(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023030074
(43)【公開日】2023-03-07
(54)【発明の名称】三次元組織体及びその製造方法、並びに、三次元組織体の形成剤
(51)【国際特許分類】
C12N 5/071 20100101AFI20230228BHJP
C12N 5/077 20100101ALI20230228BHJP
C12N 5/09 20100101ALI20230228BHJP
A61L 27/24 20060101ALI20230228BHJP
A61L 27/38 20060101ALI20230228BHJP
A61L 27/40 20060101ALI20230228BHJP
【FI】
C12N5/071
C12N5/077
C12N5/09
A61L27/24
A61L27/38
A61L27/40
【審査請求】有
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2022203006
(22)【出願日】2022-12-20
(62)【分割の表示】P 2020155648の分割
【原出願日】2018-01-31
(31)【優先権主張番号】P 2017015958
(32)【優先日】2017-01-31
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2017169834
(32)【優先日】2017-09-04
(33)【優先権主張国・地域又は機関】JP
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成27年度国立研究開発法人科学技術振興機構 戦略的創造研究推進事業(さきがけ)「がん幹細胞の生物学的機能を解明する1細胞解析技術の創製」に係る委託業務、産業技術力強化法第17条の適用を受ける特許出願
(71)【出願人】
【識別番号】000003193
【氏名又は名称】凸版印刷株式会社
(71)【出願人】
【識別番号】504176911
【氏名又は名称】国立大学法人大阪大学
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【弁理士】
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100169063
【弁理士】
【氏名又は名称】鈴木 洋平
(74)【代理人】
【識別番号】100211199
【弁理士】
【氏名又は名称】原田 さやか
(72)【発明者】
【氏名】松▲崎▼ 典弥
(72)【発明者】
【氏名】入江 新司
(72)【発明者】
【氏名】北野 史朗
(57)【要約】
【課題】コラーゲンの濃度が生体組織に近い三次元組織体及びその製造方法、並びに、当該三次元組織体の製造に用いることができる形成剤を提供すること。
【解決手段】細胞と、内因性コラーゲンを含むコラーゲンとを含み、上記細胞の少なくとも一部が上記コラーゲンに接着している三次元組織体であって、上記コラーゲンの含有率が、上記三次元組織体を基準として10重量%~90重量%であり、上記コラーゲンが、断片化コラーゲンを含み、上記断片化コラーゲンが、三重らせん構造を維持している、三次元組織体。
【選択図】なし
【特許請求の範囲】
【請求項1】
細胞と、内因性コラーゲンを含むコラーゲンとを含み、前記細胞の少なくとも一部が前記コラーゲンに接着している三次元組織体であって、
前記コラーゲンの含有率が、前記三次元組織体を基準として10重量%~90重量%であり、
前記コラーゲンが、断片化コラーゲンを含み、
前記断片化コラーゲンが、三重らせん構造を維持している、三次元組織体(ただし、ナノスケールコラーゲン及び乳酸・グリコール酸共重合体(PLGA)ポリマーを構成に含むメンブレンの存在下で細胞を培養したものを除く)。
【請求項2】
細胞と断片化コラーゲンが均一に分布している、請求項1に記載の三次元組織体。
【請求項3】
前記細胞が、コラーゲン産生細胞を含む細胞である、請求項1又は2に記載の三次元組織体。
【請求項4】
トリプシンの濃度0.25%、温度37℃、pH7.4、反応時間15分でトリプシン処理を行った後の前記三次元組織体の残存率が70%以上である、請求項1~3のいずれか一項に記載の三次元組織体。
【請求項5】
厚さが10μm以上である、請求項1~4のいずれか一項に記載の三次元組織体。
【請求項6】
前記細胞が、血管内皮細胞、がん細胞、心筋細胞、平滑筋細胞及び上皮細胞からなる群から選ばれる、一種又は複数種の細胞を含む、請求項1~5のいずれか一項に記載の三次元組織体。
【請求項7】
前記断片化コラーゲンの平均長が100nm~200μmである、請求項1~6のいずれか一項に記載の三次元組織体。
【請求項8】
前記断片化コラーゲンの平均径が50nm~30μmである、請求項1~7のいずれか一項に記載の三次元組織体。
【請求項9】
断片化コラーゲンを含む、三次元組織体の形成剤であって、
前記断片化コラーゲンの平均長が100nm~200μmであり、前記断片化コラーゲンの平均径が50nm~30μmであり、
前記三次元組織体が断片化コラーゲンと細胞とを含み、
前記断片化コラーゲンが、三重らせん構造を維持している、
三次元組織体(ただし、ナノスケールコラーゲン及び乳酸・グリコール酸共重合体(PLGA)ポリマーを構成に含むメンブレンの存在下で細胞を培養したものを除く)の形成剤。
【請求項10】
前記三次元組織体において、細胞と断片化コラーゲンが均一に分布している、請求項9に記載の形成剤。
【請求項11】
前記細胞が、コラーゲン産生細胞を含む細胞である、請求項9又は10に記載の形成剤。
【請求項12】
トリプシンの濃度0.25%、温度37℃、pH7.4、反応時間15分でトリプシン処理を行った後の前記三次元組織体の残存率が70%以上である、請求項9~11のいずれか一項に記載の形成剤。
【請求項13】
前記三次元組織体の厚さが10μm以上である、請求項9~12のいずれか一項に記載の形成剤。
【請求項14】
前記細胞が、血管内皮細胞、がん細胞、心筋細胞、平滑筋細胞及び上皮細胞からなる群から選ばれる、一種又は複数種の細胞を含む、請求項9~13のいずれか一項に記載の形成剤。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、三次元組織体及びその製造方法、並びに、三次元組織体の形成剤に関する。
【背景技術】
【0002】
近年、生体外で細胞の三次元組織体を構築する技術が開発されている。例えば、培養細胞の表面全体が接着膜で被覆された被覆細胞を培養することによって、三次元組織体を製造する方法(特許文献1)、ポリ乳酸等を材料とした足場に細胞を播種して三次元組織体を製造する方法(非特許文献1)等が提案されている。また、本発明者らはこれまで、コラーゲンを含む被膜でコートされた細胞を三次元に配置して、三次元組織体を形成することを含む、三次元組織体を製造する方法(特許文献2)、細胞の表面に被膜が形成された被覆細胞を形成すること、及び被覆細胞を三次元に配置することを含む三次元組織体の製造方法であって、被覆細胞の形成は、被膜成分を含有する液に細胞を浸漬させること、及び浸漬させた細胞と被膜成分を含有する液とを液透過性膜によって分離することを含む、三次元組織体の製造方法(特許文献3)等を提案している。
このような三次元組織体は、実験動物の代替品、移植材料等としての利用が期待されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2012-115254号公報
【特許文献2】国際公開第2015/072164号
【特許文献3】国際公開第2016/027853号
【非特許文献】
【0004】
【非特許文献1】Nature Biotechnology, 2005, Vol.23, NO.7, p.879-884
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、生体組織における線維性コラーゲン等のコラーゲンの濃度は20~30重量%程度であるので、三次元組織体を実験動物の代替品、移植材料等として適用しようとした際には、コラーゲンが生体組織に近い濃度で含まれる三次元組織体を準備することが好ましい。
【0006】
