(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023182763
(43)【公開日】2023-12-26
(54)【発明の名称】消耗品の製造方法
(51)【国際特許分類】
G06N 20/00 20190101AFI20231219BHJP
G01R 31/367 20190101ALI20231219BHJP
G01R 31/392 20190101ALI20231219BHJP
【FI】
G06N20/00
G01R31/367
G01R31/392
【審査請求】未請求
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2023176092
(22)【出願日】2023-10-11
(62)【分割の表示】P 2023533588の分割
【原出願日】2022-09-12
(31)【優先権主張番号】P 2021150217
(32)【優先日】2021-09-15
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000004455
【氏名又は名称】株式会社レゾナック
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(72)【発明者】
【氏名】倉内 裕史
(72)【発明者】
【氏名】竹本 真平
(72)【発明者】
【氏名】奥野 好成
(57)【要約】
【課題】消耗品の劣化度合いを、機械学習モデルを用いて予測した場合において、予測データの正否を判断しやすくする。
【解決手段】予測データ表示装置は、第1期間における消耗品の劣化度合いを示す第1特性データに関する情報を入力データとし、前記第1期間より後の第2期間における前記消耗品の劣化度合いを示す第2特性データに関する情報を正解データとする学習用データを用いて学習処理が行われたモデルに、前記第1期間における予測対象の消耗品の劣化度合いを示す第3特性データに関する情報を入力し、前記第2期間における予測対象の消耗品の劣化度合いを示す第4特性データに関する情報を算出する予測部と、前記第4特性データのグラフを表示する際に、前記第1及び第3特性データに関する情報の類似度に応じた表示態様で、前記第2特性データのグラフを合わせて表示する表示部とを有する。
【選択図】
図3
【特許請求の範囲】
【請求項1】
第1の期間における第1の消耗品の劣化度合いを示す第1の特性データに関する情報を入力データとし、前記第1の期間より後の第2の期間における前記第1の消耗品の劣化度合いを示す第2の特性データに関する情報を正解データとする学習用データを用いて学習処理が行われた学習済みのモデルに、前記第1の期間における予測対象の第2の消耗品の劣化度合いを示す第3の特性データに関する情報を入力し、前記第2の期間における予測対象の第2の消耗品の劣化度合いを示す第4の特性データに関する情報を算出する予測部と、
前記第4の特性データのグラフを表示する際に、前記第1の特性データに関する情報と、前記第3の特性データに関する情報との類似度に応じた表示態様で、前記第2の特性データのグラフを合わせて表示する表示部と
を有する予測データ表示装置。
【請求項2】
前記表示部は、前記第2の特性データのグラフを表示する際、前記第3の特性データのグラフに結合して表示する、請求項1に記載の予測データ表示装置。
【請求項3】
前記第2の特性データに関する情報は、前記第1の期間の終了時における前記第1の消耗品の劣化度合いを示す特性データを基準とした場合の、前記第2の特性データの減衰率である、請求項2に記載の予測データ表示装置。
【請求項4】
前記表示部は、前記第1の期間の終了時における前記予測対象の第2の消耗品の劣化度合いを示す特性データに、前記第2の特性データの減衰率をかけ合わせることで生成された、前記第2の特性データのグラフを表示する、請求項3に記載の予測データ表示装置。
【請求項5】
前記第4の特性データに関する情報は、前記第1の期間の終了時における前記予測対象の第2の消耗品の劣化度合いを示す特性データを基準とした場合の、前記第4の特性データの減衰率である、請求項2に記載の予測データ表示装置。
【請求項6】
前記表示部は、前記第1の期間の終了時における前記予測対象の第2の消耗品の劣化度合いを示す特性データに、前記第4の特性データの減衰率をかけ合わせることで生成された、前記第4の特性データのグラフを表示する、請求項5に記載の予測データ表示装置。
【請求項7】
前記表示部は、前記第2の特性データのグラフを、前記類似度に応じた表示色で表示する、請求項2に記載の予測データ表示装置。
【請求項8】
前記表示部は、前記第4の特性データのグラフを表示する際に、前記予測部により算出された信頼区間に関する情報を合わせて表示する、請求項1に記載の予測データ表示装置。
【請求項9】
前記表示部は、前記第1の消耗品の種類を示す情報と、前記第1の消耗品の製造条件を示す情報とを、対応する前記類似度とともにテキストテーブルとして表示する、請求項1に記載の予測データ表示装置。
【請求項10】
前記表示部は、前記予測部により算出された信頼区間の幅を、前記学習用データを用いて前記モデルに対して学習処理が行われることで算出された信頼区間の最小の幅及び最大の幅と対比することで、前記第4の特性データの正常度のレベルを算出し、表示する、請求項1に記載の予測データ表示装置。
【請求項11】
前記モデルは、ガウス過程回帰モデルである、請求項1に記載の予測データ表示装置。
【請求項12】
前記第1及び第2の消耗品はバッテリであり、前記第1及び第3の特性データに関する情報は、バッテリの充放電を繰り返す試験により測定される特徴量である、請求項1に記載の予測データ表示装置。
【請求項13】
前記第1及び第3の特性データは、各サイクルにおける放電容量維持率である、請求項12に記載の予測データ表示装置。
【請求項14】
第1の期間における第1の消耗品の劣化度合いを示す第1の特性データに関する情報を入力データとし、前記第1の期間より後の第2の期間における前記第1の消耗品の劣化度合いを示す第2の特性データに関する情報を正解データとする学習用データを用いて学習処理が行われた学習済みのモデルに、前記第1の期間における予測対象の第2の消耗品の劣化度合いを示す第3の特性データに関する情報を入力し、前記第2の期間における予測対象の第2の消耗品の劣化度合いを示す第4の特性データに関する情報を算出する予測工程と、
前記第4の特性データのグラフを表示する際に、前記第1の特性データに関する情報と、前記第3の特性データに関する情報との類似度に応じた表示態様で、前記第2の特性データのグラフを合わせて表示する表示工程と
をコンピュータが実行する予測データ表示方法。
【請求項15】
第1の期間における第1の消耗品の劣化度合いを示す第1の特性データに関する情報を入力データとし、前記第1の期間より後の第2の期間における前記第1の消耗品の劣化度合いを示す第2の特性データに関する情報を正解データとする学習用データを用いて学習処理が行われた学習済みのモデルに、前記第1の期間における予測対象の第2の消耗品の劣化度合いを示す第3の特性データに関する情報を入力し、前記第2の期間における予測対象の第2の消耗品の劣化度合いを示す第4の特性データに関する情報を算出する予測工程と、
前記第4の特性データのグラフを表示する際に、前記第1の特性データに関する情報と、前記第3の特性データに関する情報との類似度に応じた表示態様で、前記第2の特性データのグラフを合わせて表示する表示工程と
をコンピュータに実行させるための予測データ表示プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、予測データ表示装置、予測データ表示方法及び予測データ表示プログラムに関する。
【背景技術】
【0002】
バッテリ等の消耗品の劣化度合いを、機械学習モデルを用いて予測する予測技術が知られている。当該予測技術によれば、例えば、劣化度合いを示す特性データを一定期間取得し、劣化前の特性データと劣化後の特性データとの関係を学習しておくことで、予測対象の消耗品の劣化前の特性データから、予測対象の消耗品の劣化後の特性データを予測することができる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特表2010-539473号公報
【特許文献2】特開2013-217897号公報
【特許文献3】特開2019-113524号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、機械学習モデルを用いて予測する予測技術の場合、予測データの正否をユーザが判断することが難しい。
【0005】
本開示は、消耗品の劣化度合いを、機械学習モデルを用いて予測した場合において、予測データの正否を判断しやすくする。
【課題を解決するための手段】
