IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 旭硝子株式会社の特許一覧 ▶ AGCエスアイテック株式会社の特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023181992
(43)【公開日】2023-12-25
(54)【発明の名称】球状シリカ粉末の製造方法
(51)【国際特許分類】
   C01B 33/193 20060101AFI20231218BHJP
【FI】
C01B33/193
【審査請求】未請求
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2023095775
(22)【出願日】2023-06-09
(31)【優先権主張番号】P 2022095198
(32)【優先日】2022-06-13
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2023003689
(32)【優先日】2023-01-13
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000000044
【氏名又は名称】AGC株式会社
(71)【出願人】
【識別番号】390005728
【氏名又は名称】AGCエスアイテック株式会社
(74)【代理人】
【識別番号】110002000
【氏名又は名称】弁理士法人栄光事務所
(72)【発明者】
【氏名】福本 浩大
(72)【発明者】
【氏名】近藤 雅史
(72)【発明者】
【氏名】加茂 博道
(72)【発明者】
【氏名】有光 慎之介
(72)【発明者】
【氏名】片山 肇
【テーマコード(参考)】
4G072
【Fターム(参考)】
4G072AA25
4G072BB07
4G072DD04
4G072GG03
4G072HH21
4G072JJ47
4G072MM21
4G072MM22
4G072RR12
4G072TT20
4G072TT30
4G072UU15
(57)【要約】
【課題】誘電正接が十分に小さく、取り扱いのしやすい球状シリカ粒子を効率よく製造できる、球状シリカ粉末の新規な製造方法を提供すること。
【解決手段】球状で多孔質のシリカ前駆体を熱処理することを含み、前記シリカ前駆体のナトリウム濃度が1~300質量ppmであり、前記ナトリウム濃度をx(質量ppm)、熱処理温度をy(℃)としたときに、前記シリカ前駆体を-0.97x+1180<y<-0.97x+1310を満たす温度で熱処理する、球状シリカ粉末の製造方法とする。
【選択図】なし
【特許請求の範囲】
【請求項1】
球状で多孔質のシリカ前駆体を熱処理することを含み、前記シリカ前駆体のナトリウム濃度が1~300質量ppmであり、前記ナトリウム濃度をx(質量ppm)、熱処理温度をy(℃)としたときに、前記シリカ前駆体を-0.97x+1180<y<-0.97x+1310を満たす温度で熱処理する、球状シリカ粉末の製造方法。
【請求項2】
前記シリカ前駆体のナトリウム濃度が1~200質量ppmである、請求項1に記載の球状シリカ粉末の製造方法。
【請求項3】
前記シリカ前駆体を、静置による熱処理、回転炉による熱処理及び噴霧燃焼による熱処理からなる群から選択される少なくとも1つの熱処理により焼成する、請求項1又は2に記載の球状シリカ粉末の製造方法。
【請求項4】
前記シリカ前駆体を、粒子同士が接する状態で焼成する、請求項1又は2に記載の球状シリカ粉末の製造方法。
【請求項5】
焼成後に、さらに、粒子の平均円形度が0.90を下回らないような解砕を行う、請求項1又は2に記載の球状シリカ粉末の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、球状シリカ粉末の製造方法に関する。
【背景技術】
【0002】
シリカ(SiO)を主成分とするシリカ粒子は、従来、プリント配線基板やパッケージ配線基板等の電子材料、レンズや光学フィルム等の光学材料、触媒や触媒担体等の機能材料、塗料や化粧品等の顔料等の様々な用途に利用されている。
【0003】
用いられるシリカとしては、表面のシラノール基が他成分に影響したり、スラリーの粘度上昇につながったり、しっとりとした感触が得られることから、表面積が小さいものが求められている。
【0004】
近年、通信分野における情報通信量の増加に伴い、電子機器や通信機器等において高周波数帯の信号の活用が広がっており、高周波数帯用のデバイスに用いられる材料に関しては、低い誘電正接を有する材料が求められている。シリカは誘電率が小さく(3.9)、熱膨張率が小さく(3~7.9ppm/℃)、低誘電率かつ低熱膨張率を有するフィラーの材料として有望であり、高周波数帯の誘電体デバイス等においての使用が期待される。
【0005】
シリカ粒子は、例えば、火炎溶融法、気相法、気相酸化法、湿式法、沈降法等により得られ、その製造方法についても種々検討がされている。
例えば、特許文献1では、多孔質シリカゲルを高温の気体中に分散させて焼成し無孔質化することにより単分散性の無孔質球状シリカを得る方法が提案されており、高温気体としては1000℃から2000℃が好ましいことが記載されている。
また、特許文献2には、平均円形度が0.85以上、比表面積が1~30m/gである原料溶融球状シリカ粉末を、500~1100℃の温度で、加熱温度(℃)×加熱時間(h)を1000~26400(℃・h)とする所定時間、加熱処理する誘電正接低減処理を含む誘電正接低減処理溶融球状シリカ粉末の製造方法が提案されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特許第2921058号公報
【特許文献2】特許第6814906号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献1に記載の方法では、処理量が増えると気体中での温度ムラが大きくなる虞があり、均一な処理がし難くなる。よって、狭い条件範囲の処理には適さず、品質を揃えた球状シリカ粉末を得るのが難しい。また、本法では細孔容積が小さな粒子を得られるものの、低比表面積の粒子を得ることは難しい。
また、特許文献2に記載の方法では、原料の溶融球状シリカを準備する工程を含むと、2度の高温での溶融・焼成を行う必要があり、製造工程が複雑であり、手間とコストがかかる。
【0008】
そこで本発明は、従来の球状シリカ製造技術の上記問題点を克服して、誘電正接が十分に小さく、取り扱いのしやすい球状シリカ粒子を効率よく製造できる、球状シリカ粉末の新規な製造方法を提供することを課題とする。