しかしながら、これまで開発されてきた三次元組織体は、その製造方法による制約等から細胞密度が非常に高いものに限られ、コラーゲンの濃度が生体組織に近い三次元組織体はこれまで知られていなかった。
【0007】
本発明は上記事情に鑑みてなされたものであり、コラーゲンの濃度が生体組織に近い三次元組織体及びその製造方法、並びに、当該三次元組織体の製造に用いることができる形成剤を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明者らは鋭意研究を重ねた結果、以下に示す発明によって、上記課題が解決できることを見出した。
[1]細胞と、内因性コラーゲンを含むコラーゲンとを含み、上記細胞の少なくとも一部が上記コラーゲンに接着している三次元組織体であって、
上記コラーゲンの含有率が、上記三次元組織体を基準として10重量%~90重量%である、三次元組織体。
[2]上記細胞が、コラーゲン産生細胞を含む細胞である、請求項1に記載の三次元組織体。
[3]トリプシンの濃度0.25%、温度37℃、pH7.4、反応時間15分でトリプシン処理を行った後の上記三次元組織体の残存率が70%以上である、上記[1]又は[2]に記載の三次元組織体。
[4]厚さが10μm以上である、上記[1]~[3]のいずれかに記載の三次元組織体。
[5]上記細胞が、血管内皮細胞、がん細胞、心筋細胞、平滑筋細胞及び上皮細胞からなる群から選ばれる、一種又は複数種の細胞を更に含む、上記[1]~[4]のいずれかに記載の三次元組織体。
[6]上記コラーゲンとして、外因性コラーゲンに由来する断片化コラーゲンを更に含む、上記[1]~[5]のいずれかに記載の三次元組織体。
[7](1)水性媒体中において、外因性コラーゲンに由来する断片化コラーゲンと、細胞とを接触させる工程、及び
(2)上記断片化コラーゲンが接触した上記細胞を培養する工程、
を含む、三次元組織体の製造方法。
[8]上記細胞が、コラーゲン産生細胞を含む細胞である、上記[7]に記載の製造方法。
[9]工程(1)及び工程(2)の間に、水性媒体中における上記断片化コラーゲンと上記細胞とを共に沈降させる工程を更に含む、上記[7]又は[8]に記載の製造方法。
[10]工程(1)の工程が、水性媒体中で細胞の層を形成させた後、上記断片化コラーゲンを接触させることで行われる、上記[7]又は[8]に記載の製造方法。
[11]上記断片化コラーゲンの平均長が100nm~200μmである、上記[7]~[10]のいずれかに記載の製造方法。
[12]上記断片化コラーゲンの平均径が50nm~30μmである、上記[7]~[11]のいずれかに記載の製造方法。
[13]上記細胞が、血管内皮細胞、がん細胞、心筋細胞、平滑筋細胞及び上皮細胞からなる群から選ばれる、一種又は複数種の細胞を更に含む、上記[7]~[12]のいずれかに記載の製造方法。
[14]上記断片化コラーゲンと、上記細胞との質量比が、900:1~9:1である、上記[7]~[13]のいずれかに記載の製造方法。
[15]断片化コラーゲンを含む、三次元組織体の形成剤であって、
上記断片化コラーゲンの平均長が100nm~200μmであり、上記断片化コラーゲンの平均径が50nm~30μmである、三次元組織体の形成剤。
【発明の効果】
【0009】
本発明によれば、コラーゲンの濃度が生体組織に近い三次元組織体及びその製造方法、並びに、当該三次元組織体の製造に用いることができる形成剤を提供することが可能になる。
【図面の簡単な説明】
【0010】
【
図1】2分間ホモジナイズすることで得られた断片化コラーゲンを示す写真(A)、及び5分間ホモジナイズすることで得られた断片化コラーゲンの長さの分布を示すヒストグラム(B)である。
【
図2】1週間培養した後の、断片化コラーゲン及び正常ヒト皮膚由来線維芽細胞(NHDF)を含む三次元組織体の位相差顕微鏡写真(A)、ヘマトキシリン・エオジン(HE)で染色した写真(B)、及びトルイジンブルー(TB)で染色した写真(C)である。
【
図3】断片化コラーゲン及びNHDFを含む三次元組織体を抗ヒトコラーゲン抗体で免疫染色した写真である。
【
図4】トリプシン処理前(A)及びトリプシン処理後(B)における、断片化コラーゲン及びNHDFを含む三次元組織体の状態を示す写真である。
【
図5】断片化コラーゲン、NHDF及びヒト臍帯静脈由来血管内皮細胞(HUVEC)を含む三次元組織体の製造工程を示す模式図(A)と、三次元組織体を抗CD31抗体で免疫染色した写真(B)である。
【
図6】96ウェル内(A)又は24ウェル内(B)で製造した断片化コラーゲン及びNHDFを含む非収縮性の三次元組織体のHEで染色した写真及びTBで染色した写真である。
【
図7】断片化コラーゲンを含むコラーゲンゲル及びNHDFを含む三次元組織体(A)と、コラーゲンゲル及びNHDFを含む三次元組織体(B)との、培養中における収縮の様子を観察した写真である。
【
図8】断片化コラーゲン、NHDF及びヒト大腸がん細胞(HT29)を含む三次元組織体をHEで染色した写真である。
【
図9】断片化コラーゲン、ヒト心臓線維芽細胞(NHCF)及びiPS細胞由来心筋細胞(iPS-CM)を含む三次元組織体をHEで染色した写真である。
【
図10】細胞と断片化コラーゲンを同時に添加する方法により得られた断片化コラーゲン及びヒト大動脈平滑筋細胞(Arota-SMC)を含む三次元組織体をHEで染色した写真である。矢印はArota-SMCが存在している箇所の一例を示す。
【
図11】Bottom Layer Methodにより製造した、断片化コラーゲン及びヒト大動脈平滑筋細胞(Arota-SMC)を含む三次元組織体をHEで染色した写真である。矢印はArota-SMCの存在している箇所の一例を示す。
【
図12】断片化コラーゲン、ヒト大動脈平滑筋細胞(Arota-SMC)及びヒト臍帯静脈由来血管内皮細胞(HUVEC)を含む二層構造の三次元組織体を抗CD31抗体で免疫染色した写真である。拡大図における底部の黒い層がHUVECの層である。
【
図13】断片化コラーゲン及びヒト歯肉線維芽細胞(HGF)を含む三次元組織体をHEで染色した写真である。左欄はホモジナイゼーション2分により得られた断片化コラーゲンを用いた結果、右欄はホモジナイゼーション6分により得られた断片化コラーゲンを用いた結果を示す。
【
図14】断片化コラーゲン、ヒト歯肉線維芽細胞(HGF)及び不死化ヒト歯肉上皮細胞(Epi4)を含む三次元組織体をHEで染色した写真である。上段はホモジナイゼーション2分により得られた断片化コラーゲンを用いた結果、下段はホモジナイゼーション6分により得られた断片化コラーゲンを用いた結果を示す。
【
図15】断片化コラーゲン、ヒト心臓線維芽細胞(NHCF)及びiPS細胞由来心筋細胞(iPS-CM)を含む三次元組織体をマッソントリクロームで染色した写真である。黒い部分は、実際には青く染まった箇所であり、コラーゲンの存在を示す。
【発明を実施するための形態】
【0011】
(三次元組織体)
本実施形態に係る三次元組織体は、コラーゲン産生細胞を含む細胞と、内因性コラーゲンを含むコラーゲンとを含み、上記細胞の少なくとも一部が上記コラーゲンに接着している三次元組織体である。従来の三次元組織体は、コラーゲンの濃度が低く、且つ細胞密度が高いものであった。そのため、培養中又は培養後に細胞のけん引力によって三次元組織体が収縮したり、培養中又は培養後に細胞が産生する酵素によって三次元組織体が容易に分解される等の問題があった。本実施形態に係る三次元組織体は、コラーゲンの濃度が従来のものより高く、収縮が起きにくく安定である。
【0012】
「三次元組織体」とは、線維性コラーゲン等のコラーゲンを介して細胞が三次元的に配置されている細胞の集合体であって、細胞培養によって人工的に作られる集合体を意味する。三次元組織体の形状には特に制限はなく、例えば、シート状、球体状、楕円体状、直方体状等が挙げられる。ここで、生体組織は、血管、汗腺、リンパ管、脂腺等を含み、構成が三次元組織体より複雑である。そのため、三次元組織体と生体組織とは容易に区別可能である。
【0013】
本実施形態に係る細胞は、培養細胞であってもよい。例えば、初代培養細胞、継代培養細胞、又は株化細胞が挙げられる。
【0014】