【0006】
本開示の第1の態様による予測データ表示装置は、
第1の期間における第1の消耗品の劣化度合いを示す第1の特性データに関する情報を入力データとし、前記第1の期間より後の第2の期間における前記第1の消耗品の劣化度合いを示す第2の特性データに関する情報を正解データとする学習用データを用いて学習処理が行われた学習済みのモデルに、前記第1の期間における予測対象の第2の消耗品の劣化度合いを示す第3の特性データに関する情報を入力し、前記第2の期間における予測対象の第2の消耗品の劣化度合いを示す第4の特性データに関する情報を算出する予測部と、
前記第4の特性データのグラフを表示する際に、前記第1の特性データに関する情報と、前記第3の特性データに関する情報との類似度に応じた表示態様で、前記第2の特性データのグラフを合わせて表示する表示部とを有する。
【0007】
また、本開示の第2の態様は、第1の態様に記載の予測データ表示装置であって、
前記表示部は、前記第2の特性データのグラフを表示する際、前記第3の特性データのグラフに結合して表示する。
【0008】
また、本開示の第3の態様は、第2の態様に記載の予測データ表示装置であって、
前記第2の特性データに関する情報は、前記第1の期間の終了時における前記第1の消耗品の劣化度合いを示す特性データを基準とした場合の、前記第2の特性データの減衰率である。
【0009】
また、本開示の第4の態様は、第3の態様に記載の予測データ表示装置であって、
前記表示部は、前記第1の期間の終了時における前記予測対象の第2の消耗品の劣化度合いを示す特性データに、前記第2の特性データの減衰率をかけ合わせることで生成された、前記第2の特性データのグラフを表示する。
【0010】
また、本開示の第5の態様は、第2の態様に記載の予測データ表示装置であって、
前記第4の特性データに関する情報は、前記第1の期間の終了時における前記予測対象の第2の消耗品の劣化度合いを示す特性データを基準とした場合の、前記第4の特性データの減衰率である。
【0011】
また、本開示の第6の態様は、第5の態様に記載の予測データ表示装置であって、
前記表示部は、前記第1の期間の終了時における前記予測対象の第2の消耗品の劣化度合いを示す特性データに、前記第4の特性データの減衰率をかけ合わせることで生成された、前記第4の特性データのグラフを表示する。
【0012】
また、本開示の第7の態様は、第2の態様に記載の予測データ表示装置であって、
前記表示部は、前記第2の特性データのグラフを、前記類似度に応じた表示色で表示する。
【0013】
また、本開示の第8の態様は、第1の態様に記載の予測データ表示装置であって、
前記表示部は、前記第4の特性データのグラフを表示する際に、前記予測部により算出された信頼区間に関する情報を合わせて表示する。
【0014】
また、本開示の第9の態様は、第1の態様に記載の予測データ表示装置であって、
前記表示部は、前記第1の消耗品の種類を示す情報と、前記第1の消耗品の製造条件を示す情報とを、対応する前記類似度とともにテキスト表示する。
【0015】
また、本開示の第10の態様は、第1の態様に記載の予測データ表示装置であって、
前記表示部は、前記予測部により算出された信頼区間の幅を、前記学習用データを用いて前記モデルに対して学習処理が行われることで算出された信頼区間の最小の幅及び最大の幅と対比することで、前記第4の特性データの正常度のレベルを算出し、表示する。
【0016】
また、本開示の第11の態様は、第1の態様に記載の予測データ表示装置であって、
前記モデルは、ガウス過程回帰モデルである。
【0017】
また、本開示の第12の態様は、第1の態様に記載の予測データ表示装置であって、
前記第1及び第2の消耗品はバッテリであり、前記第1及び第3の特性データに関する情報は、バッテリの充放電を繰り返す試験により測定される特徴量である。
【0018】
また、本開示の第13の態様は、第12の態様に記載の予測データ表示装置であって、
前記第1及び第3の特性データは、各サイクルにおける放電容量維持率である。
【0019】
また、本開示の第14の態様による予測データ表示方法は、
第1の期間における第1の消耗品の劣化度合いを示す第1の特性データに関する情報を入力データとし、前記第1の期間より後の第2の期間における前記第1の消耗品の劣化度合いを示す第2の特性データに関する情報を正解データとする学習用データを用いて学習処理が行われた学習済みのモデルに、前記第1の期間における予測対象の第2の消耗品の劣化度合いを示す第3の特性データに関する情報を入力し、前記第2の期間における予測対象の第2の消耗品の劣化度合いを示す第4の特性データに関する情報を算出する予測工程と、
前記第4の特性データのグラフを表示する際に、前記第1の特性データに関する情報と、前記第3の特性データに関する情報との類似度に応じた表示態様で、前記第2の特性データのグラフを合わせて表示する表示工程とをコンピュータが実行する。
【0020】
また、本開示の第15の態様による予測データ表示プログラムは、
第1の期間における第1の消耗品の劣化度合いを示す第1の特性データに関する情報を入力データとし、前記第1の期間より後の第2の期間における前記第1の消耗品の劣化度合いを示す第2の特性データに関する情報を正解データとする学習用データを用いて学習処理が行われた学習済みのモデルに、前記第1の期間における予測対象の第2の消耗品の劣化度合いを示す第3の特性データに関する情報を入力し、前記第2の期間における予測対象の第2の消耗品の劣化度合いを示す第4の特性データに関する情報を算出する予測工程と、
前記第4の特性データのグラフを表示する際に、前記第1の特性データに関する情報と、前記第3の特性データに関する情報との類似度に応じた表示態様で、前記第2の特性データのグラフを合わせて表示する表示工程とをコンピュータに実行させる。
【発明の効果】
【0021】
本開示によれば、消耗品の劣化度合いを、機械学習モデルを用いて予測した場合において、予測データの正否が判断しやすくなる。
【図面の簡単な説明】
【0022】
【
図1】
図1は、学習フェーズにおける予測データ表示システムのシステム構成及び学習装置の機能構成の一例を示す図である。
【
図2】
図2は、学習用データ生成装置の処理の具体例を示す図である。
【
図3】
図3は、予測フェーズにおける予測データ表示システムのシステム構成及び予測データ表示装置の機能構成の一例を示す図である。
【
図4】
図4は、予測用データ生成装置の処理の具体例を示す図である。
【
図5】
図5は、学習装置及び予測データ表示装置のハードウェア構成の一例を示す図である。
【
図6】
図6は、予測データ表示装置の第1のスケール変換部の処理の具体例を示す図である。
【
図7】
図7は、予測データ表示装置の学習済みガウス過程回帰モデルの処理の具体例を示す図である。
【
図8】
図8は、予測データ表示装置の第2のスケール変換部の処理の具体例を示す図である。
【
図9】
図9は、予測データ及び95%信頼区間のグラフ化例を示す図である。
【
図10】
図10は、予測データ表示装置の表示画面生成部の処理の具体例を示す第1の図である。
【
図11】
図11は、予測データ表示装置の表示画面生成部の処理の具体例を示す第2の図である。
【
図12】
図12は、学習処理の流れを示すフローチャートである。
【
図13】
図13は、予測データ表示処理の流れを示す第1のフローチャートである。
【
図14】
図14は、予測データ表示装置の表示画面生成部の処理の具体例を示す第3の図である。
【
図15】
図15は、予測データ表示処理の流れを示す第2のフローチャートである。
【
図16】
図16は、予測データ表示装置の表示画面生成部の処理の具体例を示す第4の図である。
【発明を実施するための形態】
【0023】
以下、各実施形態について添付の図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省略する。
【0024】
[第1の実施形態]
<学習フェーズにおける予測データ表示システムのシステム構成及び学習装置の機能構成>
はじめに、学習フェーズにおける予測データ表示システムのシステム構成及び当該予測データ表示システムを構成する学習装置の機能構成について説明する。
【0025】
図1は、学習フェーズにおける予測データ表示システムのシステム構成及び学習装置の機能構成の一例を示す図である。
図1に示すように、学習フェーズにおける予測データ表示システム100は、特性測定装置110、学習用データ生成装置120、学習装置130を有する。
【0026】
特性測定装置110は、消耗品の劣化度合いを示す特性データに関する情報として、特徴量を測定し、測定した特徴量に基づいて特性データを生成する。消耗品とは、繰り返し使用することで、性能が劣化する物品を指し、例えば、バッテリ等が含まれる。また、消耗品がバッテリの場合、劣化度合いを示す特性データとは、例えば、バッテリの充放電を繰り返す試験の各サイクルにおける放電容量維持率を指す。また、特性データが各サイクルの放電容量維持率の場合、特性データに関する情報である特徴量とは、各サイクルにおいて測定される、電流データ、電圧データ等を指す。
