(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023024811
(43)【公開日】2023-02-16
(54)【発明の名称】スチレン系樹脂、スチレン系樹脂組成物及びその成形品、並びにスチレン系樹脂の製造方法
(51)【国際特許分類】
C08F 4/6592 20060101AFI20230209BHJP
C08F 12/08 20060101ALI20230209BHJP
C08L 25/04 20060101ALI20230209BHJP
C08L 21/00 20060101ALI20230209BHJP
C08L 71/12 20060101ALI20230209BHJP
C08K 7/14 20060101ALI20230209BHJP
【FI】
C08F4/6592
C08F12/08
C08L25/04
C08L21/00
C08L71/12
C08K7/14
【審査請求】有
【請求項の数】28
【出願形態】OL
(21)【出願番号】P 2022210184
(22)【出願日】2022-12-27
(62)【分割の表示】P 2019557340の分割
【原出願日】2018-11-29
(31)【優先権主張番号】P 2017232080
(32)【優先日】2017-12-01
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2017232084
(32)【優先日】2017-12-01
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000183646
【氏名又は名称】出光興産株式会社
(74)【代理人】
【識別番号】110002620
【氏名又は名称】弁理士法人大谷特許事務所
(72)【発明者】
【氏名】青山 琢磨
(72)【発明者】
【氏名】横田 清彦
(57)【要約】
【課題】十分なリフローはんだ耐熱性を有するシンジオタクチック構造を有するスチレン系樹脂及びその製造方法を提供する。
【解決手段】示差走査熱量測定によって20℃/分の昇温速度で昇温して測定された全吸熱量を100%とした時の、175~260℃の範囲で得られる吸熱量の割合が30%未満であることを特徴とする、シンジオタクチック構造を有するスチレン系樹脂を提供する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
示差走査熱量測定によって20℃/分の昇温速度で昇温して測定された全吸熱量を100%とした時の、175~260℃の範囲で得られる吸熱量の割合が30%未満であり、トリフェニルメタンを10質量ppm以上含み、残留アルミニウム分が70質量ppm以上800質量ppm以下であり、かつ残留チタン分が1.5質量ppm以上12質量ppm以下であり、
中心金属として、周期律表第3~5族の金属及びランタノイド系遷移金属から選ばれる少なくとも1種を有するハーフメタロセン系遷移金属化合物(A)と、一般式(1)で示される化合物(B)と、酸素含有化合物(c1)及び遷移金属化合物と反応してイオン性の錯体を形成しうる化合物(c2)の少なくとも1種から選択される化合物(C)とを含む触媒の存在下、前記ハーフメタロセン系遷移金属化合物(A)の中心金属を基準として、水素をモル比で0~20倍加え、1以上のビニル芳香族モノマーを付加重合させることによって得られる、シンジオタクチック構造を有するスチレン系樹脂。
((R1)3-Q-Y)k-Z-(R2)j-k (1)
[式中、R1は、ハロゲン原子、炭素数1~30の脂肪族炭化水素基、炭素数6~30の芳香族炭化水素基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、炭素数1~30のチオアルコキシ基、炭素数6~30のチオアリールオキシ基、アミノ基、アミド基、又はカルボキシル基を示す。複数のR1は相互に同一でも異なっていてもよい。また、複数のR1は、必要に応じて結合して環構造を形成していてもよい。Qは周期律表第14族の元素を、Yは第16族の元素を示し、Zは、第2族~第13族の金属元素を示す。R2は炭化水素基を示す。jは金属元素Zの価数の整数を示し、kは、1~(j-1)の整数を示す。]
【請求項2】
トリフェニルメタンを30質量ppm以上含む、請求項1に記載のシンジオタクチック構造を有するスチレン系樹脂。
【請求項3】
トリフェニルメタンを250質量ppm以下含む、請求項1または2に記載のシンジオタクチック構造を有するスチレン系樹脂。
【請求項4】
残留アルミニウム分が700質量ppm以下であり、かつ残留チタン分が11質量ppm以下である、請求項1~3のいずれか一項に記載のシンジオタクチック構造を有するスチレン系樹脂。
【請求項5】
残留アルミニウム分が115質量ppm以上であり、かつ残留チタン分が2.5質量ppm以上である、請求項1~4のいずれか一項に記載のシンジオタクチック構造を有するスチレン系樹脂。
【請求項6】
示差走査熱量測定によって20℃/分の昇温速度で昇温して測定された全吸熱量を100%とした時の、175~260℃の範囲で得られる吸熱量の割合が28%以下である、
請求項1~5のいずれか一項に記載のシンジオタクチック構造を有するスチレン系樹脂。
【請求項7】
前記ハーフメタロセン系遷移金属化合物(A)が下記式(2)で示される、請求項1~6のいずれか一項に記載のシンジオタクチック構造を有するスチレン系樹脂。
R3MUa-1Lb (2)
[式中、R3はπ配位子を示す。Mは周期律表第3~5族の金属及びランタノイド系遷移金属から選ばれる少なくとも1種を示し、Uはモノアニオン配位子を示す。複数のUは互いに同一でも異なっていてもよく、また、互いに任意の基を介して結合していてもよい。Lはルイス塩基、aはMの価数、bは0,1又は2を示す。Lが複数の場合、Lは互いに同一でも異なっていてもよい。]
【請求項8】
前記ハーフメタロセン系遷移金属化合物(A)の中心金属がチタンである、請求項1~7のいずれか一項に記載のシンジオタクチック構造を有するスチレン系樹脂。
【請求項9】
下記一般式(3):
R4
pAl(OR5)qX1
2-p-qH (3)
で表される化合物(D)を触媒としてさらに用いる、請求項1~8のいずれか一項に記載のシンジオタクチック構造を有するスチレン系樹脂。
[式中、R4及びR5は、それぞれ炭素数1~8のアルキル基を示し、X1はハロゲン原子を示す。また、p、qは0<p≦2、0≦q<2、p+q≦2である。]
【請求項10】
下記一般式(4):
R6
mAl(OR7)nX2
3-m-n (4)
で表される化合物(E)を触媒としてさらに用いる、請求項1~9のいずれか一項に記載のシンジオタクチック構造を有するスチレン系樹脂。
[式中、R6及びR7は、それぞれ炭素数1~8のアルキル基を示し、X2はハロゲン原子を示す。また、m、nは0<m≦3、0≦n<3、m+n≦3である。]
【請求項11】
前記付加重合における触媒の使用量が、前記ビニル芳香族モノマー1モル当たり、ハーフメタロセン系遷移金属化合物(A)が0.5~100マイクロモルの範囲である、請求項1~10のいずれか一項に記載のシンジオタクチック構造を有するスチレン系樹脂。
【請求項12】
前記ハーフメタロセン系遷移金属化合物(A)が、オクタヒドロフルオレニルチタニウムトリメトキシドである、請求項1~11のいずれか一項に記載のシンジオタクチック構造を有するスチレン系樹脂。
【請求項13】
前記化合物(B)が、トリフェニルメタノールとトリイソブチルアルミニウムとの反応生成物である、請求項1~12のいずれか一項に記載のシンジオタクチック構造を有するスチレン系樹脂。
【請求項14】
前記化合物(C)が、メチルアルミノキサンである、請求項1~13のいずれか一項に記載のシンジオタクチック構造を有するスチレン系樹脂。
【請求項15】
前記化合物(D)が、ジイソブチルアルミニウムヒドリドである、請求項9~14のいずれか一項に記載のシンジオタクチック構造を有するスチレン系樹脂。
【請求項16】
前記化合物(E)が、トリイソブチルアルミニウムである、請求項10~15のいずれか一項に記載のシンジオタクチック構造を有するスチレン系樹脂。
【請求項17】
前記付加重合における触媒の使用量が、ハーフメタロセン系遷移金属化合物(A)1モル当たり、前記ビニル芳香族モノマーがモル比で67300~83300の範囲である、請求項1~16のいずれか一項に記載のシンジオタクチック構造を有するスチレン系樹脂。
【請求項18】
水素の添加量が、前記ハーフメタロセン系遷移金属化合物(A)の中心金属を基準として、モル比で0~4.4倍である、請求項1~17のいずれか一項に記載のシンジオタクチック構造を有するスチレン系樹脂。
【請求項19】
連続法によって得られる、請求項1~18のいずれか一項に記載のシンジオタクチック構造を有するスチレン系樹脂。
【請求項20】
請求項1~19のいずれか一項に記載のシンジオタクチック構造を有するスチレン系樹脂を成形加工して得られる、スチレン系樹脂成形体。
【請求項21】
成形体がリフローはんだ用である、請求項20に記載のスチレン系樹脂成形体。
【請求項22】
熱可塑性樹脂組成物50~95質量%と、ガラスフィラー5~50質量%とからなり、前記熱可塑性樹脂組成物が、請求項1~19のいずれか一項に記載のシンジオタクチック構造を有するスチレン系樹脂を80~100質量%及びゴム状弾性体0~20質量%からなる熱可塑性樹脂(SCA)100質量部に対し、ポリフェニレンエーテル及び変性ポリフェニレンエーテルからなる群から選択される少なくとも1種の化合物(SCC)1.5~5.0質量部と、核剤を含む、スチレン系樹脂組成物。
【請求項23】
前記核剤を、熱可塑性樹脂(SCA)100質量部に対して、0.1~3.0質量部含む、請求項22に記載のスチレン系樹脂組成物。
【請求項24】
請求項22または23に記載のスチレン系樹脂組成物を成形して得られる、スチレン系樹脂成形体。
【請求項25】
リフロー耐熱試験前後の表面粗さ(Ra:算術平均粗さ)の差(リフロー耐熱試験後の表面粗さ)-(室温での初期表面粗さ)が、1.5μm以下である、請求項24に記載のスチレン系樹脂成形体。
【請求項26】
成形体がリフローはんだ用である、請求項24または25に記載のスチレン系樹脂成形体。
【請求項27】
示差走査熱量測定によって20℃/分の昇温速度で昇温して測定された全吸熱量を100%とした時の、175~260℃の範囲で得られる吸熱量の割合が30%未満であるシンジオタクチック構造を有するスチレン系樹脂の製造方法であって、
中心金属として、周期律表第3~5族の金属及びランタノイド系遷移金属から選ばれる少なくとも1種を有するハーフメタロセン系遷移金属化合物(A)と、一般式(1)で示される化合物(B)と、酸素含有化合物(c1)及び遷移金属化合物と反応してイオン性の錯体を形成しうる化合物(c2)の少なくとも1種から選択される化合物(C)とを含む触媒の存在下、前記ハーフメタロセン系遷移金属化合物(A)の中心金属を基準として、水素をモル比で0~20倍加え、1以上のビニル芳香族モノマーを付加重合させる、シンジオタクチック構造を有するスチレン系樹脂の製造方法。
((R1)3-Q-Y)k-Z-(R2)j-k (1)
[式中、R1は、ハロゲン原子、炭素数1~30の脂肪族炭化水素基、炭素数6~30の芳香族炭化水素基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、炭素数1~30のチオアルコキシ基、炭素数6~30のチオアリールオキシ基、アミノ基、アミド基、又はカルボキシル基を示す。複数のR1は相互に同一でも異なっていてもよい。また、複数のR1は、必要に応じて結合して環構造を形成していてもよい。Qは周期律表第14族の元素を、Yは第16族の元素を示し、Zは、第2族~第13族の金属元素を示す。R2は炭化水素基を示す。jは金属元素Zの価数の整数を示し、kは、1~(j-1)の整数を示す。]
【請求項28】
連続法である、請求項27に記載のシンジオタクチック構造を有するスチレン系樹脂の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、スチレン系樹脂、スチレン系樹脂組成物及びその成形品、並びにスチレン系樹脂の製造方法に関する。
【背景技術】
【0002】
従来、電子部品を基板等に実装させる方法、あるいは自動車の電装部品の表面実装方法として、所定の場所に予めはんだが点着された部材上に電子部品等を仮固定した後、この部材を赤外線、熱風等の手段により加熱してはんだを溶融させて電子部品等を固定する方法であるリフロー法が採用されている。リフロー法は部材表面における電子部品の実装密度を向上させることができる。
【0003】
近年、電子機器分野や自動車の電装部品分野における表面実装技術の発展に伴って、十分な耐熱性を有するリフローはんだが普及しつつある。昨今の環境に対する意識の高まりから鉛含有はんだに代わる材料として注目されている。ここで、樹脂には、鉛フリーリフローはんだ工程に耐える耐熱性が要求される。
鉛フリーリフローはんだ工程に対応できる耐熱性を持つ樹脂としては、実用上は液晶ポリマー及び芳香族ポリアミド等が挙げられる。しかし、比重の大きさや、吸水による寸法安定性に劣る等の理由から、電子機器や自動車の電装部品用途において必ずしも適してはいない。