【課題を解決するための手段】
【0009】
本発明者らは鋭意検討した結果、原料のシリカ前駆体として多孔質球状シリカを用いて、これを焼成して球状シリカを製造する方法において、原料のシリカ前駆体の焼成温度には、シリカ中のナトリウム(Na)濃度との関係から最適な範囲があることを見出し、本発明を完成させるに至った。
【0010】
本発明は、下記(1)~(5)に関する態様を含む。
(1)球状で多孔質のシリカ前駆体を熱処理することを含み、前記シリカ前駆体のナトリウム濃度が1~300質量ppmであり、前記ナトリウム濃度をx(質量ppm)、熱処理温度をy(℃)としたときに、前記シリカ前駆体を-0.97x+1180<y<-0.97x+1310を満たす温度で熱処理する、球状シリカ粉末の製造方法。
(2)前記シリカ前駆体のナトリウム濃度が1~200質量ppmである、前記(1)に記載の球状シリカ粉末の製造方法。
(3)前記シリカ前駆体を、静置による熱処理、回転炉による熱処理及び噴霧燃焼による熱処理からなる群から選択される少なくとも1つの熱処理により焼成する、前記(1)又は(2)に記載の球状シリカ粉末の製造方法。
(4)前記シリカ前駆体を、粒子同士が接する状態で焼成する、前記(1)又は(2)に記載の球状シリカ粉末の製造方法。
(5)焼成後に、さらに、粒子の平均円形度が0.90を下回らないような解砕を行う、前記(1)又は(2)に記載の球状シリカ粉末の製造方法。
【発明の効果】
【0011】
本発明によれば、誘電正接が十分に小さく取り扱い性にも優れる球状シリカ粉末を効率よく製造できる。得られた球状シリカ粉末は、粒子形状が球状であるので、樹脂との混合性に優れ、また樹脂組成物の加工性にも優れる。本発明の製造方法により得られた球状シリカ粉末は、電子材料や光学材料のフィラーをはじめ、塗料や化粧品の材料としても利用でき、誘電正接が十分に小さいので、特に電子材料としての使用に適する。
【発明を実施するための形態】
【0012】
以下、本発明について説明するが、以下の説明における例示によって本発明は限定されない。なお、本明細書において、数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
【0013】
本実施形態の球状シリカ粉末の製造方法(以下、単に本製造方法ともいう。)は、球状で多孔質のシリカ前駆体を熱処理することを含み、シリカ前駆体のナトリウム(Na)濃度が1~300質量ppmであり、ナトリウム濃度をx(質量ppm)、熱処理温度をy(℃)としたときに、シリカ前駆体を-0.97x+1180<y<-0.97x+1310を満たす温度で熱処理する。熱処理によりシリカ前駆体を焼き締める際に前記範囲の温度で行うことで、無孔質かつ、粒子が融着していない球状シリカとなり、流動性が高く、スラリー中での分散性の高い、低比表面積で誘電正接の小さな球状シリカ粒子が得られる。
【0014】
(シリカ前駆体)
本製造方法に用いるシリカ前駆体は多孔質のものを用いる。シリカ前駆体が多孔質であるとは、シリカ前駆体中に孔が均等に分布していることをいう。
原料に多孔質シリカ粒子を用いることで、無孔質の原料を粉砕したものを焼成して作る粒子に比べて、粒子の形状や粒度分布などが制御されたものを得ることが容易になる。
【0015】
<シリカ前駆体のナトリウム(Na)濃度>
多孔質シリカは、加熱により、内部の細孔構造を構成する数nm~数10nmの一次粒子が溶融し比表面積が低下し、さらに細孔が埋まっていく。ナトリウムが存在すると融点が下がることも知られている。本発明者らの検討により、多孔質のシリカ前駆体中のナトリウム濃度に応じた熱処理条件を設定することで、粒子同士の融着を防ぎながら誘電正接を低減したシリカ粒子が得られることが見出された。
【0016】
本製造方法において、シリカ前駆体はナトリウム濃度が1~300質量ppmの範囲にあるものを用いる。シリカ前駆体のナトリウム濃度が1質量ppm以上であると、ナトリウム濃度が1質量ppm未満である純度の高いシリカ前駆体を用いたときに比べて低い温度で無孔質化でき、300質量ppm以下であると誘電正接が低いシリカ粒子が得られる。シリカ前駆体のナトリウム濃度は、2質量ppm以上であるのが好ましく、3質量ppm以上がより好ましく、10質量ppm以上がさらに好ましく、また、200質量ppm以下であるのが好ましく、200質量ppm未満がより好ましく、150質量ppm以下がさらに好ましく、100質量ppm以下が特に好ましく、50質量ppm以下が最も好ましい。
【0017】
シリカ前駆体のナトリウム含量は、シリカ前駆体に過塩素酸とフッ酸を加えて強熱し主成分のケイ素を除去したのちに原子吸光光度法で測定できる。
【0018】
<シリカ前駆体の比表面積>
シリカ前駆体の比表面積は、200~1000m/gの範囲であるのが好ましい。比表面積が200m/g以上であると粒子の焼結を抑えた状態で焼成後の比表面積を低減できる。また、比表面積が1000m/g以下であるとシリカ前駆体粒子の強度が十分高い。また、シリカ前駆体の比表面積が前記範囲であると、焼成時に粒子同士が接した状態で加熱された場合でも粒子同士が強固に結合することなく、球状粒子が得られる。比表面積は、400m/g以上であるのがより好ましく、500m/g以上がさらに好ましく、700m/g以上が特に好ましく、また、950m/g以下であるのがより好ましく、900m/g以下がさらに好ましい。
【0019】
比表面積は、比表面積・細孔分布測定装置(例えば、マイクロトラック・ベル社製「BELSORP-miniII」、マイクロメリティック社製「トライスターII」等)を用いた窒素吸着法に基づく多点BET法により求められる。
【0020】
<シリカ前駆体の細孔容積>
シリカ前駆体の細孔容積は、0.1~2.0ml/gの範囲であるのが好ましい。細孔容積が0.1ml/g以上であると焼成時のシリカ無孔質化時に粒子の見かけ体積が減少し、粒子間の空隙が増加し焼結が生じにくい、あるいは、焼結強度の弱い粉体が得られる。細孔容積が2.0ml/g以下であると焼成前の仕込み時のかさ密度が低くなり過ぎるのを抑制し、生産性を向上できるとともに、焼成時にシリカ粒子が十分に収縮し、比表面積を十分小さくできる。また、シリカ前駆体の細孔容積が前記範囲であると、焼成時に粒子同士が接した状態で加熱された場合でも粒子同士が強固に結合することなく、球状粒子が得られる。細孔容積は、0.3ml/g以上であるのがより好ましく、0.6ml/g以上がさらに好ましく、0.7ml/g以上が特に好ましく、また、1.8ml/g以下であるのがより好ましく、1.5ml/g以下がさらに好ましく、1.2ml/g以下が特に好ましい。
