IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本電信電話株式会社の特許一覧

<>
  • 特開-光モジュールの組立方法 図1
  • 特開-光モジュールの組立方法 図2
  • 特開-光モジュールの組立方法 図3
  • 特開-光モジュールの組立方法 図4
  • 特開-光モジュールの組立方法 図5
  • 特開-光モジュールの組立方法 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023024617
(43)【公開日】2023-02-16
(54)【発明の名称】光モジュールの組立方法
(51)【国際特許分類】
   G02B 6/26 20060101AFI20230209BHJP
   G02B 6/42 20060101ALI20230209BHJP
【FI】
G02B6/26
G02B6/42
【審査請求】有
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2022204207
(22)【出願日】2022-12-21
(62)【分割の表示】P 2019082870の分割
【原出願日】2019-04-24
(71)【出願人】
【識別番号】000004226
【氏名又は名称】日本電信電話株式会社
(74)【代理人】
【識別番号】110001243
【氏名又は名称】弁理士法人谷・阿部特許事務所
(72)【発明者】
【氏名】相馬 俊一
(72)【発明者】
【氏名】那須 悠介
(72)【発明者】
【氏名】都築 健
(72)【発明者】
【氏名】山田 貴
(72)【発明者】
【氏名】菊池 清史
(57)【要約】
【課題】パイプ構造によって光ファイバを引き出す光モジュールでは、光導波路チップの端面とパイプが構成されたパッケージ側面との間に光ファイバやレンズを保持する構造、気密封止する構造を必要とする。実装スペースおよびワークスペースのために光ファイバに沿って十分な距離を確保しなければならなかった。光ファイバをその中に通すパイプ構造は、光ファイバ長手方向において光モジュールの小型化を妨げていた。
【解決手段】本発明の光モジュールの組立方法における光モジュールでは、パイプ構造を採用しているために必要であった光ファイバの保持構造を、パッケージのカバー延長部に移す。パッケージのカバー本体部から突出して形成されたカバー延長部に光ファイバを接着固定して、光ファイバの保護を担保し、光導波路チップをパッケージ側面の内壁により近接して配置する。光導波路チップをパッケージの内壁にできる限り近接させ、パッケージ内の実装面積を極力減らすことで、光モジュール全体の小型化を実現できる。
【選択図】図2
【特許請求の範囲】
【請求項1】
光モジュールの組立方法であって、
ベースの上であって、当該ベースの端部に近接して、光導波路チップを搭載するステップと、
光ファイバを仮固定して、前記光導波路チップの端面または上面において、光導波路と光ファイバを接続するステップと、
カバーのカバー本体部を前記ベースに設置するステップと、
前記カバー本体部から前記光ファイバが引き出される方向に連続して形成されたカバー延長部と、前記光ファイバを接着剤によって固定するステップと、
前記仮固定を解除するステップと
を備えることを特徴とする組立方法。
【請求項2】
前記カバー延長部は、前記カバー本体部の上面から前記光ファイバが引き出される方向に連続して形成された板状の突出部であり、パッケージの内部から当該突出部に向かって開いた開口部から前記光ファイバが引き出されることを特徴とする請求項1に記載の方法。
【請求項3】
前記カバー延長部は、前記カバー本体部の前記光ファイバが引き出される側面から、連続して形成された少なくとも1つの板状の突出部であり、パッケージの内部から当該突出部に向かって開いた開口部から前記光ファイバが引き出されることを特徴とする請求項1に記載の方法。
【請求項4】
前記カバー延長部は、前記カバー本体部の前記光ファイバが引き出される側面から、連続して形成された少なくとも1つの板状の突出部であり、パッケージの内部から当該突出部に向かって開いた開口部から前記光ファイバが引き出されることを特徴とする請求項1に記載の方法。
【請求項5】
前記光導波路チップの端面が、パッケージの側面の内壁に近接して、前記ベースの上に搭載されていることを特徴とする請求項1乃至4いずれかに記載の方法。
【請求項6】
前記光ファイバは、パッケージから引き出される側面に対して取り付け角度が95°以上105°以下となるように接続されていることを特徴とする請求項1乃至4いずれかに記載の方法。
【請求項7】
前記光ファイバは、ガラスブロック内に固定され、前記光導波路チップの光導波路端面へ接続され、前記ガラスブロックは前記カバーに覆われていることを特徴とする請求項1乃至4いずれかに記載の方法。
【請求項8】
前記光モジュールは、光送信器および光受信器を集積した光送受信モジュールであって、前記光ファイバは3本乃至8本で構成されたことを特徴とする請求項1乃至4いずれかに記載の方法。
【発明の詳細な説明】
【背景技術】
【0001】
本発明は、光ファイバを備えた光モジュールの構成および組立方法に関する。
【0002】
スマートフォンに代表される携帯型端末の爆発的普及や、映像配信サービスの充実により、光ネットワークの伝送容量増大への要求が日増しに高まっている。光通信技術はこの要求に対応するため更なる発展が求められ、光通信システムで使用される部品の小型化、低コスト化技術が益々重要となっている。光通信システム用の部品を実現するために重要な技術として、光導波路型デバイスが挙げられる。光の干渉原理を応用することにより光信号の分岐結合器、波長合分波器、インターリーブフィルタ、光スイッチ、可変光減衰器(VOA:Variable Optical Attenuator)などさまざまな基本的機能を実現してきた。光導波路型デバイスは平面上で自由に配置できることから回路設計に柔軟性があり、大規模化や高集積化が容易である。LSIなどの半導体部品製造プロセスを流用して製造されるため、量産性に優れたデバイスとして多くの実績を残してきた。光導波路部分は半導体、高分子材料、シリコンなどの材料によって構成され、様々なタイプの光導波路型デバイスが実用化されている。