【0004】
シンジオタクチック構造を有するスチレン系重合体が優れた機械的強度、耐熱性、電気特性、吸水寸法安定性及び耐薬品性等を有することは既に知られていて、多くの用途が期待されている。中でも、シンジオタクチック構造を有するスチレン系重合体の優れた耐薬品性、耐熱性、電気特性及び吸水寸法安定性を活かして、電子機器、車載・電装部品、トランス・コイルパワーモジュール、リレー、センサー等において注目を集めている。
例えば、特許文献1には耐薬品性に優れ、耐熱性に優れるシンジオタクチック構造を有するスチレン系重合体が開示されている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1では特定のシンジオタクチック構造を有するスチレン系重合体を開示し、耐熱性に優れるとしている。しかしながら、リフローはんだ付けでは樹脂が高温に晒されることとなる。そのため、従来のシンジオタクチック構造を有するスチレン系樹脂は、「リフロー耐熱性」の面ではその耐熱性が未だ十分とはいえない。
【課題を解決するための手段】
【0007】
本発明者等は、十分なリフローはんだ耐熱性を有するシンジオタクチック構造を有するスチレン系樹脂を得るべく鋭意検討した。その結果、特定温度範囲で融解する副生成物の生成を抑制することにより、上記課題を解決することを見出した。すなわち、本発明は下記[1]~[22]に関する。
[1]示差走査熱量測定によって20℃/分の昇温速度で昇温して測定された全吸熱量を100%とした時の、175~260℃の範囲で得られる吸熱量の割合が30%未満である、シンジオタクチック構造を有するスチレン系樹脂。
[2]トリフェニルメタンを含む、上記[1]に記載のシンジオタクチック構造を有するスチレン系樹脂。
[3]トリフェニルメタンを10質量ppm以上含む、上記[2]に記載のシンジオタクチック構造を有するスチレン系樹脂。
[4]残留アルミニウム分が800質量ppm以下であり、かつ残留チタン分が12質量ppm以下である、上記[1]~[3]のいずれか一つに記載のシンジオタクチック構造を有するスチレン系樹脂。
[5]残留アルミニウム分が70質量ppm以上であり、かつ残留チタン分が1.5質量ppm以上である、上記[4]に記載のシンジオタクチック構造を有するスチレン系樹脂。
[6]中心金属として、周期律表第3~5族の金属及びランタノイド系遷移金属から選ばれる少なくとも1種を有するハーフメタロセン系遷移金属化合物(A)と、一般式(1)で示される化合物(B)と、酸素含有化合物(c1)及び遷移金属化合物と反応してイオン性の錯体を形成しうる化合物(c2)の少なくとも1種から選択される化合物(C)とを含む触媒の存在下で、1以上のビニル芳香族モノマーを付加重合させる工程を有し、
得られたスチレン系樹脂について、示差走査熱量測定によって20℃/分の昇温速度で昇温して測定された全吸熱量を100%とした時の、175~260℃の範囲で得られる吸熱量の割合が30%未満である、シンジオタクチック構造を有するスチレン系樹脂の製造方法。
((R1)3-Q-Y)k-Z-(R2)j-k (1)
[式中、R1は、ハロゲン原子、炭素数1~30の脂肪族炭化水素基、炭素数6~30の芳香族炭化水素基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、炭素数1~30のチオアルコキシ基、炭素数6~30のチオアリールオキシ基、アミノ基、アミド基、又はカルボキシル基を示す。複数のR1は相互に同一でも異なっていてもよい。また、複数のR1は、必要に応じて結合して環構造を形成していてもよい。Qは周期律表第14族の元素を、Yは第16族の元素を示し、Zは、第2族~第13族の金属元素を示す。R2は炭化水素基を示す。jは金属元素Zの価数の整数を示し、kは、1~(j-1)の整数を示す。]
[7]前記ハーフメタロセン系遷移金属化合物(A)が下記式(2)で示される、上記[6]に記載のシンジオタクチック構造を有するスチレン系樹脂の製造方法。
R3MUa-1Lb (2)
[式中、R3はπ配位子を示す。Mは周期律表第3~5族の金属及びランタノイド系遷移金属から選ばれる少なくとも1種を示し、Uはモノアニオン配位子を示す。複数のUは互いに同一でも異なっていてもよく、また、互いに任意の基を介して結合していてもよい。Lはルイス塩基、aはMの価数、bは0,1又は2を示す。Lが複数の場合、Lは互いに同一でも異なっていてもよい。]
[8]前記ハーフメタロセン系遷移金属化合物(A)の中心金属がチタンである、上記[6]または[7]に記載のシンジオタクチック構造を有するスチレン系樹脂の製造方法。
[9]下記一般式(3):
R4
pAl(OR5)qX1
2-p-qH (3)
で表される化合物(D)を触媒としてさらに用いる、上記[6]~[8]のいずれか一つに記載のシンジオタクチック構造を有するスチレン系樹脂の製造方法。
[式中、R4及びR5は、それぞれ炭素数1~8のアルキル基を示し、X1はハロゲン原子を示す。また、p、qは0<p≦2、0≦q<2、p+q≦2である。]
[10]下記一般式(4):
R6
mAl(OR7)nX2
3-m-n (4)
で表される化合物(E)を触媒としてさらに用いる、上記[6]~[9]のいずれか一つに記載のシンジオタクチック構造を有するスチレン系樹脂の製造方法。
[式中、R6及びR7は、それぞれ炭素数1~8のアルキル基を示し、X2はハロゲン原子を示す。また、m、nは0<m≦3、0≦n<3、m+n≦3である。]
[11]粉体床連続重合で製造する、上記[6]~[10]のいずれか一つに記載のシンジオタクチック構造を有するスチレン系樹脂の製造方法。
[12]前記ハーフメタロセン系遷移金属化合物(A)の中心金属を基準として、水素をモル比で0~20倍加える、上記[6]~[11]のいずれか一つに記載のシンジオタクチック構造を有するスチレン系樹脂の製造方法。
[13]脱灰処理を行わない、上記[6]~[12]のいずれか一つに記載のシンジオタクチック構造を有するスチレン系樹脂の製造方法。
[14]熱可塑性樹脂組成物50~95質量%と、ガラスフィラー5~50質量%とからなり、前記熱可塑性樹脂組成物が、シンジオタクチック構造を有するスチレン系樹脂を80~100質量%及びゴム状弾性体0~20質量%からなる熱可塑性樹脂(SCA)100質量部に対し、フェノール系酸化防止剤及び硫黄系酸化防止剤からなる群から選択される少なくとも1種の酸化防止剤(SCB)0.2~2.0質量部と、ポリフェニレンエーテル及び変性ポリフェニレンエーテルからなる群から選択される少なくとも1種の化合物(SCC)1.5~5.0質量部と、核剤及び離型剤からなる群から選択される少なくとも1種とを含む、スチレン系樹脂組成物。
[15]前記シンジオタクチック構造を有するスチレン系樹脂が、上記[1]~[5]のいずれか一つに記載のスチレン系樹脂である、請求項14に記載のスチレン系樹脂組成物。
[16]前記熱可塑性樹脂(SCA)100質量部に対する酸化防止剤(SCB)の量が0.2~1.5質量部である、上記[14]または[15]に記載のスチレン系樹脂組成物。
[17]前記熱可塑性樹脂(SCA)100質量部に対する酸化防止剤(SCB)の量が0.3~1.0質量部である、上記[14]または[15]に記載のスチレン系樹脂組成物。
[18]前記酸化防止剤(SCB)がフェノール系酸化防止剤である、上記[14]~[17]のいずれか一つに記載のスチレン系樹脂組成物。
[19]前記核剤を、熱可塑性樹脂(SCA)100質量部に対して、0.1~3.0質量部含む、上記[14]~[18]のいずれか一つに記載のスチレン系樹脂組成物。
[20]前記離型剤を、熱可塑性樹脂(SCA)100質量部に対して、0.1~3.0質量部含む、上記[14]~[18]のいずれか一つに記載のスチレン系樹脂組成物。
[21]上記[1]~[5]のいずれか一つに記載のシンジオタクチック構造を有するスチレン系樹脂、または上記[14]~[20]のいずれか一つに記載のスチレン系樹脂組成物を成形加工して得られる、スチレン系樹脂成形体。
[22]成形体がリフローはんだ用である、上記[21]に記載のスチレン系樹脂成形体。
【発明の効果】
【0008】
本発明の第一の態様によれば、電気特性、吸水寸法安定性及び耐薬品性等を有すると共に、優れたリフローはんだ耐熱性を有する、シンジオタクチック構造を有するスチレン系樹脂及びその成形品を得ることができる。本発明の第二の態様によれば、優れたリフローはんだ耐熱性を有する、シンジオタクチック構造を有するスチレン系樹脂を連続法で大量生産することができる。本発明の第三の態様によれば、優れた耐熱水性と離型性、低ガス性を両立できるスチレン系樹脂組成物及びその成形品を得ることができる。さらに、本発明の第一の態様であるシンジオタクチック構造を有するスチレン系樹脂を用いることで、優れたリフローはんだ耐熱性も有するスチレン系樹脂組成物及びその成形品を得ることができる。
【図面の簡単な説明】
【0009】
【
図1】DSC測定法により得られるピークを示すグラフ。
【発明を実施するための形態】
【0010】
本発明者等は鋭意検討の結果、低い融点を有する成分が副生成物として生じることで、シンジオタクチック構造を有するスチレン系樹脂の耐熱性、特にリフローはんだ耐熱性に悪影響を及ぼすことを見出した。また、シンジオタクチック構造を有するスチレン系樹脂と、特定の酸化防止剤等を特定量含むスチレン系樹脂組成物は耐熱水性に優れることを見出した。中でも低い融点を有する成分量が少ない、耐熱性に優れるシンジオタクチック構造を有するスチレン系樹脂と、特定の酸化防止剤等を特定量含む場合、耐熱水性に優れると共に、特にリフローはんだ耐熱性に優れる樹脂組成物を得ることができる。以下、詳細に説明する。
本明細書において、「XX~YY」の記載は、「XX以上YY以下」を意味する。本明細書において、好ましいとされている規定は任意に採用することができ、好ましいもの同士の組み合わせはより好ましい。
【0011】
<スチレン系樹脂>
本発明のスチレン系樹脂は、高度なシンジオタクチック構造を有するスチレン系樹脂(以下、SPS樹脂と略記することがある)である。本明細書において「シンジオタクチック」とは、隣り合うスチレン単位におけるフェニル環が、重合体ブロックの主鎖によって形成される平面に対して交互に配置(以下において、シンジオタクティシティと記載する)されている割合が高いことを意味する。
タクティシティは、同位体炭素による核磁気共鳴法(13C-NMR法)により定量同定できる。13C-NMR法により、連続する複数の構成単位、例えば連続した2つのモノマーユニットをダイアッド、3つのモノマーユニットをトリアッド、5つのモノマーユニットをペンタッドとしてその存在割合を定量することができる。
本発明において、「高度なシンジオタクチック構造を有するスチレン系樹脂」とは、ラセミダイアッド(r)で通常75モル%以上、好ましくは85モル%以上、又はラセミペンタッド(rrrr)で通常30モル%以上、好ましくは50モル%以上のシンジオタクティシティを有するポリスチレン、ポリ(炭化水素置換スチレン)、ポリ(ハロゲン化スチレン)、ポリ(ハロゲン化アルキルスチレン)、ポリ(アルコキシスチレン)、ポリ(ビニル安息香酸エステル)、これらの水素化重合体若しくは混合物、又はこれらを主成分とする共重合体を意味する。
【0012】
ポリ(炭化水素置換スチレン)としては、ポリ(メチルスチレン),ポリ(エチルスチレン),ポリ(イソプロピルスチレン),ポリ(tert-ブチルスチレン),ポリ(フェニル)スチレン,ポリ(ビニルナフタレン)及びポリ(ビニルスチレン)等を挙げることができる。ポリ(ハロゲン化スチレン)としては、ポリ(クロロスチレン)、ポリ(ブロモスチレン)及びポリ(フルオロスチレン)等が、ポリ(ハロゲン化アルキルスチレン)としては、ポリ(クロロメチルスチレン)等を挙げることができる。ポリ(アルコキシスチレン)としては、ポリ(メトキシスチレン)及びポリ(エトキシスチレン)等を挙げることができる。
上記の構成単位を含む共重合体のコモノマー成分としては、上記スチレン系重合体のモノマーの他、エチレン、プロピレン、ブテン、ヘキセン及びオクテン等のオレフィンモノマー;ブタジエン、イソプレン等のジエンモノマー;環状オレフィンモノマー、環状ジエンモノマー、メタクリル酸メチル、無水マレイン酸及びアクリロニトリル等の極性ビニルモノマーが挙げられる。
【0013】
上記スチレン系重合体のうち特に好ましいものとして、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(m-メチルスチレン)、ポリ(p-tert-ブチルスチレン)、ポリ(p-クロロスチレン)、ポリ(m-クロロスチレン)、ポリ(p-フルオロスチレン)を挙げることができる。
さらにはスチレンとp-メチルスチレンとの共重合体、スチレンとp-tert-ブチルスチレンとの共重合体、スチレンとジビニルベンゼンとの共重合体等を挙げることができる。
【0014】
本発明のシンジオタクチック構造を有するスチレン樹脂は、成形時の樹脂の流動性及び得られる成形体の強度の観点から、重量平均分子量が1×104以上1×106以下であることが好ましく、50,000以上500,000以下であることがより好ましい。重量平均分子量が1×104以上であれば、十分な強度を有する成形品を得ることができる。一方、重量平均分子量が1×106以下であれば成形時の樹脂の流動性にも問題がない。