【0027】
また、ここでいうバッテリには種々のものが含まれ、一例として、リチウムイオン二次電池が挙げられる。また、リチウムイオン二次電池には、材料開発や電池設計の視点から、異なる製造条件のもとで製造されたものが含まれる。より具体的には、リチウムイオン二次電池を構成する、正極材料、負極材料、電解質材料等の構成部材を、種々比較変更して製造されたものや、電池組み立て完成後、活性化やエージング等の条件を種々比較変更して製造されたものが含まれる。
【0028】
なお、特性測定装置110では、様々な種類の消耗品(第1の消耗品の一例。例えば、バッテリ)について特性データを取得する。
図1の例は、互いに種類が異なる消耗品I、II、III、・・・について、それぞれ、特徴量I、II、III、・・・が測定され、特性データI、II、III、・・・が生成された様子を示している。
【0029】
生成された特性データI、II、III、・・・は、特徴量I、II、III、・・・、及び、対応する消耗品の製造条件i、ii、iii、・・・とともに、学習用データ生成装置120に入力される。
【0030】
学習用データ生成装置120は、学習装置130による学習処理に用いられる学習用データ121を生成する。
図1に示すように、学習用データ121は、情報の項目として、"ID"、"参考データ"、"入力データ"、"正解データ"を有し、それぞれの情報の項目には、
・"ID":各消耗品の種類、
・"参考データ":各消耗品の製造条件、
・"入力データ":測定開始時から基準時までに測定された特徴量、
・"正解データ":基準時の特性データを基準とした、基準時以降の特性データの減衰率、
が入力される。基準時とは、特性測定装置110が消耗品の劣化度合いを示す特性データに関する情報として、特徴量の測定を開始してから終了するまでの期間のうち、測定開始時からの期間が予め定めた期間(第1の期間)となる時刻を指す。なお、特徴量の測定を開始してから終了するまでの期間のうち、基準時から終了時までの期間を、第2の期間と称す。
【0031】
ただし、ここでいう期間は、時間に限定されず、時間と等価な概念も含まれるものとする。例えば、消耗品がバッテリの場合にあっては、基準時は、測定開始時からのサイクル数が予め定められた値となるサイクル数を指すものとする。
【0032】
学習用データ生成装置120により生成された学習用データ121は、学習装置130の学習用データ格納部133に格納される。
【0033】
学習装置130には、学習プログラムがインストールされており、当該プログラムが実行されることで、学習装置130は、ガウス過程回帰モデル131、比較/変更部132として機能する。
【0034】
ガウス過程回帰モデル131は、ノンパラメトリックな確率モデルであり、予測データ(本実施形態では、基準時以降の予測減衰率)とともに、予測データの分散(本実施形態では、95%信頼区間の幅)を出力することが可能なモデルである。本実施形態において、ガウス過程回帰モデル131は、学習用データ121の入力データ(測定開始時から基準時までに測定された特徴量)が入力されることで、出力データ(基準時以降の予測減衰率)を出力する。
【0035】
比較/変更部132は、出力データが、学習用データ121の正解データ(基準時の特性データを基準とした、基準時以降の特性データの減衰率)と一致するように、ガウス過程回帰モデル131のモデルパラメータを更新する。
【0036】
なお、更新されたモデルパラメータは、学習済みガウス過程回帰モデル332(詳細は後述)において保持され、予測フェーズにおいて用いられる。
【0037】
<学習用データ生成装置の処理の具体例>
次に、学習フェーズにおける予測データ表示システム100を構成する学習用データ生成装置120の処理の具体例について説明する。
図2は、学習用データ生成装置の処理の具体例を示す図である。
【0038】
図2において、符号210_1、210_2、210_3、・・・は、それぞれ、特性データI、II、III、・・・の具体例を示している。
図2に示すように、特性データI、II、III、・・・において、横軸は時刻tを表し、縦軸は時刻tにおける特性データy(t)を表している。
【0039】
また、符号210_1において、y(t0)_Iは、消耗品Iの測定開始時(時刻=t0)の特性データを、y(tB)_Iは、消耗品Iの基準時(時刻=tB)の特性データを、それぞれ表している。更に、y(tT)_Iは、消耗品Iの測定終了時(時刻=tT)の特性データを表している。
【0040】
一方、特徴量1(tX)、特徴量2(tX)、特徴量3(tX)、・・・は、時刻tX(ただし、t0≦tX≦tT)において特性データy(tX)_I等を生成するのに用いられた各特徴量を表している。
【0041】
図2の具体例によれば、学習用データ生成装置120は、
・符号210_1、210_2、210_3、・・・に示す特性データI、II、III、・・・と、
・特徴量1(t
X)、特徴量2(t
X)、特徴量3(t
X)、・・・と、
に基づいて、学習用データ121'を生成する。
【0042】
学習用データ121'は、
図1に示した学習用データ121の具体例であり、"ID"=Iに対応付けて、
・"参考データ":製造条件i
・"入力データ":特徴量1(t
X)_I、特徴量2(t
X)_I、・・・特徴量n(t
X)_I、
・"正解データ":減衰率r(t
X)_I=y(t
X)_I/y(t
B)_I、
がそれぞれ入力される。
【0043】
同様に、"ID"=IIに対応付けて、
・"参考データ"=製造条件ii
・"入力データ":特徴量1(tX)_II、特徴量2(tX)_II、・・・特徴量n(tX)_II、
・"正解データ":減衰率r(tX)_II=y(tX)_II/y(tB)_II、
がそれぞれ入力される。
【0044】
同様に、"ID"=IIIに対応付けて、
・"参考データ"=製造条件iii
・"入力データ":特徴量1(tX)_III、特徴量2(tX)_III、・・・特徴量n(tX)_III、
・"正解データ":減衰率r(tX)_III=y(tX)_III/y(tB)_III、
がそれぞれ入力される。
【0045】
<予測フェーズにおける予測データ表示システムのシステム構成及び予測データ表示装置の機能構成>
次に、予測フェーズにおける予測データ表示システムのシステム構成及び当該予測データ表示システムを構成する予測データ表示装置の機能構成について説明する。
【0046】
図3は、予測フェーズにおける予測データ表示システムのシステム構成及び予測データ表示装置の機能構成の一例を示す図である。
図3に示すように、予測フェーズにおける予測データ表示システム300は、特性測定装置110、予測用データ生成装置320、予測データ表示装置330を有する。
【0047】
このうち、特性測定装置110は、
図1を用いて説明済みであるため、ここでは説明を省略する。なお、予測フェーズにおいて、特性測定装置110は、予測対象の消耗品N(第2の消耗品の一例。例えば、製造条件mのもとで製造されたバッテリ)についての特性データNに関する情報として、特徴量Nを測定する。また、特性測定装置110は、測定した特徴量Nに基づいて特性データNを生成する。消耗品の一例である、製造条件mのもとで製造されたバッテリとしては、より具体的には、前述した学習用データの生成において用いたものと同種のリチウムイオン二次電池であって、製造条件mのもとで製造されたリチウムイオン二次電池が挙げられる。
【0048】
予測用データ生成装置320は、予測データ表示装置330による予測データ表示処理に用いられる予測用データ321を生成する。
図3に示すように、予測用データ321は、情報の項目として、"ID"、"参考データ"、"スケール変換用データ"、"入力データ"、"表示用データ"を有し、それぞれの情報の項目には、
・"ID":予測対象の消耗品の種類、
・"参考データ":予測対象の消耗品の製造条件、
・"スケール変換用データ":基準時の特性データ、
・"入力データ":測定開始時から基準時までに測定された特徴量、
・"表示用データ":測定開始時から基準時までの特性データ、
が入力される。
【0049】
予測用データ生成装置320により生成された予測用データ321は、予測データ表示装置330に通知される。
【0050】
予測データ表示装置330には、予測データ表示プログラムがインストールされており、当該プログラム実行されることで、予測データ表示装置330は、
・第1のスケール変換部331、
・学習済みガウス過程回帰モデル332、
・第2のスケール変換部333、
・表示画面生成部334、
として機能する。