【0021】
<シリカ前駆体の平均細孔径>
シリカ前駆体の平均細孔径は、1.0~50.0nmであるのが好ましい。平均細孔径が1.0nm以上であると粒子内部まで均質に無孔質化でき、内部に気泡が残らず誘電正接を下げられる。平均細孔径が50.0nm以下であると焼成により細孔を残さずにシリカ粒子を緻密化(低比表面積化)できるので誘電正接を下げられる。平均細孔径は、2.0nm以上であるのがより好ましく、3.0nm以上がさらに好ましく、4.0nm以上が特に好ましく、また、40.0nm以下であるのがより好ましく、30.0nm以下がさらに好ましく、20.0nm以下が特に好ましい。
【0022】
細孔容積および平均細孔径は、比表面積・細孔分布測定装置(例えば、マイクロトラック・ベル社製「BELSORP-miniII」、マイクロメリティック社製「トライスターII」等)を用いた窒素吸着法に基づくBJH法により求められる。
【0023】
<シリカ前駆体の円形度>
本製造方法に用いるシリカ前駆体は球状であり、その平均円形度は、0.90以上であるのが好ましい。平均円形度が0.90以上であると実質的に球状のため粒子の比表面積を小さくできるとともに、粒子の振動で凸部がかけたりせず活性面が露出しないのでシリカ粒子を低誘電化できる。平均円形度は、0.92以上であるのがより好ましく、0.95以上が特に好ましく、また、真球に近くなる程望ましいので、最も好ましくは1.00である。
【0024】
円形度は、粒子を走査型電子顕微鏡(例えば、日本電子株式会社製「JCM-7000」)により撮影し、画像解析ソフト、例えば粒子画像解析装置(例えば、マルバーン社製「Morphologi4」)に付属の画像解析ソフトを用いて粒子の面積と周長を求め、下記式に当てはめて算出することにより求められる。なお、20個の粒子の円形度の平均値を求めたものを平均円形度とする。
円形度=投影面積の等しい円の周長/粒子の周長
投影面積の等しい円の周長:ある粒子を真上から観察したとき、下の平面に映った粒子の影の面積を求め、この面積に等しい円を計算し、その円の輪郭の長さ
粒子の周長:粒子を真上から観察したとき、下の平面に映った粒子の影の輪郭の長さ
【0025】
<シリカ前駆体の粒度分布>
シリカ前駆体の体積基準の累積50%粒子径(D50、以下単に「50%粒子径」ともいう。)は、1~500μmであるのが好ましい。50%粒子径(D50)が1μm以上であると比表面積を低減させるために焼成を行った後も球状粒子とすることができ、500μm以下であると成型が容易な樹脂へのフィラーとして利用しやすい。50%粒子径(D50)は、1μm以上であるのが好ましく、1.2μm以上がより好ましく、1.5μm以上がさらに好ましく、また、100μm以下であるのがより好ましく、50μm以下がさらに好ましく、20μm以下が特に好ましく、10μm以下が殊更に好ましく、5μm以下が最も好ましい。
【0026】
50%粒子径(D50)は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製「MT3300EXII」)や電気的検知法(コールターカウンター法)の粒度分布測定装置(例えば、ベックマン・コールター社製「Multisizer4e」)等により求められる。
【0027】
<シリカ前駆体の乾燥重量減少>
また、本製造方法に用いるシリカ前駆体は、230℃で12時間乾燥したときの重量の減少率が10%以下であるのが好ましい。重量の減少率が10%以下であると、シリカ前駆体をその粒子同士が接した状態で焼成したときに粒子同士の焼結が起こり難く、球状のシリカ粉末が得られやすい。
重量の減少率は、9%以下であるのがより好ましく、8%以下がさらに好ましく、6%以下が特に好ましく、また、230℃で12時間乾燥しても重量変化がないものが望ましいため、下限は特に限定されない。
【0028】
<シリカ前駆体の強熱減量>
また、シリカ前駆体の強熱減量は、5.0~15.0質量%であるのが望ましい。強熱減量は、シリカ前駆体に付着している付着水と、シリカ前駆体に含まれるシラノール基の縮合により発生する水との総和となっており、シリカ前駆体が適度なシラノール基を持つことで、焼成時に縮合が進み、シラノール基が減りやすくなる。強熱減量が多過ぎると、焼成時の収率が低下し、生産性が悪化することから、シリカ前駆体の強熱減量は、15.0質量%以下が好ましく、13.0質量%以下がより好ましく、12.0質量%以下が最も好ましい。強熱減量が少な過ぎると、焼成時にシラノール基が残りやすくなるため、シリカ前駆体の強熱減量は、5.0質量%以上が好ましく、6.0質量%以上がより好ましく、7.0質量%以上が最も好ましい。
【0029】
ここで、強熱減量は、JIS K0067(1992)に準拠して、シリカ前駆体1gを、850℃で0.5時間加熱乾燥したときの質量減量として求める。
【0030】
<シリカ前駆体の入手方法>
シリカ前駆体は、製造により得てもよいし、市販品を用いてもよい。また、ナトリウムを含む多孔質シリカの市販品を酸で洗浄し、含有ナトリウム量を調節してもよい。
シリカ前駆体の製造方法としては、例えば、湿式法、造粒法等が挙げられる。湿式法は、液体原料あるいは液体の溶媒を用いて多孔質シリカを作る方法全般のことをいう。造粒法は、シリカ微粒子を用いてバインダー等を用いて球形に成型する方法である。
【0031】
これらの中でも、粒度分布を制御することが可能で球状粒子をつくることが可能な湿式法を用いることで、粉砕等により粒子の形状を整える必要が無く、微粒子も混在しないため、結果として焼成後に比表面積の小さい粒子が得られる。
【0032】
球状粒子が合成可能な湿式法としては、例えば、噴霧法、エマルション・ゲル化法等が挙げられる。噴霧法は、シリカゾルをスプレードライで乾燥させ、球状の多孔質粒子を得る方法である。エマルション・ゲル化法としては、例えば、シリカ前駆体を含む分散相と連続相とを乳化し、得られたエマルションをゲル化して球状のシリカ前駆体を得る。乳化方法としては、シリカ前駆体を含む分散相を連続相に微小孔部または多孔質膜を介して供給しエマルションを作製する方法が好ましい。これによって、均一な液滴径のエマルションを作製して、結果として均一な粒子径の球状シリカが得られる。このような乳化方法としては、マイクロミキサー法や膜乳化法が用いられる。例えば、マイクロミキサー法は国際公開第2013/062105号に開示されている。
【0033】