本明細書において、重量平均分子量とは、特段の記載がない限り、東ソー株式会社製GPC装置(HLC-8321GPC/HT)、東ソー株式会社製GPCカラム(GMHHR-H(S)HT)を用い、溶離液として1,2,4-トリクロロベンゼンを用いて145℃でゲル浸透クロマトグラフィー測定法により測定し、標準ポリスチレンの検置線を用いて換算した値である。単に「分子量」と略すことがある。
【0015】
本発明のシンジオタクチック構造を有するスチレン系樹脂は、示差走査熱量測定によって20℃/分の昇温速度で昇温して測定された全吸熱量を100%とした時の、175~260℃の範囲で得られる吸熱量の割合が30%未満であることを要する。詳述する。
示差走査熱量測定(DSC測定)装置によりJIS K 7121:1987の「一定の熱処理を行った後、融解温度を測定する場合」に記載される方法に準じて、昇温速度20℃/分の条件にて得られる値として、樹脂の融点を測定することができる。
【0016】
シンジオタクチック構造を有するスチレン系樹脂をDSC測定して得られるDSC曲線には、
図1に示すように2つのピークが存在する場合があることに本発明者等は注目した。
図1は、DSC測定によって20℃/分の昇温速度で昇温して測定した際のグラフを示す。
2つのピークのうち低温側のピーク、すなわち、示差走査熱量測定で得られる全吸熱量を100%とした時の175~260℃の範囲の吸熱量の割合が大きい場合に、リフロー耐熱性に劣るスチレン系樹脂となる。理論に拘束されないが、175~260℃の範囲で吸熱挙動を示す低融点成分の生成によりリフロー耐熱性が低下する理由を、以下のように発明者等は推測する。
シンジオタクチック構造を有するスチレン系樹脂は、後述する触媒の組み合わせを用いて合成され、さらに活性を高めるため必要に応じて水素添加が行なわれる。触媒の状態や特定量以上の水素添加によって触媒場の状況が変化することにより、樹脂のタクティシティに変化を生じる触媒エラーが起こり、低融点成分がより多く生成して、樹脂のリフロー耐熱性が下がると考えられる。
「全吸熱量を100%とした時の、175~260℃の範囲で得られる吸熱量の割合が30%未満」とは、175~260℃の範囲にて吸熱挙動を示す低融点成分の割合を指す。本発明者等は、この低融点成分の割合、すなわち「示差走査熱量測定によって20℃/分の昇温速度で昇温して測定された全吸熱量を100%とした時の、175~260℃の範囲で得られる吸熱量の割合」を30%未満とすることにより、リフロー耐熱性に優れるシンジオタクチック構造を有するスチレン系樹脂が得られることを見出した。
【0017】
上記低融点成分の詳細は明らかではないが、発明者らは、低融点成分の増加は、タクティシティがラセミペンタッドで90モル%以下の成分が増加することによるものであることを解明した。タクティシティがラセミペンタッドで90モル%以下となると結晶の厚みが変わり、タクティシティの高いシンジオタクチック構造を有するスチレン系樹脂よりも融点が低くなると推測している。
さらに、低融点成分は重量平均分子量が20,000以下の成分であることを見出した。ここで説明する低融点成分の重量平均分子量の測定は、昇温溶出分別することにより可能である。
【0018】
本発明のシンジオタクチック構造を有するスチレン系樹脂の、全吸熱量を100%とした時の、175~260℃の範囲で得られる吸熱量の割合、すなわち低融点成分の割合は、30%未満、好ましくは28%以下、より好ましくは27%以下である。低融点成分の割合が30%以上となると、リフロー耐熱性に劣る結果となる。
【0019】
本発明のシンジオタクチック構造を有するスチレン系樹脂はトリフェニルメタンを含み得る。トリフェニルメタンは後述する製造時の触媒由来の成分である。本発明のスチレン系樹脂中のトリフェニルメタン量は、好ましくは10質量ppm以上、より好ましくは20質量ppm以上、さらに好ましくは30質量ppm以上、特に好ましくは40質量ppm以上である。一方、トリフェニルメタン量の上限値は250質量ppm以下であることが好ましい。
本発明のスチレン系樹脂中のトリフェニルメタン量が10質量ppm以上であれば、十分な触媒量でタクティシティの高いシンジオタクチック構造を有するスチレン系樹脂を得ることができる。
【0020】
本発明のシンジオタクチック構造を有するスチレン系樹脂は、製造時の触媒由来のアルミニウム及びチタンを含み得る。本発明の特定スチレン系樹脂は、残留アルミニウム分が800質量ppm以下であり、かつ残留チタン分が12質量ppm以下であることが好ましい。残留アルミニウム分が800質量ppm以下であり、残留チタン分が12質量ppm以下であれば、スチレン系樹脂は高いリフロー耐熱性を有することができ好ましい。
本発明のスチレン系樹脂中の残留アルミニウム分は、好ましくは700質量ppm以下であり、より好ましくは500質量ppm以下であり、残留チタン分は好ましくは11質量ppm以下であり、より好ましくは10質量ppm以下であり、さらに好ましくは8質量ppm以下である。
【0021】
アルミニウムやチタンは製造時の触媒由来であることは上記した通りである。
スチレン系樹脂の製造は「バッチ法」と「連続法」とに分けられる。「バッチ法」は「連続法」に比べて用いる触媒量を抑えることができるが、一度の製造時に得られるスチレン系樹脂量は低く、エネルギー面等から経済性に劣る。一方「連続法」は高いエネルギー効率で大量のスチレン系樹脂を得ることができる反面、「バッチ法」に比べてある程度の触媒量を必要とする。
本発明の特定のスチレン系樹脂は残留アルミニウム分が70質量ppm以上であり、残留チタン分が1.5質量ppm以上であっても、優れた耐熱性と樹脂本来の各特性を両立することができる。また、この範囲の残留金属分となる場合に連続法での製造が可能となり、商業的に有利な当該スチレン系樹脂を得ることができる。さらに効率よく製造するためには、残留アルミニウム分は115質量ppm以上となり、残留チタン分は2.5質量ppm以上となる。
生産量や得られるスチレン系樹脂の性質により変動するものの、一般的に、バッチ法により得られるスチレン系樹脂は、連続法に比べ少ない16質量ppm程度の残留アルミニウム分と、0.025質量ppm程度の残留チタン分を有し得る。一方で、連続法のように効率よく製造することは難しい。
【0022】
<スチレン系樹脂の製造方法>
本発明の第二の態様は、シンジオタクチック構造を有するスチレン系樹脂の製造方法に関する。すなわち、中心金属として、周期律表第3~5族の金属及びランタノイド系遷移金属から選ばれる少なくとも1種を有するハーフメタロセン系遷移金属化合物(A)と、一般式(1)で示される化合物(B)と、酸素含有化合物(c1)及び遷移金属化合物と反応してイオン性の錯体を形成しうる化合物(c2)の少なくとも1種から選択される化合物(C)とを含む触媒の存在下で、1以上のビニル芳香族モノマーを付加重合させる工程を有し、
得られたスチレン系樹脂について、示差走査熱量測定によって20℃/分の昇温速度で昇温して測定された全吸熱量を100%とした時の、175~260℃の範囲で得られる吸熱量の割合が30%未満である、シンジオタクチック構造を有するスチレン系樹脂の製造方法を提供する。
((R1)3-Q-Y)k-Z-(R2)j-k (1)
[式中、R1は、ハロゲン原子、炭素数1~30の脂肪族炭化水素基、炭素数6~30の芳香族炭化水素基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、炭素数1~30のチオアルコキシ基、炭素数6~30のチオアリールオキシ基、アミノ基、アミド基、又はカルボキシル基を示す。複数のR1は相互に同一でも異なっていてもよい。また、複数のR1は、必要に応じて結合して環構造を形成していてもよい。Qは周期律表第14族の元素を、Yは第16族の元素を示し、Zは、第2族~第13族の金属元素を示す。R2は炭化水素基を示す。jは金属元素Zの価数の整数を示し、kは、1~(j-1)の整数を示す。]
得られるシンジオタクチック構造を有するスチレン系樹脂は、本発明の第一の態様に記載した特定の性質を有するものである。
【0023】
本発明の製造方法においては、触媒として、中心金属として、周期律表第3~5族の金属及びランタノイド系遷移金属から選ばれる少なくとも1種を有するハーフメタロセン系遷移金属化合物(A)と、一般式(1)で示される化合物(B)と、酸素含有化合物(c1)及び遷移金属化合物と反応してイオン性の錯体を形成しうる化合物(c2)の少なくとも1種から選択される化合物(C)とを用いることを要する。以下、まず触媒について詳述する。
【0024】
<ハーフメタロセン系遷移金属化合物(A)>
ハーフメタロセン系遷移金属化合物(A)は、中心金属が、周期律表第3~5族の金属、及びランタノイド系遷移金属から選ばれる少なくとも1種を有するハーフメタロセン系遷移金属化合物である。
当該ハーフメタロセン系遷移金属化合物(A)は、例えば、一般式(2)
R3MUa-1Lb (2)
[式中、R3はπ配位子を示す。Mは周期律表第3~5族の金属及びランタノイド系遷移金属から選ばれる少なくとも1種を示し、Uはモノアニオン配位子を示す。複数のUは互いに同一でも異なっていてもよく、また、互いに任意の基を介して結合していてもよい。Lはルイス塩基、aはMの価数、bは0,1又は2を示す。Lが複数の場合、Lは互いに同一でも異なっていてもよい。]
で表される構造を有するものである。この一般式(2)において、R3はπ配位子であり、好ましくは、置換または無置換の(以下、(置換)と示すことがある)シクロペンタジエニル基、(置換)インデニル基、シクロペンタジエニル基が縮合結合している多員環の少なくとも一つが飽和環である縮合多環式シクロペンタジエニル基を示す。このような縮合多環式シクロペンタジエニル基としては、例えば一般式(i)~(iii)で表される縮合多環式シクロペンタジエニル基の中から選ばれたものを挙げることができる。
【0025】
【0026】
[式中、R12,R13及びR14はそれぞれ、水素原子,ハロゲン原子,炭素数1~20の脂肪族炭化水素基,炭素数6~20の芳香族炭化水素基,炭素数1~20のアルコキシ基,炭素数6~20のアリールオキシ基,炭素数1~20のチオアルコキシ基,炭素数6~20のチオアリールオキシ基,アミノ基,アミド基,カルボキシル基又はアルキルシリル基を示す。各R12,各R13及び各R14はそれぞれ互いに同一でも異なっていてもよい。c,d,e及びfは、1以上の整数を示す。]
中でも、以下の一般式(iv)~(vi)で表される縮合多環式シクロペンタジエニル基の中から選ばれたものを好ましくは挙げることができる。
【0027】
【0028】
[式中、R15,R16及びR17はそれぞれ、水素原子又はメチル基を示し、各R15,各R16及び各R17は互いに同一でも異なっていてもよい。]
【0029】
これらの中で、触媒活性及び合成が容易な点から、4,5,6,7-テトラヒドロインデニル基類が好適である。このR3の具体例としては、4,5,6,7-テトラヒドロインデニル基;1-メチル-4,5,6,7-テトラヒドロインデニル基;2-メチル-4,5,6,7-テトラヒドロインデニル基;1,2-ジメチル-4,5,6,7-テトラヒドロインデニル基;1,3-ジメチル-4,5,6,7-テトラヒドロインデニル基;1,2,3-トリメチル-4,5,6,7-テトラヒドロインデニル基;1,2,3,4,5,6,7-ヘプタメチル-4,5,6,7-テトラヒドロインデニル基;1,2,4,5,6,7-ヘキサメチル-4,5,6,7-テトラヒドロインデニル基;1,3,4,5,6,7-ヘキサメチル-4,5,6,7-テトラヒドロインデニル基;オクタヒドロフルオレニル基;1,2,3,4-テトラヒドロフルオレニル基;9-メチル-1,2,3,4-テトラヒドロフルオレニル基;9-メチル-オクタヒドロフルオレニル基などが挙げられる。
【0030】
Mは周期律表第3~5族の金属、又はランタノイド系遷移金属である。これらの金属としては、スカンジウム及びイットリウムなど周期律表第3族金属、チタン,ジルコニウム及びハフニウムなどの周期律表第4族金属、ランタノイド系遷移金属,ニオブ及びタンタルなどの周期律表第5族金属が挙げられる。触媒活性の点から、周期律表第3族金属又は第4族金属が好適であり、スカンジウム、イットリウム、チタンを好ましくは用いることができる。中でもハンドリングの観点からチタンがより好適である。
Uはモノアニオン配位子を示し、具体的には水素原子,ハロゲン原子,炭素数1~20の脂肪族炭化水素基,炭素数6~20の芳香族炭化水素基,炭素数1~20のアルコキシ基,炭素数6~20のアリールオキシ基,炭素数1~20のチオアルコキシ基,炭素数6~20のチオアリールオキシ基,アミノ基,アミド基,カルボキシル基及びアルキルシリル基などが挙げられる。複数のUは互いに同一でも異なっていてもよく、また互いに任意の基を介して結合していてもよい。Uの具体例としては、水素原子,塩素原子,臭素原子,ヨウ素原子,メチル基,ベンジル基,フェニル基,トリメチルシリルメチル基,メトキシ基,エトキシ基,フェノキシ基,チオメトキシ基,チオフェノキシ基,ジメチルアミノ基,ジイソプロピルアミノ基などを挙げることができる。Lはルイス塩基を示し、aはMの価数,bは0,1又は2である。