「コラーゲン産生細胞」とは、線維性コラーゲン等のコラーゲンを分泌する細胞を意味する。コラーゲン産生細胞としては、線維芽細胞、軟骨細胞、骨芽細胞等の間葉系細胞が挙げられ、好ましくは、線維芽細胞である。好ましい線維芽細胞としては、例えば、ヒト皮膚由来線維芽細胞(NHDF)、ヒト心臓線維芽細胞(NHCF)及びヒト歯肉線維芽細胞(HGF)が挙げられる。
【0015】
コラーゲンとしては、例えば、線維性コラーゲン又は非線維性コラーゲンが挙げられる。線維性コラーゲンとは、コラーゲン線維の主成分となるコラーゲンを意味し、具体的には、I型コラーゲン、II型コラーゲン、III型コラーゲン等が挙げられる。非線維性コラーゲンとしては、例えば、IV型コラーゲンが挙げられる。
【0016】
「内因性コラーゲン」とは、三次元組織体を構成するコラーゲン産生細胞が産生するコラーゲンを意味する。内因性コラーゲンは、線維性コラーゲンであってもよいし、非線維性コラーゲンであってもよい。
【0017】
三次元組織体におけるコラーゲンの含有率は、上記三次元組織体(乾燥重量)を基準として0.01~90重量%であり、10~90重量%であることが好ましく、10~80重量%であることが好ましく、10~70重量%であることが好ましく、10~60重量%であることが好ましく、1~50重量%であることが好ましく、10~50重量%であることが好ましく、10~30重量%であることがより好ましく、20~30重量%であることがより好ましい。ここで、「三次元組織体におけるコラーゲン」とは、三次元組織体を構成するコラーゲンを意味し、内因性コラーゲンであってもよいし、後述する外因性コラーゲンであってもよい。また「三次元組織体におけるコラーゲン」には後述する断片化コラーゲンも含まれる。すなわち、三次元組織体が外因性コラーゲンに由来する断片化コラーゲンを含む場合、上記三次元組織体を構成するコラーゲンの濃度は、内因性コラーゲン及び上記断片化コラーゲンを合わせた濃度を意味する。上記コラーゲンの濃度は、得られた三次元組織体の体積、及び脱細胞化した三次元組織体の質量から算出することが可能である。
【0018】
三次元組織体におけるコラーゲンの量を定量する方法としては、例えば、以下のようなヒドロキシプロリンを定量する方法が挙げられる。三次元組織体を溶解した溶解液に、塩酸(HCl)を混合し、高温で所定の時間インキュベートした後に室温に戻し、遠心分離した上澄みを所定の濃度に希釈することでサンプルを調製する。ヒドロキシプロリンスタンダード溶液をサンプルと同様に処理した後、段階的に希釈してスタンダードを調製する。サンプル及びスタンダードのそれぞれに対してヒドロキシプロリンアッセイバッファ及び検出試薬で所定の処理をし、570nmの吸光度を測定する。サンプルの吸光度をスタンダードと比較することでコラーゲン量を算出する。なお、三次元組織体を、高濃度の塩酸に直接懸濁して溶解した溶解液を遠心分離して上澄みを回収し、コラーゲン定量に用いてもよい。また、溶解させる三次元組織体は、培養液から回収したままの状態であってもよいし、回収後に乾燥処理を行い、液体成分を除去した状態で溶解させてもよい。但し、培養液から回収したままの状態の三次元組織体を溶解してコラーゲン定量を行う場合、三次元組織体が吸収している培地成分や、実験手技の問題による培地の残りの影響で、三次元組織体重量の計測値がばらつくことが予想されるため、組織体の重量および単位重量あたりに占めるコラーゲン量を安定して計測する観点からは、乾燥後の重量を基準とすることが好ましい。
【0019】
より具体的には、例えば、以下のような方法が挙げられる。
(サンプルの調製)
凍結乾燥処理を行った三次元組織体の全量を6M HClと混合し、ヒートブロックで95℃、20時間以上インキュベートした後、室温に戻す。13000gで10分遠心分離した後、サンプル溶液の上澄みを回収する。後述する測定において結果が検量線の範囲内に収まるように6M HClで適宜希釈した後、200μLを100μLのミリQで希釈することでサンプルを調製する。サンプルは35μL用いる。
(スタンダードの調製)
スクリューキャップチューブに125μLのスタンダード溶液(1200μg/mL in acetic acid)と、125μLの12M HClを加え混合し、ヒートブロックで95℃、20時間インキュベートした後、室温に戻す。13000gで10分遠心分離した後、上澄みをミリQで希釈して300μg/mLのS1を作製し、S1を段階的に希釈してS2(200μg/mL)、S3(100μg/mL)、S4(50μg/mL)、S5(25μg/mL)、S6(12.5μg/mL)、S7(6.25μg/mL)を作製する。4M HCl 90μLのみのS8(0μg/mL)も準備する。
(アッセイ)
35μLのスタンダード及びサンプルをそれぞれプレート(QuickZyme Total Collagen Assayキット付属、QuickZyme Biosciences社)に加える。75μLのアッセイバッファ(上記キット付属)をそれぞれのウェルに加える。シールでプレートを閉じ、20分シェイキングしながら室温でインキュベートする。シールをはがし、75μLのdetection reagent (reagent A:B=30μL:45μL、上記キット付属)をそれぞれのウェルに加える。シールでプレートを閉じ、シェイキングで溶液を混合し、60℃で60分インキュベートする。氷で室温まで冷まし、シールをはがして570nmの吸光度を測定する。サンプルの吸光度をスタンダードと比較することでコラーゲン量を算出する。
【0020】
また、三次元組織体中に占めるコラーゲンを、その面積比もしくは体積比によって規定してもよい。「面積比もしくは体積比によって規定する」とは、例えば三次元組織体中のコラーゲンを既知の染色手法(例えば、抗コラーゲン抗体を用いた免疫染色、もしくはマッソントリクローム染色、など)等で他の組織構成物と区別な状態にした上で、肉眼観察や、各種顕微鏡および画像解析ソフト等を用いて、三次元組織体全体に占めるコラーゲンの存在領域の比率を算出することを意味する。面積比で規定する場合、三次元組織体中の如何なる断面もしくは表面によって面積比を規定するかは限定されないが、例えば三次元組織体が球状体等である場合には、その略中心部を通る断面図によって規定することが、組織全体の様子を適切に反映でき、好ましい。
【0021】
例えば、三次元組織体中のコラーゲンを面積比によって規定する場合、その面積の割合は、上記三次元組織体の全体の面積を基準として0.01~99%であり、1~99%であることが好ましく、5~90%であることが好ましく、7~90%であることが好ましく、20~90%であることが好ましく、50~90%であることがより好ましい。「三次元組織体におけるコラーゲン」については、上述したとおりである。三次元組織体が外因性コラーゲンに由来する断片化コラーゲンを含む場合、上記三次元組織体を構成するコラーゲンの面積の割合は、内因性コラーゲン及び上記断片化コラーゲンを合わせた面積の割合を意味する。上記コラーゲンの面積の割合は、例えば、得られた三次元組織体をマッソントリクロームで染色し、三次元組織体の略中心部を通る断面の全体の面積に対する、青く染色したコラーゲンの面積の割合として算出することが可能である。
【0022】
上記三次元組織体は、トリプシンの濃度0.25%、温度37℃、pH7.4、反応時間15分でトリプシン処理を行った後の残存率が70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更により好ましい。このような三次元組織体は、培養中又は培養後において酵素による分解が起きにくく、安定である。上記残存率は、例えば、トリプシン処理の前後における三次元組織体の質量から算出できる。
【0023】
上記三次元組織体は、コラゲナーゼの濃度0.25%、温度37℃、pH7.4、反応時間15分でコラゲナーゼ処理を行った後の残存率が70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更により好ましい。このような三次元組織体は、培養中又は培養後における酵素による分解が起きにくく、安定である。
【0024】
上記三次元組織体は、厚さが10μm以上であることが好ましく、100μm以上であることがより好ましく、1000μm以上であることが更により好ましい。このような三次元組織体は、生体組織により近い構造であり、実験動物の代替品、及び移植材料として好適なものとなる。厚さの上限は、特に制限されないが、例えば、10mm以下であってもよいし、3mm以下であってもよいし、2mm以下であってもよいし、1.5mm以下であってもよいし、1mm以下であってもよい。
