェライト粉末
強磁性粉末の好ましい具体例としては、六方晶フェライト粉末を挙げることができる。六方晶フェライト粉末の詳細については、例えば、特開2011-225417号公報の段落0012~0030、特開2011-216149号公報の段落0134~0136、特開2012-204726号公報の段落0013~0030および特開2015-127985号公報の段落0029~0084を参照できる。
【0028】
本発明および本明細書において、「六方晶フェライト粉末」とは、X線回折分析によって、主相として六方晶フェライト型の結晶構造が検出される強磁性粉末をいうものとする。主相とは、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが帰属する構造をいう。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが六方晶フェライト型の結晶構造に帰属される場合、六方晶フェライト型の結晶構造が主相として検出されたと判断するものとする。X線回折分析によって単一の構造のみが検出された場合には、この検出された構造を主相とする。六方晶フェライト型の結晶構造は、構成原子として、少なくとも鉄原子、二価金属原子および酸素原子を含む。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子であり、ストロンチウム原子、バリウム原子、カルシウム原子等のアルカリ土類金属原子、鉛原子等を挙げることができる。本発明および本明細書において、六方晶ストロンチウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がストロンチウム原子であるものをいい、六方晶バリウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がバリウム原子であるものをいう。主な二価金属原子とは、この粉末に含まれる二価金属原子の中で、原子%基準で最も多くを占める二価金属原子をいうものとする。ただし、上記の二価金属原子には、希土類原子は包含されないものとする。本発明および本明細書における「希土類原子」は、スカンジウム原子(Sc)、イットリウム原子(Y)、およびランタノイド原子からなる群から選択される。ランタノイド原子は、ランタン原子(La)、セリウム原子(Ce)、プラセオジム原子(Pr)、ネオジム原子(Nd)、プロメチウム原子(Pm)、サマリウム原子(Sm)、ユウロピウム原子(Eu)、ガドリニウム原子(Gd)、テルビウム原子(Tb)、ジスプロシウム原子(Dy)、ホルミウム原子(Ho)、エルビウム原子(Er)、ツリウム原子(Tm)、イッテルビウム原子(Yb)、およびルテチウム原子(Lu)からなる群から選択される。
【0029】
以下に、六方晶フェライト粉末の一形態である六方晶ストロンチウムフェライト粉末について、更に詳細に説明する。
【0030】
六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800~1600nmの範囲である。上記範囲の活性化体積を示す微粒子化された六方晶ストロンチウムフェライト粉末は、優れた電磁変換特性を発揮する磁気記録媒体の作製のために好適である。六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800nm以上であり、例えば850nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、六方晶ストロンチウムフェライト粉末の活性化体積は、1500nm以下であることがより好ましく、1400nm以下であることが更に好ましく、1300nm以下であることが一層好ましく、1200nm以下であることがより一層好ましく、1100nm以下であることが更により一層好ましい。六方晶バリウムフェライト粉末の活性化体積についても、同様である。
【0031】
「活性化体積」とは、磁化反転の単位であって、粒子の磁気的な大きさを示す指標である。本発明および本明細書に記載の活性化体積および後述の異方性定数Kuは、振動試料型磁力計を用いて保磁力Hc測定部の磁場スイープ速度3分と30分とで測定し(測定温度:23℃±1℃)、以下のHcと活性化体積Vとの関係式から求められる値である。なお異方性定数Kuの単位に関して、1erg/cc=1.0×10-1J/mである。
Hc=2Ku/Ms{1-[(kT/KuV)ln(At/0.693)]1/2
[上記式中、Ku:異方性定数(単位:J/m)、Ms:飽和磁化(単位:kA/m)、k:ボルツマン定数、T:絶対温度(単位:K)、V:活性化体積(単位:cm)、A:スピン歳差周波数(単位:s-1)、t:磁界反転時間(単位:s)]
【0032】
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。六方晶ストロンチウムフェライト粉末は、好ましくは1.8×10J/m以上のKuを有することができ、より好ましくは2.0×10J/m以上のKuを有することができる。また、六方晶ストロンチウムフェライト粉末のKuは、例えば2.5×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し好ましいため、上記例示した値に限定されるものではない。
【0033】
六方晶ストロンチウムフェライト粉末は、希土類原子を含んでいてもよく、含まなくてもよい。六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、鉄原子100原子%に対して、0.5~5.0原子%の含有率(バルク含有率)で希土類原子を含むことが好ましい。希土類原子を含む六方晶ストロンチウムフェライト粉末は、一形態では、希土類原子表層部偏在性を有することができる。本発明および本明細書における「希土類原子表層部偏在性」とは、六方晶ストロンチウムフェライト粉末を酸により部分溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子表層部含有率」または希土類原子に関して単に「表層部含有率」と記載する。)が、六方晶ストロンチウムフェライト粉末を酸により全溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子バルク含有率」または希土類原子に関して単に「バルク含有率」と記載する。)と、
希土類原子表層部含有率/希土類原子バルク含有率>1.0
の比率を満たすことを意味する。後述の六方晶ストロンチウムフェライト粉末の希土類原子含有率とは、希土類原子バルク含有率と同義である。これに対し、酸を用いる部分溶解は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部を溶解するため、部分溶解により得られる溶解液中の希土類原子含有率とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表層部における希土類原子含有率である。希土類原子表層部含有率が、「希土類原子表層部含有率/希土類原子バルク含有率>1.0」の比率を満たすことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。本発明および本明細書における表層部とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面から内部に向かう一部領域を意味する。
【0034】
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、希土類原子含有率(バルク含有率)は、鉄原子100原子%に対して0.5~5.0原子%の範囲であることが好ましい。上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることは、繰り返し再生における再生出力の低下を抑制することに寄与すると考えられる。これは、六方晶ストロンチウムフェライト粉末が上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることにより、異方性定数Kuを高めることができるためと推察される。異方性定数Kuは、この値が高いほど、いわゆる熱揺らぎと呼ばれる現象の発生を抑制すること(換言すれば熱的安定性を向上させること)ができる。熱揺らぎの発生が抑制されることにより、繰り返し再生における再生出力の低下を抑制することができる。六方晶ストロンチウムフェライト粉末の粒子表層部に希土類原子が偏在することが、表層部の結晶格子内の鉄(Fe)のサイトのスピンを安定化することに寄与し、これにより異方性定数Kuが高まるのではないかと推察される。
また、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末を磁性層の強磁性粉末として用いることは、磁気ヘッドとの摺動によって磁性層表面が削れることを抑制することにも寄与すると推察される。即ち、磁気記録媒体の走行耐久性の向上にも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末が寄与し得ると推察される。これは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面に希土類原子が偏在することが、粒子表面と磁性層に含まれる有機物質(例えば、結合剤および/または添加剤)との相互作用の向上に寄与し、その結果、磁性層の強度が向上するためではないかと推察される。
繰り返し再生における再生出力の低下をより一層抑制する観点および/または走行耐久性の更なる向上の観点からは、希土類原子含有率(バルク含有率)は、0.5~4.5原子%の範囲であることがより好ましく、1.0~4.5原子%の範囲であることが更に好ましく、1.5~4.5原子%の範囲であることが一層好ましい。
【0035】
上記バルク含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる含有率である。なお本発明および本明細書において、特記しない限り、原子について含有率とは、六方晶ストロンチウムフェライト粉末を全溶解して求められるバルク含有率をいうものとする。希土類原子を含む六方晶ストロンチウムフェライト粉末は、希土類原子として一種の希土類原子のみ含んでもよく、二種以上の希土類原子を含んでもよい。二種以上の希土類原子を含む場合の上記バルク含有率とは、二種以上の希土類原子の合計について求められる。この点は、本発明および本明細書における他の成分についても同様である。即ち、特記しない限り、ある成分は、一種のみ用いてもよく、二種以上用いてもよい。二種以上用いられる場合の含有量または含有率とは、二種以上の合計についていうものとする。