【0031】
一般式(2)で表されるハーフメタロセン系遷移金属化合物(A)としては、上記例示のR3,M及びUの中から、それぞれ任意に選択された基を有する化合物を好ましく用いることができる。
一般式(2)で表されるハーフメタロセン系遷移金属化合物(A)としては、例えば、ペンタメチルシクロペンタジエニルチタニウムトリクロリド、1,2,3-トリメチルインデニルチタニウムトリクロリド、4,5,6,7-テトラヒドロインデニルチタニウムトリクロリド;4,5,6,7-テトラヒドロインデニルチタニウムトリメチル;4,5,6,7-テトラヒドロインデニルチタニウムトリベンジル;4,5,6,7-テトラヒドロインデニルトリメトキシド;1-メチル-4,5,6,7-テトラヒドロインデニルチタニウムトリクロリド;1-メチル-4,5,6,7-テトラヒドロインデニルチタニウムトリメチル;1-メチル-4,5,6,7-テトラヒドロインデニルチタニウムトリベンジル;1-メチル-4,5,6,7-テトラヒドロインデニルチタニウムトリメトキシド;2-メチル-4,5,6,7-テトラヒドロインデニルチタニウムトリクロリド;2-メチル-4,5,6,7-テトラヒドロインデニルチタニウムトリメチル;2-メチル-4,5,6,7-テトラヒドロインデニルチタニウムトリベンジル;2-メチル-4,5,6,7-テトラヒドロインデニルチタニウムトリメトキシド;1,2-ジメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリクロリド;1,2-ジメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリメチル;1,2-ジメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリベンジル;1,2-ジメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリメトキシド;1,3-ジメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリクロリド;1,3-ジメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリメチル;1,3-ジメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリベンジル;1,3-ジメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリメトキシド;1,2,3-トリメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリクロリド;1,2,3-トリメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリメチル;1,2,3-トリメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリベンジル;1,2,3-トリメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリメトキシド;1,2,3,4,5,6,7-ヘプタメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリクロリド;1,2,3,4,5,6,7-ヘプタメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリメチル;1,2,3,4,5,6,7-ヘプタメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリベンジル;1,2,3,4,5,6,7-ヘプタメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリメトキシド;1,2,4,5,6,7-ヘキサメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリクロリド;1,2,4,5,6,7-ヘキサメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリメチル;1,2,4,5,6,7-ヘキサメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリベンジル;1,2,4,5,6,7-ヘキサメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリメトキシド;1,3,4,5,6,7-ヘキサメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリクロリド;1,3,4,5,6,7-ヘキサメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリメチル;1,3,4,5,6,7-ヘキサメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリベンジル;1,3,4,5,6,7-ヘキサメチル-4,5,6,7-テトラヒドロインデニルチタニウムトリメトキシド;オクタヒドロフルオレニルチタニウムトリクロリド;オクタヒドロフルオレニルチタニウムトリメチル;オクタヒドロフルオレニルチタニウムトリベンジル;オクタヒドロフルオレニルチタニウムトリメトキシド;1,2,3,4-テトラヒドロフルオレニルチタニウムトリクロリド;1,2,3,4-テトラヒドロフルオレニルチタニウムトリメチル;1,2,3,4-テトラヒドロフルオレニルチタニウムトリベンジル;1,2,3,4-テトラヒドロフルオレニルチタニウムトリメトキシド;9-メチル-1,2,3,4-テトラヒドロフルオレニルチタニウムトリクロリド;9-メチル-1,2,3,4-テトラヒドロフルオレニルチタニウムトリメチル;9-メチル-1,2,3,4-テトラヒドロフルオレニルチタニウムトリベンジル;9-メチル-1,2,3,4-テトラヒドロフルオレニルチタニウムトリメトキシド;9-メチル-オクタヒドロフルオレニルチタニウムトリクロリド;9-メチル-オクタヒドロフルオレニルチタニウムトリメチル;9-メチル-オクタヒドロフルオレニルチタニウムトリベンジル;9-メチル-オクタヒドロフルオレニルチタニウムトリメトキシドなど、及びこれらの化合物におけるチタニウムを、ジルコニウム又はハフニウムに置換したもの、あるいは他の族又はランタノイド系列の遷移金属元素の類似化合物を挙げることができるが、これらに限定されない。触媒活性の点からイットリウム化合物、スカンジウム化合物、チタニウム化合物が好適である。中でもハンドリングの観点からチタニウム化合物が好適である。
【0032】
<一般式(1)で示される化合物(B)>
一般式(1)を再度下記に記載する。
((R1)3-Q-Y)k-Z-(R2)j-k (1)
[式中、R1は、ハロゲン原子、炭素数1~30の脂肪族炭化水素基、炭素数6~30の芳香族炭化水素基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、炭素数1~30のチオアルコキシ基、炭素数6~30のチオアリールオキシ基、アミノ基、アミド基、又はカルボキシル基を示す。複数のR1は相互に同一でも異なっていてもよい。また、複数のR1は、必要に応じて結合して環構造を形成していてもよい。Qは周期律表第14族の元素を、Yは第16族の元素を示し、Zは、第2族~第13族の金属元素を示す。R2は炭化水素基を示す。jは金属元素Zの価数の整数を示し、kは、1~(j-1)の整数を示す。]
【0033】
中でも、次のものが好ましく用いられる:
(1)Qが炭素であり、Yが酸素であり、Zがアルミニウムである,
(2)3個のR1のうち、少なくとも1つが炭素数6~30の芳香族炭化水素基である,
(3)3個のR1のすべてが炭素数1以上の炭化水素基である,
(4)3個のR1のすべてが炭素数6~30の芳香族炭化水素基、好ましくはフェニル基である,または
(5)R2が炭素数2以上のアルキル基である。
特に、化合物(B)が、一般式(1)中のZがアルミニウムである化合物であることが好ましい。
【0034】
一般式(1)で示される化合物(B)は、該一般式で表される構造を持つものであれば、その製造方法は特に問わないが、一般式(R1)3-C-OR33で表される化合物(b1)と、一般式Z(R2)jで表される化合物(b2)とを反応させることにより得られたものが好適に用いられる。
ここで、R1,Z,j及びR2は上記した通りである。R33は、水素原子、ハロゲン原子、炭素数1~30の脂肪族炭化水素基、炭素数6~30の芳香族炭化水素基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、炭素数1~30のチオアルコキシ基、炭素数6~30のチオアリールオキシ基、アミノ基、アミド基又はカルボキシル基を示す。R1及びR33はそれぞれ相互に同一でも、異なっていてもよい。また、R1及びR33はそれぞれ必要に応じて結合し、環構造を形成してもよい。
【0035】
式(1)の化合物として、具体的には、アルコール類,エーテル類,アルデヒド類,ケトン類,カルボン酸類,カルボン酸エステル類から選ばれた少なくとも1種(b1)と、アルミニウム化合物(b2)との反応生成物が挙げられる。より好ましくはアルコール類(b1)とアルミニウム化合物(b2)との反応生成物である。この場合においても、(1)(R1)3における3個のR1のうち、少なくとも1つが炭素数6~30の芳香族炭化水素基である,(2)(R1)3における3個のR1のすべてが炭素数1以上の炭化水素基である、(3)(R1)3における3個のR1のすべてが炭素数1~30の脂肪族炭化水素基である、(4)(R1)3における3個のR1のすべてが炭素数6~30の芳香族炭化水素基、好ましくはフェニル基である,または(5)R2が炭素数2以上のアルキル基であることが好ましい。具体的には、R1がすべてフェニル基であり、Qが炭素,Yが酸素,Zがアルミニウムであり、k=1であり、R2がイソブチル基であるものが好ましくは挙げられる。即ち、トリフェニルメタノール(b1)とトリイソブチルアルミニウム(b2)との反応生成物が最も好ましい。
【0036】
化合物(b1)との化合物(b2)との反応条件としては特に制限はないが、次のような条件が好ましく選ばれる。配合比については、モル比で、化合物(b1):化合物(b2)が好ましくは1:0.01~1:100、より好ましくは1:0.5~1:50の範囲であり、特に好ましくは1:0.8~1:10である。反応温度は好ましくは-80℃~300℃、より好ましくは-10℃~50℃である。
反応時に使用する溶媒も制限はないが、トルエン、エチルベンゼン等重合時に使用される溶媒が好ましく用いられる。
【0037】
さらには、一般式(1)で示される化合物(B)としてではなく、化合物(b1)と化合物(b2)とを直接触媒合成の場に、又は重合の場に投入してもよい。即ち、この場合は、触媒成分としては、ハーフメタロセン系遷移金属化合物(A)と、化合物(b1)及び化合物(b2)ということになる。
【0038】
<化合物(C)>
化合物(C)は、酸素含有化合物(c1)及び遷移金属化合物と反応してイオン性の錯体を形成しうる化合物(c2)の少なくとも1種から選択される。中でも、酸素含有化合物(c1)が好適である。
【0039】
[酸素含有化合物(c1)]
酸素含有化合物としては、たとえば、下記一般式(c11)及び/又は一般式(c12)で表される化合物が挙げられる。
【化3】
【0040】
上記一般式(c11)及び(c12)において、R18~R24はそれぞれ炭素数1~8のアルキル基を示し、具体的にはメチル基,エチル基,n-プロピル基,イソプロピル基,各種ブチル基,各種ペンチル基,各種ヘキシル基,各種ヘプチル基及び各種オクチル基が挙げられる。R18~R22は互いに同一でも異なっていてもよく、R23及びR24は互いに同一でも異なっていてもよい。Z1~Z5はそれぞれ周期律表13族元素を示し、具体的にはB,Al,Ga,In及びTlが挙げられるが、中でもB及びAlが好適であり、Alがより好適である。Z1~Z3は互いに同一でも異なっていてもよく、Z4及びZ5は互いに同一でも異なっていてもよい。g,h,s及びtはそれぞれ0~50の数であるが、(g+h)及び(s+t)はそれぞれ1以上である。g,h,s及びtとしてはそれぞれ1~20の範囲が好ましく、特に1~5の範囲が好ましい。
上記酸素含有化合物としては、アルキルアルミノキサンが好ましい。具体的な好適例としては、メチルアルミノキサン、メチルイソブチルアルミノキサン、及びイソブチルアルミノキサンが挙げられる。
【0041】
[遷移金属化合物と反応してイオン性の錯体を形成しうる化合物(c2)]
遷移金属化合物と反応してイオン性の錯体を形成しうる化合物(c2)としては、複数の基が金属に結合したアニオンとカチオンとからなる配位錯化合物又はルイス酸を挙げることができる。複数の基が金属に結合したアニオンとカチオンとからなる配位錯化合物としては様々なものがあるが、例えば下記一般式(c21)又は(c22)で表される化合物を好適に使用することができる。