【0025】
ここで、「三次元組織体の厚さ」とは、三次元組織体がシート状、又は直方体状である場合、主面に垂直な方向における両端の距離を意味する。上記主面に凹凸がある場合、厚さは上記主面の最も薄い部分における距離を意味する。
また、三次元組織体が球体状である場合、その直径を意味する。さらにまた、三次元組織体が楕円体状である場合、その短径を意味する。三次元組織体が略球体状又は略楕円体状であって表面に凹凸がある場合、厚さは、三次元組織体の重心を通る直線と上記表面とが交差する2点間の距離であって最短の距離を意味する。
【0026】
上記三次元組織体を構成する細胞は、コラーゲン産生細胞以外の、一種又は複数種の他の細胞を更に含んでもよい。上記他の細胞としては、血管内皮細胞(例えば、ヒト臍帯静脈由来血管内皮細胞(HUVEC))、大腸がん細胞(例えば、ヒト大腸がん細胞(HT29))、肝がん細胞等のがん細胞、心筋細胞(例えば、ヒトiPS細胞由来心筋細胞(iPS-CM))、上皮細胞(例えば、ヒト歯肉上皮細胞)、角化細胞、リンパ管内皮細胞、神経細胞、肝細胞、組織幹細胞、胚性幹細胞、人工多能性幹細胞、接着性細胞(例えば、免疫細胞)、平滑筋細胞(例えば、大動脈平滑筋細胞(Arota-SMC))、等が挙げられる。好ましくは、上記三次元組織体を構成する細胞が、血管内皮細胞、がん細胞及び心筋細胞からなる群から選ばれる、一種又は複数種の細胞を更に含む。
【0027】
上記三次元組織体は、外因性コラーゲンに由来する断片化コラーゲンを更に含んでもよい。「外因性コラーゲン」及び「断片化コラーゲン」については、後述する。
【0028】
上記三次元組織体は、実験動物の代替品、移植材料等として適用することが可能である。
【0029】
(三次元組織体の製造方法)
本実施形態に係る三次元組織体の製造方法は、
(1)水性媒体中において、外因性コラーゲンに由来する断片化コラーゲンと、細胞とを接触させる工程、及び
(2)上記断片化コラーゲンが接触した上記細胞を培養する工程、
を含む。
【0030】
本実施形態に係る細胞は、培養細胞であってもよい。例えば、初代培養細胞、継代培養細胞、又は株化細胞が挙げられる。また、本実施形態に係る細胞は、コラーゲン産生細胞を含む細胞であってもよく、コラーゲン産生細胞以外の細胞を含む細胞であってもよく、コラーゲン産生細胞及びコラーゲン産生細胞以外の細胞の両方を含む細胞であってもよい。
【0031】
「コラーゲン産生細胞」とは、線維性コラーゲン等のコラーゲンを分泌する細胞を意味する。コラーゲン産生細胞としては、線維芽細胞、軟骨細胞、骨芽細胞等の間葉系細胞が挙げられ、好ましくは、線維芽細胞である。好ましい線維芽細胞としては、例えば、ヒト皮膚由来線維芽細胞(NHDF)、ヒト心臓線維芽細胞(NHCF)及びヒト歯肉線維芽細胞(HGF)が挙げられる。
【0032】
コラーゲン産生細胞以外の細胞としては、血管内皮細胞(例えば、ヒト臍帯静脈由来血管内皮細胞(HUVEC))、大腸がん細胞(例えば、ヒト大腸がん細胞(HT29))、肝がん細胞等のがん細胞、心筋細胞(例えば、ヒトiPS細胞由来心筋細胞(iPS-CM))、上皮細胞(例えば、ヒト歯肉上皮細胞)、角化細胞、リンパ管内皮細胞、神経細胞、肝細胞、組織幹細胞、胚性幹細胞、人工多能性幹細胞、接着性細胞(例えば、免疫細胞)、平滑筋細胞(例えば、大動脈平滑筋細胞(Arota-SMC))等が挙げられる。好ましくは、上記三次元組織体を構成する細胞が、血管内皮細胞、がん細胞及び心筋細胞からなる群から選ばれる、一種又は複数種の細胞を更に含む。
【0033】
本実施形態に係る製造方法により、安定で、細胞が均一に分布している三次元組織体が得られる。
【0034】
本実施形態に係る細胞は、コラーゲン産生細胞を含む細胞であることが好ましい。コラーゲン産生細胞を含む細胞を用いることで、より安定で、細胞が均一に分布している三次元組織体が得られる。その理由は以下のように推測される。
【0035】
従来の足場を利用した三次元組織体の製造方法では、予め用意された足場に目的の細胞を注入するため、足場の内部にまで均一に細胞を分布させることが困難であった。本実施形態に係る製造方法によれば、得られる三次元組織体は安定であり、細胞が均一に分布している。このような三次元組織体が得られるメカニズムの詳細は不明であるが、以下のように推測される。まず細胞が断片化コラーゲン上に接触して接着する。その後、細胞は自分自身で細胞外マトリックス(ECM)を構成するタンパク質(例えば、線維性コラーゲン等のコラーゲン)を産生する。産生されたタンパク質は断片化コラーゲン上に接触して接着することで、断片化コラーゲン間の架橋剤として働き、細胞が均一に存在する環境下で線維性コラーゲン等の構造化が進む。その結果、より安定で、細胞が均一に分布している三次元組織体が得られる。ただし、上記推測は本発明を限定するものではない。
【0036】
また、特許文献1~3に記載の製造方法では、三次元組織体を製造するための工程数が多く、1時間程度の作業時間が必要であった。本実施形態に係る製造方法によれば、短い作業時間で三次元組織体を製造できる。さらに、本実施形態に係る製造方法によれば、簡便に三次元組織体を製造できる。
特許文献2に記載の製造方法では、厚さが1mm程度の三次元組織体を製造するために、細胞が少なくとも106cells必要であった。本実施形態に係る製造方法によれば、比較的少ない細胞数で、厚さが1mm以上である、サイズが大きい三次元組織体を製造できる。
【0037】
「水性媒体」とは、水を必須構成成分とする液体を意味する。水性媒体としては、断片化コラーゲン及び細胞が安定に存在できるものであれば、特に制限はない。例えば、リン酸緩衝生理食塩水(PBS)等の生理食塩水、Dulbecco’s Modified Eagle培地(DMEM)、血管内皮細胞専用培地(EGM2)等の液体培地が挙げられる。液体培地は、二種類の培地を混合した混合培地であってもよい。細胞に対する負荷を軽減する観点から、水性媒体は液体培地であることが好ましい。
【0038】
「外因性コラーゲン」とは、外部から供給されるコラーゲンを意味し、具体的には、線維性コラーゲン、非線維性コラーゲン等が挙げられる。外因性コラーゲンは、由来となる動物種が内因性コラーゲンと同じであっても異なっていてもよい。由来となる動物種としては、例えば、ヒト、ブタ、ウシ等が挙げられる。また、外因性コラーゲンは、人工のコラーゲンであってもよい。外因性コラーゲンは、線維性コラーゲンであることが好ましい。上記線維性コラーゲンとしては、例えば、I型コラーゲン、II型コラーゲン、III型コラーゲンが挙げられ、好ましくはI型コラーゲンである。上記線維性コラーゲンは、市販されているコラーゲンを用いてもよく、その具体例としては、日本ハム株式会社製のブタ皮膚由来I型コラーゲン凍結乾燥体が挙げられる。外因性の非線維性コラーゲンとしては、例えば、IV型コラーゲンが挙げられる。
【0039】
外因性コラーゲンにおいて、由来する動物種は、細胞とは異なっていてよい。また、細胞が、コラーゲン産生細胞を含む場合、外因性コラーゲンにおいて、由来する動物種は、コラーゲン産生細胞とは異なっていてよい。つまり、外因性コラーゲンは、異種コラーゲンであってよい。
【0040】
「断片化コラーゲン」とは、線維性コラーゲン等のコラーゲンを断片化したものであって、三重らせん構造を維持しているものを意味する。断片化コラーゲンの由来となるコラーゲンは、一種類であってもよいし、複数種のコラーゲンを併用してもよい。従来、線維性コラーゲン等のコラーゲンは酸性の水溶液等に溶かしていたが、濃度は0.1~0.3重量%程度であり多く溶かすことはできなかった。そのため従来の方法では三次元組織体における線維性コラーゲン等のコラーゲンの量を多くすることが困難であった。本実施形態に係る断片化コラーゲンは水にほとんど溶解しないが、水性媒体に分散することにより、水性媒体中で細胞と接触しやすくなり、三次元組織体の形成を促進すると推測される。断片化コラーゲンの平均長は、100nm~200μmであることが好ましく、22μm~200μmであることがより好ましく、100μm~200μmであることがさらにより好ましい。断片化コラーゲンの平均径は、50nm~30μmであることが好ましく、4μm~30μmであることがより好ましく、20μm~30μmであることがさらにより好ましい。