【0036】
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、含まれる希土類原子は、希土類原子のいずれか一種以上であればよい。繰り返し再生における再生出力の低下をより一層抑制する観点から好ましい希土類原子としては、ネオジム原子、サマリウム原子、イットリウム原子およびジスプロシウム原子を挙げることができ、ネオジム原子、サマリウム原子およびイットリウム原子がより好ましく、ネオジム原子が更に好ましい。
【0037】
希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、偏在の程度は限定されるものではない。例えば、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末について、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は1.0超であり、1.5以上であることができる。「表層部含有率/バルク含有率」が1.0より大きいことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。また、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は、例えば、10.0以下、9.0以下、8.0以下、7.0以下、6.0以下、5.0以下、または4.0以下であることができる。ただし、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、上記の「表層部含有率/バルク含有率」は、例示した上限または下限に限定されるものではない。
【0038】
六方晶ストロンチウムフェライト粉末の部分溶解および全溶解について、以下に説明する。粉末として存在している六方晶ストロンチウムフェライト粉末については、部分溶解および全溶解する試料粉末は、同一ロットの粉末から採取する。一方、磁気記録媒体の磁性層に含まれている六方晶ストロンチウムフェライト粉末については、磁性層から取り出した六方晶ストロンチウムフェライト粉末の一部を部分溶解に付し、他の一部を全溶解に付す。磁性層からの六方晶ストロンチウムフェライト粉末の取り出しは、例えば、特開2015-91747号公報の段落0032に記載の方法によって行うことができる。
上記部分溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認できる程度に溶解することをいう。例えば、部分溶解により、六方晶ストロンチウムフェライト粉末を構成する粒子について、粒子全体を100質量%として10~20質量%の領域を溶解することができる。一方、上記全溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認されない状態まで溶解することをいう。
上記部分溶解および表層部含有率の測定は、例えば、以下の方法により行われる。ただし、下記の試料粉末量等の溶解条件は例示であって、部分溶解および全溶解が可能な溶解条件を任意に採用できる。
試料粉末12mgおよび1mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度70℃のホットプレート上で1時間保持する。得られた溶解液を0.1μmのメンブレンフィルタでろ過する。こうして得られたろ液の元素分析を誘導結合プラズマ(ICP;Inductively Coupled Plasma)分析装置によって行う。こうして、鉄原子100原子%に対する希土類原子の表層部含有率を求めることができる。元素分析により複数種の希土類原子が検出された場合には、全希土類原子の合計含有率を、表層部含有率とする。この点は、バルク含有率の測定においても、同様である。
一方、上記全溶解およびバルク含有率の測定は、例えば、以下の方法により行われる。
試料粉末12mgおよび4mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度80℃のホットプレート上で3時間保持する。その後は上記の部分溶解および表層部含有率の測定と同様に行い、鉄原子100原子%に対するバルク含有率を求めることができる。
【0039】
磁気記録媒体に記録されたデータを再生する際の再生出力を高める観点から、磁気記録媒体に含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、希土類原子を含むものの希土類原子表層部偏在性を持たない六方晶ストロンチウムフェライト粉末は、希土類原子を含まない六方晶ストロンチウムフェライト粉末と比べてσsが大きく低下する傾向が見られた。これに対し、そのようなσsの大きな低下を抑制するうえでも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末は好ましいと考えられる。一形態では、六方晶ストロンチウムフェライト粉末のσsは、45A・m/kg以上であることができ、47A・m/kg以上であることもできる。一方、σsは、ノイズ低減の観点からは、80A・m/kg以下であることが好ましく、60A・m/kg以下であることがより好ましい。σsは、振動試料型磁力計等の磁気特性を測定可能な公知の測定装置を用いて測定することができる。本発明および本明細書において、特記しない限り、質量磁化σsは、磁場強度15kOeで測定される値とする。1[kOe]=10/4π[A/m]である。
【0040】
六方晶ストロンチウムフェライト粉末の構成原子の含有率(バルク含有率)に関して、ストロンチウム原子含有率は、鉄原子100原子%に対して、例えば2.0~15.0原子%の範囲であることができる。一形態では、六方晶ストロンチウムフェライト粉末は、この粉末に含まれる二価金属原子がストロンチウム原子のみであることができる。また他の一形態では、六方晶ストロンチウムフェライト粉末は、ストロンチウム原子に加えて一種以上の他の二価金属原子を含むこともできる。例えば、バリウム原子および/またはカルシウム原子を含むことができる。ストロンチウム原子以外の他の二価金属原子が含まれる場合、六方晶ストロンチウムフェライト粉末におけるバリウム原子含有率およびカルシウム原子含有率は、それぞれ、例えば、鉄原子100原子%に対して、0.05~5.0原子%の範囲であることができる。
【0041】
六方晶フェライトの結晶構造としては、マグネトプランバイト型(「M型」とも呼ばれる。)、W型、Y型およびZ型が知られている。六方晶ストロンチウムフェライト粉末は、いずれの結晶構造を取るものであってもよい。結晶構造は、X線回折分析によって確認することができる。六方晶ストロンチウムフェライト粉末は、X線回折分析によって、単一の結晶構造または二種以上の結晶構造が検出されるものであることができる。例えば一形態では、六方晶ストロンチウムフェライト粉末は、X線回折分析によってM型の結晶構造のみが検出されるものであることができる。例えば、M型の六方晶フェライトは、AFe1219の組成式で表される。ここでAは二価金属原子を表し、六方晶ストロンチウムフェライト粉末がM型である場合、Aはストロンチウム原子(Sr)のみであるか、またはAとして複数の二価金属原子が含まれる場合には、上記の通り原子%基準で最も多くをストロンチウム原子(Sr)が占める。六方晶ストロンチウムフェライト粉末の二価金属原子含有率は、通常、六方晶フェライトの結晶構造の種類により定まるものであり、特に限定されるものではない。鉄原子含有率および酸素原子含有率についても、同様である。六方晶ストロンチウムフェライト粉末は、少なくとも、鉄原子、ストロンチウム原子および酸素原子を含み、更に希土類原子を含むこともできる。更に、六方晶ストロンチウムフェライト粉末は、これら原子以外の原子を含んでもよく、含まなくてもよい。一例として、六方晶ストロンチウムフェライト粉末は、アルミニウム原子(Al)を含むものであってもよい。アルミニウム原子の含有率は、鉄原子100原子%に対して、例えば0.5~10.0原子%であることができる。繰り返し再生における再生出力低下をより一層抑制する観点からは、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子を含み、これら原子以外の原子の含有率が、鉄原子100原子%に対して、10.0原子%以下であることが好ましく、0~5.0原子%の範囲であることがより好ましく、0原子%であってもよい。即ち、一形態では、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子以外の原子を含まなくてもよい。上記の原子%で表示される含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる各原子の含有率(単位:質量%)を、各原子の原子量を用いて原子%表示の値に換算して求められる。また、本発明および本明細書において、ある原子について「含まない」とは、全溶解してICP分析装置により測定される含有率が0質量%であることをいう。ICP分析装置の検出限界は、通常、質量基準で0.01ppm(parts per million)以下である。上記の「含まない」とは、ICP分析装置の検出限界未満の量で含まれることを包含する意味で用いるものとする。六方晶ストロンチウムフェライト粉末は、一形態では、ビスマス原子(Bi)を含まないものであることができる。
【0042】
金属粉末
強磁性粉末の好ましい具体例としては、強磁性金属粉末を挙げることもできる。強磁性金属粉末の詳細については、例えば特開2011-216149号公報の段落0137~0141および特開2005-251351号公報の段落0009~0023を参照できる。
【0043】
ε-酸化鉄粉末
