(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023175672
(43)【公開日】2023-12-12
(54)【発明の名称】表面処理装置及び表面処理方法
(51)【国際特許分類】
H01L 21/3065 20060101AFI20231205BHJP
H05H 1/30 20060101ALI20231205BHJP
【FI】
H01L21/302 101E
H05H1/30
【審査請求】未請求
【請求項の数】11
【出願形態】OL
(21)【出願番号】P 2023088562
(22)【出願日】2023-05-30
(31)【優先権主張番号】P 2022087495
(32)【優先日】2022-05-30
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】504176911
【氏名又は名称】国立大学法人大阪大学
(71)【出願人】
【識別番号】000146009
【氏名又は名称】株式会社昭和真空
(74)【代理人】
【識別番号】100095407
【弁理士】
【氏名又は名称】木村 満
(74)【代理人】
【識別番号】100132883
【弁理士】
【氏名又は名称】森川 泰司
(74)【代理人】
【識別番号】100100860
【弁理士】
【氏名又は名称】長谷川 陽子
(74)【代理人】
【識別番号】100148149
【弁理士】
【氏名又は名称】渡邉 幸男
(72)【発明者】
【氏名】山村 和也
(72)【発明者】
【氏名】豊田 椋一
(72)【発明者】
【氏名】長田 佑介
(72)【発明者】
【氏名】清水 由佳
【テーマコード(参考)】
2G084
5F004
【Fターム(参考)】
2G084AA02
2G084AA03
2G084AA07
2G084BB07
2G084BB23
2G084CC19
2G084CC21
2G084CC33
2G084DD01
2G084DD17
2G084DD22
2G084FF02
2G084FF16
2G084GG03
2G084GG07
2G084GG18
2G084GG21
2G084HH09
2G084HH19
2G084HH31
2G084HH42
2G084HH52
5F004AA13
5F004BA03
5F004BA06
5F004BB13
5F004BB24
5F004BD01
5F004CA02
5F004CA08
5F004CB02
5F004CB20
5F004DA00
5F004DA01
5F004DA02
5F004DA03
5F004DA16
5F004DA17
5F004DA18
5F004DA22
5F004DA23
5F004DA25
(57)【要約】
【課題】アルゴンガスを主体として使用して均質で安定した局所プラズマを生成し、表面処理をする表面処理装置及び表面処理方法を提供する。
【解決手段】表面処理装置1は、表面処理本体100と、表面処理本体100が配置された空間を減圧する減圧手段20と、を備える。表面処理本体100は、高周波電極110に高周波電圧を印加して、アルゴンガスの一次プラズマを発生させる反応部と、反応部の下流に配置され、一次プラズマと反応性ガスを混合させて二次プラズマを発生させる混合部と、混合部を密封する密封手段と、を備える。表面処理装置1は、減圧手段20により低真空に維持された空間で、二次プラズマを吐出させて、被処理体の表面処理を行う。
【選択図】
図1
【特許請求の範囲】
【請求項1】
表面処理本体と、
前記表面処理本体が配置された空間を減圧する減圧手段と、を備え、
前記表面処理本体は、
高周波電極に高周波電圧を印加して、アルゴンガスの一次プラズマを発生させる反応部と、
前記反応部の下流に配置され、前記一次プラズマと反応性ガスを混合させて二次プラズマを発生させる混合部と、
前記混合部を密封する密封手段と、を備え、
前記減圧手段により低真空に維持された前記空間で、前記二次プラズマを吐出させて、被処理体の表面処理を行う、
表面処理装置。
【請求項2】
前記高周波電極は誘電体で被覆され、誘電体バリア放電により前記一次プラズマを発生させる、
請求項1に記載の表面処理装置。
【請求項3】
前記高周波電極は、第1電極と第2電極とを備え、
前記第1電極の先端と前記第2電極の先端は、鋭角に形成され、
前記第1電極と前記第2電極は、鋭角に形成された双方の前記先端を近づけて配置された、
請求項1に記載の表面処理装置。
【請求項4】
前記表面処理本体は、吐出される前記二次プラズマの周囲にシールドガスを吐出するシールドガス吐出部を、更に備える、
請求項1に記載の表面処理装置。
【請求項5】
前記表面処理本体が配置された空間の圧力を測定する圧力測定部と、
前記圧力測定部により測定された圧力値に応じて、前記空間を前記低真空となるように圧力を調整する圧力調整手段と、を更に備える、
請求項1に記載の表面処理装置。
【請求項6】
前記第1電極と前記第2電極は、円筒形状に形成され、前記第1電極の外周に前記第2電極が配置され、
前記反応部は、誘電体材料で形成された反応容器を含み、前記反応容器は、前記第1電極の内部に挿入された内筒と、前記第1電極と前記第2電極の間に配置された外筒と、を備える、
請求項3に記載の表面処理装置。
【請求項7】
前記外筒の底部は前記内筒の外周に連結され、前記外筒の上部は、前記第1電極の鋭角に形成された先端部より高く形成された、
請求項6に記載の表面処理装置。
【請求項8】
前記アルゴンガスは、前記反応部の内部を、第1の方向に移動するように供給され、前記反応性ガスは、前記第1の方向と垂直方向から供給されて、前記混合部で前記一次プラズマと衝突する、