【0041】
線維性コラーゲン等のコラーゲンを断片化する方法は、特に制限はなく、例えば、超音波式ホモジナイザー、撹拌式ホモジナイザー、及び高圧式ホモジナイザー等のホモジナイザーを用いて線維性コラーゲン等のコラーゲンを断片化してもよい。撹拌式ホモジナイザーを用いる場合、線維性コラーゲン等のコラーゲンをそのままホモジナイズしてもよいし、生理食塩水等の水性媒体中でホモジナイズしてもよい。また、ホモジナイズする時間、回数等を調整することでミリメートルサイズ、ナノメートルサイズの断片化コラーゲンを得ることも可能である。
断片化コラーゲンの直径及び長さは、電子顕微鏡によって個々の断片化コラーゲンを解析することによって求めることが可能である。
【0042】
水性媒体中において、外因性コラーゲンに由来する断片化コラーゲンと、細胞とを接触させる方法としては、特に制限はない。例えば、細胞を含む培養液に、断片化コラーゲンの分散液を加える方法、断片化コラーゲンの培地分散液に細胞を加える方法、又は予め用意した水性媒体に、断片化コラーゲン及び細胞をそれぞれ加える方法が挙げられる。
【0043】
工程(1)においては、コラーゲン産生細胞及びコラーゲン産生細胞以外の他の細胞を含む細胞を用いてよい。コラーゲン産生細胞、及びコラーゲン産生細胞以外の他の細胞としては、上述した細胞をそれぞれ用いることができる。コラーゲン産生細胞及びコラーゲン産生細胞以外の他の細胞を共に用いて三次元組織体を製造することで、種々のモデル組織を製造することが可能になる。例えば、NHCF及びHUVECを用いた場合、内部に毛細血管を有する三次元組織体を得ることが可能になる。NHCF及び大腸がん細胞を用いた場合、大腸がんのモデル組織を得ることが可能になる。また、NHCF及びiPS-CMを用いた場合、同期拍動を示す心筋のモデル組織を得ることが可能になる。
【0044】
工程(1)における水性媒体中の断片化コラーゲンの濃度は、目的とする三次元組織体の形状、厚さ、培養器のサイズ等に応じて適宜決定できる。例えば、工程(1)における水性媒体中の断片化コラーゲンの濃度は、0.1~90重量%であってもよいし、1~30重量%であってもよい。
【0045】
工程(1)における断片化コラーゲンの量は、1×105cellsの細胞に対して、0.1~100mgであってもよいし、1~50mgであってもよい。
【0046】
工程(1)における断片化コラーゲンと、細胞との質量比が、1000:1~1:1であることが好ましく、900:1~9:1であることがより好ましく、500:1~10:1であることが更により好ましい。
【0047】
コラーゲン産生細胞とその他の細胞とを共に用いる場合、工程(1)におけるコラーゲン産生細胞:その他の細胞の比率(細胞数)は、99:1~9:1であってもよいし、80:20~50:50であってもよいし、20:80~50:50であってもよいし、10:90~50:50であってもよい。
【0048】
工程(1)及び工程(2)の間に、水性媒体中における断片化コラーゲンと細胞とを共に沈降させる工程を更に含んでもよい。このような工程を行うことで、三次元組織体における断片化コラーゲン及び細胞の分布が、より均一になる。具体的な方法としては、特に制限はないが、例えば、断片化コラーゲンと細胞とを含む培養液を遠心操作する方法が挙げられる。
【0049】
工程(1)の工程が、水性媒体中で細胞の層を形成させた後、上記断片化コラーゲンを接触させることにより行われてもよい。細胞の層を断片化コラーゲンと接触させる前に形成することで、下層部の細胞密度が高い三次元組織体を作製することができる。また、コラーゲン産生細胞を含む細胞の層を断片化コラーゲンと接触させる前に形成することで、コラーゲン産生細胞を含む細胞の下層部の細胞密度が高い三次元組織体を作製することができる。用いる細胞の種類(例えば、大動脈平滑筋細胞)によっては、この方法により、より生体に近い組織を作製することができる。
【0050】
本実施形態において、三次元組織体の製造方法は、工程(2)の後、工程(3)として、さらに細胞を接触させ、細胞を培養する工程を含んでもよい。上記細胞は、工程(1)で用いた細胞と同じであってよく、異なってもよい。例えば、工程(1)で用いる細胞がコラーゲン産生細胞以外の細胞を含む場合に、工程(3)で用いる細胞はコラーゲン産生細胞を含んでもよい。また例えば、工程(1)で用いる細胞がコラーゲン産生細胞を含む場合に、工程(3)で用いる細胞はコラーゲン産生細胞以外の細胞を含んでもよい。工程(1)で用いる細胞及び工程(3)で用いる細胞の両方がコラーゲン産生細胞を含んでもよく、工程(1)で用いる細胞及び工程(3)で用いる細胞の両方がコラーゲン産生細胞以外の細胞を含んでもよい。上記工程(3)により、二層構造の三次元組織体を作製することができる。例えば、大動脈平滑筋細胞及び血管内皮細胞を用いた場合、並びにヒト皮膚由来線維芽細胞及びヒト表皮角化細胞を用いた場合には、この方法により、より生体に近い組織を作製することができる。また、例えば、ヒト歯肉線維芽細胞と歯肉上皮細胞を用いた場合には、この方法により、組織収縮や組織割れのない二層構造の三次元組織体を作製することができる。
【0051】
断片化コラーゲンが接触した細胞を培養する方法は、特に制限はなく、培養する細胞の種類に応じて好適な培養方法で行うことができる。例えば、培養温度は20℃~40℃であってもよく、30℃~37℃であってもよい。培地のpHは、6~8であってもよく、7.2~7.4であってもよい。培養時間は、1日~2週間であってもよく、1週間~2週間であってもよい。
【0052】
培地は特に制限はなく、培養する細胞の種類に応じて好適な培地を選択できる。培地としては、例えば、Eagle’s MEM培地、DMEM、Modified Eagle培地(MEM)、Minimum Essential培地、RPMI、及びGlutaMax培地等が挙げられる。培地は、血清を添加した培地であってもよいし、無血清培地であってもよい。培地は、二種類の培地を混合した混合培地であってもよい。
【0053】
工程(2)における培地中の細胞密度は、目的とする三次元組織体の形状、厚さ、培養器のサイズ等に応じて適宜決定できる。例えば、工程(2)における培地中の細胞密度は、1~108cells/mlであってもよいし、103~107cells/mlであってもよい。また、工程(2)における培地中の細胞密度は、工程(1)における水性媒体中の細胞密度と同じであってもよい。
【0054】
上記三次元組織体は、培養中の収縮率が20%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることがさらに好ましい。上記収縮率は、例えば、以下の式で算出できる。式中L1は、培養後1日目の三次元組織体のもっとも長い部分の長さを示し、L3は、培養後3日目の三次元組織体における対応する部分の長さを示す。
収縮率(%)={(L1―L3)/L1}×100
【0055】
上述の製造方法により例えば、細胞と、外因性コラーゲンに由来するコラーゲンとを含み、上記細胞の少なくとも一部が上記コラーゲンに接着している三次元組織体であって、上記コラーゲンの含有率が、上記三次元組織体を基準として10重量%~90重量%である、三次元組織体を製造することができる。また、上記外因性コラーゲンに由来するコラーゲンは、断片化コラーゲンであってもよい。
【0056】
(三次元組織体の形成剤)
本実施形態に係る三次元組織体の形成剤は、断片化コラーゲンを含む、三次元組織体の形成剤であって、上記断片化コラーゲンの平均長が100nm~200μmであり、上記断片化コラーゲンの平均径が50nm~30μmである。また、断片化コラーゲンの長さについて、断片化コラーゲン全体のうち95%が100nm~200μmの範囲にあってもよい。さらに、断片化コラーゲンの直径について、断片化コラーゲン全体のうち95%が50nm~30μmの範囲にあってもよい。
【0057】
「三次元組織体の形成剤」とは、三次元組織体を製造するための試薬を意味する。三次元組織体の形成剤は、粉末の状態であってもよいし、水性媒体に断片化コラーゲンが分散した分散液の状態であってもよい。断片化コラーゲンの製造方法及び上記形成剤の使用方法としては、上記(三次元組織体の製造方法)において示されている方法と同様の方法が挙げられる。