【0051】
第1のスケール変換部331は、
・予測用データ321の"スケール変換用データ"に含まれる基準時の特性データと、
・学習用データ121の"正解データ"に含まれる減衰率と、
に基づいて、各消耗品(消耗品I、II、III、・・・)の基準時以降の特性データ(スケール変換後の特性データ)を算出する。また、第1のスケール変換部331は、学習済みガウス過程回帰モデル332から通知される、各消耗品についての類似度に基づいて、各消耗品の基準時以降の特性データの表示態様を決定する。更に、第1のスケール変換部331は、表示態様を決定した各消耗品の基準時以降の特性データを、類似度とともに表示画面生成部334に通知する。
【0052】
学習済みガウス過程回帰モデル332は予測部の一例であり、学習フェーズにおいてガウス過程回帰モデル131に対して学習処理を行うことで更新されたモデルパラメータを保持する。
【0053】
なお、上記説明においては、回帰モデルの一例としてガウス過程回帰モデルを挙げたが、本実施形態はこれに限定されない。例えば、ポアソン過程回帰モデル等、予測データとともに、予測データの95%信頼区間を出力することが可能なモデルであれば、他の回帰モデルを用いてもよい。
【0054】
学習済みガウス過程回帰モデル332は、予測用データ321の"入力データ"に含まれる、測定開始時から基準時までに測定された特徴量が入力されると、
・学習用データ121の"入力データ"に含まれる、測定開始時から基準時までに測定された特徴量との類似度を、各消耗品について算出し、第1のスケール変換部331に通知する処理と、
・算出した各消耗品との類似度を用いて、予測対象の消耗品Nの基準時以降の予測減衰率を算出するとともに、予測対象の消耗品Nの基準時以降の予測減衰率を算出した際の95%信頼区間を算出し、第2のスケール変換部333に通知する処理と、
を実行する。
【0055】
第2のスケール変換部333は、
・予測用データ321の"スケール変換用データ"に含まれる基準時の特性データと、
・学習済みガウス過程回帰モデル332から通知された基準時以降の予測減衰率と、
に基づいて、予測対象の消耗品の基準時以降の特性データ(予測データ)を予測する。
【0056】
また、第2のスケール変換部333は、予測用データ321の"スケール変換用データ"に含まれる基準時の特性データと、学習済みガウス過程回帰モデル332から通知された95%信頼区間とに基づいて、特性データに換算した95%信頼区間を算出する。
【0057】
更に、第2のスケール変換部333は、予測した予測対象の消耗品の基準時以降の特性データ(予測データ)と、算出した95%信頼区間(特性データ換算)とを、表示画面生成部334に通知する。
【0058】
表示画面生成部334は表示部の一例であり、表示画面を生成する。表示画面生成部334が生成する表示画面には、少なくとも、
・予測用データ321の"表示用データ"に含まれる、測定開始時から基準時までの特性データ、
・第2のスケール変換部333より通知された、消耗品Nの基準時以降の予測データ、
・第2のスケール変換部333より通知された、消耗品Nの95%信頼区間(特性データ換算)、
・第1のスケール変換部331より通知された、各消耗品(消耗品I、II、III、・・・)の基準時以降の特性データ、
が含まれる。
【0059】
このとき、表示画面生成部334では、第1のスケール変換部331により決定された表示態様で、第1のスケール変換部331より通知された、基準時以降の特性データを表示する。
【0060】
このように、予測データ表示装置330では、予測対象の消耗品について、機械学習モデルを用いて予測した予測データを表示する際、当該機械学習モデルの学習処理に用いた学習用データに基づいて生成した特性データを合わせて表示する。このとき、予測データ表示装置330では、学習用データに基づいて生成した特性データを、特徴量の類似度に応じた表示態様で表示する。これにより、ユーザは予測対象の消耗品についての予測データを、類似度に応じて表示態様が変更された過去の特性データと対比することが可能となる。この結果、ユーザは、予測データの正否が判断しやすくなる。
【0061】
<予測用データ生成装置の処理の具体例>
次に、予測フェーズにおける予測データ表示システム300を構成する予測用データ生成装置320の処理の具体例について説明する。
図4は、予測用データ生成装置の処理の具体例を示す図である。
【0062】
図4において、符号410は、特性データNの具体例を示している。
図4に示すように、特性データNにおいて、横軸は時刻tを表し、縦軸は時刻tにおける予測対象の消耗品Nの特性データy(t)を表している。
【0063】
また、符号410において、y(t0)_Nは、消耗品Nの測定開始時(時刻=t0)の特性データを、y(tB)_Nは、消耗品Nの基準時(時刻=tB)の特性データを、それぞれ表している。
【0064】
一方、特徴量1(tX)、特徴量2(tX)、特徴量3(tX)、・・・は、時刻tX(ただし、t0≦tX≦tB)において特性データy(tX)_Nを生成するのに用いられた各特徴量を表している。
【0065】
図4の具体例によれば、予測用データ生成装置320は、符号410に示す特性データNと、特徴量1(t
X)、特徴量2(t
X)、特徴量3(t
X)、・・・とに基づいて、予測用データ321'を生成する。
【0066】
予測用データ321'は、
図3に示した予測用データ321の具体例であり、"ID"=Nに対応付けて、
・"参考データ":製造条件ε、
・スケール変換用データ:特性データy(t
B)_N、
・"入力データ":特徴量1(t
X)_N、特徴量2(t
X)_N、・・・特徴量n(t
X)_N、
・"表示用データ":特性データy(t
X)_N、
がそれぞれ入力される。
【0067】
<学習装置及び予測データ表示装置の説明>
次に、学習フェーズにおける予測データ表示システム100を構成する学習装置130及び予測フェーズにおける予測データ表示システム300を構成する予測データ表示装置330の詳細について説明する。
【0068】
(1)学習装置及び予測データ表示装置330のハードウェア構成
学習装置130及び予測データ表示装置330のハードウェア構成について説明する。
図5は、学習装置及び予測データ表示装置のハードウェア構成の一例を示す図である。学習装置130と予測データ表示装置330とは、同様のハードウェア構成を有するため、ここでは、
図5を用いてまとめて説明する。
【0069】
図5に示すように、学習装置130及び予測データ表示装置330は、プロセッサ501、メモリ502、補助記憶装置503、I/F(Interface)装置504、通信装置505、ドライブ装置506を有する。なお、学習装置130及び予測データ表示装置330の各ハードウェアは、バス507を介して相互に接続されている。
【0070】
プロセッサ501は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)等の各種演算デバイスを有する。プロセッサ501は、各種プログラム(例えば、学習プログラム、予測データ表示プログラム等)をメモリ502上に読み出して実行する。
【0071】
メモリ502は、ROM(Read Only Memory)、RAM(Random Access Memory)等の主記憶デバイスを有する。プロセッサ501とメモリ502とは、いわゆるコンピュータを形成し、プロセッサ501が、メモリ502上に読み出した各種プログラムを実行することで、当該コンピュータは各種機能を実現する。
【0072】
補助記憶装置503は、各種プログラムや、各種プログラムがプロセッサ501によって実行される際に用いられる各種データを格納する。例えば、上述した学習用データ格納部133は、補助記憶装置503において実現される。
【0073】
I/F装置504は、外部装置である表示装置510及び操作装置520と接続する接続デバイスである。通信装置505は、ネットワークを介して外部装置(例えば、学習用データ生成装置120、予測用データ生成装置320)と通信するための通信デバイスである。
【0074】
ドライブ装置506は記録媒体530をセットするためのデバイスである。ここでいう記録媒体530には、CD-ROM、フレキシブルディスク、光磁気ディスク等のように情報を光学的、電気的あるいは磁気的に記録する媒体が含まれる。また、記録媒体530には、ROM、フラッシュメモリ等のように情報を電気的に記録する半導体メモリ等が含まれていてもよい。
【0075】
なお、補助記憶装置503にインストールされる各種プログラムは、例えば、配布された記録媒体530がドライブ装置506にセットされ、該記録媒体530に記録された各種プログラムがドライブ装置506により読み出されることでインストールされる。あるいは、補助記憶装置503にインストールされる各種プログラムは、通信装置505を介してネットワークからダウンロードされることで、インストールされてもよい。