【0003】
上述の光ネットワークの伝送容量増大の要求に対応するにあたっては、光通信システム用の部品の小型化を実現する必要がある。このため、光ファイバや光導波路チップなどの光学素子を実装するスペースのより一層の削減が求められている。光通信システム用の部品の中で、光導波路チップを用いた一般的な実装形態は、光モジュールと呼ばれている。
【0004】
図1は、従来技術の光モジュールの構成例を示す図である。図1の(a)、(b)、(c)は、光モジュール100の上面図および2つの側面図を示している。図1の(a)は光モジュールの蓋を取って上方から見た上面図であって、(c)の側面図で光導波路チップ103の直ぐ上をIA-IA線で切った断面を示している。光モジュール100は、光導波路チップ103およびその他光学素子がパッケージ内に収納され、光ファイバ106が光モジュール内から引き出されている。パッケージは、例えば上面の無い箱状のベース101および蓋102から構成されている。光信号を入出力するための複数の光ファイバ106は、円筒形または多角形状の断面をもつ筒型のパイプ104-1、104-2を通じて、パッケージ内部から外部へ引き出される。
【0005】
通常このパイプは、パッケージのベース101に一体のものとして形成されるか、または、図1のように別部品として加工されたパイプ104-1、104-2をベース101に取り付けて構成される。パイプは、ベース101と同じ材料、例えば金属で形成することができる。またファイバ断線防止のためゴム等の弾性材料で形成されることも多い。さらに図1に示した構成例のように、金属製のパイプ104-1およびゴム製のパイプ104-2を組み合わせて使用する場合もある。光ファイバ106は、パイプ104-2に内部で、接着剤などの固定材料108で固定される。光モジュールの内部では、光ファイバ106は、その被覆を取り除いた状態で、光導波路チップ103の端面で、光導波路107と光接続される。
【0006】
上述のように光モジュール100においてパイプが用いられるのは、パイプ内で樹脂材料またはハンダなどの金属材料を用いて気密封止をすることができるからである。また、光モジュール100を取り扱う際に光ファイバ106へ生じる応力をパイプによって緩和させたり、光ファイバや内部の光学素子を保護したりすることもできる。さらにレンズおよび空間光学系部品によって光導波路に対して光学接続する場合には、レンズおよび関連部品をパイプ内に保持するために、パイプが採用されることが一般的であった。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特許第6291451号
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、パイプ構造を用いた光モジュールの構成は、近年の光デバイス小型化の要求に十分に応えることができていなかった。光モジュールでは、必要な実装面積を極限的に削減することを迫られている。一例を挙げれば、最新のQSFP-DD(Quad Small Form-factor Pluggable Double Density)規格のトランシーバ光モジュールでは、10mm角程度の小型サイズが要求されている。光ファイバに対する一定の保護性を維持しながら、光モジュールのパッケージを小型化してより簡素な実装構造を実現する必要がある。
【0009】
図1で説明をしたパイプ構造によって光ファイバを引き出す構成は、光ファイバやレンズを保持する構造、気密封止をするための構造を必要とする。従って、光導波路チップ103の端面と、ベース101においてパイプの構成された側面との間に、光ファイバやレンズを保持する構造を備える必要がある。あらかじめパイプ内に光ファイバ106を通した状態で、パッケージ内部の光導波路チップ103の光導波路端面へ光ファイバを光学接続する実装スペースおよび作業のためのワークスペースも必要である。図1に示したように光ファイバに沿って十分な距離110を確保しなければならず、光ファイバをその中に通すパイプ構造であるがために、光ファイバの長手方向において光モジュールの小型化を妨げていた。
【0010】
本発明はこのような問題に鑑みてなされたものであって、その目的とするところは、光モジュールにおけるより小型な実装形態および組立方法を提供することにある。
【課題を解決するための手段】
【0011】
本発明はこのような目的を達成するために、本発明の1つの実施態様は、光モジュールの組立方法であって、ベースの上であって、当該ベースの端部に近接して、光導波路チップを搭載するステップと、光ファイバを仮固定して、前記光導波路チップの端面または上面において、光導波路と光ファイバを接続するステップと、カバーのカバー本体部を前記ベースに設置するステップと、前記カバー本体部から前記光ファイバが引き出される方向に連続して形成されたカバー延長部と、前記光ファイバを接着剤によって固定するステップと、前記仮固定を解除するステップとを備えることを特徴とする組立方法であり得る。
【0012】
上述の実施態様において、前記光導波路チップは、前記光ファイバと接続される光導波路の端面が、パッケージの側面の内壁に近接して、前記ベース上に搭載されることができる。
【0013】
また上述の第1の実施態様において、前記カバー延長部は、前記カバー本体部の上面から前記光ファイバが引き出される方向に連続して形成された板状の突出部であり、パッケージの内部から当該突出部に向かって開いた開口部から前記光ファイバが引き出されることができる。この実施態様の1つの例は、第1の実施形態の光モジュールに対応する。
【0014】
上述の各実施態様において、前記カバー延長部は、前記カバー本体部の上面および前記光ファイバが引き出される側面から、連続して形成された3面からなるコの字型の突出部であり、パッケージの内部から当該突出部に向かって開いた開口部から前記光ファイバが引き出されることもできる。この実施態様の1つの例は、第2の実施形態の光モジュールに対応する。
【0015】
さらに上述の各実施態様においては、前記カバー延長部は、前記カバー本体部の前記光ファイバが引き出される側面から、連続して形成された少なくとも1つの板状の突出部であり、パッケージの内部から当該突出部に向かって開いた開口部から前記光ファイバが引き出されることを特徴とする。
