(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023050068
(43)【公開日】2023-04-10
(54)【発明の名称】成膜方法及び成膜装置
(51)【国際特許分類】
C23C 16/26 20060101AFI20230403BHJP
H01L 21/314 20060101ALI20230403BHJP
H01L 21/205 20060101ALI20230403BHJP
C01B 32/184 20170101ALI20230403BHJP
【FI】
C23C16/26
H01L21/314 A
H01L21/205
C01B32/184
【審査請求】未請求
【請求項の数】14
【出願形態】OL
(21)【出願番号】P 2022015348
(22)【出願日】2022-02-03
(31)【優先権主張番号】P 2021159147
(32)【優先日】2021-09-29
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000219967
【氏名又は名称】東京エレクトロン株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】井福 亮太
(72)【発明者】
【氏名】和田 真
(72)【発明者】
【氏名】冠木 伸岳
(72)【発明者】
【氏名】松本 貴士
(72)【発明者】
【氏名】寺田 博
(72)【発明者】
【氏名】中村 源志
【テーマコード(参考)】
4G146
4K030
5F045
5F058
【Fターム(参考)】
4G146AA01
4G146AB07
4G146BA12
4G146BA48
4G146BB15
4G146BB23
4G146BC08
4G146BC16
4G146BC25
4G146DA03
4G146DA16
4G146DA23
4G146DA25
4G146DA35
4G146DA45
4G146DA48
4K030AA09
4K030AA13
4K030AA17
4K030BA27
4K030BB05
4K030BB13
4K030CA04
4K030DA02
4K030DA04
4K030DA06
4K030DA09
4K030FA01
4K030JA05
4K030JA11
5F045AA09
5F045AB07
5F045AC07
5F045AC15
5F045AC16
5F045AC17
5F045AF03
5F045AF14
5F045DP04
5F045EB13
5F045EF04
5F045EH02
5F045EK06
5F058BC14
5F058BF08
5F058BF26
(57)【要約】
【課題】基板とグラフェン膜の界面でのバリア性を向上させること。
【解決手段】成膜方法は、搬入工程と、第1工程と、第2工程とを含む。搬入工程は、基板を処理容器内に搬入する。第1工程は、炭素含有ガスを含む第1混合ガスのプラズマにより、基板上にアモルファス構造、又は微結晶構造を有する界面層を形成する。第2工程は、炭素含有ガスを含む第2混合ガスのプラズマにより、界面層上にグラフェン膜を形成する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
基板を処理容器内に搬入する搬入工程と、
炭素含有ガスを含む第1混合ガスのプラズマにより、前記基板上にアモルファス構造、又は微結晶構造を有する界面層を形成する第1工程と、
炭素含有ガスを含む第2混合ガスのプラズマにより、前記界面層上にグラフェン膜を形成する第2工程と
を含む、成膜方法。
【請求項2】
前記第1混合ガスは、水素含有ガスをさらに含み、
前記第1工程において、前記第1混合ガスにおける前記水素含有ガスの流量を時間の経過に応じて異なる流量に制御して、形成する前記界面層の組成を前記水素含有ガスの流量に応じて変化させる、請求項1に記載の成膜方法。
【請求項3】
前記第2混合ガスは、水素含有ガスをさらに含み、
前記第2混合ガスにおける前記水素含有ガスの流量は、前記第1混合ガスにおける前記水素含有ガスの流量以上である、請求項2に記載の成膜方法。
【請求項4】
前記基板は、多結晶シリコン又はシリコンである下地膜を有し、
前記第1工程において、前記第1混合ガスのプラズマに含まれる炭素の活性種を前記下地膜上の酸素含有層と反応させることにより、前記界面層を形成する、請求項1~3のいずれか一つに記載の成膜方法。
【請求項5】
前記基板は、下地膜を有さないシリコン基板であり、