得られたシリカ前駆体の含水量が多く、230℃で12時間乾燥したときの重量の減少率が10%を超えるときは10%以下になるまで乾燥させるのが好ましい。
乾燥手段としては、例えば、スプレードライヤー、乾燥機での静置乾燥、乾燥空気の通風処理等が挙げられる。
【0034】
また、シリカ前駆体同士が焼結し大きな塊となっている場合は、解砕してもよい。ただし、焼結が強すぎる場合には、解砕しても球状粒子にならず、粉砕処理され球状粒子が得られない。
【0035】
(球状シリカ粉末の製造方法)
本製造方法は、上記のシリカ前駆体を熱処理することを含み、ナトリウム濃度をx(質量ppm)、熱処理温度をy(℃)としたときに、シリカ前駆体を下記式(1)を満たす温度で熱処理する。
-0.97x+1180<y<-0.97x+1310 ・・・(1)
式(1)において、xは1≦x≦300である。
熱処理によりシリカ前駆体を焼き締め、シリカ多孔質体の緻密化を行うが、式(1)を満たす温度で熱処理することで、無孔質かつ、粒子が融着していない球状シリカとなり、流動性が高く、スラリー中での分散性の高い球状シリカ粒子が得られる。
【0036】
焼成時の温度ムラを小さくするという観点から、式(1)における熱処理温度yは、-0.95x+1180超であるのがより好ましく、-0.905x+1180超がさらに好ましく、-0.9x+1180超が特に好ましく、また、-0.92x+1300未満がより好ましく、-x+1300未満がさらに好ましく、-1.5x+1300未満が特に好ましい。
【0037】
ナトリウム濃度xは、200質量ppm以下であるのが好ましく、200質量ppm未満がより好ましく、100質量ppm以下がさらに好ましく、50質量ppm以下が特に好ましく、また、2質量ppm以上であるのが好ましく、3質量ppm以上がより好ましく、10質量ppm以上がさらに好ましい。
【0038】
本製造方法において、xが0≦x<200であり、熱処理温度yが下記式(2)を満たすのが好ましい。
-0.9x+1180<y<-1.5x+1300 ・・・(2)
式(2)を満たす温度で熱処理することで、さらに誘電正接が低い球状シリカ粒子が得られる。
【0039】
<焼成手段>
焼成手段としては特に限定されないが、静置による熱処理、回転炉による熱処理、噴霧燃焼による熱処理等が挙げられる。静置による熱処理には、静置式の電気炉、ローラーハースキルン、トンネル炉に分類される連続炉等が使用できる。回転炉による熱処理には、水平回転炉(ロータリーキルン)、回転式管状炉等が使用できる。これらの中でも、焼成の均一性の観点から、連続炉あるいは、回転炉による熱処理により焼成するのが好ましい。これらの中でも、焼成の均一性の観点から、連続炉あるいは回転炉による熱処理、又は噴霧燃焼による熱処理により焼成するのが好ましく、静置による熱処理、回転炉による熱処理及び噴霧燃焼による熱処理からなる群から選択される少なくとも1つの熱処理により焼成するのがより好ましい。
【0040】
<焼成温度>
焼成温度は、700℃以上であるのが好ましく、800℃以上がより好ましく、900℃以上がさらに好ましく、1000℃以上が特に好ましい。また、温度が高くなり過ぎると、粒子が強い焼結をおこしやすくなり、樹脂組成物中での粒ゲージが大きくなるため、1600℃以下であるのが好ましく、1500℃以下がより好ましく、1400℃以下がさらに好ましい。すなわち、焼成温度は700~1600℃の範囲が好ましい。
【0041】
<焼成時間>
焼成時間は、使用する焼成装置や焼成時間に応じて適宜調整すればよいが、例えば、0.5~50時間で行うのが好ましく、1~10時間がより好ましい。
【0042】
<焼成雰囲気>
焼成時の雰囲気は、酸素を含む雰囲気であっても、酸素を含まない雰囲気であってもよい。湿式法で球形化する場合には、乳化剤等の有機物を利用することが多く、したがってシリカ前駆体中に有機物が残存する場合が多い。有機物をわずかに含むシリカ前駆体を焼成する場合に、酸素が少ない条件では有機物が炭化してしまうため、誘電正接の上昇や着色の原因になる。よって、シリカ前駆体が有機物を含む場合は、好ましくは、酸素を含む雰囲気、より好ましくは大気雰囲気下で焼成を行う。
【0043】
<解砕>
球状シリカ粉末は、焼成後に粒子同士が弱く焼結している場合があるので、その場合は解砕を行ってもよい。解砕は本発明の効果を損なわないよう、球形度や比表面積を保つために粒子の平均円形度が0.90を下回らないように行うのが好ましい。また、解砕処理により比表面積が上昇しないのが好ましい。解砕処理で比表面積が大きく増大することは、一部の球状粒子が粉砕されていることや、表面に微細な損壊が生じて微粉が発生していることを意味する。比表面積の上昇は、樹脂へ分散したときの粘度上昇や、誘電正接の悪化につながるため好ましくない。
【0044】
解砕は、例えば、サイクロンミル、ジェットミル等の解砕装置を用いて行うことができ、また、振動篩を用いても解砕が可能である。
【0045】
<表面処理>
焼成により得られた球状シリカ粉末は、シランカップリング剤で表面処理してもよい。この工程により、球状シリカ粉末の表面に存在するシラノール基とシランカップリング剤とが反応し、表面のシラノール基が減少して、誘電正接を低く抑えられる。また、粒子の表面が疎水化して樹脂に対する親和性が改善するため、樹脂に対する分散性が向上する。
【0046】
表面処理の条件は特に制限はなく、一般的な表面処理条件でよく、湿式処理法や乾式処理法が用いられる。均一な処理を行う観点から、湿式処理法が好ましい。
【0047】
<シランカップリング剤>
表面処理に用いるシランカップリング剤としては、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、オルガノシラザン化合物等が挙げられる。これらは1種または2種以上を組み合わせて使用してもよい。
【0048】