強磁性粉末の好ましい具体例としては、ε-酸化鉄粉末を挙げることもできる。本発明および本明細書において、「ε-酸化鉄粉末」とは、X線回折分析によって、主相としてε-酸化鉄型の結晶構造が検出される強磁性粉末をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがε-酸化鉄型の結晶構造に帰属される場合、ε-酸化鉄型の結晶構造が主相として検出されたと判断するものとする。ε-酸化鉄粉末の製造方法としては、ゲーサイトから作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε-酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284、J. Mater. Chem. C, 2013, 1, pp.5200-5206等を参照できる。ただし、上記磁気記録媒体の磁性層において強磁性粉末として使用可能なε-酸化鉄粉末の製造方法は、ここで挙げた方法に限定されない。
【0044】
ε-酸化鉄粉末の活性化体積は、好ましくは300~1500nmの範囲である。上記範囲の活性化体積を示す微粒子化されたε-酸化鉄粉末は、優れた電磁変換特性を発揮する磁気記録媒体の作製のために好適である。ε-酸化鉄粉末の活性化体積は、好ましくは300nm以上であり、例えば500nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、ε-酸化鉄粉末の活性化体積は、1400nm以下であることがより好ましく、1300nm以下であることが更に好ましく、1200nm以下であることが一層好ましく、1100nm以下であることがより一層好ましい。
【0045】
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。ε-酸化鉄粉末は、好ましくは3.0×10J/m以上のKuを有することができ、より好ましくは8.0×10J/m以上のKuを有することができる。また、ε-酸化鉄粉末のKuは、例えば3.0×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し、好ましいため、上記例示した値に限定されるものではない。
【0046】
磁気記録媒体に記録されたデータを再生する際の再生出力を高める観点から、磁気記録媒体に含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、一形態では、ε-酸化鉄粉末のσsは、8A・m/kg以上であることができ、12A・m/kg以上であることもできる。一方、ε-酸化鉄粉末のσsは、ノイズ低減の観点からは、40A・m/kg以下であることが好ましく、35A・m/kg以下であることがより好ましい。
【0047】
本発明および本明細書において、特記しない限り、強磁性粉末等の各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H-9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS-400を用いて行うことができる。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を用いて測定された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している形態に限定されず、後述する結合剤、添加剤等が、粒子同士の間に介在している形態も包含される。粒子との語が、粉末を表すために用いられることもある。
【0048】
粒子サイズ測定のために磁気記録媒体から試料粉末を採取する方法としては、例えば特開2011-048878号公報の段落0015に記載の方法を採用することができる。
【0049】
本発明および本明細書において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
【0050】
また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
【0051】
磁性層における強磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。
【0052】
(結合剤)
上記磁気記録媒体は塗布型磁気記録媒体であることができ、磁性層に結合剤を含むことができる。結合剤とは、一種以上の樹脂である。結合剤としては、塗布型磁気記録媒体の結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選ばれる樹脂を単独で用いるか、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。
以上の結合剤については、特開2010-24113号公報の段落0028~0031を参照できる。結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。本発明および本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)によって、下記測定条件により測定された値をポリスチレン換算して求められる値である。後述の実施例に示す結合剤の重量平均分子量は、下記測定条件によって測定された値をポリスチレン換算して求めた値である。
GPC装置:HLC-8120(東ソー社製)
カラム:TSK gel Multipore HXL-M(東ソー社製、7.8mmID(Inner Diameter)×30.0cm)
溶離液:テトラヒドロフラン(THF)
【0053】
一態様では、結合剤として、酸性基を有する結合剤を用いることができる。本発明および本明細書における酸性基とは、水中または水を含む溶媒(水性溶媒)中でHを放出してアニオンに解離可能な基およびその塩の形態を包含する意味で用いるものとする。酸性基の具体例としては、例えば、スルホン酸基、硫酸基、カルボキシ基、リン酸基、それらの塩の形態等を挙げることができる。例えば、スルホン酸基(-SOH)の塩の形態とは、-SOMで表され、Mが水中または水性溶媒中でカチオンになり得る原子(例えばアルカリ金属原子等)を表す基を意味する。この点は、上記の各種の基の塩の形態についても同様である。酸性基を有する結合剤の一例としては、例えば、スルホン酸基およびその塩からなる群から選ばれる少なくとも一種の酸性基を有する樹脂(例えばポリウレタン樹脂、塩化ビニル樹脂等)を挙げることができる。ただし、磁性層に含まれる樹脂は、これらの樹脂に限定されるものではない。また、酸性基を有する結合剤において、酸性基含有量は、例えば0.03~0.50meq/gの範囲であることができる。「eq」は、当量(equivalent)であり、SI単位に換算不可の単位である。樹脂に含まれる酸性基等の各種官能基の含有量は、官能基の種類に応じて公知の方法で求めることができる。結合剤は、磁性層形成用組成物中に、強磁性粉末100.0質量部に対して、例えば1.0~30.0質量部の量で使用することができる。
【0054】
磁性層の表面ゼータ電位の等電点の制御に関して、磁性層の表層部分における酸性成分の存在量を低減するように磁性層を形成することは、上記等電点の値を大きくすることに寄与すると推察される。また、磁性層の表層部分における塩基性成分の存在量を高めることも、上記等電点の値を大きくすることに寄与すると推察される。ただし、そのように磁性層を形成したとしても、長期保管中に磁性層表面が押圧されることにより、酸性成分が磁性層内部から表層部に移動すると、および/または、塩基性成分が磁性層表層部から内部に移動すると、磁性層の表面ゼータ電位の等電点の値は小さくなってしまうと考えられる。これに対し、例えば後述する突起形成剤の使用等によって、上記押圧後の磁性層の表面ゼータ電位の等電点(即ち長期保管に相当する状態に置かれた磁性層の表面ゼータ電位の等電点)を、5.5以上とすることができる。そして、これにより長期保管後の走行安定性の向上が可能になると本発明者は推察している。酸性成分とは、水中または水性溶媒中でHを放出してアニオンに解離可能な成分およびその塩の形態を包含する意味で用いるものとする。塩基性成分とは、水中または水性溶媒中でOHを放出してカチオンに解離可能な成分およびその塩の形態を包含する意味で用いるものとする。例えば、酸性成分を使用する場合、まず酸性成分を磁性層形成用組成物の塗布層の表層部分に偏在させる処理を行った後に、この表層部分の酸性成分量を低減する処理を行うことは、磁性層の表面ゼータ電位の等電点の値を大きくして5.5以上に制御することにつながると考えられる。例えば、磁性層形成用組成物を非磁性支持体上に直接または非磁性層を介して塗布する工程において、交流磁場を印加して交流磁場中で塗布を行うことは、磁性層形成用組成物の塗布層の表層部に酸性成分を偏在させることにつながると考えられる。更に、その後にバーニッシュ(burnish)処理を行うことは、偏在させた酸性成分の少なくとも一部を除去することに寄与すると推察される。バーニッシュ処理は、部材(例えば研磨テープ、または研削用ブレード、研削用ホイール等の研削具)により処理対象の表面を擦る処理である。バーニッシュ処理を含む磁性層形成工程について、詳細は後述する。酸性成分としては、例えば酸性基を有する結合剤を挙げることができる。
【0055】
また、結合剤として使用可能な樹脂とともに硬化剤を使用することもできる。硬化剤は、一態様では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一態様では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。硬化剤は、磁性層形成工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。この点は、他の層を形成するために用いられる組成物が硬化剤を含む場合に、この組成物を用いて形成される層についても同様である。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011-216149号公報の段落0124~0125を参照できる。硬化剤は、磁性層形成用組成物中に、結合剤100.0質量部に対して例えば0~80.0質量部、磁性層の強度向上の観点からは好ましくは50.0~80.0質量部の量で使用することができる。
【0056】
(添加剤)