([L2]i+)y([M3X3
u](u-v)-)z (c21)
([L3-H]i+)y([M4X3
u](u-v)-)z (c22)
【0042】
式(c21)または(c22)において、L2は後述のM5,R25R26M6又はR27
3Cであり、L3はルイス塩基、M3及びM4はそれぞれ周期律表の第5族~第15族から選ばれる金属である。M5は周期律表の第1族及び第8族~第12族から選ばれる金属であり、M6は周期律表の第8族~第10族から選ばれる金属である。X3はそれぞれ水素原子,ジアルキルアミノ基,アルコキシ基,アリールオキシ基,炭素数1~20のアルキル基,炭素数6~20のアリール基,アルキルアリール基,アリールアルキル基,置換アルキル基,有機メタロイド基又はハロゲン原子を示す。但し、複数のX3は互いに同一でも異なっていてもよい。R25及びR26はそれぞれシクロペンタジエニル基,置換シクロペンタジエニル基,インデニル基又はフルオレニル基を示し、R27はアルキル基またはアリール基を示す。vはM3,M4の原子価を示し1~7の整数、uは2~8の整数、iは[L2]及び[L3-H]のイオン価数を示し1~7の整数、yは1以上の整数であり,z=y×i/(u-v)である。
【0043】
M3及びM4の具体例としては、B,Al,Si,P,As又はSbを、M5の具体例としてはAg,Cu,Na,Li等を、M6の具体例としてはFe,Co,Ni等を挙げることができる。X3の具体例としては、例えば、ジアルキルアミノ基としてジメチルアミノ基,ジエチルアミノ基など、アルコキシ基としてメトキシ基,エトキシ基,n-ブトキシ基など、アリールオキシ基としてフェノキシ基,2,6-ジメチルフェノキシ基,ナフチルオキシ基など、炭素数1~20のアルキル基としてメチル基,エチル基,n-プロピル基,イソプロピル基,n-ブチル基,n-オクチル基,2-エチルヘキシル基など、炭素数6~20のアリール基,アルキルアリール基若しくはアリールアルキル基としてフェニル基,p-トリル基,ベンジル基,ペンタフルオロフェニル基,3,5-ジ(トリフルオロメチル)フェニル基,4-tert-ブチルフェニル基,2,6-ジメチルフェニル基,3,5-ジメチルフェニル基,2,4-ジメチルフェニル基,1,2-ジメチルフェニル基など、ハロゲンとしてF,Cl,Br,I、有機メタロイド基としてペンタメチルアンチモン基,トリメチルシリル基,トリメチルゲルミル基,ジフェニルアルシン基,ジシクロヘキシルアンチモン基,ジフェニルホウ素基などが挙げられる。R25及びR26で表される置換シクロペンタジエニル基の具体例としては、メチルシクロペンタジエニル基,ブチルシクロペンタジエニル基及びペンタメチルシクロペンタジエニル基などが挙げられる。
【0044】
本発明において、複数の基が金属に結合したアニオンとしては、具体的にはB(C6F5)4
-,B(C6HF4)4
-,B(C6H2F3)4
-,B(C6H3F2)4
-,B(C6H4F)4
-,B[C6(CF3)F4]4
-,B(C6H5)4
-,PF6
-,P(C6F5)6
-,Al(C6HF4)4
-などが挙げられる。金属カチオンとしては、Cp2Fe+,(MeCp)2Fe+,(tBuCp)2Fe+,(Me2Cp)2Fe+,(Me3Cp)2Fe+,(Me4Cp)2Fe+,(Me5Cp)2Fe+,Ag+,Na+,Li+などが挙げられる。上記式中、Cpはシクロペンタジエニル基を、Meはメチル基を、Buはブチル基をそれぞれ示す。その他カチオンとしては、ピリジニウム,2,4-ジニトロ-N,N-ジエチルアニリニウム,ジフェニルアンモニウム,p-ニトロアニリニウム,2,5-ジクロロアニリニウム,p-ニトロ-N,N-ジメチルアニリニウム,キノリニウム,N,N-ジメチルアニリニウム,N,N-ジエチルアニリニウムなどの窒素含有化合物、トリフェニルカルベニウム,トリ(4-メチルフェニル)カルベニウム,トリ(4-メトキシフェニル)カルベニウムなどのカルベニウム化合物、CH3PH3
+,C2H5PH3
+,C3H7PH3
+,(CH3)2PH2
+,(C2H5)2PH2
+,(C3H7)2PH2
+,(CH3)3PH+,(C2H5)3PH+,(C3H7)3PH+,(CF3)3PH+,(CH3)4P+,(C2H5)4P+,(C3H7)4P+等のアルキルホスホニウムイオン,及びC6H5PH3
+,(C6H5)2PH2
+,(C6H5)3PH+,(C6H5)4P+,(C2H5)2(C6H5)PH+,(CH3)(C6H5)PH2
+,(CH3)2(C6H5)PH+,(C2H5)2(C6H5)2P+などのアリールホスホニウムイオンなどが挙げられる。
【0045】
一般式(c21)及び(c22)の化合物の中で、具体的には、下記のものを特に好適に使用できる。
一般式(c21)の化合物としては、例えば、テトラフェニル硼酸フェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸ジメチルフェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸フェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸デカメチルフェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸アセチルフェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸ホルミルフェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸シアノフェロセニウム,テトラフェニル硼酸銀,テトラキス(ペンタフルオロフェニル)硼酸銀,テトラフェニル硼酸トリチル,テトラキス(ペンタフルオロフェニル)硼酸トリチル,ヘキサフルオロ砒素酸銀,ヘキサフルオロアンチモン酸銀,テトラフルオロ硼酸銀などが挙げられる。
【0046】
一般式(c22)の化合物としては、例えば、テトラフェニル硼酸トリエチルアンモニウム,テトラフェニル硼酸トリ(n-ブチル)アンモニウム,テトラフェニル硼酸トリメチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸トリエチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸トリ(n-ブチル)アンモニウム,ヘキサフルオロ砒素酸トリエチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸ピリジニウム,テトラキス(ペンタフルオロフェニル)硼酸ピロリニウム,テトラキス(ペンタフルオロフェニル)硼酸N,N-ジメチルアニリニウム,テトラキス(ペンタフルオロフェニル)硼酸メチルジフェニルアンモニウムなどが挙げられる。
【0047】
ルイス酸としては、例えばB(C6F5)3,B(C6HF4)3,B(C6H2F3)3,B(C6H3F2)3,B(C6H4F)3,B(C6H5)3,BF3,B[C6(CF3)F4]3,PF5,P(C6F5)5,Al(C6HF4)3なども用いることができる。
【0048】
本発明の第二の態様において、上記化合物(A)、化合物(B)及び化合物(C)に加えて、以下の化合物(D)及び/または化合物(E)も触媒として用いることができる。
<化合物(D)>
化合物(D)は下記一般式(3)で表される化合物である。
R4
pAl(OR5)qX1
2-p-qH (3)
[式中、R4及びR5は、それぞれ炭素数1~8のアルキル基を示し、X1はハロゲン原子を示す。また、p、qは0<p≦2、0≦q<2、p+q≦2である。]
【0049】
一般式(3)で示される化合物(D)として、ジアルキルアルミニウムヒドリド化合物やモノアルキルアルミニウムヒドリド化合物が好ましい。
具体的にはジメチルアルミニウムヒドリド,ジエチルアルミニウムヒドリド,ジ-n-プロピルアルミニウムヒドリド,ジイソプロピルアルミニウムヒドリド,ジ-n-ブチルアルミニウムヒドリド,ジイソブチルアルミニウムヒドリド等のジアルキルアルミニウムヒドリド、メチルアルミニウムクロロヒドリド,エチルアルミニウムクロロヒドリド,n-プロピルアルミニウムクロロヒドリド,イソプロピルアルミニウムクロロヒドリド,n-ブチルアルミニウムクロロヒドリド,イソブチルアルミニウムクロロヒドリド等のアルキルアルミニウムハロヒドリド、エチルアルミニウムメトキシヒドリド,エチルアルミニウムエトキシヒドリド等のアルキルアルミニウムアルコキシヒドリド等が挙げられる。中でも触媒活性の観点から、ジイソブチルアルミニウムヒドリドが好ましい。
【0050】
<化合物(E)>
化合物(E)は下記一般式(4)で表される化合物である。
R6
mAl(OR7)nX2
3-m-n (4)
[式中、R6及びR7は、それぞれ炭素数1~8のアルキル基を示し、X2はハロゲン原子を示す。また、m、nは0<m≦3、0≦n<3、m+n≦3である。]
一般式(4)で示される化合物(E)として、触媒活性の観点から、トリアルキルアルミニウムやジアルキルアルミニウム化合物が好ましい。
具体的にはトリメチルアルミニウム,トリエチルアルミニウム,トリ-n-プロピルアルミニウム,トリイソプロピルアルミニウム,トリ-n-ブチルアルミニウム,トリイソブチルアルミニウム等のトリアルキルアルミニウム、ジメチルアルミニウムクロリド,ジエチルアルミニウムクロリド,ジ-n-プロピルアルミニウムクロリド,ジイソプロピルアルミニウムクロリド,ジ-n-ブチルアルミニウムクロリド,ジイソブチルアルミニウムクロリド等のジアルキルアルミニウムハライド、ジエチルアルミニウムメトキシド,ジエチルアルミニウムエトキシド等のジアルキルアルミニウムアルコキシド等が挙げられ、中でもトリイソブチルアルミニウムが好ましい。
【0051】
本発明の製造方法においては上述した通り、ハーフメタロセン系遷移金属化合物(A)、一般式(1)で示される化合物(B)及び化合物(C)と、必要に応じて化合物(D)及び/または化合物(E)を組み合わせて触媒として用いることができる。用いられる触媒の調製方法に特に制限はないが、以下のような順序で触媒調製することができる。
【0052】
(1)各成分の接触順序
(i)ハーフメタロセン系遷移金属化合物(A)、化合物(B)及び化合物(C)を用いる場合は、例えば、ハーフメタロセン系遷移金属化合物(A)と化合物(C)とを接触させ、ここに化合物(B)を接触させる方法、ハーフメタロセン系遷移金属化合物(A)と化合物(B)とを接触させ、ここに化合物(C)を接触させる方法、化合物(B)と化合物(C)とを接触させ、ここにハーフメタロセン系遷移金属化合物(A)成分を接触させる方法、又は上記3成分を同時に接触させる方法が挙げられる。
【0053】
(ii)さらに上記3成分に加えて、化合物(D)及び/または化合物(E)の組み合わせを用いる場合、化合物(D)及び/または化合物(E)の接触順序は問わない。すなわち、ハーフメタロセン系遷移金属化合物(A)に化合物(D)及び/または化合物(E)を接触させてから用いてもよく、化合物(B)に化合物(D)及び/または化合物(E)を接触させてから用いてもよく、また化合物(C)に化合物(D)及び/または化合物(E)を接触させてから用いてもよい。あるいは、ハーフメタロセン系遷移金属化合物(A),化合物(C),化合物(D)及び/または化合物(E)を予め接触させた後、化合物(B)成分を接触させる方法でもよい。
【0054】
(iii)化合物(B)として化合物(b1)と化合物(b2)を用いる場合も、上記(i)~(ii)の場合と同様に各成分を接触させる順序は問わないが、(b1)成分と(b2)成分については、他の成分を接触させる前に予め接触させておくのが好適である。
【0055】
(2)各成分の割合
(i)ハーフメタロセン系遷移金属化合物(A),化合物(B)及び化合物(C)を用いる場合
化合物(B)は、ハーフメタロセン系遷移金属化合物(A)成分1モルに対し、化合物(B)がアルミニウム化合物の場合は、アルミニウム原子のモル比で0.5~1,000、好ましくは1~100の範囲で選ばれる。
ハーフメタロセン系遷移金属化合物(A)成分と化合物(C)のモル比は、化合物(C)として酸素含有化合物を用いる場合、通常ハーフメタロセン系遷移金属化合物(A)1モルに対し、化合物(C)が有機アルミニウム化合物の場合は、アルミニウム原子のモル比で1~10,000、好ましくは、10~1,000の範囲で選ばれる。また化合物(C)成分として遷移金属化合物と反応してイオン性の錯体を形成しうる化合物を用いる場合、通常ハーフメタロセン系遷移金属化合物(A)1モルに対し、化合物(C)がホウ素化合物の場合は、ホウ素原子のモル比で0.5~10、好ましくは、0.8~5の範囲で選ばれる。
(ii)化合物(B)として、化合物(b1)及び化合物(b2)を用いる場合、モル比で、化合物(b1):化合物(b2)が好ましくは1:0.01~1:100,より好ましくは、1:0.5~1:50の範囲であり、特に好ましくは1:0.8~1:10である。(b2)成分は、ハーフメタロセン系遷移金属化合物(A)1モルに対し、(b2)成分がアルミニウム化合物の場合は、アルミニウム原子のモル比で好ましくは0.5~10,000、より好ましくは0.5~1,000の範囲であり、最も好ましくは、1~1,000の範囲で選ばれる。