具体的に表面処理剤としては、アミノプロピルメトキシシラン、アミノプロピルトリエトキシシラン、ウレイドプロピルトリエトキシシラン、N-フェニルアミノプロピルトリメトキシシラン、N-2(アミノエチル)アミノプロピルトリメトキシシラン等のアミノシラン系カップリング剤、グリシドキシプロピルトリメトキシシラン、グリシドキシプロピルトリエトキシシラン、グリシドキシプロピルメチルジエトキシシラン、グリシジルブチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン系カップリング剤、メルカプトプロピルトリメトキシシラン、メルカプトプロピルトリエトキシシラン等のメルカプトシラン系カップリング剤、メチルトリメトキシシラン、ビニルトリメトキシシラン、オクタデシルトリメトキシシラン、フェニルトリメトキシシラン、メタクロキシプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン等のシラン系カップリング剤、CF(CFCHCHSi(OCH、CF(CFCHCHSiCl、CF(CFCHCHSi(CH)(OCH、CF(CFCHCHSi(CH)C1、CF(CFCHCHSiCl、CF(CFCHCHSi(OCH、CFCHCHSiCl、CFCHCHSi(OCH、C17SON(C)CHCHCHSi(OCH、C15CONHCHCHCHSi(OCH、C17COCHCHCHSi(OCH、C17-O-CF(CF)CF-O-CSiCl、C-O-(CF(CF)CF-O)-CF(CF)CONH-(CHSi(OCH等のフッ素含有シランカップリング剤、ヘキサメチルジシラザン、ヘキサフェニルジシラザン、トリシラザン、シクロトリシラザン、1,1,3,3,5,5-ヘキサメチルシクロトリシラザン等のオルガノシラザン化合物等が挙げられる。
【0049】
<処理量>
シランカップリング剤の処理量としては、球状シリカ粉末100質量部に対して、0.01質量部以上であることが好ましく、0.02質量部以上がより好ましく、0.10質量部以上がさらに好ましく、また5質量部以下であることが好ましく、2質量部以下がより好ましい。すなわち、シランカップリング剤の処理量は、球状シリカ粉末100質量部に対して、0.01~5質量部の範囲が好ましい。
【0050】
シランカップリング剤で処理する方法としては、例えば、球状シリカ粉末にシランカップリング剤をスプレーする乾式法や、球状シリカ粉末を溶剤に分散させてからシランカップリング剤を加えて反応させる湿式法等が挙げられる。
【0051】
なお、球状シリカ粉末の表面がシランカップリング剤で処理されていることはIRによるシランカップリング剤の置換基によるピークの検出により確認できる。また、シランカップリング剤の付着量は、炭素量により測定できる。
【0052】
本製造方法により得られる球状シリカ粉末は、非晶質の中実シリカである。
【0053】
(球状シリカ粉末の物性)
<粒径分布D50>
球状シリカ粉末は、50%粒子径(D50)が1μm以上であるのが好ましい。50%粒子径(D50)が1μm以上であると、誘電正接を有意に低減できる。また、50%粒子径(D50)が大きくなり過ぎると粒ゲージの値が大きくなるので、球状シリカ粉末を含有させた樹脂組成物を、例えば、シートに製膜する際には、シートの最小厚みが厚くなってしまうので、50%粒子径(D50)は、500μm以下が好ましい。50%粒子径(D50)は、1.2μm以上であるのがより好ましく、1.5μm以上が特に好ましく、また、100μm以下であるのがより好ましく、50μm以下がさらに好ましく、20μm以下が特に好ましく、10μm以下が殊更に好ましく、5μm以下が最も好ましい。すなわち、球状シリカ粉末の50%粒子径(D50)は、1~500μmの範囲が好ましい。
【0054】
<最大粒子径Dmax>
球状シリカ粉末の体積基準における最大粒子径(Dmax)は、50%粒子径(D50)の150倍以下であるのが好ましく、100倍以下がより好ましく、さらに好ましくは50倍以下、特に好ましくは10倍以下である。最大粒子径(Dmax)が50%粒子径(D50)の150倍以下であるとシートを加工したときの欠陥になりにくい。また、最大粒子径(Dmax)は、50%粒子径(D50)の1.2倍以上であるのが好ましく、1.5倍以上がより好ましく、2倍以上がさらに好ましい。すなわち、球状シリカ粉末の最大粒子径(Dmax)は、50%粒子径(D50)の1.2~150倍の範囲が好ましい。
【0055】
<粗大粒子数>
本製造方法において、シリカ前駆体の焼成によりシリカ前駆体同士が焼結することがある。シリカ前駆体の粒度分布から類推される粒子径Aμm以上の粒子の個数比率よりも、焼成後のシリカ粒子の粒子径Aμm以上の粒子の個数比率が大きいことは、粒子同士が強固に焼結していることを示し、樹脂へ分散させたときに球状粒子ではなく、合一した粗大粒子としてふるまうことになり、樹脂の粘度上昇や、表面欠陥などの原因になる。
本製造方法において、特に、50%粒子径(D50)が5μm以下の球状シリカ粉末の場合、10μm以上の粒子の個数比率が3000個数ppm未満の範囲にあるのが好ましい。50%粒子径(D50)が5μm以下の球状シリカ粉末において10μm以上の粒子の個数比率が3000個数ppm未満であると粗大粒子がほとんど含まれず薄膜化したシート中での欠陥を低減できる。10μm以上の粒子の個数比率は、2000個数ppm以下であるのがより好ましく、1000個数ppm以下がさらに好ましく、500個数ppm以下が特に好ましい。
【0056】
50%粒子径(D50)及び最大粒子径(Dmax)は、上記した電気的検知法(コールターカウンター法)で測定でき、粒子の個数比率は、測定された粒径分布より算出できる。
【0057】
<比表面積>
球状シリカ粉末の比表面積は、4.0m/g以下であるのが好ましい。比表面積が4.0m/g以下であると、スラリー化したときの粘度上昇を抑制でき、さらに誘電正接も小さくできる。また、比表面積は0.2m/g以上であると、球状シリカ粉末を樹脂組成物に含有させた際に、樹脂との接点が十分にあるので、樹脂とのなじみがよくなるので好ましく、0.2m/g未満のものは、実質的に得ることが困難である。比表面積は、3.5m/g以下であるのがより好ましく、3.0m/g以下がさらに好ましく、2.0m/g以下が特に好ましい。すなわち、比表面積は、0.2~4.0m/gの範囲が好ましい。
【0058】
比表面積は、上記した同様の方法で測定できる。
【0059】
<比表面積Aと50%粒子径D50の積A×D50>
比表面積は、粒子径にも相関し、一般的には粒子径が小さくなると比表面積は大きくなる。本製造方法により得られる球状シリカ粉末は、比表面積A(m/g)と50%粒子径(D50)(μm)の積A×D50が20μm・m/g以下であるのが好ましい。積A×D50が20μm・m/g以下であると、同じ粒子径の粒子よりもスラリー化したときの粘度上昇を抑制できるとともに、誘電正接を下げられる。積A×D50は、10μm・m/g以下であるのがより好ましく、さらに好ましくは5μm・m/g以下である。積A×D50は、理論値が2.7μm・m/g[比表面積=6/(シリカの真密度2.2(g/cm)×50%粒子径(D50)(μm))より導出]であり、これ以下の値は現実的に達成不可である。すなわち、積A×D50は、2.7~20μm・m/gの範囲が好ましい。