請求項1から7の何れか1項に記載の表面処理装置。
【請求項9】
前記アルゴンガスは、前記反応部の内部を、第1の方向に移動するように供給され、前記反応性ガスは、前記第1の方向と平行方向から供給されて、前記混合部で前記一次プラズマと混合される、
請求項1から7の何れか1項に記載の表面処理装置。
【請求項10】
処理空間を低真空まで減圧する減圧ステップと、
高周波電極に高周波電圧を印加して、アルゴンガスの一次プラズマを発生させる一次プラズマ生成ステップと、
密閉空間において前記一次プラズマに反応性ガスを混合させて二次プラズマを発生させる二次プラズマ生成ステップと、
前記二次プラズマを吐出させて、被処理体の表面処理を行う処理ステップと、を備える、
表面処理方法。
【請求項11】
前記処理ステップは、
前記処理空間の圧力を変更し、前記被処理体の処理量又は処理領域を変更する処理変更ステップ、を備える、
請求項10に記載の表面処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被処理体の表面を処理する表面処理装置及び表面処理方法に関する。
【背景技術】
【0002】
表面処理を行う装置として、大気圧下でプラズマ処理をする大気圧プラズマ装置が知られている。大気圧プラズマ装置は、不活性ガスをプラズマ化して反応性ガスを励起させ、生成された反応性ガスの活性種を処理対象の表面の材料と反応させて、表面処理を行う。そして、大気圧プラズマ装置は、プラズマをノズルから噴射することにより、局所的な表面処理ができることを特徴とする。
【0003】
特許文献1は、大気圧プラズマ装置の一例を示し、不活性ガスとしてアルゴンガスとヘリウムガスを使用し、反応性ガスとして酸素を使用している。大気圧プラズマ装置は、ヘリウムガスを主体として使用することが一般的である。アルゴンガスは、分子量が大きく拡散しにくいため放電が安定しないので、放電しやすく安定するヘリウムガスを使用する必要があった。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、ヘリウムガスは高価であり、安価なアルゴンガスを主体として使用することが好ましい。アルゴンガスを用いた大気圧プラズマは、高電圧を印加することで比較的容易に生成可能であるが、ストリーマを伴う不均一なプラズマとなり安定した表面処理を実施することが困難であった。アルゴンガスを主体として使用し安定したグロー放電プラズマを発生させるためには、十分に減圧する必要がある。しかし、減圧するための排気時間が長くなり作業時間が延長するとともに、減圧下では発生したプラズマが拡散するので、局所プラズマジェットを発生させて表面処理を実施する装置には不向きであった。
【0006】
本発明は、上記実情に鑑みてなされたものであり、アルゴンガスを主体として使用して均質で安定した局所プラズマを生成し、表面処理をする表面処理装置及び表面処理方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明の第1の観点に係る表面処理装置は、
表面処理本体と、
前記表面処理本体が配置された空間を減圧する減圧手段と、を備え、
前記表面処理本体は、
高周波電極に高周波電圧を印加して、アルゴンガスの一次プラズマを発生させる反応部と、
前記反応部の下流に配置され、前記一次プラズマと反応性ガスを混合させて二次プラズマを発生させる混合部と、
前記混合部を密封する密封手段と、を備え、
前記減圧手段により低真空に維持された前記空間で、前記二次プラズマを吐出させて、被処理体の表面処理を行う。
【0008】
前記高周波電極は誘電体で被覆され、誘電体バリア放電により前記一次プラズマを発生させる、
こととしてもよい。
【0009】
前記高周波電極は、第1電極と第2電極とを備え、
前記第1電極の先端と前記第2電極の先端は、鋭角に形成され、
前記第1電極と前記第2電極は、鋭角に形成された双方の前記先端を近づけて配置された、
こととしてもよい。
【0010】
前記表面処理本体は、吐出される前記二次プラズマの周囲にシールドガスを吐出するシールドガス吐出部を、更に備える、
こととしてもよい。
【0011】
前記表面処理本体が配置された空間の圧力を測定する圧力測定部と、
前記圧力測定部により測定された圧力値に応じて、前記空間を前記低真空となるように圧力を調整する圧力調整手段と、を更に備える、
こととしてもよい。
【0012】
前記第1電極と前記第2電極は、円筒形状に形成され、前記第1電極の外周に前記第2電極が配置され、
前記反応部は、誘電体材料で形成された反応容器を含み、前記反応容器は、前記第1電極の内部に挿入された内筒と、前記第1電極と前記第2電極の間に配置された外筒と、を備える、
こととしてもよい。
【0013】
前記外筒の底部は前記内筒の外周に連結され、前記外筒の上部は、前記第1電極の鋭角に形成された先端部より高く形成された、
こととしてもよい。
【0014】
前記アルゴンガスは、前記反応部の内部を、第1の方向に移動するように供給され、前記反応性ガスは、前記第1の方向と垂直方向から供給されて、前記混合部で前記一次プラズマと衝突する、
こととしてもよい。
【0015】
前記アルゴンガスは、前記反応部の内部を、第1の方向に移動するように供給され、前記反応性ガスは、前記第1の方向と平行方向から供給されて、前記混合部で前記一次プラズマと混合される、
こととしてもよい。
【0016】
本発明の第2の観点に係る表面処理方法は、
処理空間を低真空まで減圧する減圧ステップと、
高周波電極に高周波電圧を印加して、アルゴンガスの一次プラズマを発生させる一次プラズマ生成ステップと、