磁性層には、上記の各種成分とともに、必要に応じて一種以上の添加剤が含まれていてもよい。添加剤は、所望の性質に応じて市販品を適宜選択して使用することができる。または、公知の方法で合成された化合物を添加剤として使用することもできる。添加剤の一例としては、上記の硬化剤が挙げられる。また、磁性層に含まれ得る添加剤としては、非磁性フィラー、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。非磁性フィラーは、非磁性粒子または非磁性粉末と同義である。非磁性フィラーとしては、突起形成剤として機能することができる非磁性フィラーおよび研磨剤として機能することができる非磁性フィラーを挙げることができる。また、添加剤としては、特開2016-051493号公報の段落0030~0080に記載されている各種ポリマー等の公知の添加剤を用いることもできる。
【0057】
突起形成剤
非磁性フィラーの一形態である突起形成剤としては、無機物質の粒子を用いることができ、有機物質の粒子を用いることもでき、無機物質と有機物質との複合粒子を用いることもできる。無機物質としては、金属酸化物等の無機酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等を挙げることができ、無機酸化物が好ましい。一形態では、突起形成剤は、無機酸化物系粒子であることができる。ここで「系」とは、「含む」との意味で用いられる。無機酸化物系粒子の一形態は、無機酸化物からなる粒子である。また、無機酸化物系粒子の他の一形態は、無機酸化物と有機物質との複合粒子であり、具体例としては、無機酸化物とポリマーとの複合粒子を挙げることができる。そのような粒子としては、例えば、無機酸化物の粒子の表面にポリマーが結合した粒子を挙げることができる。
【0058】
突起形成剤の平均粒子サイズは、例えば30~300nmであり、好ましくは40~200nmである。粒子の形状が真球に近い粒子ほど、大きな圧力が加えられた際に働く押し込み抵抗が小さいため、磁性層内部に押し込まれやすくなる。これに対し、粒子の形状が真球から離れた形状、例えばいわゆる異形と呼ばれる形状であると、大きな圧力が加えられた際に大きな押し込み抵抗が働きやすいため、磁性層内部に押し込まれ難くなる。また、粒子表面が不均質であり表面平滑性が低い粒子も、大きな圧力が加えられた際に大きな押し込み抵抗が働きやすいため、磁性層内部に押し込まれ難くなる。磁性層内部に押し込まれ易い粒子が磁性層に含まれると、かかる粒子が押圧により磁性層内部に押し込まれることに起因して、塩基性成分が磁性層表層部から内部に移動してしまうか、および/または、酸性成分が磁性層内部から表層部に移動してしまうと考えられる。これに対し、突起形成剤の粒子が押圧により磁性層内部に押し込まれ難いと、塩基性成分が磁性層表層部から内部に移動してしまうこと、および/または、酸性成分が磁性層内部から表層部に移動してしまうことを、抑制できると推察される。即ち、押圧により磁性層内部に押し込まれ難い突起形成剤を使用することは、押圧後の磁性層の表面ゼータ電位の等電点を5.5以上に制御することに寄与すると推察される。
【0059】
研磨剤
非磁性フィラーの他の一形態である研磨剤は、好ましくはモース硬度8超の非磁性粉末であり、モース硬度9以上の非磁性粉末であることがより好ましい。これに対し、突起形成剤のモース硬度は、例えば8以下または7以下であることができる。なおモース硬度の最大値は、ダイヤモンドの10である。具体的には、アルミナ(Al)、炭化ケイ素、ボロンカーバイド(BC)、SiO、TiC、酸化クロム(Cr)、酸化セリウム、酸化ジルコニウム(ZrO)、酸化鉄、ダイヤモンド等の粉末を挙げることができ、中でもα-アルミナ等のアルミナ粉末および炭化ケイ素粉末が好ましい。また、研磨剤の平均粒子サイズは、例えば30~300nmの範囲であり、好ましくは50~200nmの範囲である。
【0060】
また、突起形成剤および研磨剤が、それらの機能をより良好に発揮することができるという観点から、磁性層における突起形成剤の含有量は、好ましくは強磁性粉末100.0質量部に対して、1.0~4.0質量部であり、より好ましくは1.2~3.5質量部である。一方、研磨剤については、磁性層における含有量は、好ましくは強磁性粉末100.0質量部に対して1.0~20.0質量部であり、より好ましくは3.0~15.0質量部であり、更に好ましくは4.0~10.0質量部である。
【0061】
研磨剤を含む磁性層に使用され得る添加剤の一例としては、特開2013-131285号公報の段落0012~0022に記載の分散剤を、磁性層形成用組成物における研磨剤の分散性を向上させるための分散剤として挙げることができる。また、分散剤については、特開2012-133837号公報の段落0061および0071を参照できる。分散剤は、非磁性層に含まれていてもよい。非磁性層に含まれ得る分散剤については、特開2012-133837号公報の段落0061を参照できる。また、例えば潤滑剤については、特開2016-126817号公報の段落0030~0033、0035および0036を参照できる。非磁性層に潤滑剤が含まれていてもよい。非磁性層に含まれ得る潤滑剤については、特開2016-126817号公報の段落0030、0031、0034、0035および0036を参照できる。
【0062】
以上説明した磁性層は、非磁性支持体表面上に直接、または非磁性層を介して間接的に、設けることができる。
【0063】
<非磁性層>
次に非磁性層について説明する。上記磁気記録媒体は、非磁性支持体上に直接磁性層を有していてもよく、非磁性支持体と磁性層との間に非磁性粉末を含む非磁性層を有していてもよい。非磁性層に使用される非磁性粉末は、無機物質の粉末でも有機物質の粉末でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011-216149号公報の段落0146~0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010-24113号公報の段落0040~0041も参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。
【0064】
非磁性層は、結合剤を含むことができ、添加剤を含むこともできる。非磁性層の結合剤、添加剤等のその他詳細については、非磁性層に関する公知技術を適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。
【0065】
本発明および本明細書において、非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が100Oe以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が100Oe以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。
【0066】
<非磁性支持体>
次に、非磁性支持体について説明する。非磁性支持体(以下、単に「支持体」とも記載する。)としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドが好ましい。これらの支持体には、あらかじめコロナ放電、プラズマ処理、易接着処理、加熱処理等を行ってもよい。
【0067】
<バックコート層>
上記磁気記録媒体は、非磁性支持体の磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有することもでき、有さなくてもよい。バックコート層には、カーボンブラックおよび無機粉末の一方または両方が含有されていることが好ましい。バックコート層は、結合剤を含むことができ、添加剤を含むこともできる。バックコート層の結合剤および添加剤については、バックコート層に関する公知技術を適用することができ、磁性層および/または非磁性層の処方に関する公知技術を適用することもできる。例えば、特開2006-331625号公報の段落0018~0020および米国特許第7,029,774号明細書の第4欄65行目~第5欄38行目の記載を、バックコート層について参照できる。
【0068】
<各種厚み>
非磁性支持体の厚みは、好ましくは3.00~20.00μm、より好ましくは3.00~10.00μm、更に好ましくは3.00~6.00μmである。
【0069】
磁性層の厚みは、用いる磁気ヘッドの飽和磁化量、ヘッドギャップ長、記録信号の帯域等に応じて最適化することができる。磁性層の厚みは、一般には0.01μm~0.15μmであり、高密度記録化の観点から、好ましくは0.02μm~0.12μmであり、更に好ましくは0.03μm~0.10μmである。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する二層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。二層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。
【0070】
非磁性層の厚みは、例えば0.10~1.50μmであり、0.10~1.00μmであることが好ましい。
【0071】
バックコート層の厚みは、0.90μm以下であることが好ましく、0.10~0.70μmの範囲であることが更に好ましい。
【0072】
磁気記録媒体の各層および非磁性支持体の厚みは、公知の膜厚測定法により求めることができる。一例として、例えば、磁気記録媒体の厚み方向の断面を、イオンビーム、ミクロトーム等の公知の手法により露出させた後、露出した断面において走査型電子顕微鏡を用いて断面観察を行う。断面観察において1箇所において求められた厚み、または無作為に抽出した2箇所以上の複数箇所、例えば2箇所、において求められた厚みの算術平均として、各種厚みを求めることができる。または、各層の厚みは、製造条件から算出される設計厚みとして求めてもよい。
【0073】
<製造工程>
(各層形成用組成物の調製)
磁性層、非磁性層またはバックコート層を形成するための組成物は、先に説明した各種成分とともに、通常、溶媒を含む。溶媒としては、塗布型磁気記録媒体を製造するために一般に使用される各種有機溶媒を用いることができる。各層形成用組成物における溶媒量は特に限定されるものではなく、通常の塗布型磁気記録媒体の各層形成用組成物と同様にすることができる。各層を形成するための組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含むことができる。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。各層形成用組成物の調製に用いられる成分は、どの工程の最初または途中で添加してもよい。また、個々の成分を2つ以上の工程で分割して添加してもよい。