【0060】
<円形度>
球状シリカ粉末の平均円形度は、0.90以上であるのが好ましい。平均円形度が0.90以上であると実質的に球状のため粒子の比表面積を小さくできるとともに、粒子の振動で凸部がかけたりせず活性面が露出しないのでシリカ粒子を低誘電化できる。平均円形度は、0.92以上であるのがより好ましく、0.93以上がさらに好ましく、0.95以上が特に好ましく、また、真球に近くなる程望ましいので、最も好ましくは1.00である。
【0061】
平均円形度は上記した方法と同様の方法により算出できる。
【0062】
<誘電正接>
本製造方法により得られる球状シリカ粉末は、粉末での誘電正接が、周波数1GHzにおいて0.0020以下であるのが好ましく、0.0010以下がより好ましく、0.0008以下がさらに好ましく、0.0007以下が特に好ましく、0.0006以下が殊更に好ましく、0.0005以下が最も好ましい。特に粉体の誘電正接や誘電率の測定において、周波数10GHz以上ではサンプルスペースが小さくなり測定精度が悪化するので、本発明では周波数1GHzでの測定値を採用する。球状シリカ粉末の周波数1GHzでの誘電正接が0.0020以下であると、優れた誘電損失抑制効果が得られるので、高周波特性が向上した基板やシートが得られる。誘電正接が小さいほど、回路の伝送損失が抑えられるため、下限値は特に限定されない。
【0063】
誘電正接は、専用の装置(例えば、キーコム株式会社製「ベクトルネットワークアナライザ E5063A」)を用い、摂動方式共振器法にて測定できる。
【0064】
<混練物粘度>
本製造方法により得られる球状シリカ粉末は、下記測定方法により測定した球状シリカ粉末を含む混練物の粘度が5000mPa・s以下であるのが好ましい。
(測定方法)
JIS K 5421:2000で規定された煮アマニ油6質量部と球状シリカ粉末8質量部を混合し、2000rpmで3分間混練して得た混練物を、回転式レオメータを用いてせん断速度1s-1で30秒測定し、30秒時点での粘度を求める。
【0065】
上記測定方法により求めた混練物のせん断速度1s-1での粘度が5000mPa・s以下であると、球状シリカ粉末を含む樹脂組成物の成形・成膜時に添加する溶剤量を減らせ、乾燥速度を早くでき、生産性を向上できる。また、シリカ粉末の粒径に応じた比表面積が大きくなると、樹脂組成物に添加した際に粘度が上昇しやすくなるが、本発明の球状シリカ粉末は、比表面積が小さいので樹脂組成物の粘度上昇を抑制できる。混練物の粘度は、4000mPa・s以下であるのがより好ましく、3500mPa・s以下がさらに好ましい。
前記混練物のせん断速度1s-1での粘度は、低いほど樹脂組成物の塗工性が向上し、生産性が向上するため下限値は特に限定されない。
【0066】
<IRピーク強度>
球状シリカ粉末の表面の孤立シラノール基に由来する3746cm-1付近のIRピーク強度は、0.1以下であるのが好ましく、0.08以下がより好ましく、0.06以下がさらに好ましい。孤立シラノール基とは、シリカ粒子に吸着された水等と結合していないシラノール(Si-OH)基である。シリカ粒子表面の孤立シラノール(Si-OH)基量はIR測定によって得られる。具体的には、IRスペクトルを800cm-1で規格化し、3800cm-1でベースラインを合わせたあと、3746cm-1付近のSi-OHピーク強度の相対値を求める。粒子表面の孤立シラノール基が多いと、樹脂に混合した部材を電子用途に使用する場合、誘電損失が大きくなる傾向があるが、粒子表面の孤立シラノール基に由来する3746cm-1付近のIRピーク強度が0.1以下であると、誘電損失を低減できる。
【0067】
また、球状シリカ粉末の表面の結合シラノール基に由来する3300~3700cm-1にある最大IRピーク強度は、0.2以下であるのが好ましく、0.17以下がより好ましく、0.15以下がさらに好ましい。結合シラノール基とは、シリカ粒子に吸着された水や、シリカ表面のシラノール等と結合しているシラノール(Si-OH)基である。シリカ粒子表面の結合シラノール(Si-OH)基量はIR測定によって得られる。具体的には、IRスペクトルを800cm-1で規格化し、3800cm-1でベースライン
を合わせたあと、3300~3700cm-1にあるうちの最大ピークから、結合Si-OHピーク強度の相対値を求める。粒子表面の結合シラノール基が多いと、樹脂に混合した部材を電子用途に使用する場合、誘電損失が大きくなる傾向があるが、粒子表面の結合シラノール基に由来する、3300~3700cm-1にある最大IRピーク強度が0.2以下であると、誘電損失を低減できる。
【0068】
<吸油量>
球状シリカ粉末は、無孔質粒子であることが好ましい。多孔質粒子であると、吸油量が大きくなり、樹脂中での粘度が上昇してしまうとともに、比表面積が増加し、シリカ粒子表面のシラノール(Si-OH)基量が増加して、誘電正接が悪化する傾向にある。具体的には、吸油量が100ml/100g以下であることが好ましく、70ml/100g以下がより好ましく、50ml/100g以下が最も好ましい。下限値は特に限定されないが、吸油量を20ml/100g以下とすることは実質的に困難である。すなわち、吸油量は、20ml/100g超100ml/100g以下の範囲が好ましい。
【0069】
<金属量>
球状シリカ粉末は、原料のシリカ前駆体がナトリウムを1~300質量ppmの濃度で含むことからナトリウムを1~300質量ppmの範囲で含む。ナトリウム濃度は、2質量ppm以上であるのが好ましく、3質量ppm以上がより好ましく、10質量ppm以上がさらに好ましく、また、200質量ppm以下であるのが好ましく、200質量ppm未満がより好ましく、150質量ppm以下がさらに好ましく、100質量ppm以下が特に好ましく、50質量ppm以下が最も好ましい。
【0070】
球状シリカ粉末は、本発明の効果を妨げない範囲において、ナトリウム以外の不純物元素を含んでいてもよい。他の不純物元素としては、例えば、K、Mg、Ca、Al、Fe、Ti等が挙げられる。
【0071】
ナトリウム以外の不純物元素のうちアルカリ金属とアルカリ土類金属の含有量は、総和が1000質量ppm以下であるのが好ましく、500質量ppm以下がより好ましく、200質量ppm以下がさらに好ましい。
【0072】
(樹脂組成物及びスラリー組成物)
<樹脂組成物>
本製造方法により得られる球状シリカ粉末は比表面積が小さいので、各種溶媒における分散性が良好であり、樹脂組成物への混合性に優れている。