密閉空間において前記一次プラズマに反応性ガスを混合させて二次プラズマを発生させる二次プラズマ生成ステップと、
前記二次プラズマを吐出させて、被処理体の表面処理を行う処理ステップと、を備える。
【0017】
前記処理ステップは、
前記処理空間の圧力を変更し、前記被処理体の処理量又は処理領域を変更す圧力変更ステップ、を備える、
こととしてもよい。
【発明の効果】
【0018】
本発明によれば、アルゴンガスを主体として使用して均質で安定した局所プラズマを生成し、表面処理をする表面処理装置及び表面処理方法を提供することができる。
【図面の簡単な説明】
【0019】
【
図1】本発明の実施の形態に係る表面処理装置の概念図である。
【
図2】本実施の形態の表面処理装置の分解斜視図である。
【
図5】圧力の変化による加工レートの変化を示すグラフであり、(a)は、圧力の変化による単位時間あたりの被処理体の処理される体積の変化を示すグラフ、(b)は、圧力の変化による半値幅の変化を示すグラフである。
【発明を実施するための形態】
【0020】
以下、本発明に係る表面処理装置及び表面処理方法の実施の形態について、図面を参照して説明する。以下に説明する実施の形態は説明のためのものであり、本願発明の範囲を制限するものではない。したがって、当業者であればこれらの各要素もしくは全要素をこれと均等なものに置換した実施の形態を採用することが可能であるが、これらの実施の形態も本発明の範囲に含まれる。
【0021】
(実施の形態)
本発明の一実施の形態である表面処理装置の構造について、
図1-5を参照して説明する。図中、プラズマを噴射するノズルの向かう方向を下として上下方向を規定し、上下方向に直交する方向を左右方向及び前後方向として定める。これらの用語は、本実施の形態を説明するために使用するものであり、本発明の実施の形態が実際に使用されるときの方向を限定するものではない。また、これらの用語によって特許請求の範囲に記載された技術的範囲を限定的に解釈させるべきでない。
【0022】
本実施の形態において説明する表面処理装置及び表面処理方法は、低真空下において、基板等の被処理体の被処理面を、エッチング処理、アッシング処理、表面改質、クリーニングなどのプラズマ処理を局所的に行う装置または方法である。本願の発明者は、局所プラズマを生成する際に、低真空下に装置を載置し、電極配列とガスの流路を特定することにより、大気圧プラズマ装置では使用が困難であったアルゴンガスが使用できることを見いだした。
【0023】
(表面処理装置の全体構成)
図1は、本実施の形態に係る表面処理装置の全体構成を示す概念図である。表面処理装置1は、チャンバ10と、チャンバ10の内部に配置される表面処理本体100と、チャンバ10内を減圧する減圧手段20と、表面処理本体100にアルゴンガスを供給する第1ガス供給部30と、表面処理本体100に反応性ガスを供給する第2ガス供給部40と、シールドガスを供給するシールドガス供給部50と、プラズマモニタ70と、を備える。
【0024】
減圧手段20は、チャンバ10内を低真空に保持する排気装置であり、例えば、真空ポンプが用いられる。本実施の形態において、低真空とは、JIS(日本工業規格)で規定された範囲である105Pa-102Pa(100kPa-100Pa)をいい、67kPa以下であることが好ましい。所望のプラズマ形状およびレートを得るために、最適な圧力値と最適なプラズマ容器形状を選択すればよいが、本実施の形態では圧力値を1kPa以上30kPa以下とすることがより好ましい。
【0025】
減圧手段20である真空ポンプは、配管によりチャンバ10に接続され、配管には、チャンバ10内の圧力を調整する圧力調整手段である開閉バルブ21が取り付けられている。また、チャンバ10には、チャンバ10の圧力を測定する圧力測定手段が取り付けられている。本実施の形態では、チャンバ10内の真空度を測定する真空計22がチャンバ10に取り付けられている。真空計22として、隔膜真空計、ピラニ真空計、ブルドン管真空計、U字管真空計等を使用することにより、低真空の圧力領域の真空度の変動を正確に測定することができる。チャンバ10内の圧力は、真空計22により測定された真空度に応じて、開閉バルブ21の開閉度により調整される。
【0026】
第1ガス供給部30は、不活性ガスであるアルゴンガスを表面処理本体100に供給する装置である。なお、アルゴンガスのみを供給するのではなく、アルゴンガスに少量の不活性ガスを混入することも可能である。第1ガス供給部30にアルゴンガスまたはアルゴンガスを主体とする不活性ガスを供給することで、第1ガス供給路の腐食を防止することができる。第1ガス供給路を耐腐食性材料で構成することにより、第1ガス供給部30にアルゴンガスを主体として少量の反応性ガスを混入することも可能である。混入させる反応性ガスは、第2ガス供給部40に供給する反応性ガスと同種でもよいし、別種の反応性ガスとすることも可能である。
【0027】
第2ガス供給部40は、反応性ガスを表面処理本体100に供給する装置である。反応性ガスは、被処理対象に応じて種々のガスを使用することができる。例えば、フッ化物(SF6、CF4、NF3、CHF3、C2F6、C3F8、C4F6)を含むガスや、水素系ガス、塩素系ガスなどを使用することができる。
【0028】
シールドガス供給部50は、後述する表面処理本体100のノズル131の外周に配置されるシールドガス吐出部152にシールドガスを供給する。シールドガスは、例えば、不活性ガスであるヘリウム、ネオン、アルゴン、キセノン等の希ガスや窒素ガス等を用いるが、安価な窒素ガスを使用することが好ましい。