【0076】
(2)予測データ表示装置の第1のスケール変換部の処理の具体例
次に、予測データ表示装置330の第1のスケール変換部331の処理の具体例について説明する。
図6は、予測データ表示装置の第1のスケール変換部の処理の具体例を示す図である。
【0077】
図6に示すように、第1のスケール変換部331は、減衰率算出部601と表示態様変更部602とを有する。
【0078】
減衰率算出部601は、基準時の特性データとして、特性データy(t
B)_Nを取得し、各消耗品(消耗品I、II、III、・・・)についての基準時以降の減衰率にかけ合わせることで、各消耗品の基準時以降の特性データを算出する。
図6の例は、消耗品I、II、III、・・・についての減衰率として、それぞれ、
・r(t
x)_I=y(t
X)_I/y(t
B)_I(ただし、t
B≦t
X≦t
T)、
・r(t
x)_II=y(t
X)_II/y(t
B)_II(ただし、t
B≦t
X≦t
T)、
・r(t
x)_III=y(t
X)_III/y(t
B)_III(ただし、t
B≦t
X≦t
T)、
・・・
にかけ合わせることで、基準時以降の特性データとして、それぞれ、
・消耗品Iの基準時以降の特性データ{y(t
X)_I/y(t
B)_I}×y(t
B)_N(ただし、t
B≦t
X≦t
T)、
・消耗品IIの基準時以降の特性データ{y(t
X)_II/y(t
B)_II}×y(t
B)_N(ただし、t
B≦t
X≦t
T)、
・消耗品IIIの基準時以降の特性データ{y(t
X)_III/y(t
B)_III}×y(t
B)_N(ただし、t
B≦t
X≦t
T)、
・・・、
が算出された様子を示している。
【0079】
表示態様変更部602は、学習済みガウス過程回帰モデル332から通知される、各消耗品(消耗品I、II、III、・・・)についての類似度に基づいて、各消耗品の基準時以降の特性データの表示態様を決定する。
図6の例は、消耗品I、II、III、・・・についての類似度として、学習済みガウス過程回帰モデル332から、それぞれ、類似度I、類似度II、類似度III、・・・が通知された様子を示している。
【0080】
また、
図6の例は、学習済みガウス過程回帰モデル332から通知される、各消耗品についての類似度が"1"の場合、表示態様変更部602が、対応する基準時以降の特性データのグラフの表示色を青色に決定することを示している。
【0081】
また、
図6の例は、学習済みガウス過程回帰モデル332から通知される、各消耗品についての類似度が"0"の場合、表示態様変更部602が、対応する基準時以降の特性データのグラフの表示色をグレー色に決定することを示している。
【0082】
なお、学習済みガウス過程回帰モデル332から通知される、各消耗品についての類似度が"0"より大きく"1"より小さい場合、表示態様変更部602では、対応する基準時以降の特性データのグラフの表示色を、グレー色~青色の間の中間色に決定する。
【0083】
例えば、表示態様変更部602では、類似度が"0"に近い場合、対応する基準時以降の特性データのグラフの表示色を、グレー色~青色のグラデーションの各色のうち、グレー色に近い色に決定する。また、表示態様変更部602では、類似度が"1"に近い場合、対応する基準時以降の特性データのグラフの表示色を、グレー色~青色のグラデーションの各色のうち、青色に近い色に決定する。
【0084】
ただし、表示態様変更部602による表示色の決定方法は、これに限定されず、例えば、類似度が所定の閾値未満の場合にはグレー色に決定し、類似度が所定の閾値以上の場合には、青色に決定するようにしてもよい。
【0085】
(3)予測データ表示装置の学習済みガウス過程回帰モデルの処理の具体例
次に、予測データ表示装置330の学習済みガウス過程回帰モデル332の処理の具体例について説明する。
図7は、予測データ表示装置の学習済みガウス過程回帰モデルの処理の具体例を示す図である。
【0086】
図7に示すように、学習済みガウス過程回帰モデル332は、類似度算出部701、信頼区間算出部702、減衰率予測部703、モデルパラメータ保持部704を有する。
【0087】
類似度算出部701には、予測用データ321の"入力データ"に含まれる、測定開始時から基準時までに測定された特徴量と、学習用データ121の"入力データ"に含まれる、測定開始時から基準時までに測定された特徴量と、が入力される。
【0088】
図7の例は、予測用データ321の"入力データ"に含まれる、測定開始時から基準時までに測定された特徴量として、
・特徴量F
y(特徴量1(t
X)_N、特徴量2(t
X)_N、・・・特徴量n(t
X)_N、ただし、t
0≦t
X≦t
B)、
が入力された様子を示している。また、
図7の例は、学習用データ121の"入力データ"に含まれる、測定開始時から基準時までに測定された特徴量として、
・特徴量F
y(特徴量1(t
X)_I、特徴量2(t
X)_I、・・・特徴量n(t
X)_I、ただし、t
0≦t
X≦t
B)、
・特徴量F
y(特徴量1(t
X)_II、特徴量2(t
X)_II、・・・特徴量n(t
X)_II、ただし、t
0≦t
X≦t
B)、
・特徴量F
y(特徴量1(t
X)_III、特徴量2(t
X)_III、・・・特徴量n(t
X)_III、ただし、t
0≦t
X≦t
B)、
・・・
が入力された様子を示している。
【0089】
また、類似度算出部701は、入力された特徴量Fx、特徴量Fyに基づいて、下式1を用いて、各消耗品(消耗品I、II、III、・・・)について類似度を算出する。
【0090】
【数1】
ただし、γは、学習フェーズにおいて学習処理が行われた際に算出され、モデルパラメータ保持部704に保持されたモデルパラメータである。
【0091】
また、類似度算出部701は、算出した各消耗品についての類似度を第1のスケール変換部331に通知する。
図7の例は、消耗品Iについての類似度として、類似度Iを、消耗品IIについての類似度として、類似度IIを、消耗品IIIについての類似度として、類似度IIIを、それぞれ、第1のスケール変換部331に通知した様子を示している。
【0092】
信頼区間算出部702は、類似度算出部701により算出される、各消耗品(消耗品I、II、III、・・・)との類似度を用いて、減衰率予測部703が算出する予測減衰率についての95%信頼区間を算出する。
図7の例は、95%信頼区間として、(Max_r'(t
X)_N、Min_r'(t
X)_N)が算出された様子を示している。
【0093】
減衰率予測部703は、類似度算出部701により算出される、各消耗品(消耗品I、II、III、・・・)との類似度を用いて、予測対象の消耗品Nの基準時以降の予測減衰率を算出する。
図7の例は、予測対象の消耗品Nの基準時以降の予測減衰率として、予測減衰率r'(t
X)_Nを算出した様子を示している。なお、減衰率予測部703は、例えば、下式2に示すカーネルを算出することで、予測減衰率r'(t
X)_Nを算出する。
【0094】
【数2】
ただし、C
var、C
bias、αは、学習フェーズにおいて学習処理が行われた際に算出され、モデルパラメータ保持部704に保持されたモデルパラメータである。
【0095】
モデルパラメータ保持部704は、学習フェーズにおいて学習処理が行われた際に算出されたモデルパラメータを保持する。
図7の例は、モデルパラメータ保持部704が、モデルパラメータとして、少なくとも、C
var、γ、C
bias、αを保持していることを示している。
【0096】
なお、類似度算出部701において、入力される特徴量Fx、特徴量Fyには、入力された特徴量を変換して用いてもよく、例えば、主成分分析、独立成分分析、カーネルPCA等の次元圧縮の処理を施した値を用いてもよい。
【0097】
(4)予測データ表示装置の第2のスケール変換部の処理の具体例
次に、予測データ表示装置の第2のスケール変換部333の処理の具体例について説明する。
図8は、予測データ表示装置の予測データ表示装置の第2のスケール変換部の処理の具体例を示す図である。
【0098】
図8に示すように、第2のスケール変換部333は、予測データ算出部801と信頼区間算出部802とを有する。
【0099】
予測データ算出部801は、基準時の特性データとして、特性データy(t
B)_Nを取得し、予測対象の消耗品Nについての予測減衰率にかけ合わせることで、予測対象の消耗品Nの基準時以降の予測データを予測する。
図8の例は、予測対象の消耗品Nについての予測減衰率として、r'(t
X)_Nにかけ合わせることで、基準時以降の予測データとして、
・予測データy'(t
X)_N=y(t
B)_N×r'(t
X)_N
が予測された様子を示している。
【0100】