【0016】
上述の各実態態様においては、前記光ファイバは、パッケージから引き出される側面に対して取り付け角度が95°以上105°以下となるように接続されることもできる。この実施態様の1つの例は、第2の実施形態の光モジュールに対応する。
【0017】
上述の実態態様においては、前記光ファイバは、ガラスブロック内に固定され、前記光導波路チップの光導波路端面へ接続され、前記ガラスブロックは前記カバーに覆われていることもできる。
【0018】
また上述の各実施態様において、前記光モジュールは、光送信器および光受信器を集積した光送受信モジュールであって、前記光ファイバは3本乃至8本で構成されることもできる。
【発明の効果】
【0019】
以上説明したように、本発明は光モジュールのより小型な実装形態を提供する。
【図面の簡単な説明】
【0020】
図1】従来技術の光モジュールの構成例を示す図である。
図2】本発明の第1の実施形態の光モジュールの構成を示す図である。
図3】本発明の光モジュールにおける組立工程の概要を示す図である。
図4】本発明の第2の実施形態の光モジュールの構成を示す図である。
図5】本発明の第3の実施形態の光モジュールの構成を示す図である。
図6】トランシーバ基板上における光モジュールの配置例を示した図である。
【発明を実施するための形態】
【0021】
本発明の光モジュールの構成によれば、光ファイバの保護性をある程度保ちつつ、従来技術と比べて光ファイバの実装領域を大幅に減らすことができ、光モジュールのさらなる小型化が可能となる。本発明の光モジュールでは、従来技術においてパイプ構造を採用しているために必要であった光ファイバの保持のための構造を、パッケージのカバー延長部に移すことができる。パッケージのカバー本体部から突出して形成されたカバー延長部に光ファイバを接着固定して、光ファイバの保護を担保し、光導波路チップをパッケージ側面の内壁により近接して配置できる。光導波路チップをパッケージの内壁にできる限り近接させて、パッケージ内の実装面積をできる限り減らすことで、光モジュール全体の小型化を実現できる。本発明の光モジュールは、光モジュールの側面から引き出される光ファイバを備えた形態のものに広く適用できる。したがって、本発明の光モジュールによって実現される機能は、何ら限定されない。
【0022】
以下、図面を参照しながら本発明の様々な実施形態を詳細に説明する。以下の実施形態では、SOI(Silicon on Insulator)基板上に作製されたシリコンフォトニクス光導波路チップを例として説明する。光モジュールのパッケージ(筐体)としては、セラミック基板上に作製されたパッケージベースおよび金属材料によるカバーを用いた例について説明する。これらの構成は、光モジュールに一般的に用いられる材料の一例であり、他の光導波路チップには、石英系ガラス、高分子材料、光半導体を用いたもの含まれる。またパッケージベースには、金属基板、プリント基板、フレキシブル基板が含まれる。カバーには、金属材料のほか、プラスチック材料あるいはそれらの複合体である場合も含まれる。光導波路チップ、パッケージベースおよびカバーの上述の材料のいずれの組み合わせに対しても、本発明の光モジュール構成が適用可能であって、以下の実施形態の例だけに限定されない。
【0023】
[第1の実施形態]
図2は、本発明の第1の実施形態の光モジュールの構成を示す図である。図2の(a)、(b)、(c)は、光モジュール1の上面図および2つの側面図を示している。図2の(a)は光モジュール1のカバー3-1を取って上方から内部を見た上面図であって、(c)の側面図で光導波路チップ4の直ぐ上をIIA-IIA線で切った断面を示している。図2の(a)~(c)の各図は、光モジュールの構造説明のために、作図法に厳密には従っておらず、実際に視認可能なものでも一部を点線で示すなどしていることに留意されたい。光モジュール1は、光ファイバ5、光導波路チップ4、およびそれらを収納するパッケージ(筐体)によって構成される。パッケージは、光導波路チップ4を搭載するベース(基板)2と、ベース2全体を覆うカバー本体部3-1とからなる。
【0024】
光モジュール1に備える機能には様々なものが可能であり、光半導体等のレーザー素子によって光源を実現したり、電気光学効果を用いる光変調素子によって光変調器を実現したり、フォトダイオードなどの受光素子によって光受信器を実現したりできる。さらにこれらの機能を組み合わせ、集積化することによって、複合集積したデバイスを実現できる。これらの実現機能は本発明の光モジュールの実装構成とは直接関係しておらず、本発明における本質的な構成要素は、光ファイバ、光導波路チップおよびパッケージであって、それ以外の素子については以下の実施形態において省略または簡略化して説明する。
【0025】
光モジュール1では、3本の光ファイバ5が光導波路チップ4の光導波路端面に光学的に接続されている。光ファイバの数は一例であって、1本でも良いし実装可能な限り何本でも良い。光導波路チップ4は、パッケージを構成するベース2の上面に搭載されている。パッケージのベース2上には、光モジュール全体を覆うカバー本体部3-1が取り付けられ、カバー本体部3-1は上面の4辺に側面を持った箱状である。図2の構成では、ベース2は板状のものであって、光モジュール1全体の側面は、カバー本体部3-1に付属するものとして説明している。後述する光ファイバを保持・固定するカバー延長部3-2が構成できる限り、ベース2は、光モジュールの側面の一部を含む形状のものであっても良い。光導波路チップ4は、内部に光導波路6を有しており、光導波路チップ4の面は、光ファイバの入出力部側のカバー側面の内壁に対して近接して配置される。本実施形態の光モジュール1においては、カバー側面の内壁と光導波路チップ4の端面との間の距離8を、0.5mm以下とすることができる。光モジュールの小型化の観点から、チップ端面およびカバー側面の内壁の距離8を0.1mm~0.5mmとすることが望ましい。このようにチップ端面およびカバー側面の内壁間をできる限り近接させ配置可能な光モジュール構成は、次に述べる光ファイバを入出力し保持・固定するカバー延長部によって実現される。
【0026】