【0074】
各層形成用組成物を調製するためには、公知技術を用いることができる。混練工程では、オープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつニーダを使用することが好ましい。これらの混練処理の詳細については、特開平1-106338号公報および特開平1-79274号公報に記載されている。また、各層形成用組成物を分散させるためには、分散メディアとして、ガラスビーズおよびその他の分散ビーズからなる群から選ばれる一種以上の分散ビーズを用いることができる。このような分散ビーズとしては、高比重の分散ビーズであるジルコニアビーズ、チタニアビーズ、およびスチールビーズが好適である。これら分散ビーズの粒径(ビーズ径)および充填率は最適化して用いることができる。分散機は公知のものを使用することができる。各層形成用組成物を、塗布工程に付す前に公知の方法によってろ過してもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01~3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
【0075】
一形態では、磁性層形成用組成物を調製する工程において、突起形成剤を含む分散液(以下、「突起形成剤液」と記載する。)を調製した後、この突起形成剤液を、磁性層形成用組成物のその他の成分の一種以上と混合することができる。例えば、突起形成剤液、研磨剤を含む分散液(以下、「研磨剤液」と記載する。)および強磁性粉末を含む分散液(以下、「磁性液」と記載する。)をそれぞれ別に調製した後に混合し分散させて磁性層形成用組成物を調製することができる。このように各種分散液を別に調製することは、磁性層形成用組成物における強磁性粉末、突起形成剤および研磨剤の分散性向上のために好ましい。例えば、突起形成剤液の調製は、超音波処理等の公知の分散処理によって行うことができる。超音波処理は、例えば200cc(1cc=1cm)あたり10~2000ワット程度の超音波出力で1~300分間程度行うことができる。また、分散処理後にろ過を行ってもよい。ろ過に用いるフィルタについては先の記載を参照できる。
【0076】
磁性層は、磁性層形成用組成物を、非磁性支持体表面上に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。バックコート層は、非磁性支持体の磁性層が形成された表面または追って磁性層が形成される表面とは反対側の表面上に、バックコート層形成用組成物を塗布することにより形成することができる。各層形成のための塗布の詳細については、特開2010-231843号公報の段落0066を参照できる。
【0077】
磁性層形成用組成物の塗布を交流磁場中で行うことにより、磁性層形成用組成物の塗布層の表層部分に酸性成分(例えば酸性基を有する結合剤)が偏在しやすくなるため、この塗布層を乾燥させることによって、酸性成分を磁性層の表層部分に偏在させることができると推察される。更に、その後にバーニッシュ処理を行うことは、偏在させた酸性成分の少なくとも一部を除去して磁性層の表面ゼータ電位の等電点を5.5以上に制御することに寄与すると考えられる。
交流磁場の印加は、磁性層形成用組成物の塗布層の表面に対して垂直に交流磁場が印加されるように、塗布装置に磁石を配置して行うことができる。交流磁場の磁場強度は、例えば0.05~3.00T程度とすることができる。ただし、この範囲に限定されるものではない。本発明および本明細書における「垂直」とは、必ずしも厳密な意味の垂直のみを意味するものではなく、本発明が属する技術分野において許容される誤差の範囲を含むものとする。誤差の範囲とは、例えば、厳密な垂直±10°未満の範囲を意味することができる。
【0078】
バーニッシュ処理は、部材(例えば研磨テープ、または研削用ブレード、研削用ホイール等の研削具)により処理対象の表面を擦る処理であり、塗布型磁気記録媒体製造のために公知のバーニッシュ処理と同様に行うことができる。バーニッシュ処理は、好ましくは、研磨テープによって処理対象の塗布層表面を擦る(研磨する)こと、研削具によって処理対象の塗布層表面を擦る(研削する)ことの一方または両方を行うことにより、実施することができる。研磨テープとしては、市販品を用いてもよく、公知の方法で作製した研磨テープを用いてもよい。また、研削具としては、固定式ブレード、ダイヤモンドホイール、回転式ブレード等の公知の研削用ブレード、研削用ホイール等を用いることができる。また、研磨テープおよび/または研削具によって擦られた塗布層表面をワイピング材によって拭き取るワイピング(wiping)処理を行ってもよい。好ましい研磨テープ、研削具、バーニッシュ処理およびワイピング処理の詳細については、特開平6-52544号公報の段落0034~0048、図1および同公報の実施例を参照できる。バーニッシュ処理を強化するほど、交流磁場中で塗布を行うことにより磁性層形成用組成物の塗布層の表層部分に偏在させた酸性成分を多く除去することができると考えられる。バーニッシュ処理は、研磨テープに含まれる研磨剤として高硬度な研磨剤を用いるほど強化することができ、研磨テープ中の研磨剤量を増やすほど強化することができる。また、研削具として高硬度な研削具を用いるほどバーニッシュ処理を強化することができる。バーニッシュ処理条件に関しては、処理対象の塗布層表面と部材(例えば研磨テープまたは研削具)との摺動速度を速くするほど、バーニッシュ処理を強化することができる。上記摺動速度は、部材を移動させる速度および処理対象の磁気テープを移動させる速度の一方または両方を速くすることにより、速くすることができる。なお、理由は明らかではないものの、磁性層形成用組成物の塗布層中の酸性基を有する結合剤の量が多いほど、バーニッシュ処理後に磁性層の表面ゼータ電位の等電点が高くなる傾向が見られる場合もある。
【0079】
磁性層形成用組成物が硬化剤を含む場合、磁性層形成のための工程のいずれかの段階において硬化処理を施すことが好ましい。バーニッシュ処理は、少なくとも、硬化処理の前に行うことが好ましい。硬化処理後に更にバーニッシュ処理を行ってもよい。磁性層形成用組成物の塗布層の表層部分から酸性成分を除去する除去効率を高めるうえで、硬化処理前にバーニッシュ処理を行うことは好ましいと考えられる。硬化処理は、磁性層形成用組成物に含まれる硬化剤の種類に応じて、加熱、光照射等の処理によって行うことができる。硬化処理条件は特に限定されるものではなく、磁性層形成用組成物の処方、硬化剤の種類、塗布層の厚み等に応じて適宜設定すればよい。例えば、硬化剤としてポリイソシアネートを含む磁性層形成用組成物を用いて塗布層を形成した場合には、硬化処理は加熱処理であることが好ましい。
【0080】
好ましくは上記硬化処理の前に、表面平滑化処理を行うことができる。表面平滑化処理は、磁気記録媒体の表面の平滑性を高めるために行われる処理であり、カレンダ処理によって行うことが好ましい。カレンダ処理の詳細については、例えば特開2010-231843号公報の段落0026を参照できる。
【0081】
磁気記録媒体の製造のためのその他の各種工程については、公知技術を適用できる。各種工程については、例えば特開2010-231843号公報の段落0067~0070を参照できる。磁性層形成用組成物の塗布層には、この塗布層が湿潤(未乾燥)状態にあるうちに配向処理を施すことが好ましい。配向処理については、特開2010-231843号公報の段落0067の記載をはじめとする各種公知技術を適用することができる。例えば、垂直配向処理は、異極対向磁石を用いる方法等の公知の方法によって行うことができる。配向ゾーンでは、乾燥風の温度、風量および/または配向ゾーンにおける磁気テープの搬送速度によって塗布層の乾燥速度を制御することができる。また、配向ゾーンに搬送する前に塗布層を予備乾燥させてもよい。配向処理を行う場合には、交流磁場中で塗布された磁性層形成用組成物の塗布層に対して、強磁性粉末を配向させるための磁場(例えば直流磁場)の印加を行うことが好ましい。
【0082】
上記のように製造された磁気記録媒体には、磁気記録再生装置における磁気ヘッドのトラッキング制御、磁気記録媒体の走行速度の制御等を可能とするために、公知の方法によってサーボパターンを形成することができる。「サーボパターンの形成」は、「サーボ信号の記録」ということもできる。上記磁気記録媒体は、一形態ではテープ状の磁気記録媒体(磁気テープ)であることができ、他の一形態ではディスク状の磁気記録媒体(磁気ディスク)であることができる。以下では、磁気テープを例にサーボパターンの形成について説明する。
【0083】
サーボパターンは、通常、磁気テープの長手方向に沿って形成される。サーボ信号を利用する制御(サーボ制御)の方式としては、タイミングベースサーボ(TBS)、アンプリチュードサーボ、周波数サーボ等が挙げられる。
【0084】
ECMA(European Computer Manufacturers Association)―319に示される通り、LTO(Linear Tape-Open)規格に準拠した磁気テープ(一般に「LTOテープ」と呼ばれる。)では、タイミングベースサーボ方式が採用されている。このタイミングベースサーボ方式において、サーボパターンは、互いに非平行な一対の磁気ストライプ(「サーボストライプ」とも呼ばれる。)が、磁気テープの長手方向に連続的に複数配置されることによって構成されている。上記のように、サーボパターンが互いに非平行な一対の磁気ストライプにより構成される理由は、サーボパターン上を通過するサーボ信号読み取り素子に、その通過位置を教えるためである。具体的には、上記の一対の磁気ストライプは、その間隔が磁気テープの幅方向に沿って連続的に変化するように形成されており、サーボ信号読み取り素子がその間隔を読み取ることによって、サーボパターンとサーボ信号読み取り素子との相対位置を知ることができる。この相対位置の情報が、データトラックのトラッキングを可能にする。そのために、サーボパターン上には、通常、磁気テープの幅方向に沿って、複数のサーボトラックが設定されている。
【0085】