(iii)上記3成分に加えて、化合物(D)及び/または化合物(E)を用いる場合
化合物(D)及び/または化合物(E)の配合量については、ハーフメタロセン系遷移金属化合物(A)1モルに対し、化合物(D)及び/または化合物(E)がアルミニウム化合物の場合は、アルミニウム原子のモル比で0.5~1,000、好ましくは、1~100の範囲で選ばれる。
【0056】
(3)各成分の接触条件
触媒成分の接触については、窒素等の不活性気体中、重合温度以下で行なうことができる。一例として、-30~200℃の範囲で行うことができる。
【0057】
次に、上記触媒を用いて実際にスチレン系重合体を製造する工程について詳述する。本発明のスチレン系重合体の製造方法においては、上述した重合用触媒を用いて、スチレン類単独重合、スチレン類と他のスチレン類との共重合(すなわち、異種のスチレン類相互の共重合)を好適に行うことができる。
【0058】
<モノマー>
スチレン類は特に限定されず、スチレン、p-メチルスチレン、p-エチルスチレン、p-プロピルスチレン、p-イソプロピルスチレン、p-ブチルスチレン、p-tert-ブチルスチレン、p-フェニルスチレン、o-メチルスチレン、o-エチルスチレン、o-プロピルスチレン、o-イソプロピルスチレン、m-メチルスチレン、m-エチルスチレン、m-イソプロピルスチレン、m-ブチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、3,5-ジメチルスチレン等のアルキルスチレン類、p-メトキシスチレン、o-メトキシスチレン、m-メトキシスチレン等のアルコキシスチレン類、p-クロロスチレン、m-クロロスチレン、o-クロロスチレン、p-ブロモスチレン、m-ブロモスチレン、o-ブロモスチレン、p-フルオロスチレン、m-フルオロスチレン、o-フルオロスチレン、o-メチル-p-フルオロスチレン等のハロゲン化スチレン、更にはメシチルスチレン、トリメチルシリルスチレン、ビニル安息香酸エステル、ジビニルベンゼン等を挙げることができる。
中でもスチレン、アルキルスチレン類、ジビニルベンゼンが好ましく、スチレン、p-メチルスチレン、ジビニルベンゼンがより好ましい。
本発明においては、上記スチレン類は一種類を単独で用いてもよいし、二種以上を任意に組み合わせて用いてもよい。
【0059】
<重合条件>
1.予備重合
本発明のスチレン系重合体の製造方法においては、上記重合用触媒を用いて、まず予備重合を行ってもよい。予備重合は、上記触媒に、例えば少量のスチレン類を接触させることにより行うことができるが、その方法には特に制限はなく、公知の方法で行うことができる。
予備重合に用いるスチレン類は特に限定されず、上述したものを用いることができる。予備重合温度は、通常-20~200℃、好ましくは-1℃~130℃である。予備重合において、溶媒としては、不活性炭化水素、脂肪族炭化水素、芳香族炭化水素、モノマーなどを用いることができる。
【0060】
2.本重合
本重合における重合方法については特に制限はなく、スラリー重合法,粉体床重合,溶液重合法,気相重合法,塊状重合法または懸濁重合法等の任意の方法での連続重合法を採用することができる。中でも、工業的規模での製造の観点から、粉体床連続重合を行なうことが好ましい。
触媒の各成分とモノマーとの接触順序についても制限はない。すなわち、上述したように触媒の各成分を予め混合して触媒を調製したのち、モノマーを投入する方法でもよい。あるいは、触媒の各成分を予め混合して触媒を調製するのでなく、触媒の各成分とモノマーとを任意の順序で重合の場に投入する方法でもよい。
好ましい実施形態としては、上記化合物(B)、または化合物(b1)及び化合物(b2)成分以外の成分、即ち、(A)成分,(C)成分,(D)成分、(E)成分を予め混合する。一方で、モノマーと化合物(B)成分、またはモノマーと化合物(b1)及び化合物(b2)とを別に混合しておき、両者を重合直前に混合することにより、重合を行なわせる方法が挙げられる。
【0061】
本発明では、より好ましくは粉体床連続重合装置を使用して、上記触媒の存在下でスチレンモノマーの重合を行う。ここで、触媒活性を高めるために、重合場に水素を添加することができる。ハーフメタロセン系遷移金属化合物(A)の中心金属を基準として、モル比で例えば0~20倍、好ましくは0~15倍、より好ましくは0~10倍、さらに好ましくは0.1~10倍の水素を反応系に加えることができる。重合時に反応系に水素を供給することで、重合触媒の活性を高めて使用量を抑えることができるため、製造されるスチレン系樹脂中の残留金属量、例えば残留アルミニウム分や残留チタン分を低下させることができる。
但し、添加水素量がハーフメタロセン系遷移金属化合物(A)の中心金属基準で20倍を超えると、先に記載した低融点成分の割合が高くなり、リフロー耐熱性に劣るため好ましくない。
なお、本発明のスチレン系樹脂の製造方法においては触媒の組み合わせ及び/または水素添加により触媒活性が高いため、得られるスチレン系樹脂中の残留金属分が低い。そのため、脱灰処理等を別途行う必要がなく、エネルギー的に有利であり、大量生産に適している。
【0062】
重合時に溶媒を用いる場合には、ベンゼン、トルエン、エチルベンゼン、n-ヘキサン、n-ヘプタン、シクロヘキサン、塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン等の炭化水素類やハロゲン化炭化水素類等が溶媒として挙げられる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、種類によっては、重合に用いるモノマー自体を重合溶媒として使用することができる。
【0063】
重合反応における触媒の使用量は、モノマー1モル当たり、ハーフメタロセン系遷移金属化合物(A)が通常0.1~500マイクロモル、好ましくは0.5~100マイクロモルの範囲となるように選択すると、重合活性および反応器効率の面から有利である。
重合時の圧力は、通常、ゲージ圧で常圧~196MPaの範囲が選択される。反応温度は、通常、-50~150℃の範囲である。
重合体の分子量の調節方法としては、各触媒成分の種類、使用量、重合温度の選択および水素の導入などが挙げられる。
【0064】
<スチレン系樹脂組成物>
本発明の第三の態様によれば、熱可塑性樹脂組成物50~95質量%と、ガラスフィラー5~50質量%とからなり、上記熱可塑性樹脂組成物が、シンジオタクチック構造を有するスチレン系樹脂を80~100質量%及びゴム状弾性体0~20質量%からなる熱可塑性樹脂(SCA)100質量部に対し、フェノール系酸化防止剤及び硫黄系酸化防止剤からなる群から選択される少なくとも1種の酸化防止剤(SCB)0.2~2.0質量部と、ポリフェニレンエーテル及び変性ポリフェニレンエーテルからなる群から選択される少なくとも1種の化合物(SCC)1.5~5.0質量部と、核剤及び離型剤からなる群から選択される少なくとも1種とを含む、スチレン系樹脂組成物が提供される。
【0065】
[熱可塑性樹脂(SCA)]
本態様における熱可塑性樹脂(SCA)に含まれるスチレン系樹脂は、シンジオタクチック構造を有するスチレン系樹脂であれば限定されないが、具体的には、上記した第一の態様のスチレン系樹脂や、第二の態様により得られるスチレン系樹脂を好ましくは用いることができる。その他の成分について詳述する。
【0066】
ゴム状弾性体としては、様々なものが使用可能である。例えば、天然ゴム,ポリブタジエン,ポリイソプレン,ポリイソブチレン、ネオプレン、ポリスルフィドゴム、チオコールゴム、アクリルゴム、ウレタンゴム、シリコーンゴム、エピクロロヒドリンゴム、スチレン-ブタジエンブロック共重合体(SBR),水素添加スチレン-ブタジエンブロック共重合体(SEB),スチレン-ブタジエン-スチレンブロック共重合体(SBS),水素添加スチレン-ブタジエン-スチレンブロック共重合体(SEBS),スチレン-イソプレンブロック共重合体(SIR),水素添加スチレン-イソプレンブロック共重合体(SEP),スチレン-イソプレン-スチレンブロック共重合体(SIS),水素添加スチレン-イソプレン-スチレンブロック共重合体(SEPS),スチレン-ブタジエンランダム共重合体,水素添加スチレン-ブタジエンランダム共重合体,スチレン-エチレン-プロピレンランダム共重合体,スチレン-エチレン-ブチレンランダム共重合体、エチレンプロピレンゴム(EPR),エチレンプロピレンジエンゴム(EPDM)、あるいはブタジエン-アクリロニトリル-スチレン-コアシェルゴム(ABS),メチルメタクリレート-ブタジエン-スチレン-コアシェルゴム(MBS),メチルメタクリレート-ブチルアクリレート-スチレン-コアシェルゴム(MAS),オクチルアクリレート-ブタジエン-スチレン-コアシェルゴム(MABS),アルキルアクリレート-ブタジエン-アクリロニトリル-スチレンコアシェルゴム(AABS),ブタジエン-スチレン-コアシェルゴム(SBR)、メチルメタクリレート-ブチルアクリレートシロキサンをはじめとするシロキサン含有コアシェルゴム等のコアシェルタイプの粒子状弾性体、又はこれらを変性したゴムなどが挙げられる。
これらの中で、特に、SBR、SBS、SEB、SEBS、SIR,SEP、SIS、SEPS、コアシェルゴム又はこれらを変性したゴム等が好ましく用いられる。
【0067】
変性されたゴム状弾性体としては、例えば、スチレン-ブチルアクリレート共重合体ゴム、スチレン-ブタジエンブロック共重合体(SBR)、水素添加スチレン-ブタジエンブロック共重合体(SEB)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、水素添加スチレン-ブタジエン-スチレンブロック共重合体(SEBS)、スチレン-イソプレンブロック共重合体(SIR)、水素添加スチレン-イソプレンブロック共重合体(SEP)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、水素添加スチレン-イソプレン-スチレンブロック共重合体(SEPS)、スチレン-ブタジエンランダム共重合体、水素添加スチレン-ブタジエンランダム共重合体、スチレン-エチレン-プロピレンランダム共重合体、スチレン-エチレン-ブチレンランダム共重合体、エチレンプロピレンゴム(EPR),エチレンプロピレンジエンゴム(EPDM)などを、極性基を有する変性剤によって変性を行ったゴム等が挙げられる。
これらの中で、特にSEB,SEBS,SEP,SEPS,EPR,EPDMを変性したゴムが好ましく用いられる。具体的には、無水マレイン酸変性SEBS,無水マレイン酸変性SEPS,無水マレイン酸変性EPR,無水マレイン酸変性EPDM,エポキシ変性SEBS,エポキシ変性SEPSなどが挙げられる。これらのゴム状弾性体は、1種又は2種用いてもよい。
【0068】
上記熱可塑性樹脂組成物中の熱可塑性樹脂(SCA)は、上記スチレン系樹脂80~100質量%及びゴム状弾性体0~20質量%からなり、合計は100質量%となる。熱可塑性樹脂(SCA)中のスチレン系樹脂(SPS)が80質量%未満であると、得られる成形体の機械強度が低下するため好ましくない。熱可塑性樹脂(SCA)中のスチレン系樹脂は、好ましくは85質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、特に好ましくは100質量%である。なお、後述する化合物(SCC)として挙げる化合物は、上記ゴム状弾性体には含まれない。
【0069】
[酸化防止剤(SCB)]
酸化防止剤(SCB)は、フェノール系酸化防止剤及び硫黄系酸化防止剤からなる群から選択される少なくとも1種の酸化防止剤である。本実施形態のスチレン系樹脂組成物には、リン系酸化防止剤は含まない。リン系酸化防止剤が組成物中に存在すると、高湿度環境下や水浸漬環境下で酸を発生する。発生した酸により、熱可塑性樹脂(SCA)と後述するガラスフィラーとの相溶性が低下し、得られる成形体の機械強度の低下に繋がるため好ましくない。
【0070】
フェノール系酸化防止剤としては既知のものを使用することができ、その具体例としては、2,6-ジ-tert-ブチル-4-メチルフェノール;2,6-ジフェニル-4-メトキシフェノール;2,2'-メチレンビス(6-tert-ブチル-4-メチルフェノール);2,2'-メチレンビス-(6-tert-ブチル-4-メチルフェノール);2,2'-メチレンビス〔4-メチル-6-(α-メチルシクロヘキシル)フェノール〕;1,1-ビス(5-tert-ブチル-4-ヒドロキシ-2-メチルフェニル)ブタン;2,2'-メチレンビス(4-メチル-6-シクロヘキシルフェノール);2,2'-メチレンビス(4-メチル-6-ノニルフェノール);1,1,3-トリス(5-tert-ブチル-4-ヒドロキシ-2-メチルフェニル)ブタン;2,2-ビス(5-tert-ブチル-4-ヒドロキシ-2-メチルフェニル)-4-n-ドデシルメルカプトブタン;エチレングリコール-ビス〔3,3-ビス(3-tert-ブチル-4-ヒドロキシフェニル)ブチレート〕;1,1-ビス(3,5-ジメチル-2-ヒドロキシフェニル)-3-(n-ドデシルチオ)-ブタン;4,4'-チオビス(6-tert-ブチル-3-メチルフェノール);1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン;2,2-ビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)マロン酸ジオクタデシルエステル;n-オクタデシル-3-(4-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)プロピオネート;テトラキス〔メチレン(3,5-ジ-tert-ブチル-4-ヒドロキシハイドロシンナメート)〕メタン;ペンタエリスリトール テトラキス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネートなどが挙げられる。