カバーは、光モジュール1の底面、すなわちベース2に対応する矩形状の上面を持つカバー本体部3-1に加えて、本体部3-1と一体のカバー延長部3-2を備える。カバー延長部3-2は、カバー本体部3-1の上面が光ファイバ5を入出力する側から庇(ひさし)のように突出し、カバー本体部3-1の上面を延長して形成されている。したがって、光モジュール1全体を覆うカバーは、図2の(a)に示したようにカバー本体部3-1および延長部3-2が一体に構成されている。図2の(c)の側面図に示したように、光ファイバ5側から光モジュール1を見れば、カバー本体部3-1の側面には、延長部3-2の下に開口部を持ち、光ファイバ5は、この開口部からモジュール外部へ引き出される。図2の(b)の側面図に示したように、光ファイバ5は、カバー延長部3-2の下面に接着剤7で接着固定されている。光ファイバ5を保持・固定するカバー延長部3-2は、図1で示した従来技術のパイプの筒型の形状と異なり、ベースを覆うカバーの一部を構成し、カバー本体部3-1と一体の形状となっている。本実施形態の光モジュールでは、カバー延長部3-2はカバー本体部3-1の上面の延長として構成されおり、光ファイバ5はこの延長部3-2の天井面に弾性接着剤7を用いて固定される。
【0027】
図2の(a)は、カバー本体部3-1および延長部3-2からなるカバーを取り外して光モジュールの内部を見ている。光ファイバ5は接着剤7によって延長部3-2に固定されるため、カバーを取り外した状態で実際に図1の(a)のようには見えないが、カバー延長部3-2の構成の説明を目的に描かれている。図2の(b)、(c)の2つの側面図を参照すれば、被覆を除去した光ファイバ5と、カバーの側面に非常に接近して配置された光導波路チップ4の端面とが接続されていることが理解できるだろう。
【0028】
図1を再び参照すれば、従来技術構成では光ファイバを保持するために筒状のパイプの中に光ファイバ106を通し、パイプの内部で光ファイバを接着固定し、さらにハンダ等で気密封止していた。このような構造の場合、あらかじめパイプ内に光ファイバを通した状態で、パッケージ内部の光導波路チップの光導波路端面へ光ファイバを接続する機構の実装スペースと作業性良く接続作業を行うためのワークスペースが必要である。
【0029】
図1では説明しなかったが、光導波路チップの光導波路端面と光ファイバの端面の具体的な接続方法には様々な方法があり得る。接続方法の一例を挙げれば、光導波路チップにV溝構造を形成しておいて、V溝構造に沿って光導波路に光ファイバを直接突き当てる方法がある。また別方として、光導波路チップの上面から光導波路に光学的な結合を取ることも可能であって、様々な接続方法による光結合形態を採用できる。いずれの接続方法でも、光導波路チップとパッケージの内壁との間には、接続構造およびその付属機構を配置する実装スペースと、光ファイバをパイプに通した状態で作業性良く実装を行うワークスペースが必要であった。また、光ファイバおよび光導波路チップ間を光学レンズによって結合する場合はレンズの保持構造をパイプ内部に持たせるためのスペースもさらに必要となる。パイプ構造は、実装時におけるその閉じた構造の扱いにくさのために、チップ端面およびカバー側面の内壁間の距離の短縮化を妨げていた。その結果、光ファイバ接続端面とパッケージ内壁間に、1mm以上、望ましくは5mm程度を確保せざるを得なかった。
【0030】
パイプを使って光ファイバを保持せずに、パッケージ側壁部分に開口を設けてそこから光ファイバをパッケージ内部から外部へ引き出す構成も考えられる。しかしながら、光モジュールを取り扱う時に光ファイバを引っ張ってしまい、その時の外力がパッケージ内部の素子へ直接影響を及ぼす。光ファイバの保持機構なしでは、光モジュールの信頼性や機械強度の観点で望ましい構成ではない。
【0031】
従来技術とは対照的に図2の本実施形態の光モジュールの構造では、パッケージのカバーの内壁へ近接して光導波路チップ4を配置することによって、パッケージ内部の実装スペースをできる限り減らしている。パッケージには光ファイバ5を通すパイプを備えずに、パッケージのカバー本体部3-1を光ファイバ入出力部側に延長し、突き出して形成された延長部3-2によって光ファイバを固定する。パイプ構造を使用しない本発明光モジュールの構造によって、光モジュールの組立工程は、次に述べるように、光ファイバの接続に関して簡略化されたものとなる。
【0032】
したがって本発明の光モジュールは、光導波路チップ4を搭載し、当該光導波路チップと結合された光ファイバ5を備えた光モジュール1において、前記光導波路チップを搭載するベース2と、前記ベースの全体を覆うカバー本体部3-1、および、前記カバー本体部から、前記光ファイバが引き出される方向に連続して形成されたカバー延長部3-2であって、当該カバー延長部の面上に前記光ファイバが接着固定された、カバー延長部を有するカバーとを含むパッケージによって収納されたことを特徴とする光モジュールとして、実施できる。
【0033】
図3は、本発明の光モジュールにおける組立工程の概要を示す図である。図3の(a)に示すように、まずベース2の上に光導波路チップ4を含むすべての部品が搭載される。光導波路チップ4は、ベース2の一方の端部ぎりぎりに接近して搭載される。光モジュールの機能によって、電気ICや他の電気部品も同時にベース2上に搭載され得る。
【0034】
次に図3の(b)に示すように、光導波路チップ4の端面に光ファイバ5が接続される。このとき、本発明の光モジュールでは、図1に示した従来技術の光モジュールのように光ファイバをパイプの筒状部分104-1、104-2の中に通す必要がない。光ファイバをパイプの筒状部分に通した状態で、パイプ構造との位置関係に制限された不自由な作業環境で、光導波路チップ103の端面と光ファイバとを接続作業をする必要性もない。図3の(b)の状態の光モジュールでは、光ファイバ5の接続工程の作業のために、ベース2の周りに十分なワークスペースを確保できる。適切な冶具を使用して、光ファイバ5を仮固定して、安全に作業性良く光導波路チップ4の端面と光ファイバ5の端面との接続作業をできる。本発明の光モジュールの組立工程では、光ファイバ5を光導波路チップ4と接続する段階で、カバーは取り付け前の状態であって、光ファイバをパイプに通す必要も無いことに留意されたい。
【0035】