サーボバンドは、磁気テープの長手方向に連続するサーボ信号により構成される。このサーボバンドは、通常、磁気テープに複数本設けられる。例えば、LTOテープにおいて、その数は5本である。隣接する2本のサーボバンドに挟まれた領域は、データバンドと呼ばれる。データバンドは、複数のデータトラックで構成されており、各データトラックは、各サーボトラックに対応している。
【0086】
また、一形態では、特開2004-318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる。)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボストライプのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボストライプのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ信号読み取り素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。
【0087】
なお、サーボバンドを一意に特定する方法には、ECMA―319に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対の磁気ストライプ(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ信号読み取り素子によりサーボパターンを読み取る際に、サーボバンドを一意に特定することも可能となっている。
【0088】
また、各サーボバンドには、ECMA―319に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる。)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボストライプの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。
【0089】
上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。
また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボストライプの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
【0090】
サーボパターン形成用ヘッドは、サーボライトヘッドと呼ばれる。サーボライトヘッドは、上記一対の磁気ストライプに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボパターンの形成の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボパターンを形成することができる。各ギャップの幅は、形成されるサーボパターンの密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1~10μm、10μm以上等に設定可能である。
【0091】
磁気テープにサーボパターンを形成する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、更に2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。
【0092】
形成されるサーボパターンの磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボパターンの形成は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボパターンが読み取られて得られるサーボ信号の出力を、大きくすることができる。なお、特開2012-53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、双極パルス形状となる。
【0093】
磁気テープは、通常、磁気テープカートリッジに収容され、磁気テープカートリッジが磁気記録再生装置に装着される。
【0094】
磁気テープカートリッジでは、一般に、カートリッジ本体内部に磁気テープがリールに巻き取られた状態で収容されている。リールは、カートリッジ本体内部に回転可能に備えられている。磁気テープカートリッジとしては、カートリッジ本体内部にリールを1つ具備する単リール型の磁気テープカートリッジおよびカートリッジ本体内部にリールを2つ具備する双リール型の磁気テープカートリッジが広く用いられている。単リール型の磁気テープカートリッジは、磁気テープへのデータの記録および/または再生のために磁気記録再生装置に装着されると、磁気テープカートリッジから磁気テープが引き出されて磁気記録再生装置側のリールに巻き取られる。磁気テープカートリッジから巻き取りリールまでの磁気テープ搬送経路には、磁気ヘッドが配置されている。磁気テープカートリッジ側のリール(供給リール)と磁気記録再生装置側のリール(巻き取りリール)との間で、磁気テープの送り出しと巻き取りが行われる。この間、磁気ヘッドと磁気テープの磁性層表面とが接触し摺動することにより、データの記録および/または再生が行われる。これに対し、双リール型の磁気テープカートリッジは、供給リールと巻き取りリールの両リールが、磁気テープカートリッジ内部に具備されている。磁気テープカートリッジは、単リール型および双リール型のいずれの磁気テープカートリッジであってもよい。磁気テープカートリッジのその他の詳細については、公知技術を適用することができる。
【0095】
[磁気記録再生装置]
本発明の一態様は、上記磁気記録媒体と、磁気ヘッドと、を含む磁気記録再生装置に関する。
【0096】
本発明および本明細書において、「磁気記録再生装置」とは、磁気記録媒体へのデータの記録および磁気記録媒体に記録されたデータの再生の少なくとも一方を行うことができる装置を意味するものとする。かかる装置は、一般にドライブと呼ばれる。上記磁気記録再生装置は、摺動型の磁気記録再生装置であることができる。摺動型の磁気記録再生装置とは、磁気記録媒体へのデータの記録および/または記録されたデータの再生を行う際に磁性層表面と磁気ヘッドとが接触し摺動する装置をいう。
【0097】
上記磁気記録再生装置に含まれる磁気ヘッドは、磁気記録媒体へのデータの記録を行うことができる記録ヘッドであることができ、磁気記録媒体に記録されたデータの再生を行うことができる再生ヘッドであることもできる。また、上記磁気記録再生装置は、一形態では、別々の磁気ヘッドとして、記録ヘッドと再生ヘッドの両方を含むことができる。他の一形態では、上記磁気記録再生装置に含まれる磁気ヘッドは、データの記録のための素子(記録素子)とデータの再生のための素子(再生素子)の両方を1つの磁気ヘッドに備えた構成を有することもできる。以下において、データの記録のための素子および再生のための素子を、「データ用素子」と総称する。再生ヘッドとしては、磁気テープに記録されたデータを感度よく読み取ることができる磁気抵抗効果型(MR;Magnetoresistive)素子を再生素子として含む磁気ヘッド(MRヘッド)が好ましい。MRヘッドとしては、AMR(Anisotropic Magnetoresistive)ヘッド、GMR(Giant Magnetoresistive)ヘッド、TMR(Tunnel Magnetoresistive)ヘッド等の公知の各種MRヘッドを用いることができる。また、データの記録および/またはデータの再生を行う磁気ヘッドには、サーボ信号読み取り素子が含まれていてもよい。または、データの記録および/またはデータの再生を行う磁気ヘッドとは別のヘッドとして、サーボ信号読み取り素子を備えた磁気ヘッド(サーボヘッド)が上記磁気記録再生装置に含まれていてもよい。例えば、データの記録および/または記録されたデータの再生を行う磁気ヘッド(以下、「記録再生ヘッド」とも呼ぶ。)は、サーボ信号読み取り素子を2つ含むことができ、2つのサーボ信号読み取り素子のそれぞれが、隣接する2つのサーボバンドを同時に読み取ることができる。2つのサーボ信号読み取り素子の間に、1つまたは複数のデータ用素子を配置することができる。
【0098】
上記磁気記録再生装置において、磁気記録媒体へのデータの記録および/または磁気記録媒体に記録されたデータの再生は、磁気記録媒体の磁性層表面と磁気ヘッドとを接触させて摺動させることにより行うことができる。上記磁気記録再生装置は、本発明の一態様にかかる磁気記録媒体を含むものであればよく、その他については公知技術を適用することができる。
【0099】
例えば、サーボパターンが形成された磁気記録媒体へのデータの記録および/または記録されたデータの再生の際には、まず、サーボパターンを読み取って得られるサーボ信号を用いたトラッキングが行われる。すなわち、サーボ信号読み取り素子を所定のサーボトラックに追従させることによって、データ用素子が、目的とするデータトラック上を通過するように制御される。データトラックの移動は、サーボ信号読み取り素子が読み取るサーボトラックを、テープ幅方向に変更することにより行われる。
また、記録再生ヘッドは、他のデータバンドに対する記録および/または再生を行うことも可能である。その際には、先に記載したUDIM情報を利用してサーボ信号読み取り素子を所定のサーボバンドに移動させ、そのサーボバンドに対するトラッキングを開始すればよい。
【実施例0100】
以下に、本発明を実施例に基づき説明する。ただし、本発明は実施例に示す態様に限定されるものではない。以下に記載の「部」、「%」の表示は、特に断らない限り、「質量部」、「質量%」を示す。また、以下に記載の工程および評価は、特記しない限り、雰囲気温度23℃±1℃の環境において行った。
【0101】
[実施例1]
(1)アルミナ分散物の調製
アルファ化率約65%、BET(Brunauer-Emmett-Teller)比表面積20m/gのアルミナ粉末(住友化学社製HIT-80)100.0部に対し、2,3-ジヒドロキシナフタレン(東京化成社製)を3.0部、SONa基含有ポリエステルポリウレタン樹脂(東洋紡社製UR-4800(SONa基:0.08meq/g))の32%溶液(溶媒はメチルエチルケトンとトルエンの混合溶媒)を31.3部、溶媒としてメチルエチルケトンとシクロヘキサノン1:1(質量比)の混合溶媒570.0部を混合し、ジルコニアビーズの存在下で、ペイントシェーカーにより5時間分散させた。分散後、メッシュにより分散液とビーズとを分け、アルミナ分散物を得た。