【実施例0058】
(実施例1:I型コラーゲンを用いた断片化コラーゲンの製造)
日本ハム株式会社製のブタ皮膚由来I型コラーゲン凍結乾燥体を10倍濃度のリン酸緩衝生理食塩水(×10 PBS)に分散し、ホモジナイザーを用いて2分間ホモジナイズすることで、直径が約20~30μmであり、長さが約100~200μmである断片化コラーゲンを得た(
図1の(A))。断片化コラーゲンの直径及び長さは電子顕微鏡によって個々の断片化コラーゲンを解析することで求めた。得られた断片化コラーゲンを無血清培地(DMEM)で洗浄し、断片化コラーゲンの培地分散液を得た。得られた断片化コラーゲンの培地分散液は、室温で1週間保存できた。後述する各三次元組織体の製造においては、同様の方法で得られた断片化コラーゲンを用いた。
【0059】
また、上記方法において、ホモジナイズする時間を5分間に変更した場合、直径が約950nm~16.8μmであり、長さが約9.9μm~78.6μmである断片化コラーゲンが得られた(表1、
図1の(B))。この結果から、ホモジナイズする時間を調整することで、断片化コラーゲンのサイズを制御できることが分かった。
【0060】
【0061】
(実施例2:ヒト皮膚由来線維芽細胞を用いた三次元組織体の製造)
血清を含む培地(DMEM)にて濃度が6.02mg/mlとなるように断片化コラーゲンを分散した。断片化コラーゲンは、実施例1の2分間ホモジナイズしたものを用いた。得られた分散液166μl(断片化コラーゲン、約1mg相当)と、1×10
5cellsの正常ヒト皮膚由来線維芽細胞(NHDF)とを非接着96ウェル丸底プレートに添加した。培養開始と共に細胞及び断片化コラーゲンを含む混合物が丸い形状となり、1週間培養後には直径約1.5mmの球体状の三次元組織体(
図2の(A))が得られた。得られた三次元組織体をヘマトキシリン・エオジン(HE)、又はトルイジンブルー(TB)で染色したところ、断片化コラーゲン及びNHDFがそれぞれ均一に分布していることが確認できた(
図2の(B)及び(C))。得られた三次元組織体における、コラーゲンの含有率を算出したところ、約30重量%であった。
【0062】
使用したNHDFはヒト由来であるため、抗ヒトコラーゲン抗体を用いて免疫染色することで、細胞が産生するヒトコラーゲンを、ブタI型コラーゲン由来の断片化コラーゲン(外因性コラーゲンに由来する断片化コラーゲン)と区別して染色することが可能となる。予備検討の結果、三次元組織体の内部において、NHDFが産生したヒト由来のコラーゲン(内因性コラーゲン)の染色が確認された(
図3)。この結果から、内因性コラーゲンと外因性コラーゲンとが、それぞれ別の種に由来する場合、三次元組織体における内因性コラーゲンと、外因性コラーゲンに由来する断片化コラーゲンとを区別できることが分かった。
【0063】
得られた三次元組織体を、トリプシンの濃度0.25%、温度37℃、pH7.4、反応時間15分でトリプシン処理を行ったところ、トリプシンによる分解はほとんど見られなかった(
図4、残存率90%)。この結果から、得られた三次元組織体は、トリプシン等の酵素に安定であることが示唆された。
【0064】
(実施例3:ヒト皮膚由来線維芽細胞及びヒト臍帯静脈由来血管内皮細胞を用いた三次元組織体の製造)
NHDFとヒト臍帯静脈由来血管内皮細胞(HUVEC)とを80:20の割合(細胞数)で混合して非接着96ウェル丸底プレートに播種した。このとき、断片化コラーゲンは、実施例1の2分間ホモジナイズしたものを用い、播種した全細胞数(1.0×10
5cells)を基準として、実施例2と同様の量を加えた。その後、DMEMと血管内皮細胞専用培地(EGM2、ロンザ社製)との1:1(体積比)の混合培地で1週間培養することで、三次元組織体が得られた(
図5の(A))。得られた三次元組織体におけるコラーゲンの含有率を算出したところ、約30重量%であった。得られた三次元組織体を抗CD31抗体で染色したところ、三次元組織体の内部まで染色が確認された(
図5の(B))。この結果から、毛細血管を含む三次元組織体を製造できることが分かった。
【0065】
(実施例4:ヒト皮膚由来線維芽細胞を用いた非収縮性の三次元組織体の製造)
10mgの断片化コラーゲン(実施例1の2分間ホモジナイズしたもの)と10×10
5cellsのNHDFとを混合して接着性の96ウェルインサート及び24ウェルインサートにそれぞれ播種して培養すると、三次元組織体の収縮はほとんど見られず、約3mmと1mmの厚さの三次元組織体が得られた(
図6)。96ウェルインサートにおいて得られた三次元組織体における、コラーゲンの含有率を算出したところ、約30重量%であった。24ウェルインサートにおいて得られた三次元組織体における、コラーゲンの重量%を算出したところ、約30重量%であった。
【0066】
また、30mgの断片化コラーゲンを含むコラーゲンゲル100μlと、10×10
5cellsのNHDFとを混合して、接着性の24ウェルインサートに播種して培養しても、得られた三次元組織体の収縮はほとんど見られなかった(
図7の(A))。一方、断片化コラーゲンを含まないコラーゲンゲル(コラーゲン濃度0.3重量%)を用いて得られた三次元組織体は、培養2日目で収縮が観察され、培養6日目には球体状になることが観察された(
図7の(B))。
【0067】
(実施例5:ヒト皮膚由来線維芽細胞及びヒト大腸がん細胞を用いた三次元組織体の製造)
NHDFとがん細胞とを混合して三次元組織体を製造することも可能であった。具体的にはヒト大腸がん細胞HT29をNHDFと1:1の割合で混合(全細胞数1.0×10
5cells)して非接着96ウェル丸底プレートに播種したこと以外は、実施例2と同様の条件で三次元組織体を製造した。得られた三次元組織体のHE染色写真を、
図8に示す。直径約2mmの三次元組織体の内部にHT29とNHDFが均一に分布している様子が観察された。得られた三次元組織体における、コラーゲンの含有率を算出したところ、約30重量%であった。
【0068】
(実施例6:ヒト心臓線維芽細胞及びヒトiPS細胞由来心筋細胞を用いた三次元組織体の製造)
同様の手法で、ヒト心臓線維芽細胞(NHCF)とヒトiPS細胞由来心筋細胞(iPS-CM)とを用いて三次元組織体を製造した(
図9)。具体的にはNHCFとiPS-CMとを25:75の割合で混合して非接着96ウェル丸底プレートに播種したこと以外は、実施例2と同様の条件(全細胞数1.0×10
5cells)で三次元組織体を製造した。得られた三次元組織体における、コラーゲンの含有率を算出したところ、約30重量%であった。得られた三次元組織体は、1~2週間培養後も一分間に30~40回程度の同期拍動を示した。この実験結果から、三次元組織体におけるiPS-CMは、生体内の心筋細胞に近い環境にあることが示唆された。また、本発明に係る三次元組織体が、実験動物の代替品、及び移植材料として好適な組織体であることが示唆された。
【0069】
(実施例7:ヒト大動脈平滑筋細胞を用いた三次元組織体の製造)
日本ハム株式会社製のブタ皮膚由来I型コラーゲン凍結乾燥体を10倍濃度のリン酸緩衝生理食塩水(×10 PBS)に分散し、ホモジナイザーを用いて2分間ホモジナイズし、断片化コラーゲンを得た。血清を含む培地(SmGM-2、ロンザ社製)にて濃度が10mg/mlとなるように断片化コラーゲンを分散した。得られた分散液200μl(断片化コラーゲン、約2mg相当)と、1×10
5cellsの正常ヒト大動脈平滑筋細胞(Arota-SMC)とを24ウェルセルカルチャーインサート(コーニング社製)に添加した。培養開始と共に細胞及び断片化コラーゲンを含む混合物がインサートに適合した形状となり、1週間培養後には厚さ約0.3mmの三次元組織体が得られた。得られた三次元組織体を10%パラホルムアルデヒド(PFA)で固定し、ヘマトキシリン・エオジン(HE)で染色したところ、断片化コラーゲン及びArota-SMCがそれぞれ均一に分布していることが確認できた(
図10)。断片化コラーゲンを約3mg、4mg、8mg用いた場合にも、厚さは異なるが同様の結果が得られた。
【0070】