最後に図3の(c)に示すように、カバー3-1をベース2の全体を覆うように設置して、カバー3の延長部3-2の下面で、光ファイバ5を接着剤7によって固定し、その後、光ファイバ5の仮固定状態を解除すれば良い。このように、本発明の光モジュールの組立手順では、パッケージ内部の素子と光ファイバをすべて実装した後にカバー3-1を設置することが可能となる。このため、光ファイバの接続工程に関してより少ないワークスペースで実装が可能となり、光モジュールの小型化に大きく寄与することができる。カバーの一部が突き出した延長部分3-2の光ファイバ長さ方向のサイズは、光モジュール全体を小型化する観点から、光ファイバの本数に応じて幅2mm~5mm、長さは3mm~5mmと極力小さくすることが望ましい。
【0036】
本実施形態の光モジュールによれば、従来技術の光モジュールと比べてパッケージ内の実装スペースおよびワークスペースを減らし、光ファイバの入出力方向のパッケージ長さを5mm程度削減することができた。同時に、光ファイバを保持・固定する構造を簡素化したことによって、光ファイバ保持部分となる延長部3-2の長さは、ファイバ保持およびレンズ保持の構造を含む従来技術のパイプ構造の場合と比べ、10mmから5mmに半減できる。光モジュール全体で、光ファイバの入出力方向に10mm程度を短縮する効果を得ることができた。これは、例えば外形が10mm角程度のサイズQSFP-DD規格のトランシーバ光モジュールでは、小型化に関して非常に大きな効果となる。
【0037】
[第2の実施形態]
図4は、本発明の第2の実施形態の光モジュールの構成を示す図である。図4の(a)、(b)、(c)は、光モジュール11の上面図および2つの側面図を示している。図4の(a)は光モジュール11のカバー13-1を取って上方から内部を見た上面図であって、(c)の側面図で光導波路チップ14の直ぐ上をIVA-IVA線で切った断面を示している。図4の(a)~(c)各図は、光モジュールの構造の説明のために、図法に厳密には従っておらず、実際に視認可能なものでも一部を点線で示す等している。図4の(d)は、後述する光ファイバの接続部の構造例を説明する拡大図である。
【0038】
第1の実施形態と同様に、図4の光モジュール11も、光ファイバ15、光導波路チップ14、およびそれらを収納するパッケージによって構成される。図4でも、光導波路チップ14以外の素子等については簡略化または省略して示す。パッケージは、ベース12およびベースの全体を覆うカバーから構成される。カバーは、カバー本体部13-1および延長部13-2を備えている。カバー延長部13-2は、本体部13-1の上面および側面を光ファイバの入出力部へ向かって延長し、本体部13-1と一体に形成されている。カバー延長部13-2は、図4の(c)に示したように、開口部の両脇に側壁を持っており、その断面がコの字型を90°回転させた形状を持つ点で、第1の実施形態の光モジュールと相違する。すなわち、カバー本体部13-1の側壁から連続して、延長部13-2の側壁が構成されている。
【0039】
図4の(d)のカバー延長部13-2における拡大図を参照すると、3本の光ファイバ15は、ガラスブロック内で互いに等間隔に固定されている。光ファイバ15の数に制限がないのは言うまでもない。ガラスブロックは一例を挙げれば、V字形状に溝加工されたV溝部品19と、V字溝内に被覆を除去した光ファイバを配置・固定して上から押さえる平板状のフタ部品18とから成っている。ガラスブロックのV溝部品19およびフタ部品18によって、光ファイバを精度良く等間隔に配置可能となり、光ファイバのクラッドガラス部分を保護できる。本実施形態の光モジュールでは、V溝部品19のV字溝の間隔が300μm以下となるように設計した。なお光ファイバの配置ピッチは、クラッドガラス外形および被覆外形のサイズに応じ、できるだけ光モジュールの小型化が可能となるように設計することが望ましい。300μm以下の間隔で複数のファイバを固定する構造であれば、一般的に入手可能なほとんどの光ファイバを作業性良く固定することができる。300μm以下の間隔とすることで、図4の(d)のガラスブロック固定部において光ファイバを曲げたり束ねたりする等の工程は不要となり、直線状態のまま固定可能で、同時に、光ファイバ固定部を最小化することができる。
【0040】
図4の(b)からわかるように、上述のガラスブロック18、19に固定された光ファイバ15は、光導波路チップ14の端面で光導波路16と光学的に接続される。光導波路チップ14は、パッケージを構成するベース12の上面に搭載されている。パッケージのベース12の全体を覆うようにカバー本体部13-1が取り付けられ、光ファイバ15と接続される光導波路チップ14の端面は、光ファイバ入出力側のカバー本体部13-1の側面の内壁に対して近接して配置される。本実施形態の光モジュール11では、カバー内壁と光導波路チップ14の端面の距離を0.5mm以下とすることが可能で、光モジュール小型化の観点から0.1mm~0.5mmとすることが望ましい。
【0041】
尚、図4の(d)に示したガラスブロックでは、ガラスブロックの内で、下側にV溝部品19があり、上側にフタ部品18がある例を示した。しかしながら、これらの上下を逆にして、光ファイバを光導波路チップ14に接続しても良い。上述の説明では、光導波路チップの上面側に光導波路(光導波路面)を構成した構造を想定して説明している。しかしながら、電気ICでも広く使われているフリップチップ実装を使って、導波路面を下にして実装することもできる。そのような場合、ガラスブロック18、19の上下関係を逆にするのが好ましい。
【0042】
光モジュール11のカバーは、光モジュール底面、すなわちベース12に対応する矩形状の上面を持つカバー本体部13-1に加えて、本体部13-1と一体のカバー延長部13-2を備える。カバー延長部13-2は、本体部13-1の上面および側面をそれぞれ延長し、カバー本体部13-1の光ファイバの入出力側の側面から突出した3面(天井面、2つの側面)で形成されている。カバー延長部13-2は、本体部13-1によって形成される内部空間から連続して、カバー本体部の側面の開口部を介して、光ファイバ15を保持・固定するための小さな空間を形成する。図4の(c)のように光ファイバ15の側から光モジュール11側面を見れば、延長部13-2はコの字型を寝かせた断面形状を持つ。光モジュールのカバーは、図4の(a)~(c)に示したようにカバー本体部13-1および延長部13-2が一体のものとして構成されていることがわかる。図4の(c)の側面図に示したように、カバー本体部13-1の側面は、延長部13-2の中に開口部を持ち、光ファイバ15は、この開口部を経由して光モジュールの外部へ引き出される。図4の(b)の側面図に示したように、コの字型の延長部13-2の3面(天井面、2つの側面)の内のカバー本体部13-1の上面から延びた面(天井面)の下面側に光ファイバ15が接着剤17で接着固定されている。