【0029】
プラズマモニタ70は、後述する表面処理本体100のノズル131から吐出されるプラズマの発光スペクトルをモニタして、プラズマに含まれる元素を分析する。プラズマモニタ70として、例えば、発光分光分析装置を使用する。発光分光分析装置は、プラズマの発光スペクトルを回析格子により分光して、元素の強度比をモニタすることにより、特定の元素の量の変移を確認し、その元素により処理される被処理体の加工レートを監視することができる。尚、本実施の形態で使用する「加工レート」は、被処理体の単位時間当たりの加工量をいう。
【0030】
表面処理本体100は、
図1、3に示すように、一対の高周波電極110と、電極ベース120と、ノズル本体部130と、第1カバー部140と、第2カバー部150と、を備える。
【0031】
高周波電極110は、アルミニウムや銅等の金属で形成された第1電極110aと第2電極110bの一対の電極から構成される。第1電極110aは、表面処理本体100の内部を下方向に伸びて形成された円筒状の電極である。第1電極110aの内部には、アルミナ等の誘電体材料で形成された円筒状の反応容器111が挿入されている。第1電極110aの下端の先端部110aaは鋭角に形成されている。第2電極110bは、第1電極110aの円筒より大きい直径の円筒で形成され、内部に第1電極110aが挿入される。第2電極110bの底部の内側に延在する先端部110bbは、鋭角に形成されている。第1電極110aの先端部110aaと第2電極110bの先端部110bbとの間に、電圧を印加することで電界が発生し、アルゴンガスからアルゴンプラズマ(以下、「一次プラズマ」という。)を生成する。第1電極110aの先端部110aaと第2電極110bの先端部110bbが鋭角に形成されることにより、電界を集中させることができる。先端部110aaと先端部110bbとは、なるべく近づけて配置して、プラズマを生成するための電界強度を大きくすることが好ましい。
【0032】
第1電極110aと第2電極110bの間には、誘電体である第1誘電体110cが挿入され、第2電極110bの外側は、第2誘電体110dで被覆されている。誘電体として、アルミナ、フッ素樹脂等が用いられる。誘電体により電極を覆うことにより、誘電体バリア放電を行い過度なアーク放電を抑制し、電極が損傷、腐食することを防止する。
【0033】
電極ベース120は、
図2、3に示すように、開口部120aを備え、開口部120aに第2電極110bが挿入される。電極ベース120は、導電性を備える銅等の金属で形成され、高周波電源114からの電圧は、第1電極110aと電極ベース120を介して第2電極110bに印加される。実施例では、電極ベース120及び第2電極110bをアース電位とするが、第1電極110aを接地してもよい。電極ベース120の上面は、第1カバー部140により覆われ、開口部120aが閉塞される。なお、
図2の展開図には、電極110、第1カバー部140は省略されている。
【0034】
なお、第1電極110a、第2電極110b、第1誘電体110c、第2誘電体110d、反応容器111により、反応部が構成される。
【0035】
ノズル本体部130は、
図1-3に示すように、下方に突出する高周波電極110を収容し、断面形状が凹状に形成された容器である。ノズル本体部130は、アルミナ等の誘電体材料で形成され、円筒部130aと、底部130bと、円筒部130aと底部130bとを繋ぐ傾斜部130cとから構成される。底部130bは平坦形状に形成される。第2誘電体110dとノズル本体部130との間に形成される空間が、第2ガス供給部40から供給される反応性ガスの流路となる。
【0036】
なお、ノズル本体部130と第2誘電体110dにより混合部が構成される。
図3に示す混合部の衝突領域Xにおいて、一次プラズマと反応性ガスが衝突して、反応性ガスプラズマ(以下、「二次プラズマ」という。)が発生する。また、ノズル本体部130の底部130bには、被処理基板60に二次プラズマを吐出するための円筒状のノズル131が形成されている。
【0037】
第2カバー部150は、上下方向の断面形状が凹状に形成され、凹部にノズル本体部130を収容する。また、第2カバー部150の底部には、ノズル131を通過させるための開口部151が形成されている。開口部151と円筒状のノズル131の外周との間には、一定の幅の間隙が形成され、この間隙が、シールドガス吐出部152となる。
【0038】
図3に示すように、シールドガスは、シールドガス供給部50から第2カバー部150とノズル本体部130との間に供給され、シールドガス吐出部152から吐出される。シールドガスは、ノズル131から吐出されるプラズマガスの外周を囲み、プラズマガスの拡散を抑制する。
【0039】
本実施の形態における表面処理装置1は、更に表面処理本体100からガスが漏れないように密閉手段を備える。本実施の形態において、表面処理は低真空下において実行されるため、アルゴンガス、反応性ガス、プラズマガスがリークする、又は外部の気体が流入する恐れがある。したがって、密封手段を設けることが効果的である。また、密封手段は、少なくとも混合部で発生する反応性の高い二次プラズマのリークを抑えることが有効である。
【0040】
密閉手段は、表面処理本体100を構成する部材と部材が接触する接合部分に設ける。