信頼区間算出部802は、基準時の特性データとして、特性データy(t
B)_Nを取得し、予測減衰率についての95%信頼区間にかけ合わせることで、特性データに換算した95%信頼区間を算出する。
図8の例は、予測減衰率についての95%信頼区間として、
・95%信頼区間(Max_r'(t
X)_N,Min_r'(t
X)_N)
にかけ合わせることで、特性データに換算した95%信頼区間として、
・95%信頼区間(Max_r'(t
X)_N×y(t
B)_N,Min_r'(t
X)_N×y(t
B)_N)
が算出された様子を示している。
【0101】
なお、予測データ算出部801により予測された予測データ、及び、信頼区間算出部802により算出された95%信頼区間(特性データ換算)をグラフ化する場合のグラフ化方法としては、複数の方法が挙げられる。
【0102】
図9は、予測データ及び95%信頼区間のグラフ化例を示す図である。なお、
図9の例では、説明の便宜上、表示用データである特性データy(t
X)_N(ただし、t
0≦t
X≦t
B)もあわせて示している(カラー化された
図9中の赤線参照)。
【0103】
図9のうち、グラフ910は、基準時以降の予測データとして、3つの時刻のみを予測してプロットし、各プロットを点線で結んだ折れ線グラフとして示したものである。
【0104】
また、
図9のうち、グラフ920は、基準時以降の予測データとして、3つの時刻のみを予測し、95%信頼区間とともに、箱ひげ図として示したものである(カラー化された
図9中の緑色の箱ひげ図参照)。
【0105】
一方、
図9のうち、グラフ930は、基準時以降の予測データを毎時刻予測し、95%信頼区間とともに、曲線グラフとして示したものである(カラー化された
図9中の緑点線参照)。
【0106】
なお、グラフ910~930は、グラフ化の一例であり、グラフ910~930以外の方法によりグラフ化してもよい。
【0107】
(5)予測データ表示装置の表示画面生成部の処理の具体例
次に、予測データ表示装置330の表示画面生成部334の処理の具体例について説明する。
図10は、予測データ表示装置の表示画面生成部の処理の具体例を示す第1の図である。
図10において、符号1010_1、1010_2、1010_3、・・・は、第1のスケール変換部331により通知された、
・消耗品Iの基準時以降の特性データ{y(t
X)_I/y(t
B)_I}×y(t
B)_N(ただし、t
B≦t
X≦t
T)、
・消耗品IIの基準時以降の特性データ{y(t
X)_II/y(t
B)_II}×y(t
B)_N(ただし、t
B≦t
X≦t
T)、
・消耗品IIIの基準時以降の特性データ{y(t
X)_III/y(t
B)_III}×y(t
B)_N(ただし、t
B≦t
X≦t
T)、
・・・、
を、決定された表示色のもとでグラフ化したものである。
【0108】
また、
図10において、符号920は、予測対象の消耗品Nの、
・基準時以降の予測データy'(t
X)_N=y(t
B)_N×r'(t
X)_Nと、
・特性データに換算した95%信頼区間(Max_r'(t
X)_N×y(t
B)_N,Min_r'(t
X)_N×y(t
B)_N)と、
をグラフ化したものである。
【0109】
また、
図10に示すように、表示画面生成部334は、テキストデータ生成部1001、グラフ結合部1002を有する。
【0110】
テキストデータ生成部1001は、学習用データ格納部133に格納された学習用データ121の"ID"、"参考データ"を読み出す。また、テキストデータ生成部1001は、第1のスケール変換部331より、各消耗品(消耗品I、II、III、・・・)についての類似度(類似度I、II、III、・・・)を取得する。
【0111】
更に、テキストデータ生成部1001は、読み出した"ID"、"参考データ"と、取得した類似度とを対応付けてテキストテーブル1021を生成し、表示画面1020に表示する。
【0112】
グラフ結合部1002は、予測用データ321の"表示用データ"より、予測対象の消耗品Nについての、測定開始時から基準時までの特性データのグラフを取得する。また、グラフ結合部1002は、第2のスケール変換部333より、予測対象の消耗品Nについての予測データのグラフと、95%信頼区間のグラフとを取得する(符号920)。また、グラフ結合部1002は、第1のスケール変換部331より、各消耗品(消耗品I、II、III、・・・)の基準時以降の特性データのグラフを取得する(符号1010_1、1010_2、1010_3、・・・)。
【0113】
また、グラフ結合部1002は、取得したグラフを結合することで結合グラフ1022を生成し、表示画面1020に表示する。
【0114】
なお、結合グラフ1022において、赤線は、予測対象の消耗品Nについての、測定開始時から基準時までの特性データのグラフである。また、結合グラフ1022において、緑色の箱ひげ図は、予測対象の消耗品Nについての予測データ及び95%信頼区間のグラフである(符号920)。更に、結合グラフ1022において、青色~グレー色の線は、各消耗品(消耗品I、II、III、・・・)の基準時以降の特性データのグラフである(符号1010_1、1010_2、1010_3、・・・)。そして、カラーバー1023は、各消耗品の基準時以降の特性データの表示色と、各消耗品についての類似度との関係を表している(各色はカラー化した
図10参照)。
【0115】
このように、本実施形態では、予測データのグラフ(緑色の箱ひげ図)を表示する際に、ガウス過程回帰モデルの学習処理に用いた学習用データに基づいて生成した各消耗品についての特性データのグラフ(青色~グレー色)を合わせて表示する。このとき、基準時以降のグラフを、基準時の特性データに応じてスケール変換したうえで表示する。これにより、ユーザは、予測対象の消耗品についてのデータを類似度に応じて色分けされた過去の特性データと対比することが可能となる。この結果、ユーザは予測データの正否が判断しやすくなる。
【0116】
図10の例の場合、予測データのグラフ(緑色の箱ひげ図)が、各消耗品についての特性データのグラフのうち、青色の特性データのグラフと概ね重複する範囲にあるため、ユーザは、予測データが正しいと判断することができる。
【0117】
一方、
図11は、予測データ表示装置の表示画面生成部の処理の具体例を示す第2の図である。
図11の表示画面1110の例の場合、予測対象の消耗品Nについての特徴量と、各消耗品(消耗品I、II、III、・・・)についての特徴量との類似度が低い。このため、結合グラフ1122において、予測データのグラフ(緑色の箱ひげ図)が、グレー色の特性データのグラフの範囲にある。この結果、ユーザは、予測データが誤っている可能性が高いと判断することができる。
【0118】
このような予測データの正否の判断は、新たな消耗品が予測対象となる場合に、特に有効である。
【0119】
<予測データ表示システムにおける処理の流れ>
次に、予測データ表示システム100、300における処理の流れについて説明する。
【0120】
(1)学習フェーズにおける予測データ表示システムにおける学習処理の流れ
はじめに、学習フェーズにおける予測データ表示システム100における学習処理の流れについて説明する。
図12は、学習処理の流れを示すフローチャートである。
【0121】
ステップS1201において、特性測定装置110は、各消耗品について生成した特性データを取得する。
【0122】
ステップS1202において、学習用データ生成装置120は、各消耗品について、測定開始時から基準時までの特性データの生成に用いた特徴量を取得する。
【0123】
ステップS1203において、学習用データ生成装置120は、各消耗品について、基準時以降の特性データについて、減衰率を算出する。
【0124】
ステップS1204において、学習用データ生成装置120は、学習用データを生成する。
【0125】
ステップS1205において、学習装置130は、学習用データを用いてガウス過程回帰モデルについて学習処理を行う。
【0126】
ステップS1206において、学習装置130は、学習処理を行うことで生成した学習済みガウス過程回帰モデル(のモデルパラメータ)を、予測データ表示装置330に通知する。
【0127】
(2)予測フェーズにおける予測データ表示システムにおける予測データ表示処理の流れ
次に、予測フェーズにおける予測データ表示システム300における予測データ表示処理の流れについて説明する。
図13は、予測データ表示処理の流れを示す第1のフローチャートである。
【0128】
ステップS1301において、予測用データ生成装置320は、予測対象の消耗品について特性測定装置110が生成した、測定開始時から基準時までの特性データを取得する。
【0129】
ステップS1302において、予測用データ生成装置320は、特性測定装置110が、予測対象の消耗品について、測定開始時から基準時までの特性データを生成した際に用いた特徴量を取得する。