【0043】
この3面からなるコの字型状の延長部13-2によれば、光モジュール11を装置上に搭載するため装置のメイン基板へ光モジュール取り付けるなどの取り扱いの際、光ファイバ15への損傷を避けることができる。コの字型形状のカバー延長部13-2によって、光ファイバの保持・固定部分が保護されており、ツールや作業者の手が当たり易い光モジュール上面および両側面からの光ファイバの損傷を避けることができる。さらには、カバー13-1、13-2の全体は下方に向かってオープンとなっているため、図3に示した第1の実施形態の光モジュールの組立工程を変更することなくそのまま適用できる。第1の実施形態の光モジュールと同様に、実装スペース、ワークスペースを最小化することが可能で、製造時の作業性が良く、ファイバの傷害を防止して信頼性の高い小型光モジュールを実現することができる。
【0044】
図4では、光ファイバ15は延長部13-2の天井面のみで固定されているが、延長部13-2内により多くの弾性接着を入れて光ファイバ15を保護することもできる。延長部13-2の先端で弾性接着剤を盛り付けることにより、上下左右いずれかの方向の対しても光ファイバ15の曲げに起因した引っ張り断線を防止して、光ファイバ15を保護し、信頼性の高い光モジュールを実現できる。
【0045】
上述の第1の実施形態の光モジュールでは、カバー延長部3-2は、カバー本体部3-1の上面から光ファイバ5が引き出される方向に連続して形成された板状の突出部であり、パッケージの内部から当該突出部に向かって開いた開口部から光ファイバが引き出される構成のものであった。
【0046】
上述の第2の実施形態の光モジュールでは、カバー延長部13-2は、カバー本体部13-1の上面および光ファイバが引き出される側面から、連続して形成された3面からなるコの字型の突出部であり、パッケージの内部から当該突出部に向かって開いた開口部から光ファイバが引き出される構成のものであった。
【0047】
第2の実施形態の光モジュールの変形として、カバー延長部が、カバー本体部の光ファイバが引き出される側面からの連続して形成された少なくとも1つの板状の突出部であり、パッケージの内部から当該突出部に向かって開いた開口部から光ファイバが引き出される構成でも良い。すなわち、図4の構成においてカバー延長部13-2が、側面のいずれか一方のみか、2つの側面のみを有する構成であっても、光ファイバの接着方法を修正することで、第1の実施形態および第2の実施形態と同様に、実装スペースおよびワークスペースを最小化することできる。製造時の作業性が良く、ファイバの傷害を防止して信頼性の高い小型光モジュールを実現することができる。
【0048】
[第3の実施形態]
図5は、本発明の第3の実施形態の光モジュールの構成を示す図である。本実施形態では、より具体的な機能を有する光モジュールであり、装置上への搭載状態も考慮した構成例を提示する。図5の(a)、(b)、(c)は、光モジュール21の上面図および2つの側面図を示している。図5の(a)は光モジュール21のカバー23-1を取って上方から内部を見た上面図であって、(c)の側面図で光導波路チップ24の直ぐ上をVA-VA線で切った断面を示している。図5の(a)~(c)の各図は、光モジュールの構造の説明のために、図法に厳密には従っておらず、実際に視認可能なものでも一部を点線で示している。
【0049】
第1の実施形態および第2の実施形態と同様に図5の光モジュール21も、光ファイバ25、光導波路チップ24、およびそれらを収納するパッケージによって構成される。光モジュール21は、後述するように光導波路チップ24に加えてさらに他のチップ30~32を含んでいる。光モジュール21のパッケージは、ベース22およびカバーから構成され、カバーは、カバー本体部23-1およびカバー延長部23-2を備えている。カバー延長部23-2は、本体部23-1の上面および側面を光ファイバの入出力部へ向かって延長し、本体部23-1と一体に形成されている。図5の(c)に示したように、第2の実施形態と同様に、延長部23-2は開口部の両脇に側壁を持った3面で構成されており、その断面がコの字型を90°回転して寝かせた形状を持つ。第2の実施形態との相違点は、延長部23-2が本体部23-1の側面から垂直に突出するのではなく、本体部23-1の上面を見たとき、本体部23-1側面から垂直方向よりやや傾斜して(例えば110°)延長部23-2が形成されている点にある。以下、第2の実施形態の光モジュールとの相違点を中心に、光モジュール21の構成を説明する。
【0050】
図5の光導波路チップ24は、電気光学効果または電界吸収効果を用いた光変調器の機能と、光信号を受信するフォトダイオードとが集積されている。光モジュール21は、さらに、送信用のレーザー31、変調器を駆動するドライバアンプ30および光電変換されたフォトダイオードの光電流を増幅するトランスインピーダンスアンプ32をベース22上に搭載している。図5には示していないが、パッケージのベース22は、ドライバアンプ30およびトランスインピーダンスアンプ32への制御信号および高周波信号を、光モジュール外部に接続する電気配線、電気端子を備えている。電気端子の形状は、表面実装用の電極、フレキシブルプリント基板(FPC:Flexible Printed Circuit)型電極またはボールグリッドアレイ(BGA:Ball Grid Array)型電極のいずれかである。図5の光モジュール21においては、ドライバアンプ30およびトランスインピーダンスアンプ32を、光導波路チップ24と異なる材料により別個にパッケージ内に実装する例を示した。しかしながら、上記2つのアンプ30、32を光導波路チップ24と同じ材料で作製して、単一のチップへ集積したモノリシック構成にしても、光ファイバ接続部分の実装構造は同じである。光モジュール機能の集積化の態様が異なる場合であっても、本発明の光モジュールにおけるカバー本体部23-1と一体の延長部23-2による光モジュール小型化の効果は同じである。