図3に示すように、第1カバー部140と第1電極110aの接合部分に第1シール部材161、第1電極110aと反応容器111の接合部分に第2シール部材162、第1カバー部140と電極ベース120の接合部分に第3シール部材163、電極ベース120とノズル本体部130の接合部分に第4シール部材164を取り付ける。これらの密閉手段を備えることにより、表面処置本体100の内部には、密閉空間が形成される。本実施の形態では、シール部材として、Oリングを用いる。密閉手段は、部材間の間をシールできるシール部材であれば、他のシール部材を使用することができ、例えば、メタルガスケットやグリスなどを使用してもよい。
【0041】
(ガスの流れ)
このような構成を備える表面処理装置1において、第1ガス供給部30から供給されるアルゴンガス、第2ガス供給部40から供給される反応性ガス、及びシールドガス供給部50から供給されるシールドガスの流れについて、
図3、
図4を参照して説明する。
図4において、アルゴンガス(第1ガス)の流れをAで示すハッチングにより示し、反応性ガス(第2ガス)の流れをBで示すハッチングにより示し、シールドガスの流れをCで示すハッチングにより示し、アルゴンガスと反応性ガスが混合する混合領域Xをハッチングにより示す。図中、白抜きで示した箇所は、高周波電極110である。
【0042】
アルゴンガス(A)は、第1電極110aの内部を下方(第1の方向)に向けて供給される。アルゴンガス(A)は、第1電極110a内部の反応容器111内を通過しながら、高周波電極110により電圧が印加され、一次プラズマが生成される。反応性ガス(B)は、ノズル本体部130の上部側方から、ノズル本体部130と第2誘電体110dとの間に供給される。ノズル本体部130の上部から供給された反応性ガス(B)は、ノズル本体部130の円筒部130aの内周を周回しながら、底部130bまで到達する。この間、反応性ガスBは、円筒部130aの内周を周回することで、環状の気流となり、表面処理装置1の内部が低真空に維持されていることから、速度を増しながら底部130bまで到達する。ノズル本体部130の内周面にらせん溝を形成して、環状気流を増幅させてもよい。
【0043】
ノズル本体部130の底部130bは、平坦状に形成されており、反応性ガスは、第2誘電体110dと底部130bとの間で、一次プラズマの流れる第1の方向に対して、垂直方向に流れる。一次プラズマと反応性ガスが垂直に衝突することにより、一次プラズマと反応性ガスは、衝突領域Xにおいて衝突し、十分に混合(AB混合部)され、二次プラズマを発生させる。また、二次プラズマは、ノズル131から被処理基板60の方向に吐出される。
【0044】
一方、シールドガス供給部50から供給されたシールドガスは、ノズル本体部130と第2カバー部150との間の空間を通り、シールドガス吐出部152から吐出される。シールドガス吐出部152は、ノズル131の外周を囲んで配置され、シールドガス吐出部152から吐出されるシールドガスは、ノズル131から吐出される二次プラズマの外周を囲むように吐出される。吐出された二次プラズマは、局所プラズマとしてシールドガスにより吐出領域を規定されて被処理基板60に噴射される。
【0045】
(表面処理方法)
上記構成の表面処理装置を使用した表面処理方法について、
図1、3-5を参照して説明する。まず、減圧手段20により処理空間であるチャンバ10内を低真空になるまで減圧する(減圧ステップ)。
【0046】
次に、第1ガス供給部30からアルゴンガスを、表面処理本体100の上部から下方に向けて(第1の方向)、第1電極110aの内部に供給する。第1電極110aと第2電極110bとに、高周波電源114から電圧を印加させて、アルゴンガスのプラズマ(一次プラズマ)を生成させる(一次プラズマ生成ステップ)。
【0047】
生成された一次プラズマは、ノズル本体部130の底部130bに達する。また、第2ガス供給部40からノズル本体部130の上部に供給された反応性ガスは、ノズル本体部130の円筒部130aの内周を周回しながら底部130bまで到達する。反応性ガスは、加速しながら、ノズル本体部130の底部130bにおいて、垂直方向から一次プラズマと衝突して、二次プラズマを発生させる(二次プラズマ生成ステップ)。本実施の形態で生成される一次プラズマ及び二次プラズマは、均質で安定したグロー放電プラズマであり、被処理基板60の表面に照射することで、被処理基板60の表面を所望の形状にエッチング処理することができる(処理ステップ)。反応性ガスの種類や印加する高周波電圧を変更することで、被処理基板60の表面をアッシングすることや表面改質することもできる。
【0048】
また、ノズル131から吐出された二次プラズマは、シールドガス供給部50から供給されたシールドガスにより外周部を囲まれ、吐出面積を規制されながら、被処理基板60の表面に吹き付けられる。二次プラズマは、被処理基板60の表面に吹き付けられエッチング等の処理を行う。表面処理本体100は、
図1に示すように、ノズル131から二次プラズマを噴射させながら、被処理基板60上で前後左右に移動し、被処理基板60の表面の局所処理を行う。表面処理本体100と被処理基板60は相対移動すればよく、被処理基板60を基板駆動ステージに搭載して被処理基板60を移動させてもよい。
【0049】
また、表面処理の間、チャンバ10内の真空度は真空計22で測定され、所定の低真空を維持できるように、開閉バルブ21の開閉度が調整される。チャンバ10内の圧力変動と加工レートの変動とは、相関関係があることがわかっている。加工レートを±7%の変動量に抑えるためには、チャンバ10内の圧力を10±5kPa以内に維持することが必要であり、この範囲の圧力を維持できるように、開閉バルブ21の開閉度を調整する。開閉バルブ21の開閉度の調整は、真空計22により測定された測定値をコンピュータに送信し、コンピュータにより自動的に制御してもよいし、手動で開閉度を調整してもよい。