【0071】
硫黄系酸化防止剤としては種々のものが用いられる。具体的には、ジラウリル3,3’-チオジプロピオネート,ジトリデシル3,3’-チオジプロピオネート,ジミリスチル3,3’-チオジプロピオネート,ジステアリル3,3’-チオジプロピオネート,ビス2-メチル-4-(3-n-アルキル(C12又はC14)チオプロピオニルオキシ)-5-t-ブチルフェニルサルファイド,ペンタエリスリチル-テトラキス(3-ラウリルチオプロピオネート),2,2-チオ-ジエチレンビス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕,4,4’-チオビス(3-メチル-6-tert-ブチルフェノール),2-メルカプトベンツイミダゾール,2-メルカプトメチルベンツイミダゾール,ビス[3-(ドデシルチオ)プロピオン酸]2,2-ビス[[3-(ドデシルチオ)-1-オキソプロピルオキシ]メチル]-1,3-プロパンジイル等が挙げられる。
【0072】
上記のフェノール系酸化防止剤及び硫黄系酸化防止剤からなる群から選択される少なくとも1種の酸化防止剤は、単独で用いても、2種以上を混合して用いてもよい。硫黄系酸化防止剤は長期耐熱性に優れるものの、臭気の問題等も有するため、酸化防止剤(SCB)としてフェノール系酸化防止剤を用いることがより好ましい。上記熱可塑性樹脂組成物中、酸化防止剤(SCB)は、上記熱可塑性樹脂(SCA)100質量部に対して、0.2~2.0質量部含まれる。酸化防止剤量が0.2質量部未満であると、樹脂の分解等の防止効果が弱く好ましくない。酸化防止剤量が2.0質量部を超えると、成形時にガスが発生し、成形体のガス焼け等の外観不良を引き起こす。酸化防止剤(SCB)として複数種の酸化防止剤を組成物中に含む場合には、合計量が上記範囲となるように調整することが好ましい。酸化防止剤(SCB)の配合量は、上記熱可塑性樹脂(SCA)100質量部に対して、好ましくは0.3質量部以上、より好ましくは0.5質量部以上である。また、好ましくは1.5質量部以下、より好ましくは1.0質量部以下、さらに好ましくは0.8質量部以下である。
【0073】
[ポリフェニレンエーテル/変性ポリフェニレンエーテル(SCC)]
熱可塑性樹脂組成物には、ポリフェニレンエーテル及び変性ポリフェニレンエーテルからなる群から選択される少なくとも1種の化合物(SCC)が含まれる。当該化合物(SCC)は、樹脂成分と、後述するガラスフィラーとの相溶化剤としての機能を有する。
【0074】
当該化合物(SCC)としては、例えば無水マレイン酸変性SEBS、無水マレイン酸変性SEPS、無水マレイン酸変性SEB、無水マレイン酸変性SEP、無水マレイン酸変性EPR、スチレン-無水マレイン酸共重合体(SMA)、スチレン-グリシジルメタクリレート共重合体、末端カルボン酸変性ポリスチレン、末端エポキシ変性ポリスチレン、末端オキサゾリン変性ポリスチレン、末端アミン変性ポリスチレン、スルホン化ポリスチレン、スチレン系アイオノマー、スチレン-メチルメタクリレートグラフトポリマー、(スチレン-グリシジルメタクリレート)-メチルメタクリレートグラフトポリマー、酸変性アクリル-スチレン-グラフトポリマー、(スチレン-グリシジルメタクリレート)-スチレングラフトポリマー、ポリブチレンテレフタレート-ポリスチレングラフトポリマー、さらには、無水マレイン酸変性シンジオタクチックポリスチレン、フマル酸変性シンジオタクチックポリスチレン、グリシジルメタクリレート変性シンジオタクチックポリスチレン、アミン変性シンジオタクチックポリスチレン等の変性スチレン系ポリマー、(スチレン-無水マレイン酸)-ポリフェニレンエーテルグラフトポリマー、無水マレイン酸変性ポリフェニレンエーテル(PPE)、フマル酸変性ポリフェニレンエーテル、グリシジルメタクリレート変性ポリフェニレンエーテル、アミン変性ポリフェニレンエーテル等の変性ポリフェニレンエーテル系ポリマー等が挙げられる。中でも、無水マレイン酸変性ポリフェニレンエーテル(PPE)、フマル酸変性ポリフェニレンエーテルが特に好ましい。
【0075】
熱可塑性樹脂組成物中、ポリフェニレンエーテル及び変性ポリフェニレンエーテルからなる群から選択される少なくとも1種の化合物(SCC)は、上記熱可塑性樹脂(SCA)100質量部に対して、1.5~5.0質量部含まれる。該化合物(SCC)の量が1.5質量部未満であると、熱可塑性樹脂(SCA)と後述するガラスフィラーとの相溶性が劣り、得られる成形体の機械強度が低下するため好ましくない。該化合物(SCC)の量が5.0質量部を超えると、組成物の結晶化度が下がることにより、耐熱性及び成形時の離型性が低下する等の問題が生じるため好ましくない。該化合物(SCc)として複数種を組成物中に含む場合には、合計量が上記範囲となるように調整することが好ましい。化合物(SCc)の配合量は、上記熱可塑性樹脂(SCA)100質量部に対して、好ましくは1.5~4.5質量部、より好ましくは1.8~4.0質量部、さらに好ましくは2.0~4.0質量部である。
【0076】
上記熱可塑性樹脂組成物は、核剤及び離型剤からなる群から選択される少なくとも1種をさらに含み、好ましくは核剤及び離型剤の双方を含む。
核剤としては、アルミニウムジ(p-tert-ブチルベンゾエート)をはじめとするカルボン酸の金属塩、メチレンビス(2,4-ジ-tert-ブチルフェノール)アシッドホスフェートナトリウムをはじめとするリン酸の金属塩、タルク、フタロシアニン誘導体等、公知のものから任意に選択して用いることができる。具体的な商品名としては、株式会社ADEKA製のアデカスタブNA-10、アデカスタブNA-11、アデカスタブNA-21、アデカスタブNA-30、アデカスタブNA-35、アデカスタブNA-70、大日本インキ化学工業株式会社製のPTBBA-AL等が挙げられる。なお、これらの核剤は一種のみを単独で又は二種以上を組み合わせて用いることができる。核剤の配合量は特に限定されないが、熱可塑性樹脂(SCA)100質量部に対して、好ましくは0.1~3.0質量部、より好ましくは0.2~2.0質量部、さらに好ましくは0.3~2.0質量部、よりさらに好ましくは0.3~1.5質量部である。核剤を含むことで、結晶化速度が向上するため、スチレン系樹脂組成物を用いた、例えばコネクタ等の相対結晶化度を向上することができる。また、優れたリフロー耐熱性を得ることができる。
【0077】
離型剤としては、ポリエチレンワックス,シリコーンオイル,長鎖カルボン酸,長鎖カルボン酸金属塩等公知のものから任意に選択して用いることができる。これらの離型剤は一種のみを単独で、又は二種以上を組み合わせて用いることができる。離型剤の配合量は特に限定されないが、熱可塑性樹脂(SCA)100質量部に対して、好ましくは0.1~3質量部、より好ましくは0.2~1質量部である。離型剤を含むことで、スチレン系樹脂組成物を用いた成形品、例えばコネクタ等を製造する際の離型性を向上させることができる。
【0078】
[ガラスフィラー]
本実施形態のスチレン系樹脂組成物はガラスフィラーを含む。
ガラスフィラーとしては、市販のチョップドストランド、ロービングを用いることができる。繊維径は1~30μmの物が好ましく、さらに好ましくは3~20μmである。繊維径が上記範囲であれば成形性や製品外観に悪影響を与えない。チョップドトストランドを用いる場合にはその繊維長は特に限定されないが、操作性から1~10mmのものが好ましい。
ガラスフィラーはその表面がアミノシランで処理されていることが好ましい。処理に用いるアミノシランとしてはモノアミノシラン、ジアミノシラン、トリアミノシラン等があげられる。
該アミノシランの具体例としては、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン,N-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン,N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン,γ-アミノプロピルトリエトキシシラン,N-フェニル-γ-アミノプロピルトリメトキシシラン,γ-アミノプロピルトリメトキシシラン,γ-アミノプロピル-トリス(2-メトキシ-エトキシ)シラン,N-メチル-γ-アミノプロピルトリメトキシシラン,N-ビニルベンジル-γ-アミノプロピルトリエトキシシラン,3-ウレイドプロピルトリメトキシシラン,ヘキサメチルジシラザン,N,N-ビス(トリメチルシリル)ウレア,3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン等が挙げられる。
好ましくはモノアミノシラン、ジアミノシランであり、ジアミノシランで処理されていることがより好ましい。ジアミノシランでガラス表面が処理されていると、樹脂組成物の耐熱水性の持続効果により優れる。
【0079】
本実施形態のスチレン系樹脂組成物は、上記熱可塑性樹脂組成物とガラスフィラーとからなり、スチレン系樹脂組成物中、ガラスフィラーは、5~50質量%含まれる。ガラスフィラー量が5質量%未満であると、得られる成形体の機械強度に劣るため好ましくなく、50質量%を超えると、組成物中でのガラスフィラーの分散性が悪く、成形性が困難となり好ましくない。
ガラスフィラーの配合量は、好ましくは8~45質量%、より好ましくは10~40質量%、さらに好ましくは15~35質量%である。
【0080】
本実施形態のスチレン系樹脂組成物には、上記成分以外に、本発明の目的を阻害しない範囲で一般に使用されている架橋剤,架橋助剤,難燃剤、上記ガラスフィラー以外の無機充填剤及び有機充填剤,可塑剤,着色剤及び/または帯電防止剤等を添加することができる。但し、ナイロン等のポリアミド合成樹脂は、組成物の耐熱水性を低下させるため、本実施形態のスチレン系樹脂組成物には含まれない。
【0081】
上記ガラスフィラー以外の無機充填剤としては、繊維状,粒状,粉状等、様々な形状を有する充填剤を用いることができる。繊維状充填剤としては、炭素繊維,ウィスカー,セラミック繊維,金属繊維等が挙げられる。具体的に、ウィスカーとしてはホウ素,アルミナ,シリカ,炭化ケイ素等、セラミック繊維としてはセッコウ,チタン酸カリウム,硫酸マグネシウム,酸化マグネシウム等、金属繊維としては銅,アルミニウム,鋼等がある。繊維状充填剤の形状としてはクロス状,マット状,集束切断状,短繊維,フィラメント状のもの,ウィスカーがある。集束切断状の場合、長さが0.05~50mm,繊維径が5~20μmのものが好ましい。クロス状,マット状の場合は、長さが1mm以上、好ましくは5mm以上が好ましい。粒状,粉状充填剤としては、例えばタルク,カーボンブラック,グラファイト,二酸化チタン,シリカ,マイカ,炭酸カルシウム,硫酸カルシウム,炭酸バリウム,炭酸マグネシウム,硫酸マグネシウム,硫酸バリウム,オキシサルフェート,酸化スズ,アルミナ,カオリン,炭化ケイ素,金属粉末等が挙げられる。
無機充填剤は表面処理されていてもよく、通常表面処理に用いられるカップリング剤、例えばシラン系カップリング剤,チタン系カップリング剤等を用いて表面処理されたものである。
有機充填剤としては、有機合成繊維,天然植物繊維等が挙げられる。有機合成繊維の具体例としては、全芳香族ポリアミド繊維,ポリイミド繊維等が挙げられる。
【0082】
本発明のスチレン系樹脂成形体の製造方法としては任意のものを適用できる。
例えば、まず上記各成分を添加した組成物を成形し、熱水処理評価用成形体とする。射出成形では所定形状の金型を用い成形すればよく、押出成形では、フィルム及びシートをT-ダイ成形し、得られたフィルム及びシートを加熱溶融したものを押出して所定形状にすればよい。
【0083】
<成形体>
本発明においては、第一の実施形態に係るスチレン系樹脂、第二の実施形態に係る製法により得られるスチレン系樹脂、及び第三の実施形態に係るスチレン系樹脂組成物を成形して成形体を得ることができる。成形体の形状は特に限定されず、例えば、シート,フィルム,維維,不織布,容器,射出成形品,ブロー成形体等を挙げることができるが、本発明のスチレン系樹脂及びスチレン系樹脂組成物の耐熱性及び耐熱水性を生かして、リフローはんだ用の成形体、例えばリフローはんだ用のコネクタ材料として特に好ましく用いられる。
【実施例0084】
本発明を実施例によりさらに具体的に説明するが、本発明はこれらに何ら制限されるものではない。
【0085】