【0051】
本実施形態の光モジュールにおいては、送信部における変調信号のチャネル数を4チャネル、受信部で受ける光信号のチャネル数も同じく4チャネルとした。したがって、光導波路チップ24の光導波路26に接続される光ファイバ25の数は、送信および受信を合わせて8本となる。この光ファイバ数は、米国の標準化団体IEEE(The Institute of Electrical and Electronics Engineers Inc.)により制定されているEthernet光トランシーバに準じている。Ethernet光トランシーバの標準化規格である100GbE(100ギガビットイーサネット(登録商標))で規定された光信号の波長多重数(LAN-WDM:LAN向けWavelength Division Multiplexing)、CWDM:Coarse Wavelength Division Multiplexing(粗い間隔の波長多重))を参照した。上述の光ファイバの数は、本実施形態の光トランシーバの場合の一例であって、8の場合だけに何ら制限されない。
【0052】
図5の本実施形態の光モジュール21のように、光導波路チップ24において光変調器および光受信器を集積し、さらに光ハイブリッド回路を集積することによって、デジタル光コヒーレント用の光送受信モジュールを構成可能である。光送受信モジュールの場合は、モジュールの外部と光学接続される光ファイバは3本または4本となる。
【0053】
本実施形態の光モジュール21でも第2の実施形態と同様に、8本の光ファイバ25をガラスブロック28、29内で互いに等間隔に固定し、光導波路チップ24の光導波路端面に光学的に接続した。光導波路チップ24は、他のチップ30~32とともにベース22の上面に搭載されている。パッケージのベース22の上面には、全体を覆うカバー本体部23-1が取り付けられている。光導波路チップ24の光ファイバ接続端面は、カバー本体部23-1の光ファイバ入出力側の側面の内壁に対して近接して配置される。本実施形態においても、カバー本体部23-1側面の内壁と、光導波路チップ24の端面の距離を、0.5mm以下とした。光モジュール小型化の観点から、このカバー本体部内壁と、光導波路チップ端面の距離を0.1mm~0.5mmとすることが望ましい。
【0054】
カバーは、光モジュール21の底面、すなわちベース22に対応する矩形状の上面を持つカバー本体部23-1に加えて、本体部23-1と一体のカバー延長部23-2を備える。カバー延長部23-2は、カバー本体部23-1の上面および側面をそれぞれ延長し、カバー本体部23-1の光ファイバの入出力部側から突出した3面(天井面、2つの側面)で形成されている。延長部23-2は、本体部23-1で形成される内部空間から連続して、本体部23-1側面の開口部を介して、光ファイバ25を保持固定するための小さな空間を形成する。図5の(c)のように光ファイバ25側から光モジュール21の側面を見れば、延長部23-2はコの字型を寝かせた断面形状を持つ。図5の(a)~(c)に示したように光モジュール21のカバーは、カバー本体部23-1および延長部23-2が一体のものとして構成されている。図5の(c)の側面図に示したように、カバー本体部23-1の側面は、延長部23-2の3面の空間内に開口部を持ち、光ファイバ25は、この開口部からモジュール外部へ引き出される。図5の(b)の側面図に示したように、コの字型の延長部23-2の3面(天井面、2つの側面)の内、カバー本体部23-1の上面から延びた面(天井面)の下面側に光ファイバ25が接着剤27で接着固定されている。
【0055】
本実施形態の光モジュール21と、第2の実施形態の光モジュール11との相違は、延長部23-2が、カバー本体部23-1に対して垂直ではなく、傾斜を持って構成されている点にある。したがって光ファイバ25も、光モジュールの側面に対して、傾斜した角度で光導波路チップ24の端面に取り付けられている。例えば、図5の(a)においてカバー本体部23-1の上面から見た場合、延長部23-2は、本体部23-1の側面に対して垂直方向から20°傾いて、110°の角度で斜め方向に形成されている。
【0056】
3面からなるコの字型状の延長部23-2によれば、第2の実施形態と同様に、光モジュール21を装置上に搭載する際に、光ファイバ25への損傷を避けることができる。さらにカバー23-1、23-2の全体は下方に向かってオープンとなっているため、図3に示した第1の実施形態の光モジュールの組立工程を変更することなくそのまま適用できる。したがって、第1の実施形態および第2の実施形態と同様に、実装スペース、ワークスペースを最小化することが可能で、製造時の作業性が良く、ファイバの傷害を防止して信頼性の高い小型光モジュールを実現することができる。
【0057】
本実施形態の光モジュール21は、パッケージの側面から垂直ではなく最大で110°の傾斜を持って光ファイバ25が引き出されるように構成されている。このような構成は、光モジュールが搭載される光トランシーバなどの装置上において、光ファイバのルーティングを最小の面積で実施できる利点を生じる。すなわち、光トランシーバの基板上で、光ファイバ25が接続される他の部品との一般的なレイアウト関係に適合するように、光モジュールの光ファイバ25の向きが傾斜していれば、光ファイバ25のルーティングを効率良く実施できる。また、特定のトランシーバのレイアウト構成に適合するよう、いずれかの向きに傾斜させて光ファイバを引き出せるよう、延長部23-2および光ファイバを構成しても良い。
【0058】
図6は、トランシーバ基板上における光モジュールの配置例を示した図である。図6の(a)および(b)いずれも、第3の実施形態の光モジュール51-1~51-3が搭載される、トランシーバのプリント基板50の上面図である。他の電気部品や電気ICは省略して、光モジュール51-1~51-3のみを示している。例えば、光モジュール21の装置上のレイアウトが、装置基板の周辺部にあって、接続先の光部品(例えば光コネクタや他の光モジュール)が装置基板の中央部にあるとする。この場合は、装置基板の内部側の方向に向かって延長部23-2が傾斜した光モジュールを利用することで、光ファイバ25は、直ちに接続先の光部品に向いてルーティングされていることになる。