【0102】
(2)磁性層形成用組成物処方
(磁性液)
強磁性粉末(種類:表1参照) 100.0部
結合剤(種類:表1参照) 表1参照
シクロヘキサノン 150.0部
メチルエチルケトン 150.0部
(研磨剤液)
上記(1)で調製したアルミナ分散物 6.0部
(突起形成剤液)
突起形成剤(種類:表1参照) 1.3部
メチルエチルケトン 9.0部
シクロヘキサノン 6.0部
(その他成分)
ステアリン酸 2.0部
ステアリン酸アミド 0.2部
ブチルステアレート 2.0部
ポリイソシアネート(東ソー社製コロネート(登録商標)) 2.5部
(仕上げ添加溶媒)
シクロヘキサノン 200.0部
メチルエチルケトン 200.0部
【0103】
(3)非磁性層形成用組成物処方
非磁性無機粉末:α-酸化鉄 100.0部
平均粒子サイズ(平均長軸長):0.15μm
平均針状比:7
BET比表面積:52m/g
カーボンブラック 20.0部
平均粒子サイズ:20nm
結合剤A 18.0部
ステアリン酸 2.0部
ステアリン酸アミド 0.2部
ブチルステアレート 2.0部
シクロヘキサノン 300.0部
メチルエチルケトン 300.0部
【0104】
(4)バックコート層形成用組成物処方
非磁性無機粉末:α-酸化鉄 80.0部
平均粒子サイズ(平均長軸長):0.15μm
平均針状比:7
BET比表面積:52m/g
カーボンブラック 20.0部
平均粒子サイズ:20nm
塩化ビニル共重合体 13.0部
スルホン酸塩基含有ポリウレタン樹脂 6.0部
フェニルホスホン酸 3.0部
メチルエチルケトン 155.0部
ポリイソシアネート 5.0部
シクロヘキサノン 355.0部
【0105】
(5)各層形成用組成物の調製
磁性層形成用組成物を、以下の方法により調製した。
上記磁性液を、各成分をバッチ式縦型サンドミルを用いて24時間分散(ビーズ分散)することにより調製した。分散ビーズとしては、ビーズ径0.5mmのジルコニアビーズを使用した。
突起形成剤液は、上記突起形成剤液の成分を混合した後に、ホーン式超音波分散機により200ccあたり500ワットの超音波出力で60分間超音波処理(分散処理)して得られた分散液を孔径0.5μmのフィルタでろ過して調製した。
上記サンドミルを用いて、上記磁性液、上記研磨剤液、上記突起形成剤液ならびに他の成分(その他成分および仕上げ添加溶媒)を混合し5分間ビーズ分散した後、バッチ型超音波装置(20kHz、300W)で0.5分間処理(超音波分散)を行った。その後、0.5μmの孔径を有するフィルタを用いてろ過を行い磁性層形成用組成物を調製した。
非磁性層形成用組成物を、以下の方法により調製した。
潤滑剤(ステアリン酸、ステアリン酸アミドおよびブチルステアレート)、シクロヘキサノンおよびメチルエチルケトンを除いた各成分を、バッチ式縦型サンドミルを用いて24時間分散して分散液を得た。分散ビーズとしては、ビーズ径0.5mmのジルコニアビーズを使用した。その後、得られた分散液に残りの成分を添加し、ディゾルバーで撹拌した。こうして得られた分散液を0.5μmの孔径を有するフィルタを用いてろ過し非磁性層形成用組成物を調製した。
バックコート層形成用組成物を、以下の方法により調製した。
ポリイソシアネートおよびシクロヘキサノンを除いた各成分をオープンニーダにより混練および希釈した後、横型ビーズミル分散機により、ビーズ径1mmのジルコニアビーズを用い、ビーズ充填率80体積%およびローター先端周速10m/秒で、1パス滞留時間を2分とし、12パスの分散処理を行った。その後、得られた分散液に残りの成分を添加し、ディゾルバーで撹拌した。こうして得られた分散液を1μmの孔径を有するフィルタを用いてろ過しバックコート層形成用組成物を調製した。
【0106】
(6)磁気テープの作製方法
厚み5.00μmの二軸延伸ポリエチレンナフタレート製支持体の表面上に、乾燥後の厚みが1.00μmとなるように上記(5)で調製した非磁性層形成用組成物を塗布および乾燥させて非磁性層を形成した。
次いで、交流磁場印加用の磁石を配置した塗布装置において、非磁性層の表面上に乾燥後の厚みが0.10μmとなるように上記(5)で調製した磁性層形成用組成物を、交流磁場(磁場強度:0.15T)を印加しながら塗布して塗布層を形成した。交流磁場の印加は、塗布層の表面に対して垂直に交流磁場が印加されるように行った。その後、磁性層形成用組成物の塗布層が湿潤(未乾燥)状態にあるうちに、磁場強度0.30Tの直流磁場を塗布層の表面に対し垂直方向に印加して垂直配向処理を行った。その後、乾燥させて磁性層を形成した。
その後、上記ポリエチレンナフタレート製支持体の非磁性層および磁性層を形成した表面とは反対側の表面上に、乾燥後の厚みが0.50μmとなるように上記(5)で調製したバックコート層形成用組成物を塗布および乾燥させてバックコート層を形成した。
こうして得られた磁気テープを1/2インチ(0.0127メートル)幅にスリットした後、磁性層形成用組成物の塗布層表面のバーニッシュ処理およびワイピング処理を行った。バーニッシュ処理およびワイピング処理は、特開平6-52544号公報の図1に記載の構成の処理装置において、研磨テープとして市販の研磨テープ(富士フイルム社製商品名MA22000、研磨剤:ダイヤモンド/Cr/ベンガラ)を使用し、研削用ブレードとして市販のサファイヤブレード(京セラ社製、幅5mm、長さ35mm、先端角度60度)を使用し、ワイピング材として市販のワイピング材(クラレ社製商品名WRP736)を使用して行った。処理条件は、特開平6-52544号公報の実施例12における処理条件を採用した。
上記バーニッシュ処理およびワイピング処理後、金属ロールのみから構成されるカレンダロールで、速度80m/分、線圧294kN/m(300kg/cm)、カレンダ温度(カレンダロールの表面温度)100℃にてカレンダ処理(表面平滑化処理)を行った。
その後、雰囲気温度70℃の環境で36時間加熱処理(硬化処理)を行い、磁気テープを作製した。
作製した磁気テープの磁性層を消磁した状態で、サーボライターに搭載されたサーボライトヘッドによって、LTO Ultriumフォーマットにしたがう配置および形状のサーボパターンを磁性層に形成した。これにより、磁性層に、LTO Ultriumフォーマットにしたがう配置でデータバンド、サーボバンド、およびガイドバンドを有し、かつサーボバンド上にLTO Ultriumフォーマットにしたがう配置および形状のサーボパターンを有する磁気テープを得た。
【0107】
[実施例2~21、比較例1~13]
表1に示す各種項目を表1に示すように変更した点以外、実施例1と同様の方法で磁気テープを作製した。
磁気テープの作製方法については、表1に示されているように、実施例2~21および比較例3~10では、実施例1と同様の磁気テープ作製方法を実施した。即ち、実施例1と同じく磁性層形成用組成物の塗布中に交流磁場の印加を行い、かつ磁性層形成用組成物の塗布層に対してバーニッシュ処理およびワイピング処理を行った。
これに対し、比較例1、2、11~13では、磁性層形成用組成物の塗布中に交流磁場の印加を行わず、かつ磁性層形成用組成物の塗布層に対してバーニッシュ処理およびワイピング処理を行わなかった点以外、実施例1と同様の磁気テープ作製方法を実施した。
【0108】
[突起形成剤]
実施例または比較例の磁気テープの製造のために使用した突起形成剤は、以下の通りである。突起形成剤1および突起形成剤3は、粒子表面の表面平滑性が低い粒子である。突起形成剤2の粒子形状は繭状の形状である。突起形成剤4の粒子形状はいわゆる不定形である。突起形成剤5の粒子形状は真球に近い形状である。
突起形成剤1:キャボット社製ATLAS(シリカとポリマーとの複合粒子)、平均粒子サイズ100nm
突起形成剤2:キャボット社製TGC6020N(シリカ粒子)、平均粒子サイズ140nm
突起形成剤3:日揮触媒化成社製Cataloid(シリカ粒子の水分散ゾル;突起形成剤液調製のための突起形成剤として、上記水分散ゾルを加熱して溶媒を除去して得られた乾固物を使用)、平均粒子サイズ120nm
突起形成剤4:旭カーボン社製旭#50(カーボンブラック)、平均粒子サイズ300nm
突起形成剤5:扶桑化学工業社製クォートロンPL-10L(シリカ粒子の水分散ゾル;突起形成剤液調製のための突起形成剤として、上記水分散ゾルを加熱して溶媒を除去して得られた乾固物を使用)、平均粒子サイズ130nm
【0109】
[結合剤]
表1中、「結合剤A」は、SONa基含有ポリウレタン樹脂(重量平均分子量:70,000、SONa基:0.20meq/g)である。
表1中、「結合剤B」は、カネカ社製塩化ビニル共重合体(商品名:MR110、SOK基含有塩化ビニル共重合体、SOK基:0.07meq/g)である。
【0110】
[強磁性粉末]
表1中、「BaFe」は平均粒子サイズ(平均板径)21nmの六方晶バリウムフェライト粉末を示す。「SrFe1」および「SrFe2」は六方晶ストロンチウムフェライト粉末を示し、「ε-酸化鉄」はε-酸化鉄粉末を示す。
以下に記載の各種強磁性粉末の活性化体積および異方性定数Kuは、各強磁性粉末について、振動試料型磁力計(東英工業社製)を用いて、先に記載の方法により求められた値である。
また、質量磁化σsは、振動試料型磁力計(東英工業社製)を用いて磁場強度15kOeで測定された値である。
【0111】
<六方晶ストロンチウムフェライト粉末の作製方法1>
表1に示す「SrFe1」は、以下の方法により作製された六方晶ストロンチウムフェライト粉末である。
SrCOを1707g、HBOを687g、Feを1120g、Al(OH)を45g、BaCOを24g、CaCOを13g、およびNdを235g秤量し、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1390℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ローラーで圧延急冷して非晶質体を作製した。
作製した非晶質体280gを電気炉に仕込み、昇温速度3.5℃/分にて635℃(結晶化温度)まで昇温し、同温度で5時間保持して六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gと濃度1%の酢酸水溶液を800mL加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