【0130】
ステップS1303において、予測用データ生成装置320は、予測用データを生成する。
【0131】
ステップS1304において、予測データ表示装置330は、学習用データとして格納された各消耗品の特徴量と、予測用データとして格納された予測対象の消耗品の特徴量との類似度を算出する。
【0132】
ステップS1305において、予測データ表示装置330は、学習用データとして格納された各消耗品の基準時以降の特性データを、スケール変換する。
【0133】
ステップS1306において、予測データ表示装置330は、スケール変換後の各消耗品の基準時以降の特性データの表示態様を、対応する類似度に基づいて決定する。
【0134】
ステップS1307において、予測データ表示装置330は、予測対象の消耗品の測定開始時から基準時までの特徴量を、学習済みガウス過程回帰モデルに入力する。
【0135】
ステップS1308において、予測データ表示装置330は、予測減衰率と95%信頼区間とを取得する。
【0136】
ステップS1309において、予測データ表示装置330は、取得した予測減衰率と95%信頼区間とをスケール変換し、予測データと95%信頼区間(特性データ換算)とを取得する。
【0137】
ステップS1310において、予測データ表示装置330は、
・予測対象の消耗品についての測定開始時から基準時までの特性データのグラフと、
・基準時以降の予測データ及び95%信頼区間(特性データ換算)のグラフと、
・類似度に応じて表示色が決定された基準時以降の各消耗品の特性データのグラフと
を結合した結合グラフを生成する。
【0138】
ステップS1311において、予測データ表示装置330は、類似度を、消耗品の種類及び製造条件と対応付けたテキストテーブルを生成する。
【0139】
ステップS1312において、予測データ表示装置330は、結合グラフとテキストテーブルとを含む表示画面を生成し、表示する。
【0140】
<まとめ>
以上の説明から明らかなように、第1の実施形態にかかる予測データ表示システムは、
・測定開始時から基準時までの各消耗品の劣化度合いを示す第1の特性データに関する情報(特徴量)を入力データとし、基準時以降の各消耗品の劣化度合いを示す第2の特性データに関する情報(減衰率)を正解データとする学習用データを生成する。
・生成した学習用データを用いてガウス過程回帰モデル対して学習処理を行い、学習済みガウス過程回帰モデルを生成する。
・学習済みガウス過程回帰モデルに、測定開始時から基準時までの予測対象の消耗品の劣化度合いを示す第3の特性データに関する情報(特徴量)を入力する。これにより、基準時以降の予測対象の消耗品の劣化度合いを示す第4の特性データに関する情報(予測減衰率)を算出する。
・基準時以降の予測対象の消耗品の劣化度合いを示す第4の特性データを表示する際に、第1の特性データに関する情報(特徴量)と、第3の特性データに関する情報(特徴量)との類似度に応じた表示態様で、第2の特性データを合わせて表示する。
【0141】
これにより、ユーザは、予測対象の消耗品についての予測データを、類似度に応じて表示態様が変更された過去の特性データと対比することが可能となる。この結果、ユーザは、予測データの正否が判断しやすくなる。
【0142】
つまり、本実施形態によれば、消耗品の劣化度合いを、機械学習モデルを用いて予測した場合において、予測データの正否が判断しやすくなる。
【0143】
[第2の実施形態]
上記第1の実施形態において、ユーザは、予測対象の消耗品についての予測データと、学習用データに含まれる各消耗品の特性データとをグラフ化して比較することで、予測データの正否を判断しやすくした。これに対して、第2の実施形態では、予測対象の消耗品についての予測データと、学習用データに含まれる各消耗品の特性データとを、95%信頼区間を用いて定量化して比較する。以下、第2の実施形態について、上記第1の実施形態との相違点を中心に説明する。
【0144】
<予測データ表示装置の表示画面生成部の処理の具体例>
はじめに、予測データ表示装置330の表示画面生成部の処理の具体例について説明する。
図14は、予測データ表示装置の表示画面生成部の処理の具体例を示す第3の図である。
図10を用いて説明した具体例との相違点は、
図14の表示画面生成部1410の場合、レベル算出部1411を有する点である。
【0145】
レベル算出部1411は、第2のスケール変換部333より、予測データについての95%信頼区間(特性データ換算)を取得し、予測データについての95%信頼区間の幅(特性データ換算)を算出する。
【0146】
また、レベル算出部1411は、学習用データ121を用いてガウス過程回帰モデル131に対して学習処理が行われた際に算出された95%信頼区間の最大幅及び最小幅(特性データ換算)を、最悪値及び最良値として、学習装置130より取得する。
【0147】
また、レベル算出部1411は、予測データについての95%信頼区間の幅(特性データ換算)と、学習装置130より取得した最悪値及び最良値とを比較する。これにより、レベル算出部1411は、予測データについての95%信頼区間の幅(特性データ換算)の正常度のレベルを算出する。
【0148】
図14において、データテーブル1421は、レベル算出部1411により算出されたレベルを含むテーブルの一例である。
【0149】
データテーブル1421において、"最良値"とは、学習装置130より取得した95%信頼区間の最小幅(特性データ換算)であり、
図14の例では、"0.016"である。
【0150】
また、データテーブル1421において、"最悪値"とは、学習装置130より取得した95%信頼区間の最大幅(特性データ換算)であり、
図14の例では、"0.298"である。
【0151】
また、データテーブル1421において、"予測値"とは、予測データについての95%信頼区間の幅(特性データ換算)であり、
図14の例では、"0.083"である。
【0152】
また、データテーブル1421において、"レベル"は、予測データについての95%信頼区間の幅(特性データ換算)の正常度のレベルである。
図14の例では、正常度のレベルは、{(予測値("0.083")-最良値("0.016"))/(最悪値("0.298")-最良値("0.016"))}×100=24である。
【0153】
<予測フェーズにおける予測データ表示システムにおける予測データ表示処理の流れ>
次に、予測フェーズにおける予測データ表示システム300における予測データ表示処理の流れについて説明する。
図15は、予測データ表示処理の流れを示す第2のフローチャートである。
図13を用いて説明したフローチャートとの相違点は、ステップS1501、S1502~S1504である。
【0154】
ステップS1501において、予測データ表示装置330は、学習フェーズにおいて、ガウス過程回帰モデルに対して学習処理が行われた際に算出された95%信頼区間の最大幅及び最小幅(特性データ換算)を、最悪値及び最良値として取得する。
【0155】
ステップS1502において、予測データ表示装置330は、ステップS1309において取得された95%信頼区間(特性データ換算)と、ステップS1501において取得した最悪値及び最良値とを比較する。これにより、予測データ表示装置330は、予測データについての95%信頼区間の幅(特性データ換算)の正常度のレベルを算出する。
【0156】
ステップS1503において、予測データ表示装置330は、類似度を、消耗品の種類及び製造条件と対応付けたテキストテーブルを生成する。また、予測データ表示装置330は、算出したレベルを含むデータテーブルを生成する。
【0157】
ステップS1504において、予測データ表示装置330は、結合グラフとテキストテーブルとデータテーブルとを含む表示画面を生成し、表示する。
【0158】
<まとめ>
以上の説明から明らかなように、第2の実施形態に係る予測データ表示システムは、
・予測対象の消耗品について予測データを予測した際の95%信頼区間の幅と、学習用データを用いて学習処理を行った際の95%信頼区間の最大幅及び最小幅とを比較し、予測データを予測した際の95%信頼区間の幅の正常度のレベルを算出する。
【0159】
これにより、第2の実施形態によれば、算出した予測データの正常度のレベルを定量化することが可能となる。この結果、ユーザは、予測データの正否がより判断しやすくなる。
【0160】
つまり、本実施形態によれば、消耗品の劣化度合いを、機械学習モデルを用いて予測した場合において、予測データの正否がより判断しやすくなる。
【0161】
[第3の実施形態]
上記第2の実施形態では、表示画面に、結合グラフと、テキストテーブルと、データテーブルとを表示するものとして説明した。これに対して、第3の実施形態では、表示画面にデータテーブル内のデータを箱ひげ図として表示する。以下、第3の実施形態について、上記第2の実施形態との相違点を中心に説明する。