上記と同じ断片化コラーゲン分散液及びArota-SMCを用い、Arota-SMCの層を形成させた後に断片化コラーゲンと接触させる方法(Bottom Layer Method)により、三次元組織体を製造した。SmGM-2(ロンザ社製)200μlと2.5×10
4cellsのSMCとを24ウェルセルカルチャーインサート(コーニング社製)に添加した。24時間培養後には、インサート底面にArota-SMCが接着し、細胞層が形成された。次に、断片化コラーゲンの分散液400μl(断片化コラーゲン、約8mg相当)をArota-SMCの層に添加した。1週間培養後には厚さ約0.8mmの三次元組織体が得られた。得られた三次元組織体を10%パラホルムアルデヒド(PFA)で固定し、ヘマトキシリン・エオジン(HE)で染色したところ、下層部にSMCが多く分布しており、より生体に近い組織が形成されていることが確認できた(
図11)。
【0071】
断片化コラーゲンとArota-SMCを同時に添加する方法により得られた三次元組織体と、上記Bottom Layer Methodにより得られた三次元組織体を比較すると、三次元組織体の厚みに差は見られず、いずれの方法でも用いるArota-SMC量に依存して厚みが増加する傾向にあった。前者の方法で得られた三次元組織体は、下層部及び上層部の密度に顕著な差は見られなかった。一方、後者の方法で得られた三次元組織体は、下層部の細胞密度が高く、上層部の細胞密度が低い傾向がみられ、より生体の大動脈平滑筋組織に近い構造であることが確認された。
【0072】
(実施例8:ヒト大動脈平滑筋細胞とヒト臍帯静脈由来血管内皮細胞を用いた二層構造の三次元組織体の製造)
実施例7と同様に断片化コラーゲンを培地に懸濁して得た分散液200μl(断片化コラーゲン、約3mg相当)と、5.0×10
5cellsのArota-SMCとを懸濁し、96ウェルインサート(ACEA Bioscience社製)に添加後、一週間培養し、三次元組織体を構築した。更に、構築した三次元組織体の上に、6×10
4個のヒト臍帯静脈由来血管内皮細胞(HUVEC)を培地に懸濁し、自然沈降で三次元組織体上に堆積させた。三次元組織体を10%PFAで固定後、薄切し、CD31による免疫染色を行った。24時間培養後には一層の内皮細胞の層が三次元組織体上に構築され、より生体の血管壁に近い組織体が得られた(
図12)。
【0073】
(実施例9:ヒト歯肉線維芽細胞を用いた三次元組織体の製造)
日本ハム株式会社製のブタ皮膚由来I型コラーゲン凍結乾燥体を10倍濃度のリン酸緩衝生理食塩水(×10 PBS)に分散し、ホモジナイザーを用いて2分間ホモジナイズし、断片化コラーゲンを得た。血清を含む培地(DMEM)にて濃度が10mg/mlとなるように断片化コラーゲンを分散した。(2分の時)得られた分散液800μl(断片化コラーゲン、約8mg相当)と、正常ヒト歯肉線維芽細胞(HGF)(5.0×10
5cells、8.0×10
5cells、1.0×10
6cells)とを24ウェルセルカルチャーインサート(コーニング社製)に添加した。培養開始と共に細胞及び断片化コラーゲンを含む混合物がインサート形状に適合した円柱体となり、3日培養後には直径約1.5mmの厚さの三次元組織体が得られた。多量なコラーゲンが存在するにもかかわらず、組織の収縮はほとんど見られなかった。得られた三次元組織体をヘマトキシリン・エオジン(HE)で染色したところ、5.0×10
5cells、8.0×10
5cells及び1.0×10
6cellsのHGFのいずれを用いた三次元組織体も、断片化コラーゲン及びHGFがそれぞれ均一に分布していることが確認できた(
図13「ホモジナイゼーション:2分」)。
【0074】
ホモジナイザーを用いて6分間ホモジナイズした断片化コラーゲンを用いたこと以外は同様の方法により、三次元組織体を得た。分散液816μl(断片化コラーゲン、約8mg相当)と、5.0×10
5cells、8.0×10
5cells及び1.0×10
6cellsのいずれのHGFを用いた三次元組織体も、断片化コラーゲン及びHGFがそれぞれ均一に分布していることが確認できた(
図13「ホモジナイゼーション:6分」)。
【0075】
上記2分間ホモジナイズした断片化コラーゲンを用いて製造した三次元組織体と6分間ホモジナイズした断片化コラーゲンを用いて製造した三次元組織体を比較すると、いずれの場合にも、断片化コラーゲン及びHGFがそれぞれ均一に分布している三次元組織体が得られたが、6分間ホモジナイズした断片化コラーゲンを用いて製造した三次元組織体の方がよりコラーゲンの凝集塊がなくなり、均一になるが、厚さに関しては、同じ量のコラーゲンの場合は、薄くなった。
【0076】
(実施例10:ヒト歯肉線維芽細胞と歯肉上皮細胞を用いた三次元組織体の製造)
下層(HGF層)の作製:日本ハム株式会社製のブタ皮膚由来I型コラーゲン8mg(2分間のホモジナイゼーションにより断片化したもの)と、正常ヒト歯肉線維芽細胞(HGF)1.0×106cellsをD-MEM(和光純薬工業株式会社製)に混合懸濁し、24ウェルインサート(コーニング社製)に添加し、インサート外側に培地を添加して、一晩培養した。
【0077】
上層(Epi4層)の作製:翌日インサートの培地を吸い取り、不死化ヒト歯肉上皮細胞(Epi4)を2.0×106cells/300μl/インサートになるように調整し、HGF層の上にEpi4を播種した。インサートの外側にD-MEMとHumedia(倉敷紡績株式会社製)を1:1で混ぜたものを1ml入れ、37℃、1時間インキュベート後、インサートの外側に混合培地を1ml追加し、一晩培養した。
【0078】
Epi4の分化:インサートの内側と外側両方の培地を除去し、混合培地をインサートの外側に入れ、7日間毎日培地換えを行いつつ、培養した。培養後、薄切し、HE染色した。
【0079】
下層の作製の際に、6分間のホモジナイゼーションにより断片化した日本ハム株式会社製のブタ皮膚由来I型コラーゲンを用いた以外は上記と同様に三次元組織体を製造し、HE染色した。
【0080】
図14に示すように、2分ホモジナイズした断片化コラーゲン又は6分ホモジナイズした断片化コラーゲンで間質の土台を作製し、その上に歯肉上皮細胞を積層することで、組織収縮や組織割れのない2層構造の歯肉モデルを作製することができた。
【0081】
(実施例11:ヒト皮膚由来線維芽細胞と正常ヒト表皮角化細胞を用いた二層構造の三次元組織体の製造)
日本ハム株式会社製のブタ皮膚由来I型コラーゲン凍結乾燥体50mgを10倍濃度のリン酸緩衝生理食塩水(×10 PBS)5mLに分散し、ホモジナイザーを用いて2分間ホモジナイズし、断片化コラーゲンを得た。得られた断片化コラーゲンを無血清培地(DMEM)で洗浄し、断片化コラーゲンの培地分散液を得た。血清を含む培地(SmGM-2、ロンザ社製)にて濃度が10mg/mLとなるように断片化コラーゲンを分散した。
【0082】
下層(NHDF層)の作製:24ウェルのインサートを、PBS(0.04μL/インサート)中の0.04mg/mLフィブロネクチン溶液(#F2006-5G、Sigma社製)でコートし、37℃で20分間インキュベートした。その後、断片化コラーゲン分散液0.8mL(断片化コラーゲン、約8mg相当)と、1×106cellsのヒト皮膚由来線維芽細胞(NHDF)とを24ウェルプレートトランスウェル(IWAKI社製)中で混合した。プレートをインキュベータに入れ、24時間培養した。
【0083】
上層(NHEK層)の作製:上記NHDFのコラーゲンゲル上で、インサート中の培地を吸引し、PBS(0.04μL/インサート)中の0.04mg/mLコラーゲンIV溶液でコートし、37℃で少なくとも20分間インキュベートした。NHDFのコラーゲンゲル上に加えたコラーゲンIV溶液を吸引し、NHDFのコラーゲンゲル上に、300μLの1×106cellsの正常ヒト表皮角化細胞(NHEK)(#KK-4009、1バイアル=500000細胞、KURABO社製)を加えた。DMEM 5%FBS:EpiLife(#C-2517A、Invitrogen社製)(1:1)培地をインサートの外側に1mL加え、1時間後にインサートの外側に1mLを再度加えた。
【0084】