【0059】
図6の(a)に示したように、光ファイバを傾斜して取り付けた光モジュール51-1の構成により、光ファイバ52をより少ないカーブで光トランシーバ内壁へ向かってルーティングすることが可能になるため、小型光トランシーバの実現にも寄与することができる。光ファイバ52は、例えば、装置の光コネクタ53までルーティングされ、光モジュール51-1は直ちに基板50の周辺部、すなわち光トランシーバ内壁に沿って、ルーティングされる。
【0060】
また図6の(b)のように、異なる2つの光モジュール51-2、51-3がある場合でも、延長部23-2を向かい合わせに配置することで、2つの光モジュールを非常に近接させてレイアウトできる。光モジュールのパッケージの側面から傾斜を持って光ファイバ25を取り付けた構成によって、トランシーバの小型化の実現にも寄与することができる。
【0061】
尚、パッケージの側面に対する光ファイバの取り付け角度は、95°以上105°以下であることが好ましい。110°を越える場合は、光ファイバの実装自体が難しくなり取り付け精度および光モジュールとしての信頼性が低下する可能性もあるからである。
【0062】
さらに、図5に示した光モジュール21において光ファイバ25の取り付け角度に傾斜を持たせることで、光ファイバ25と光導波路26との間で生じる光反射が、直接光ファイバまたは光導波路へ結合し伝搬するのを抑える。図5に示した光モジュール21の構成により、光デバイスの性能指標の一つである光反射減衰量を確保することもできる。
【0063】
また、光モジュールの側面に対して傾斜させ光ファイバを取り付けた第3の実施形態の構成は、カバー本体部の上面のみを延長した板状のカバー延長部を有する第1の実施形態にも同様に適用できるのは言うまでもない。
【0064】
上述のいずれの実施形態でも、カバー本体部3-1、13-1、23-1の内側の上面は、光導波路チップ4、14、24からそれぞれわずかに離れたもの(図2図4図5)として説明した。しかしながら、光導波路チップの放熱や電気的接触のために、光導波路チップの上面とカバー本体部の内面とが密着した構成としても良い。また、いずれの実施形態でもベース2、12、22は、板状のものとして説明したが、周辺部を除いて内側の高さが高いものであっても良いし、周辺に側面を持つものであっても良い。
【0065】
以上説明したように、本発明の光モジュールによれば内部の実装スペース、ワークスペースを減らすことができ、簡素化された光ファイバの保持構造によって、光モジュールをさらなる小型化を実現できる。さらに集積度の高い光デバイスを実現する非常に有効であり、さまざまな光信号の制御を必要とする大容量光通信網の発展に大きく寄与できる。
【産業上の利用可能性】
【0066】
本発明は、通信システムに利用することができる。特に、光通信システムの光モジュールに利用できる。
【符号の説明】
【0067】
1、11、21、51-1~51-3100 光モジュール
2,12、22、101 ベース
3-1、13-1、23-1 カバー本体部
3-2、13-2、23-2 カバー延長部
4、14、24、103 光導波路チップ
5、15、25、52、106 光ファイバ
7、17、27、108 接着剤
6、16、26、107 光導波路
18、28 フタ部品
19、29 V溝部品
30 ドライバアンプ
31 レーザー
32 トランスインピーダンスアンプ
50 基板
53 光コネクタ
102 蓋
104-1、104-2 パイプ
図1
図2
図3
図4
図5
図6
【手続補正書】
【提出日】2023-01-19
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
光モジュールの組立方法であって、
ベースの上であって、当該ベースの端部に近接して、光導波路チップを搭載するステップと、
光ファイバを仮固定して、前記光導波路チップの端面または上面において、光導波路と光ファイバを接続するステップと、
カバーのカバー本体部を前記ベースに設置するステップと、
前記カバー本体部から前記光ファイバが引き出される方向に連続して形成されたカバー延長部と、前記光ファイバを接着剤によって固定するステップと、
前記仮固定を解除するステップと
を備えることを特徴とする組立方法。
【請求項2】
前記カバー延長部は、前記カバー本体部の上面から前記光ファイバが引き出される方向に連続して形成された板状の突出部であり、パッケージの内部から当該突出部に向かって開いた開口部から前記光ファイバが引き出されることを特徴とする請求項1に記載の方法。
【請求項3】
前記カバー延長部は、前記カバー本体部の上面および前記光ファイバが引き出される側面から、連続して形成された3面からなるコの字型の突出部であり、前記パッケージの内部から当該突出部に向かって開いた開口部から前記光ファイバが引き出されることを特徴とする請求項1に記載の方法。
【請求項4】
前記カバー延長部は、前記カバー本体部の前記光ファイバが引き出される側面から、連続して形成された少なくとも1つの板状の突出部であり、パッケージの内部から当該突出部に向かって開いた開口部から前記光ファイバが引き出されることを特徴とする請求項1に記載の方法。
【請求項5】
前記光導波路チップの端面が、パッケージの側面の内壁に近接して、前記ベースの上に搭載されていることを特徴とする請求項1乃至4いずれかに記載の方法。
【請求項6】
前記光ファイバは、パッケージから引き出される側面に対して取り付け角度が95°以上105°以下となるように接続されていることを特徴とする請求項1乃至4いずれかに記載の方法。
【請求項7】
前記光ファイバは、ガラスブロック内に固定され、前記光導波路チップの光導波路端面へ接続され、前記ガラスブロックは前記カバーに覆われていることを特徴とする請求項1乃至4いずれかに記載の方法。
【請求項8】
前記光モジュールは、光送信器および光受信器を集積した光送受信モジュールであって、前記光ファイバは3本乃至8本で構成されたことを特徴とする請求項1乃至4いずれかに記載の方法。