【0050】
図5は、チャンバ10内の圧力と加工レートとの関係を示すグラフである。
図5(a)は、チャンバ10内の圧力と体積レートとの関係を示すグラフである。ここで「体積レート」とは、単位時間当たりに被処理体から削り取られる材料の体積をいう。グラフで示すように、チャンバ10内の圧力を変更すると、被処理体の体積レートが変化する。
図5(b)は、チャンバ10内の圧力と半値幅との関係を示すグラフである。ここで「半値幅」とは、体積レートの分布を示す値であり、半値幅が小さくなるとプラズマジェットの吐出方向と垂直な断面形状が細くなり、大きくなると太くなる。チャンバ10内の圧力を変更すると、半値幅は変化する。半値幅が変化することにより、プラズマジェットによる加工領域を変更することができる。このように、圧力を変更することにより、体積レートと半値幅が変化するので、圧力を調整することにより、処理に応じた所望の体積レートと半値幅を実現することができる。すなわち、処理空間の圧力を変更することにより、被処理体の処理量又は処理領域を変更することができる(処理変更ステップ)。
【0051】
また、処理変更ステップの他の一例として、圧力をパラメータとした加工レートのコントロールを積極的に行うこともできる。例えば、被処理体の加工量が多い場合に2段階で加工を行ってもよい。第1段階では圧力の低い状態でコントロールし、高い加工レートの状態を保ち粗い加工処理を行い、第2段階では圧力の高い状態でコントロールし、低い加工レートの状態を保って細かい加工処理を行うことで、生産性と加工精度の両立を行うことが出来る。上記加工処理は、被処理体に応じて3段階以上に設定してもよく、各処理の間に被処理体の加工量の計測を行ってもよい。
【0052】
また、プラズマモニタ70により、表面処理をコントロールすることができる。表面処理の間、プラズマモニタ70により、表面処理本体100のノズル131から吐出されるプラズマの発光スペクトルをモニタして、プラズマに含まれる元素を分析する。プラズマをモニタすることにより、表面処理に使用される元素を常時監視し、元素の強度比が小さくなった場合には、加工時間を長く設定する等の調整をする。
【0053】
プラズマモニタ70により、表面処理の加工レートを監視することができるので、加工レートが一定となるように表面処理本体100をフィードバック制御することができる。加工時間の経過にともない、加工レートが変化する場合も、加工レートを常時監視できるので、加工レートの再現性を維持することができ、高精度に平坦加工を実行することができる。また、加工レートの変化を予測することもできるため、不要な暖機運転時間を省略し、必要な加工レートに到達した時点で即加工を開始することができる。
【0054】
被処理基板60上のプラズマ処理領域の大きさは、シールドガスに関連する様々なパラメータを制御して変更することができる。例えば、シールドガス吐出部152の形状の変更、シールドガスの種類の変更、シールドガスの流量の変更、シールドガスの温度の変更など、種々のパラメータを変更することにより制御できる。
【0055】
シールドガスの種類を変更する具体例として、例えば、シールドガスに水素または水蒸気を添加することによりクエンチング反応を生じさせ、プラズマ処理領域を狭めることができる。また、シールドガスに反応を促進させるガスを添加することにより、プラズマ処理領域を広げることができる。シールドガスの流量を大きくすれば、プラズマ処理領域を狭めることができ、小さくすれば広げることができる。また、シールドガスの温度を高くすれば反応が促進され、プラズマ処理領域が広げられ、低くすれば反応が抑制され、プラズマ処理領域が狭められる。また、シールドガスの温度を低くすれば、被処理基板60を冷却することも可能となる。シールドガス吐出部152の形状を変更する具体例については、変形例1で後述する。
【0056】
更に、プラズマ処理領域の大きさを、シールドガスに関連するパラメータ以外のパラメータで制御する方法として、ノズル131の開口部の大きさの変更、反応性ガスの種類の変更、被処理基板60とノズル131の先端との距離の変更等がある。
【0057】
このように、プラズマ処理領域の大きさを制御するパラメータは、複数存在するが、被処理基板60の加工量をモニタリングして、その結果をフィードバックすることにより、さらにプラズマ処理領域の微調整が可能となる。その結果、加工精度が向上し、加工時間の短縮を図ることもできる。被処理基板60の加工量をモニタリングする方法として、膜厚測定装置を使用する方法、Q-mass等の質量分析器の使用、もしくは量子カスケードレーザを使用した吸収分光測定等により反応生成物の濃度をモニタする方法、プラズマ発光強度を測定する方法などがある。
【0058】
(変形例1)
実施の形態では、ノズル131の形状は円筒状であり、その外周に所定の間隔を隔てて、第2カバー部150の開口部151の開口が配置される構造であると説明した。すなわち、シールドガス吐出部152の吐出方向は、ノズル131から吐出される二次プラズマと平行であったが、この構造に限定されない。
【0059】
図6に示すように、ノズル131は、外径が同一の円筒ではなく、先端に行くほど外径が小さくなる形状としてもよい。このようなノズル形状とすることにより、ノズル131の断面形状は、テーパ形状となる。第2カバー部150の開口部151を、このノズル形状に合わせた断面形状とすることにより、ノズル131と開口部151との間に形成されるシールドガスが流れるシールドガス吐出部152の吐出方向は内側に向く。なお、本変形では、ノズル131と開口部151の形状以外は、実施の形態と同一の構造を備える。