(1)低融点成分量の測定方法
下記の各実施例及び比較例で得られるポリマー10mgを示差走査熱量計(PerkinElmer社製,DSC 8500)にて、300℃で5分間ホールドした。その後、300℃から50℃まで20℃/分の条件で降温後、50℃で5分間ホールドした。続いて、50℃から300℃まで20℃/分の条件で昇温した。
この昇温過程で得られた融点ピークに対し、175℃から285℃までベースラインを引き、DSC曲線とベースラインで囲まれた部分の面積(100%)に対して、175~260℃の範囲が占める部分の面積割合A%を低融点成分量とした。測定結果を下記表1及び表2に示す。
【0086】
(2)トリフェニルメタン量の測定方法
下記の各実施例及び比較例で得られるポリマー2gをクロロホルム100mLで還流抽出し、メタノール200mLを加えて再沈した。溶液を濾過し、濾液を乾固した後、クロロホルムを加えて5mL溶液にした。この試料をガスクロマトグラフ(Agilent Technologies社製,Agilent6850)にて、カラムBPX-5(15m×0.25mm,膜厚0.25μm)、オーブン温度を10℃/分の速度で100℃(0min)から350℃(10min)まで昇温、インジェクション温度350℃,ディテクション温度350℃,検出器FID,キャリアガスHe,線速40cm/sec,注入量1.0μL,スプリット1/10の条件で測定して、トリフェニルメタン量を定量した。測定結果を下記表1及び表2に示す。
【0087】
(3)残留アルミニウム分及び残留チタン分の測定方法
下記の各実施例及び比較例で得られるポリマー中の残留アルミニウム分及び残留チタン分を、蛍光X線測定法を用いて、定量化した。
1.装置
PANalitical製 MagiX-PW2403を蛍光X線装置として用い、測定時にPRガス(Ar:CH4=90:10)を使用した。
2.方法
加熱圧縮成形機(王子機械株式会社製,AJHC-37)にて大きさが約45mmφ,厚み2mmの圧縮プレートを試料から作製し、上記蛍光X線分析装置を用いて、以下の表Aに示す条件にて目的元素(残留アルミニウム、残留チタン)の蛍光X線強度を測定し、あらかじめ作製登録された検量線より元素濃度を求めた(検量線:標準試料の濃度とX線強度の検量線を指す)。測定結果を下記表1及び表2に示す。
【0088】
【0089】
(4)表面粗さの測定方法
1.リフロー耐熱試験に使用する成形品用樹脂組成物の製造方法
下記の各実施例および比較例で作製したシンジオタクチックポリスチレン90質量%及び水添スチレン系熱可塑性エラストマーSEBS(株式会社クラレ製 セプトン8006)10質量%からなる組成物100質量部に対して、
無水マレイン酸変性ポリフェニレンエーテル(PPE)を3質量部、
酸化防止剤としてIrgnox1010(BASF社製)を0.3質量部
核剤としてアデカスタブNA-11(株式会社ADEKA製)を0.3質量部、並びに
離形剤としてSH 200 CV-13,000CS(東レ・ダウコーニング株式会社製)0.3質量部
を配合して、ヘンシェルミキサーでドライブレンドした。続いて、二軸スクリュー押出機を用いて、ガラス繊維03JA-FT164G(オーウェンスコーニング ジャパン株式会社製)30質量%をサイドフィードしながら樹脂組成物を混練し、ペレットを作製した。上記PPEとしては、国際公開WO96/16997の実施例2(1)に記載の方法により得られるものを用いた。
2.リフロー耐熱試験に使用する成形品の作製
上記1で得られたペレットを用いて日精樹脂工業株式会社製射出成形機ES1000(樹脂温度300℃、金型表面温度150℃)により、箱形状(縦20mm×横10mm×高さ10mm,肉厚0.5mm)の成形品を得た。
3.リフロー耐熱試験
上記成形品を用いて、リフロー炉(アントム株式会社製 UNI-5016F)を通しリフロー炉耐熱試験を実施した。
リフロー炉の搬送速度は0.2m/分とし、以下の温度プロファイルを用いて成形品の耐熱性を評価した。すなわち、成形品を加熱してその表面温度を170℃にまで昇温させた後、この温度(170℃)で130秒間保持するプレヒートを行う。その後、さらに成形品を加熱して、成形品表面のピーク温度が260℃にまで昇温するようにリフロー炉の温度を設定した。
4.リフロー耐熱試験前後の表面粗さの測定
リフロー耐熱試験前後の成形品の天面を走査型共焦点顕微鏡(レーザーテック株式会社製 OPTELICS H1200)を用い、表面粗さ(Ra:算術平均粗さ)を測定した。測定結果を下記表1及び表2に示す。
【0090】
実施例1~5及び比較例1~4
<スチレン系樹脂及びその製造方法>
本発明にかかるスチレン系樹脂及びその製造方法を具体的に説明する。
清掃したダブルヘリカル翼を有する完全混合槽型反応器(内径550mm,高さ1155mm,内容積254リットル)を90℃まで昇温し、真空中にて3時間乾燥させた。次いで、窒素ガスにより反応器を復圧後、80℃まで降温した。予め乾燥窒素ガスを流通処理して充分乾燥させたSPSパウダー60kgをこの反応器に投入し、さらに窒素気流下で2時間乾燥させた。続いて攪拌を開始し、反応器内の温度を70℃に調節した。その後、スチレンモノマー及び触媒の投入を開始した。各触媒の種類及び比率、及び添加水素量は下記表1及び表2に示す通りである。表中、「SM」とはスチレンモノマーを示す。
上記スチレンモノマー及び触媒の投入と同時に、不活性溶媒として、n-ペンタンの反応器内への供給を開始した。n-ペンタンは直ちに気化し、ダブルヘリカル翼での攪拌と相まって、内容物の良好な流動状態を作り出した。槽の低部から間歇的に生成パウダーを排出した。
【0091】
【0092】
【0093】
表中の表面粗さの差は、(リフロー耐熱試験後の表面粗さ)-(室温での初期表面粗さ)であり、ΔRaとして示す。評価結果の基準は以下の通りである。
A:ΔRa≦1.5μm
B:1.5μm<ΔRa≦2.0μm
C:2.0μm<ΔRa
【0094】
用いた触媒種を以下に示す。
ハーフメタロセン系遷移金属化合物(A)
Aa:オクタヒドロフルオレニルチタニウムトリメトキシド
Ab:ペンタメチルシクロペンタジエニルチタニウムトリメトキシド
化合物(b1):トリフェニルメタノール
化合物(b2):トリイソブチルアルミニウム
化合物(C):メチルアルミノキサン
化合物(E):トリイソブチルアルミニウム
化合物(D):ジイソブチルアルミニウムヒドリド
【0095】
実施例6~13及び比較例5~11
ガラスフィラー以外の各成分を表3に記載の比率で配合して、ヘンシェルミキサーでドライブレンドした。続いて、二軸スクリュー押出機を用いて、ドライブレンドした熱可塑性樹脂組成物70質量%に対し、表3に記載のガラスフィラー30質量%をサイドフィードしながら樹脂組成物を混練し、ペレットを作製した。得られたペレットを用いて、住友重機械工業株式会社製の射出成形機 SH100A(樹脂温度300℃、金型表面温度150℃)により、以下の各試験に用いられる試験片を成形した。
【0096】
5.耐熱水性試験(プレッシャークッカー試験)
上記成形条件により、ASTM D638 TypeIの引張試験片の成形品を得た。得られた試験片を、試験片同士が接触しない様にステンレスワイヤーを張ったステンレス製の網籠に入れた。この籠をプレッシャークッカー試験機(平山製作所社製 PC305III)に投入し、プレッシャークッカー試験機に純水を注入して試験片を浸漬させ、蓋を閉め外気を遮断した。続いて試験機内を120℃に加熱して、500時間維持した。
耐熱水性として、耐熱水処理前後の試験片の引張強さを測定した。引張強さは、ASTM D638に準拠して測定し、引張強さの保持率を次式から導いた。
引張強さの保持率(%)=(熱水処理後の引張強さ)/(熱水処理前の引張強さ)×100
【0097】
6.アウトガス量
実施例及び比較例にて得たペレット10mgを精秤し、測定容器に入れた。測定容器を加熱脱着装置(Gerstel社製TDU)にセットし、310℃で10分間加熱した際に発生したアウトガスをガスクロマトグラフ(Agilent Technolgy社製 7890B)を用いて測定した。トリフェニルメタンを標準物質とした検量線を用いて、アウトガス量を算出した。
<加熱脱着条件>
加熱脱着条件:50℃から310℃まで昇温(昇温速度:720℃/分)
<CIS条件>
-50℃から350℃まで昇温(昇温速度:12℃/秒,スプリット比 30:1)
<GC条件>
カラム:DB-5MS(Agilent Technolgy社製,長さ:30m,内径:0.25mm,膜厚:0.25μm)
キャリアガス:ヘリウム
オーブン:50℃から330℃まで昇温(昇温速度:10℃/分)
検出器(FID)温度:330℃
【0098】
7.ガス焼け
上記成形条件により、長さ220mm×幅25mm×厚さ2mmの短冊形状試験片を2000ショット成形した。成形末端のガス焼けの状態を目視にて観察した。
A:ガス焼けなし
C:ガス焼けにより変色あり
【0099】
8.コネクタの離型性及びコネクタの相対結晶化度
<離型性>
上記成形条件を用い、かつ樹脂の充填時間:0.7秒、保圧:1582kgf/cm2、保圧時間:4.0秒、冷却時間:20.0秒の条件を用いて、120ピンPCIコネクタ(4個取り)を成形した。離型時のPCIコネクタの変形を観察した。
A:変形なし
C:突き出しピン跡や側壁の変形あり
<相対結晶化度>
上記で得られたPCIコネクタの側壁表面から10mgを切削した試験片を得た。この試験片を、示差走査熱量計(PerkinElmer社製 DSC 8500)にて、50℃で5分間ホールドした後、50℃から300℃まで20℃/分の条件で昇温した。
この昇温過程で得られた融点ピークの熱量と、冷結晶化ピークの熱量から、下記式を用いて相対結晶化度を算出した。各熱量の絶対値を用いた。
相対結晶化度(%)=(|融点ピークの熱量|-|冷結晶化ピークの熱量|)/(|融点ピークの熱量|)×100
【0100】
9.臭気
上記の試験片成形時における射出成形機周囲の臭気の官能評価を行った。
A:臭気なし
C:臭気あり
【0101】
10.表面粗さの測定方法
(1)リフロー耐熱試験に使用する成形品の作製
実施例6~13及び比較例5~11でそれぞれ得られたペレットを用いて日精樹脂工業株式会社製射出成形機ES1000(樹脂温度300℃、金型表面温度150℃)により、箱形状(縦20mm×横10mm×高さ10mm,肉厚0.5mm)の成形品を得た。
(2)リフロー耐熱試験
上記成形品を用いて、リフロー炉(アントム株式会社製 UNI-5016F)を通しリフロー炉耐熱試験を実施した。
リフロー炉の搬送速度は0.2m/分とし、以下の温度プロファイルを用いて成形品の耐熱性を評価した。すなわち、成形品を加熱してその表面温度を170℃にまで昇温させた後、この温度(170℃)で130秒間保持するプレヒートを行う。その後、さらに成形品を加熱して、成形品表面のピーク温度が260℃にまで昇温するようにリフロー炉の温度を設定した。
(3)リフロー耐熱試験前後の表面粗さの測定
リフロー耐熱試験前後の成形品の天面を走査型共焦点顕微鏡(レーザーテック株式会社製 OPTELICS H1200)を用い、表面粗さ(Ra:算術平均粗さ)を測定した。
(4)リフロー耐熱試験後の表面粗さの差
リフロー耐熱試験後の表面粗さの差を、(リフロー耐熱試験後の表面粗さ)-(室温での初期表面粗さ)で算出し、ΔRaとして示す。評価結果の基準は以下の通りである。
A:ΔRa≦1.5μm
B:1.5μm<ΔRa≦2.0μm
C:2.0μm<ΔRa
【0102】
【0103】
【0104】
上記表3及び表4で用いた各成分は以下の通りである。
<熱可塑性樹脂(SCA)>
SPS(実施例1):前記実施例1にて得られたスチレン系樹脂
SPS(実施例3):前記実施例3にて得られたスチレン系樹脂
SPS(比較例2):前記比較例2にて得られたスチレン系樹脂
ゴム状弾性体:水添スチレン系熱可塑性エラストマーSEBS,株式会社クラレ製 セプトン8006
<酸化防止剤(SCB)>
Irganox 1010:ペンタエリスリトール テトラキス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート,BASFジャパン株式会社製
SUMI. TP-D:ビス[3-(ドデシルチオ)プロピオン酸]2,2-ビス[[3-(ドデシルチオ)-1-オキソプロピルオキシ]メチル]-1,3-プロパンジイル,Sumilizer TP-Dの略記,住友化学製
PEP 36:3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン,株式会社ADEKA製
<PPE(SCC)>
CX-1:フマル酸変性ポリフェニレンエーテル,出光興産株式会社製
<核剤>
NA-11:アデカスタブNA-11,株式会社ADEKA製
<シリコーンオイル>
KF53:メチルフェニルシリコーンオイル,信越シリコーン社製
<ガラスフィラー:GF>
T-330H:モノアミノシランにて表面処理されたチョップドストランドガラス,ECS03T-330H,日本電気硝子社製、平均繊維径10.5μm、平均繊維長3mm
03 JA FT 164G:ジアミノシランにて表面処理されたチョップドストランドガラス,オーウェンスコーニング社製、平均繊維径10.5μm、平均繊維長3mm