上記で得られた六方晶ストロンチウムフェライト粉末(表1中、「SrFe1」)の平均粒子サイズは18nm、活性化体積は902nm、異方性定数Kuは2.2×10J/m、質量磁化σsは49A・m/kgであった。
上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって部分溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子の表層部含有率を求めた。
別途、上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって全溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子のバルク含有率を求めた。
上記で得られた六方晶ストロンチウムフェライト粉末の鉄原子100原子%に対するネオジム原子の含有率(バルク含有率)は、2.9原子%であった。また、ネオジム原子の表層部含有率は8.0原子%であった。表層部含有率とバルク含有率との比率、「表層部含有率/バルク含有率」は2.8であり、ネオジム原子が粒子の表層に偏在していることが確認された。
【0112】
上記で得られた粉末が六方晶フェライトの結晶構造を示すことは、CuKα線を電圧45kVかつ強度40mAの条件で走査し、下記条件でX線回折パターンを測定すること(X線回折分析)により確認した。上記で得られた粉末は、マグネトプランバイト型(M型)の六方晶フェライトの結晶構造を示した。また、X線回折分析により検出された結晶相は、マグネトプランバイト型の単一相であった。
PANalytical X’Pert Pro回折計、PIXcel検出器
入射ビームおよび回折ビームのSollerスリット:0.017ラジアン
分散スリットの固定角:1/4度
マスク:10mm
散乱防止スリット:1/4度
測定モード:連続
1段階あたりの測定時間:3秒
測定速度:毎秒0.017度
測定ステップ:0.05度
【0113】
<六方晶ストロンチウムフェライト粉末の作製方法2>
表1に示す「SrFe2」は、以下の方法により作製された六方晶ストロンチウムフェライト粉末である。
SrCOを1725g、HBOを666g、Feを1332g、Al(OH)を52g、CaCOを34g、BaCOを141g秤量し、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1380℃で溶解し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ロールで急冷圧延して非晶質体を作製した。
得られた非晶質体280gを電気炉に仕込み、645℃(結晶化温度)まで昇温し、同温度で5時間保持し六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gと濃度1%の酢酸水溶液を800mL加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
得られた六方晶ストロンチウムフェライト粉末(表1中、「SrFe2」)の平均粒子サイズは19nm、活性化体積は1102nm、異方性定数Kuは2.0×10J/m、質量磁化σsは50A・m/kgであった。
【0114】
<ε-酸化鉄粉末の作製方法>
表1に示す「ε-酸化鉄」は、以下の方法により作製されたε-酸化鉄粉末である。
純水90gに、硝酸鉄(III)9水和物8.3g、硝酸ガリウム(III)8水和物1.3g、硝酸コバルト(II)6水和物190mg、硫酸チタン(IV)150mg、およびポリビニルピロリドン(PVP)1.5gを溶解させたものを、マグネチックスターラーを用いて撹拌しながら、大気雰囲気中、雰囲気温度25℃の条件下で、濃度25%のアンモニア水溶液4.0gを添加し、雰囲気温度25℃の温度条件のまま2時間撹拌した。得られた溶液に、クエン酸1gを純水9gに溶解させて得たクエン酸水溶液を加え、1時間撹拌した。撹拌後に沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で乾燥させた。
乾燥させた粉末に純水800gを加えて再度粉末を水に分散させて分散液を得た。得られた分散液を液温50℃に昇温し、撹拌しながら濃度25%アンモニア水溶液を40g滴下した。50℃の温度を保ったまま1時間撹拌した後、テトラエトキシシラン(TEOS)14mLを滴下し、24時間撹拌した。得られた反応溶液に、硫酸アンモニウム50gを加え、沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で24時間乾燥させ、強磁性粉末の前駆体を得た。
得られた強磁性粉末の前駆体を、大気雰囲気下、炉内温度1000℃の加熱炉内に装填し、4時間の加熱処理を施した。
加熱処理した強磁性粉末の前駆体を、4mol/Lの水酸化ナトリウム(NaOH)水溶液中に投入し、液温を70℃に維持して24時間撹拌することにより、加熱処理した強磁性粉末の前駆体から不純物であるケイ酸化合物を除去した。
その後、遠心分離処理により、ケイ酸化合物を除去した強磁性粉末を採集し、純水で洗浄を行い、強磁性粉末を得た。
得られた強磁性粉末の組成を高周波誘導結合プラズマ発光分光分析(ICP-OES;Inductively Coupled Plasma-Optical Emission Spectrometry)により確認したところ、Ga、CoおよびTi置換型ε-酸化鉄(ε-Ga0.28Co0.05Ti0.05Fe1.62)であった。また、先に六方晶ストロンチウムフェライト粉末の作製方法1について記載した条件と同様の条件でX線回折分析を行い、X線回折パターンのピークから、得られた強磁性粉末が、α相およびγ相の結晶構造を含まない、ε相の単相の結晶構造(ε-酸化鉄型の結晶構造)を有することを確認した。
得られたε-酸化鉄粉末(表1中、「ε-酸化鉄」)の平均粒子サイズは12nm、活性化体積は746nm、異方性定数Kuは1.2×10J/m、質量磁化σsは16A・m/kgであった。
【0115】
[評価方法]
(1)押圧後の磁性層の表面ゼータ電位の等電点
実施例および比較例の各磁気テープについて、雰囲気温度20~25℃、相対湿度40~60%の環境下で、金属ロールのみから構成される7段のカレンダロールを備えたカレンダ処理機を用いて、20m/minの速度で磁気テープを長手方向に0.5N/mの張力を加えた状態で走行させながら、2つのロール間(ロールの加熱なし)を合計6回通過させることにより、各ロール間を通過する際にそれぞれ磁性層の表面に70atmの面圧を加えて押圧した。
上記押圧後の実施例および比較例の各磁気テープから、等電点測定用のサンプルを6つ切り出し、1回の測定において2つのサンプルを測定セル内に配置した。測定セル内では、測定セルの上下のサンプル台(それぞれサンプル設置面のサイズは1cm×2cm)に両面テープでサンプル設置面とサンプルのバックコート層表面とを貼り合わせた。こうして2つのサンプルを配置した後に測定セル内に電解液を流すと、測定セルの上下のサンプル台にそれぞれ貼り合わされた2つのサンプルの磁性層表面が電解液と接触するため、磁性層の表面ゼータ電位を測定することができる。このように1回の測定においてサンプルを2つ用いて、合計3回測定を行い、磁性層の表面ゼータ電位の等電点を求めた。3回の測定により得られた3つの値の算術平均を、各磁気テープの押圧後の磁性層の表面ゼータ電位の等電点として、表1に示す。表面ゼータ電位測定装置としては、Anton Paar社製SurPASSを使用した。測定条件は、以下の通りとした。等電点を求める方法のその他詳細は、先に記載した通りである。
測定セル:可変ギャップセル (20mm×10mm)
測定モード:Streaming Current
ギャップ:約200μm
測定温度:室温
Ramp Target Pressure/Time:400000Pa(400mbar)/60秒
電解液:1mmol/LのKCl水溶液(pH9に調整)
pH調整液:0.1mol/LのHCl水溶液または0.1mol/LのKOH水溶液
測定pH:pH9→pH3(約0.5刻みで合計13測定点で測定)
【0116】
(2)70atmの圧力での押圧後の走行安定性の評価
実施例および比較例の各磁気テープについて、上記(1)での押圧後、以下の方法によりPES(Position Error Signal)を求めた。
サーボパターンの形成に用いたサーボライター上のベリファイ(verify)ヘッドでサーボパターンを読み取った。ベリファイヘッドは、磁気テープに形成されたサーボパターンの品質を確認するための読取用磁気ヘッドであり、公知の磁気テープ装置(ドライブ)の磁気ヘッドと同様に、サーボパターンの位置(磁気テープの幅方向の位置)に対応した位置に読取用の素子が配置されている。
ベリファイヘッドには、ベリファイヘッドでサーボパターンを読み取って得た電気信号から、サーボシステムにおけるヘッド位置決め精度をPESとして演算する公知のPES演算回路が接続されている。PES演算回路は、入力された電気信号(パルス信号)から磁気テープの幅方向への変位を随時計算し、この変位の時間的変化情報(信号)に対してハイパスフィルタ(カットオフ:500cycles/m)を適用した値を、PESとして算出した。PESは走行安定性の指標とすることができ、上記で算出されたPESが18nm以下であれば、走行安定性に優れると評価することができる。
【0117】
以上の結果を、表1(表1-1~表1-5)に示す。
【0118】
【表1-1】
【0119】
【表1-2】
【0120】
【表1-3】
【0121】
【表1-4】
【0122】
【表1-5】
【0123】
表1に示す結果から、実施例の磁気テープはいずれも、70atmの圧力での押圧後、即ち、長期保管後に相当する状態において、優れた走行安定性を示したことが確認できる。このような磁気テープであれば、アクセス頻度の低い情報が記録された後に磁気テープカートリッジ内で長期間リールに巻き取られた状態で収容された後でも、磁気記録再生装置内で安定走行可能であり、アーカイブ用記録媒体として好適である。
【産業上の利用可能性】
【0124】
本発明の一態様は、データストレージ用途において有用である。