【0060】
本変形例によれば、シールドガス吐出部152から吐出されるシールドガスの方向が、内側を向くことにより、ノズル131から噴出する二次プラズマの局所プラズマのジェットの吐出領域を、シールドガスにより絞ることができる。
【0061】
(変形例2)
実施の形態では、シールドガスを使用したが、シールドガスは使用しなくてもよい。
図7に示すように、本変形例では、第2カバー部150を外した構造となっている。したがって、シールドガスを供給する構造を備えず、ノズル131から噴射された二次プラズマは、そのまま、被処理基板60の表面に達する。なお、本変形例では、第2カバー部150を除いた以外は、実施の形態と同一の構造を備える。
【0062】
本変形例によれば、シールドガスを使用せずに、ノズル131から二次プラズマを噴射するので、シールドガスを生成するための部品が不要となり、装置構成がコンパクトになる。また、組立工程の減少、部品点数の減少により、コストを削減できる。さらに、一次プラズマと反応性ガスとは、衝突領域Xにおいて、垂直に衝突するので、十分に混合させることができる。一次プラズマと反応性ガスが十分に混合されることにより、活性種が効率よく生成され、反応を促進して処理速度を向上させることができる。
【0063】
(変形例3)
実施の形態では、反応性ガスは、一次プラズマが供給される方向と垂直方向に供給されていたが、平行方向に供給してもよい。
【0064】
図8に示すように、実施の形態、変形例1、2のノズル本体部130と相違して、本変形例のノズル本体部135は、第1電極110aと第2電極110bを収容する凹部は有さない。ノズル本体部135は、第1本体部136と第2本体部137とを組み合わせて形成される。
【0065】
第1本体部136は、第2誘電体110dの下方に配置される円板形状の部材であり、第2本体部137は、第1本体部136の下方に配置される。また、第1本体部136と第2本体部137との間に、反応性ガスが供給される流路が形成される。第2本体部137は、凹部を備え、二次プラズマを吐出するノズル部137aと、ノズル部137aの上方で次第に拡径する円筒部137bと、を備える。表面処理本体100の上部から供給されるアルゴンガスが、反応容器111の内部を通過して電圧を印加されることで、一次プラズマとなり、衝突領域Xに供給され、反応性ガスと混合されることで、二次プラズマが生成される。
【0066】
また、アルゴンガスを供給する反応容器111の下端部は、実施の形態、変形例1、2と相違して、第1電極110a、第2電極110bの近傍に配置されるのではなく、第2本体部137の円筒部137bの内部まで伸びている。したがって、二次プラズマが生成される位置は高周波電極110から離間され、二次プラズマが高周波電極110と他の部材との接合部から漏れ出ることを低減させることができる。このような構成を備えるので、シール部材は、第1本体部136と反応容器111の間の第5シール部材171と、第1本体部136と第2本体部137との間の第6シール部材172を取り付ければよい。
【0067】
図9に、本変形例におけるガスの流れを示す。上部から供給されるアルゴンガス(第1ガス)(A)は、反応容器111内を下方に移動し、第1電極110aと第2電極110bにより電圧が印加されて一次プラズマが生成される。生成された一次プラズマは、反応性ガス(第2ガス)(B)と混合領域X内で衝突して混合されて、二次プラズマを生成する。このとき、混合領域X内で、反応性ガス(B)は、一次プラズマの周りに、一次プラズマの流れと平行に供給されながら合流する。
【0068】
したがって、本変形例によれば、一次プラズマと反応性ガスは平行に流れながら合流するので、プラズマジェットを細く絞ることができ、微細な加工ができる局所プラズマのジェットを生成することができる。
【0069】
本変形例では、シールドガスを供給するための構造である第2カバー部150を有しないが、第2カバー部150を取り付けて、シールドガスを供給してもよい。なお、本変形例は、実施の形態、変形例1、2とは、ノズル本体部135の形状が相違すること、第2カバー部150がないことで相違する。しかし、他の構成は、実施の形態、変形例1、2と同一構造である。
【0070】
(変形例4)
実施の形態、変形例1、2では、シール部材として、第1シール部材161、第2シール部材162、第3シール部材163、及び第4シール部材164を、所定の位置に取り付けていた。本発明におけるシール部材の位置は、当該所定の位置に限定されない。
【0071】
図10に示すように、本変形例では、衝突領域Xの近傍に第7シール部材181を取り付けた。衝突領域Xの近傍に第7シール部材181を取り付けたので、衝突領域Xで生成される二次プラズマの漏れを抑制することができる。したがって、他のシール箇所として、第1カバー部140と第2誘電体110dとの間の第8シール部材182、ノズル本体部130と第1カバー部140との間の第9シール部材183を使用すれば、十分にシールすることができる。
【0072】
(変形例5)
実施の形態では、反応容器111の形状として円筒形状を使用することを説明した。しかしながら、本発明の反応容器111は、円筒形状に限定されない。
図11に示すように、本変形例の反応容器111は、第1電極110aの内部を通る内筒111aと、第1電極110aの外周と第2電極110bと内周との間に配置された外筒111bと、を備える。内筒111aと外筒111bとは、下部において連結されている。具体的には、外筒111bの底部は、内筒111aの下部の外周に連結されている。反応容器111の上下方向の断面形状は、ギリシャ文字のプサイの形状に類似する。外筒111bの上部は、少なくとも第1電極111aの先端の鋭角に形成された部分よりも高くすることが好ましい。