本実施形態に係る樹脂組成物は、球状シリカ粉末と樹脂とを含む。樹脂組成物中の球状シリカ粉末の含有率は5~90質量%であることが好ましく、10~70質量%であることがより好ましい。
【0073】
樹脂としては、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド;ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル;ポリフェニレンスルフィド、芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変成樹脂、ABS(アクリロニトリル・ブタジエン・スチレン)樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-エチレン共重合体(ETFE)の1種または2種以上等を使用できる。樹脂組成物における誘電正接は樹脂の特性にも依存するので、これらを考慮して使用する樹脂を選択すればよい。
【0074】
<スラリー組成物>
また、本製造方法により得られる球状シリカ粉末は、スラリー組成物の充填材としても用いられる。スラリー組成物は、水系又は油系の媒体中に球状シリカ粉末を分散させた泥状の組成物をいう。
スラリー組成物中、球状シリカ粉末を、1~50質量%含むことが好ましく、5~40質量%含むことがより好ましい。
【0075】
油系の媒体としては、アセトン、メタノール、エタノール、ブタノール、2-プロパノール、2-メトキシエタノール、2-エトキシエタノール、1-メトキシ-2-プロパノール、2-アセトキシ-1-メトキシプロパン、トルエン、キシレン、メチルエチルケトン、N,N-ジメチルホルムアミド、メチルイソブチルケトン、N-メチルピロリドン、n-ヘキサン、シクロヘキサン、シクロヘキサノン及び混合物であるナフサ等が挙げられる。これらは単独で用いてもよいし、2種以上の混合物として用いてもよい。
【0076】
樹脂組成物及びスラリー組成物には、上記樹脂や媒体以外に任意の成分を含んでいてもよい。任意の成分としては、例えば、分散助剤、界面活性剤、シリカ以外のフィラー等が挙げられる。
【0077】
<樹脂フィルム>
なお、球状シリカ粉末を含む樹脂組成物を用いて樹脂フィルムを作製したとき、その誘電正接が、周波数10GHzにおいて0.012以下であるのが好ましく、0.010以下がより好ましく、0.009以下がさらに好ましい。樹脂フィルムの周波数10GHzでの誘電正接が0.012以下であると、電気特性に優れるので電子機器や通信機器等への利用が期待できる。誘電正接が小さいほど、回路の伝送損失が抑えられるため、下限値は特に限定されない。
【0078】
誘電正接は、スプリットポスト誘電体共振器(SPDR)(例えば、Agilent Technologies社製)を用いて測定できる。
【0079】
また、上記樹脂フィルムの平均線膨張率が、10~50ppm/℃であるのが好ましい。平均線膨張率が前記範囲であると、基材として広く使用される銅箔の熱膨張係数に近い範囲であるので、電気特性に優れる。平均線膨張率は、12ppm/℃以上であるのがより好ましく、15ppm/℃以上がさらに好ましく、また40ppm/℃以下であるのがより好ましく、30ppm/℃以下がさらに好ましい。
【0080】
平均線膨張率は、熱機械分析装置(例えば、島津製作所社製、「TMA-60」)を使用して、上記樹脂フィルムを荷重5N、昇温速度2℃/minで加熱し、30℃から150℃までのサンプルの寸法変化を測定し、平均を算出することで求められる。
【0081】
<用途>
また、本製造方法により得られる球状シリカ粉末は、化粧品向けの材料や各種充填材として使用でき、特にパソコン、ノートパソコン、デジタルカメラ等の電子機器や、スマートフォン、ゲーム機等の通信機器等に用いられる電子基板の作製に用いられる樹脂組成物の充填材として好適に使用できる。具体的には、球状シリカ粉末は、低誘電正接化、低伝送損失化、低吸湿化、剥離強度向上のために、樹脂組成物、プリプレグ、金属箔張積層板、プリント配線基板、樹脂シート、接着層、接着フィルム、ソルダーレジスト、バンプリフロー用、再配線絶縁層、ダイボンド材、封止材、アンダーフィル、モールドアンダーフィルおよび積層インダクタ等への応用も期待される。
【0082】
上記したとおり、本発明には以下の<1>~<6>の構成が含まれる。
<1>球状で多孔質のシリカ前駆体を熱処理することを含み、前記シリカ前駆体のナトリウム濃度が1~300質量ppmであり、前記ナトリウム濃度をx(質量ppm)、熱処理温度をy(℃)としたときに、前記シリカ前駆体を-0.97x+1180<y<-0.97x+1310を満たす温度で熱処理する、球状シリカ粉末の製造方法。
<2>前記シリカ前駆体のナトリウム濃度が1~200質量ppmである、前記<1>に記載の球状シリカ粉末の製造方法。
<3>前記シリカ前駆体の熱処理温度が、-0.9x+1180<y<-1.5x+1300、かつ、1≦x<200を満たす温度である、前記<1>に記載の球状シリカ粉末の製造方法。
<4>前記シリカ前駆体を、静置による熱処理、回転炉による熱処理及び噴霧燃焼による熱処理からなる群から選択される少なくとも1つの熱処理により焼成する、前記<1>~<3>のいずれか1つに記載の球状シリカ粉末の製造方法。
<5>前記シリカ前駆体を、粒子同士が接する状態で焼成する、前記<1>~<4>のいずれか1つに記載の球状シリカ粉末の製造方法。
<6>焼成後に、さらに、粒子の平均円形度が0.90を下回らないような解砕を行う、前記<1>~<5>のいずれか1つに記載の球状シリカ粉末の製造方法。
【実施例0083】
以下、本発明を実施例により詳しく説明するが、本発明はこれらに限定されるものではない。以下の説明において、共通する成分は同じものを用いている。
例1、6、12及び15は比較例であり、例2~5、7~11、13~14は実施例である。
【0084】
<ナトリウム(Na)量の測定方法>
Na量の測定は、原子吸光光度法により行った。すなわち、シリカ粉末1gをフッ化水素を含む酸で溶解、加熱乾固し、さらに硝酸で溶解、定容後、原子吸光光度法にて吸光度測定を行った。
【0085】
<比表面積、細孔容積および平均細孔径の測定方法>
シリカ粉末を230℃で減圧乾燥して水分を完全に除去し、試料とした。この試料について、マイクロメリティック社製の自動比表面積・細孔分布測定装置「トライスターII」にて、窒素ガスを用いて、多点BET法により比表面積を、BJH法により細孔容積及び平均細孔径を求めた。