【0162】
<予測データ表示装置の表示画面生成部の処理の具体例>
はじめに、予測データ表示装置330の表示画面生成部の処理の具体例について説明する。
図16は、予測データ表示装置の表示画面生成部の処理の具体例を示す第4の図である。
図16に示すように、表示画面生成部1610は、レベル算出部1411を有する。
【0163】
なお、レベル算出部1411の機能は、上記第2の実施形態において、
図14を用いて説明済みであるため、ここでは説明を省略する。ただし、
図16に示すレベル算出部1411の場合、予測対象の消耗品が複数あり(
図16の例では5つ)、第2のスケール変換部333より、複数の95%信頼区間(特性データ換算)を取得する。また、
図16に示すレベル算出部1411の場合、取得した複数の95%信頼区間(特性データ換算)それぞれについて、95%信頼区間の幅(特性データ換算)を算出する。
【0164】
また、
図16に示すレベル算出部1411の場合、算出した複数の95%信頼区間の幅(特性データ換算)それぞれについて、最悪値及び最良値と比較し、正常度のレベルを算出する。
【0165】
更に、
図16に示すレベル算出部1411の場合、算出したそれぞれのレベルと、最悪値及び最良値とに基づいて、箱ひげ図を生成し、表示画面1620に表示する。
【0166】
表示画面1620において、箱ひげ
図1621は、予測対象の消耗品N
1について予測データを予測した際の95%信頼区間の幅(特性データ換算)に基づいて算出したレベルを表したものである。
【0167】
同様に、表示画面1620において、箱ひげ
図1622~1625は、予測対象の消耗品N
2~予測対象の消耗品N
5について予測データを予測した際の95%信頼区間の幅(特性データ換算)に基づいて算出したレベルを表したものである。
【0168】
このように、複数の予測対象の消耗品について予測データを予測した場合にあっては、レベルを示す箱ひげ図を1画面に表示することで、ユーザは、複数の予測対象の消耗品について予測された予測データの正否を、容易に判断することができる。
【0169】
<まとめ>
以上の説明から明らかなように、第3の実施形態に係る予測データ表示システムは、
・複数の予測対象の消耗品について予測データを予測した際の95%信頼区間の幅と、学習用データを用いて学習処理を行った際の95%信頼区間の最大幅及び最小幅とを比較する。これにより、複数の予測データを予測した際の95%信頼区間の幅の正常度のレベルをそれぞれ算出する。
・算出した複数のレベルを、箱ひげ図として、1画面に配列して表示する。
【0170】
これにより、第3の実施形態によれば、ユーザは、算出された複数の予測データの正常度のレベルの一覧を視認することが可能となり、複数の予測データの正否を容易に判断することができる。
【0171】
つまり、本実施形態によれば、複数の消耗品の劣化度合いを、機械学習モデルを用いて予測した場合において、複数の予測データの正否が判断しやすくなる。
【0172】
[その他の実施形態]
上記各実施形態において、学習装置と予測装置とは別体の装置であるとして説明した。しかしながら、学習装置と予測装置とは一体の装置により構成してもよい。また、上記各実施形態において、学習用データ生成装置と学習装置とは別体であるとして説明した。しかしながら、学習用データ生成装置と学習装置とは一体の装置により構成してもよい。同様に、上記各実施形態において、予測用データ生成装置と予測データ表示装置とは別体であるとして説明した。しかしながら、予測用データ生成装置と予測データ表示装置とは一体の装置により構成してもよい。
【0173】
また、上記各実施形態において、類似度算出部は、学習済みガウス過程回帰モデルの一部の機能であるとして説明したが、学習済みガウス過程回帰モデルとは異なる機能部として実現されてもよい。また、類似度算出部による類似度の算出方法は任意であり、特徴量の差分値が小さい場合に類似度が高くなる関数であれば、任意の関数を用いて算出することができる。
【0174】
また、上記各実施形態では、消耗品の劣化度合いを示す特性データとして、バッテリの放電容量維持率を例示したが、消耗品の劣化度合いを示す特性データは、バッテリの放電容量維持率以外の他の特性データであってもよい。
【0175】
また、上記各実施形態では、消耗品としてバッテリを例示したが、消耗品は、バッテリ以外の物品であってもよい。
【0176】
また、上記各実施形態では、減衰率として、rX=y(tX)/y(tB)を算出したが、減衰率の算出方法はこれに限定されない。例えば、rXを下式3により変換した減衰率を用いてもよい。
【0177】
【数3】
上記変換後の減衰率を正解データとしてガウス過程回帰モデルに対して学習処理を行った場合、学習済みガウス過程回帰モデルから出力される変換後の減衰率に対して、下式4により、変換前の減衰率を算出することができる。
【0178】
【数4】
この場合、算出される減衰率は、0<r
X<1となる。
【0179】
また、上記各実施形態では、予測対象の消耗品についての予測データの利用シーンについて言及しなかったが、例えば、予測対象の消耗品についての予測データは、予測対象の消耗品の製造条件に反映させてもよい。具体的には、予測対象の消耗品が、バッテリ(例えば、リチウムイオン二次電池等)であった場合には、電池組み立て完成後の、活性化やエージング等の条件を、予測データに基づいて決定してもよい。
【0180】
なお、上記実施形態に挙げた構成等に、その他の要素との組み合わせ等、ここで示した構成に本発明が限定されるものではない。これらの点に関しては、本発明の趣旨を逸脱しない範囲で変更することが可能であり、その応用形態に応じて適切に定めることができる。
【0181】
本出願は、2021年9月15日に出願された日本国特許出願第2021-150217号に基づきその優先権を主張するものであり、同日本国特許出願の全内容を参照することにより本願に援用する。
【符号の説明】
【0182】
100 :予測データ表示システム
110 :特性測定装置
120 :学習用データ生成装置
121 :学習用データ
130 :学習装置
131 :ガウス過程回帰モデル
300 :予測データ表示システム
320 :予測用データ生成装置
321 :予測用データ
330 :予測データ表示装置
331 :第1のスケール変換部
332 :学習済みガウス過程回帰モデル
333 :第2のスケール変換部
334 :表示画面生成部
601 :減衰率算出部
602 :表示態様変更部
701 :類似度算出部
702 :信頼区間算出部
703 :減衰率予測部
704 :モデルパラメータ保持部
801 :予測データ算出部
802 :信頼区間算出部
1001 :テキストデータ生成部
1002 :グラフ結合部
1020 :表示画面
1021 :テキストテーブル
1022 :結合グラフ
1110 :表示画面
1410 :表示画面生成部
1411 :レベル算出部
1420 :表示画面
1421 :データテーブル
1610 :表示画面生成部
1620 :表示画面
【手続補正書】
【提出日】2023-10-12
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
第1の期間における第1の消耗品の劣化度合いを示す第1の特性データに関する情報を入力データとし、前記第1の期間より後の第2の期間における前記第1の消耗品の劣化度合いを示す第2の特性データに関する情報を正解データとする学習用データを用いて学習処理が行われた学習済みのモデルに、前記第1の期間における予測対象の第2の消耗品の劣化度合いを示す第3の特性データに関する情報を入力し、前記第2の期間における予測対象の第2の消耗品の劣化度合いを示す第4の特性データに関する情報を算出する予測工程と、
前記第4の特性データのグラフを表示する際に、前記第1の特性データに関する情報と、前記第3の特性データに関する情報との類似度に応じた表示態様で、前記第2の特性データのグラフを合わせて表示する表示工程と、
前記予測工程において算出された前記第4の特性データに関する情報に基づいて、予測対象の第2の消耗品の製造条件を決定する決定工程と
をコンピュータが実行する消耗品の製造方法。
【請求項2】
前記予測対象の第2の消耗品は、バッテリである、請求項1に記載の消耗品の製造方法。
【請求項3】
前記バッテリは、リチウムイオン二次電池である、請求項2に記載の消耗品の製造方法。
【請求項4】
前記製造条件には、前記リチウムイオン二次電池の組み立て完成後の活性化またはエージングの条件が含まれる、請求項3に記載の消耗品の製造方法。
【手続補正3】
【補正対象書類名】明細書
【補正対象項目名】0001
【補正方法】変更
【補正の内容】
【0001】
本開示は、消耗品の製造方法に関する。