【0073】
外筒111bの上端部は、第1電極111aの外周をカバーする第1誘電体110cの底部に接触し、外筒111bの上端部と第1誘電体110cの底部の間は、Oリングにより封止されている。
【0074】
図3に示す表面処理本体100において、第1電極110a先端と第2電極110bの先端が配置された部分に絶縁性を備える第1誘電体110cの端面があると、高電圧が発生したとき、第1誘電体110cの側部または底部Aに沿面放電が発生しやすい。意図しない沿面放電が発生すると、局所放電が維持できず、ノズル131からプラズマが噴射されずに加工が停止する場合や、放電が不安定となる場合があり、精度良く加工することが難しい。また、沿面放電により第1誘電体110cが破損するおそれもある。
【0075】
本変形例によれば、内筒111aと外筒111bにより反応容器111を形成した。したがって、第1電極110aの先端と第2電極110bの先端とを隔離することができ、沿面放電を抑制することができる。また、
図11に示すように、第1誘電体110cの底部Aを、第1電極110aの先端と第2電極110bの先端とが配置された空間から遠ざけて配置した。したがって、第1誘電体110cの底部Aで発生する沿面放電を抑制することができる。沿面放電を抑制することにより、部品の耐久性を向上させることができる。
【0076】
また、内筒111aの下部と外筒111bの底部は連結され、一体形状となった反応容器111が形成されているので、反応容器111は、一つの部品として容易に表面処理本体100に組み込むことができる。
【0077】
更に、Oリングを取り付けることにより、ガスリークを防止することができ、放電の安定性が向上する。
【0078】
本実施の形態によれば、低真空下において、アルゴンガスを主体とした局所プラズマ処理を行うことができるので、低価格のガスを使用したプラズマ処理が可能となった。
【0079】
本実施の形態によれば、平均自由工程が大きくなり過ぎない低真空下において、シール部材を使用することにより、アルゴンガスを使用して安定した局所プラズマ処理を行うことができる。
【0080】
本実施の形態によれば、高周波電極110が配置された反応部の下流に一次プラズマと反応性ガスが混合する混合部を設けたので、高周波電極110や反応容器111が反応性ガスや二次プラズマにより損傷、腐食されることを低減することができる。
【0081】
本実施の形態によれば、真空計22によりチャンバ10内の真空度を測定し、真空度に応じて開閉バルブ21を開閉するので、常に所定の低真空を維持することができる。したがって、加工レートの変動が少なく、平坦加工を高精度に実現することができる。チャンバ10内の真空度によりノズル131から噴射されるプラズマの形状が変化するため、所望のプラズマ形状または所望の加工レートとなるようにチャンバ10内の真空度を決定し、決定した真空度を維持するように開閉バルブ21を制御すればよい。
【0082】
本実施の形態では、第1電極110aと第2電極110bの先端部110aa、先端部110bbは、近づけて配置されることを、
図3を用いて説明した。先端部110aaと先端部110bbを近づけるための電極形状は、
図3に示した形状に限定されず、様々な形状を採用することができる。
【0083】
本実施の形態では、ノズル本体部130と第2誘電体110dの間の空間に、上部から反応性ガスが供給され、低真空下に置かれることで環流が生じると説明した。環流を形成するためには、ノズル131の内周にらせん溝を掘って、ノズル131の内部にも環流を発生させることとしてもよい。または、反応容器111の内周面にらせん溝を形成してアルゴンガスの還流を形成し、環状気流のアルゴンガスに高周波電圧を印加してアルゴンプラズマを生成してもよい。環状気流のアルゴンプラズマに環状気流の反応性ガスを衝突領域で合流させてもよい。このような構成を採用することで、一次プラズマと反応性ガスの反応性が向上する。
【0084】
本実施の形態では、圧力調整手段として、開閉バルブ21と真空計22を使用すると説明したが、これに限定されない。真空計22により測定された圧力値に応じて、不活性ガスをチャンバ10に注入してもよい。
【産業上の利用可能性】
【0085】
本発明は、被処理体の表面を処理する表面処理装置又は表面処理方法に利用することができる。
【符号の説明】
【0086】
1 表面処理装置
10 チャンバ
20 減圧手段
21 開閉バルブ
22 真空計
30 第1ガス供給部
40 第2ガス供給部
50 シールドガス供給部
60 被処理基板
70 プラズマモニタ
100 表面処理本体
110 高周波電極
110a 第1電極
110aa 先端部
110b 第2電極
110bb 先端部
110c 第1誘電体
110d 第2誘電体
111 反応容器
111a 内筒
111b 外筒
114 高周波電源
120 電極ベース
120a 開口部
130 ノズル本体部
130a 円筒部
130b 底部
130c 傾斜部
131 ノズル
135 ノズル本体部
136 第1本体部
137 第2本体部
137a ノズル部
137b 円筒部
140 第1カバー部
150 第2カバー部
151 開口部
152 シールドガス吐出部
161 第1シール部材
162 第2シール部材
163 第3シール部材
164 第4シール部材
171 第5シール部材
172 第6シール部材
181 第7シール部材
182 第8シール部材
183 第9シール部材