【0086】
<シリカ粉末の解しやすさの評価方法>
焼成後のシリカ粉末を指で解しながら下記基準により解しやすさを確認した。
〔評価基準〕
A:サラサラな状態まで容易に解せる。
B:時間はかかるがサラサラな状態まで解せる。
C:サラサラな状態まで解せない。
【0087】
<平均円形度の測定方法>
粒子を走査型電子顕微鏡(日本電子株式会社製、JCM-7000)により撮影し、画像解析ソフト(マルバーン社製粒子画像解析装置「Morphologi4」に付属の画像解析ソフト)を用いて粒子の面積と周長を求め、下記式に当てはめて算出した。20個のシリカ粒子の円形度の平均値を求めたものを平均円形度とした。
円形度=投影面積の等しい円の周長/粒子の周長
投影面積の等しい円の周長:ある粒子を真上から観察したとき、下の平面に映った粒子の影の面積を求め、この面積に等しい円を計算し、その円の輪郭の長さ
粒子の周長:粒子を真上から観察したとき、下の平面に映った粒子の影の輪郭の長さ
球状かどうかの判断については、平均円形度が0.90以上のものを球状であると評価した。
【0088】
<50%粒子径(D50)、10μm以上粒子比率の測定方法>
シリカ粉末に蒸留水を加えて0.05質量%スラリーとした後、超音波洗浄機により周波数45kHzで2分間処理し、電気的検知法の粒度分布測定装置(ベックマン・コールター社製、Multisizer4e)を用いて、体積基準で換算した累積50%における粒子径(50%粒子径、D50)と10μm以上の粒子の個数比率を算出した(設定:アパチャー径50μm、有効N数50,000、カレント800μA、ゲイン4、撹拌スピード15、電解液アイソトン)。
【0089】
<誘電正接の測定方法>
誘電正接は、専用の装置(ベクトルネットワークアナライザ E5063A、キーコム社製)を用い、摂動方式共振器法にて、試験周波数1GHz、試験温度約24℃、湿度約45%、測定回数3回で測定を実施した。具体的には、シリカ粉末の充填量が40体積%になるように、シリカ粉末及びポリエチレン(PE)粉末(住友精化社製フローセンUF-20S)を計量し、シンキー社製自転公転ミキサーにて混合した(ARE-310、回転数2,000rpm、処理時間3分)。得られた混合粉末を所定体積分計量し、130mm角×0.2mm厚の型枠に充填し、185℃、10MPa、3分でプレスシートを作製した。得られたプレスシートの誘電正接を測定後、ポリエチレン粉末のみで同様の条件にて作製したシートをブランクとし、体積混合率で粉末のみの誘電正接に換算した。
【0090】
(例1)
分散相として、3号ケイ酸ソーダ(AGCエスアイテック株式会社製、ケイ酸ナトリウム水溶液、SiO/NaO(モル比)=3、SiO濃度=24質量%)を30g用いた。
連続相として、n-デカン(東ソー株式会社製、HC-250、C1022)に予め
界面活性剤としてモノオレイン酸ソルビタン(三洋化成株式会社製、イオネットS80)を0.7質量%溶解させたものを150g用いた。
連続相である界面活性剤入りn-デカンをホモジナイザー(株式会社マイクロテック・ニチオン製、ヒスコトロン、ジェネレーターシャフトNS-30UG/20P)で撹拌しながら、分散相である3号ケイ酸ソーダを加えて、13,000rpmで5分間撹拌乳化した。
得られた乳化液をスリーワンモーターで撹拌しながら、炭酸ガスを0.4L/minの速度で20分間吹き込むことでシリカを析出させた。
その後、油相を除去して得たシリカゲルを含有する水相を室温で撹拌しながら、硫酸をpH2になるまで添加した後、温浴80℃で1時間撹拌し残留デカンの除去を行なった。
残留溶媒除去後のスラリーに対して、ナトリウム(Na)量を調整する目的で、硫酸でpH1に調整した酸性脱塩水を40ml/g-SiOかけ流してろ過洗浄を行ない、さらに80℃に加温した脱塩水で洗液のpHが5以上になるまでろ過洗浄を行なった。得られたスラリーをスプレードライヤー(日本ビュッヒ株式会社製、ミニスプレードライヤーB290)で乾燥し、シリカ前駆体を得た。シリカ前駆体のナトリウム濃度を測定したところ、12質量ppmであった。
得られたシリカ前駆体をアルミナ坩堝に入れ、電気炉にて1320℃で1時間加熱処理した。なお、加熱処理時の熱履歴を把握するため、リファサーモ(セラミック粉末を成形したもので、熱履歴に応じて精度よく収縮する)を同じ電気炉内にセットした。リファサーモの指示温度は1300℃であった。
加熱処理後のシリカ粉末を室温まで冷却し、目開き150μmのステンレス篩とゴムへらを利用して粗凝集したシリカを解砕しながら篩下を回収し、例1のシリカ粉末を得た。
【0091】
(例2~6)
例1と同様の操作でシリカ前駆体を得た後、表1に示す温度で熱処理した以外は例1と同様の操作を行い、例2~6のシリカ粉末を得た。
【0092】
(例7~9)
例1のナトリウム(Na)量の調整のためのろ過洗浄時に、酸性脱塩水に替えて80℃加温した脱塩水を250ml/g-SiOかけ流したこと、及び表1に示す温度で熱処理したこと以外は例1と同様の操作を行ない、例7~9のシリカ粉末を得た。
【0093】
(例10~11)
例1のナトリウム(Na)量の調整のためのろ過洗浄時に、酸性脱塩水に替えて80℃加温した脱塩水を40ml/g-SiOかけ流したこと、及び表1に示す温度で熱処理したこと以外は例1と同様の操作を行ない、例10~11のシリカ粉末を得た。
【0094】
(例12~15)
例1と同様に作製した残留溶媒除去後のスラリーを80℃に加温した飲料水で洗液のpHが5以上になるまでろ過洗浄を行なったこと、及び表1に示す温度で熱処理したこと以外は例1と同様の操作を行ない、例12~15のシリカ粉末を得た。
【0095】
例1~例15のシリカ前駆体、焼成後のシリカ粉末について、各種測定を行った。結果を表1に示す。
また、シリカ前駆体のナトリウム濃度をx(質量ppm)、熱処理温度をy(℃)としたときに、シリカ前駆体の熱処理温度(焼成温度)が式(1):-0.97x+1180<y<-0.97x+1310(1≦x≦300)及び式(2):-0.9x+1180<y<-1.5x+1300(1≦x<200)に該当するか否かも併せて表1に示す。
【0096】
【表1】
【0097】
例2~5、7~11、13~14の球状シリカ粉末はいずれも、誘電正接が0.0010以下であり、低誘電化されており、誘電正接が十分に小さい球状シリカ粒子を製造できた。これに対して、例1、12は粒子間の焼結が強く解し難いものであり、取り扱い性に満足できるものではなかった。また例6、15は、低誘電化が出来なかった。