内側と外側の培地を静かに吸引し、DMEM 5%FBS:EpiLife(1:1)培地中でアスコルビン酸を100倍に希釈し、インサートの外側に500μLの分化培地として加えた。インサートの内側には培地を加えなかった。分化7日目まで毎日インサートの外の培地を交換した。
【0085】
作製した皮膚モデルは、線維芽細胞を含む層(真皮組織)、上部の角化細胞を含む層(表皮組織)における細胞間の距離が適切であり、生体内の皮膚組織に近い構造であった。2分間ホモジナイズした断片化コラーゲン及びヒト皮膚由来線維芽細胞で土台を作製し、その上に正常ヒト表皮角化細胞を積層することで、生体に近い2層構造の皮膚モデルを作製することができた。
【0086】
(実施例12:ヒト心臓線維芽細胞及びヒトiPS細胞由来心筋細胞を用いた三次元組織体の製造、並びにコラーゲンの面積割合の算出)
日本ハム株式会社製のブタ皮膚由来I型コラーゲン凍結乾燥体50mgを10倍濃度のリン酸緩衝生理食塩水(×10 PBS)5mLに分散し、ホモジナイザーを用いて6分間ホモジナイズし、断片化コラーゲン(CMF)を得た。3,500rpm 3分で遠心分離した後、無血清培地(DMEM)を加えて1分洗浄し、再度3,500rpm 3分で遠心分離し、上澄みを除去した。血清を含む培地(DMEM)を全量が5mLになるように加え、断片化コラーゲンを分散した。
【0087】
非接着96ウェル丸底プレートに、ヒト心臓線維芽細胞(NHCF)とヒトiPS細胞由来心筋細胞(iPS-CM)を25:75の割合で混合した細胞5×105cellsと、0、0.1、0.5、1.0、1.5、2.0mgのCMFを混合し、全液量を300μLとしたものを播種した(溶液の濃度は6.5mg/mLとして計算)。1,100g 5分で遠心分離した後、インキュベータで21日間培養し、三次元組織体を得た。
【0088】
得られた三次元組織体全体をマッソントリクロームにより染色した。染色後の三次元組織体の全体面積(球状体の略中心部の断面切片図)と、青色に染色されたコラーゲンの面積をImageJ(米国国立衛生研究所製)で算出した。結果を表2及び
図15に示す。ImageJによりコラーゲンの面積を算出する方法は、具体的には以下のように行った。(1)カラーの元画像を「Split Channnel」コマンドで、RGB分割した。(2)画像全体で見たとき、「G」画像は組織全体の領域、「R」画像はコラーゲンによって染色された領域を、それぞれ区別できるものと判断し、「Threshold」コマンドによって、「G」画像と「R」画像をそれぞれ二値化した。二値化時の閾値としては、「G」画像の閾値は0~75、「R」画像の閾値は0~130を指定して行った。(3)Selection tool(freehand)で、三次元組織体の輪郭を範囲指定し、前記範囲内における、「G」画像および「R画像」それぞれの(二値化後の)面積を算出し、三次元組織体断面全体に占めるコラーゲン染領域の面積比率を算出した。
【0089】
【0090】
三次元組織体の作製に用いたCMF(「仕込みCMF」)の量が増加することに伴い、三次元組織体の全体面積に対するコラーゲンの面積の割合も増加するが、仕込みCMFが0.5mg以上になると、コラーゲンの面積の割合の増加幅は減少することが示された。なお、面積率は、三次元組織体中の染色方法や、コラーゲンの局在状態によってある程度上下することが考えられるが、前記手順に基づき判断した場合、0.5mg以上のコラーゲンを投入した場合には、コラーゲン領域の面積は少なくとも三次元組織体の全体面積に対して50%以上となる可能性が非常に高いことが示された。
【0091】
(実施例13:ヒト心臓線維芽細胞及びヒトiPS細胞由来心筋細胞を用いた三次元組織体の製造、並びにコラーゲン定量による含有率の算出)
日本ハム株式会社製のブタ皮膚由来I型コラーゲン凍結乾燥体50mgを10倍濃度のリン酸緩衝生理食塩水(×10 PBS)5mLに分散し、ホモジナイザーを用いて6分間ホモジナイズし、断片化コラーゲン(CMF)を得た。3,500rpm 3分で遠心分離した後、無血清培地(DMEM)を加えて1分洗浄し、再度3,500rpm 3分で遠心分離し、上澄みを除去した。血清を含む培地(DMEM)を全量が5mLになるように加え、断片化コラーゲンを分散した。
【0092】
非接着96ウェル丸底プレートに、ヒト心臓線維芽細胞(NHCF)とヒトiPS細胞由来心筋細胞(iPS-CM)を25:75の割合で混合した細胞5×105cellsと、1.0mgのCMFを混合し、全液量を300μLとしたものを播種した(溶液の濃度は6.5mg/mLとして計算)。1,100g 5分で遠心分離した後、インキュベータで3日間又は5日間培養し、三次元組織体を得た。3日間培養したサンプルはそれぞれDay3-1、Day3-2、Day3-3、5日間培養したサンプルはそれぞれDay5-1、Day5-2、Day5-5とした。
【0093】
QuickZyme Total Collagen Assay(QuickZyme Biosciences社製)を用いて、以下の方法で三次元組織体におけるコラーゲンを定量した。
【0094】
(サンプルの調製)
上記サンプルDay3-1、Day3-2、Day3-3、Day5-1、Day5-2及びDay5-5を、それぞれ非接着96ウェル丸底プレートから回収後、FDU-2200型(東京理化器械製)により凍結乾燥処理を行った。スクリューキャップチューブにおいて、三次元組織体の全量を6M HClと混合し、ヒートブロックで95℃、20時間以上インキュベートした後、室温に戻した。13000gで10分遠心分離した後、サンプル溶液の上澄みを6M HClで10倍希釈し、さらに、200μLを100μLのミリQで希釈することでサンプルを調製した。サンプルは35μL用いた。
【0095】
(スタンダードの調製)
スクリューキャップチューブに125μLのスタンダード溶液(1200μg/mL in acetic acid)と、125μLの12M HClを加え混合し、ヒートブロックで95℃、20時間インキュベートした後、室温に戻した。13000gで10分遠心分離した後、上澄みをミリQで希釈して300μg/mLのS1を作製し、S1を段階的に希釈してS2(200μg/mL)、S3(100μg/mL)、S4(50μg/mL)、S5(25μg/mL)、S6(12.5μg/mL)、S7(6.25μg/mL)を作製した。4M HCl 90μLのみのS8(0μg/mL)も準備した。ここからそれぞれ35μlを実験に用いた。
【0096】
(アッセイ)
35μLのスタンダード及びサンプルをそれぞれプレート(QuickZyme Total Collagen Assayキット付属)に加えた。75μLのアッセイバッファ(上記キット付属)をそれぞれのウェルに加えた。シールでプレートを閉じ、20分シェイキングしながら室温でインキュベートした。シールをはがし、75μLのdetection reagent (reagent A:B=30μL:45μL、上記キット付属)をそれぞれのウェルに加えた。シールでプレートを閉じ、シェイキングで溶液を混合し、60℃で60分インキュベートした。氷で室温まで冷まし、シールをはがして570nmの吸光度を測定した。サンプルの吸光度をスタンダードと比較することでコラーゲン量を算出した。結果を表3に示す。
【0097】
【表3】
「コラーゲン無し」のサンプルは、断片化コラーゲンを用いないこと以外はDay5と同条件で作製した組織体を示す。
【0098】
断片化コラーゲンを用いて培養時間3日間又は5日間で得られた三次元組織体におけるコラーゲンの含有率は、三次元組織体の乾燥重量に対して約20~66%であった。一方、断片化コラーゲンを用いずに作製した組織体においては、コラーゲン量は0.06μgであり、三次元組織体に対する含有率はほぼゼロであった。
本発明によれば、三次元組織体を一度に1mm以上の厚さにすることが可能になる。また、本発明に係る三次元組織体の製造方法は、全層構造の再構成皮膚、並びに、毒性モデルにおける肝臓及び心臓のオルガノイド作製技術として使用できる可能性がある。また、少ない数の心筋細胞を用いて製造した三次元組織体では、心拍同期拍動が観察されており、心毒性評価等への応用が期待される。また、大動脈平滑筋細胞を用いて製造した三次元組織体は、動脈硬化血管壁モデルとしての応用が期待される。さらに、歯肉線維芽細胞を用いて製造した三次元組織体は、歯周炎等のin vitro分析に使用できる可能性がある。