前記第1工程において、前記第1混合ガスのプラズマに含まれる炭素の活性種を前記シリコン基板上の酸素含有層と反応させることにより、前記界面層を形成する、請求項1~3のいずれか一つに記載の成膜方法。
【請求項6】
前記界面層は、SiC及びSiOCの少なくとも一方を含む層である、請求項4又は5に記載の成膜方法。
【請求項7】
前記搬入工程と前記第1工程との間に、水素含有ガスを含む第3混合ガスのプラズマにより、前記酸素含有層を改質する第3工程をさらに含む、請求項4~6のいずれか一つに記載の成膜方法。
【請求項8】
前記第1工程と前記第2工程との間に、水素含有ガスを含む第3混合ガスのプラズマにより、前記界面層の表層を改質する第4工程をさらに含む、請求項4~6のいずれか一つに記載の成膜方法。
【請求項9】
前記搬入工程と前記第1工程との間に、前記酸素含有層をエッチングする第5工程をさらに含む、請求項4~8のいずれか一つに記載の成膜方法。
【請求項10】
前記第5工程と前記第1工程との間に、前記処理容器内に酸素含有ガスを供給する第6工程をさらに含む、請求項9に記載の成膜方法。
【請求項11】
前記搬入工程の前に、前記処理容器内に基板が存在しない状態で、水素含有ガスのプラズマにより、前記処理容器内の酸素を除去する第7工程をさらに含む、請求項4~10のいずれか一つに記載の成膜方法。
【請求項12】
前記第2工程の後に、水素ガス及び不活性ガスの少なくとも一方を含む第4混合ガスの雰囲気で熱処理を行って前記界面層を改質する第8工程をさらに含む、請求項4~6のいずれか一つに記載の成膜方法。
【請求項13】
前記不活性ガスは、アルゴンガス、ヘリウムガス、窒素ガスの少なくとも1つであることを含む、請求項12に記載の成膜方法。
【請求項14】
基板を収容可能な処理容器と、
制御部と
を有し、
前記制御部は、
前記基板を前記処理容器内に搬入する搬入工程と、
炭素含有ガスを含む第1混合ガスのプラズマにより、前記基板上にアモルファス構造、又は微結晶構造を有する界面層を形成する第1工程と、
炭素含有ガスを含む第2混合ガスのプラズマにより、前記界面層上にグラフェン膜を形成する第2工程と
を含む成膜方法を各部に実行させる、成膜装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、成膜方法及び成膜装置に関するものである。
【背景技術】
【0002】
近年、金属窒化膜に代わる新たな薄膜バリア層材料としてグラフェン膜が注目されており、グラフェン成膜技術として種々の技術が提案されている。例えば、マイクロ波プラズマCVD(Chemical Vapor Deposition)装置を用いて、高ラジカル密度・低電子温度にてグラフェン成膜を行うことにより、グラフェン膜をシリコン基板や絶縁膜等の上に直接形成することが提案されている(例えば特許文献1)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
本開示は、基板とグラフェン膜の界面でのバリア性を向上させることができる技術を提供する。
【課題を解決するための手段】
【0005】
本開示の一態様による成膜方法は、搬入工程と、第1工程と、第2工程とを含む。搬入工程は、基板を処理容器内に搬入する。第1工程は、炭素含有ガスを含む第1混合ガスのプラズマにより、基板上にアモルファス構造、又は微結晶構造を有する界面層を形成する。第2工程は、炭素含有ガスを含む第2混合ガスのプラズマにより、界面層上にグラフェン膜を形成する。
【発明の効果】
【0006】
本開示によれば、基板とグラフェン膜の界面でのバリア性を向上させることができるという効果を奏する。
【図面の簡単な説明】
【0007】
【
図1】
図1は、一実施形態に係る成膜方法の流れの一例を示すフローチャートである。
【
図2】
図2は、一実施形態におけるアモルファス構造、又は微結晶構造有する界面層の形成からグラフェン膜の形成までの基板の状態遷移の一例を示す図である。
【
図3】
図3は、アモルファス構造、又は微結晶構造有する界面層の形成からグラフェン膜の形成までの基板の状態遷移におけるメカニズムの一例を示す図である。
【
図4】
図4は、H2ガスの流量制御パターンとアモルファス構造、又は微結晶構造有する界面層におけるSiC及びSiOの各組成比との関係の一例を示す図である。
【
図5】
図5は、評価に用いた試料の構造の一例を示す図である。
【
図6】
図6は、試料の表面をSIMS分析した分析結果の一例を示す図である。
【
図7】
図7は、試料の表面をSIMS分析した分析結果の一例を示す図である。
【
図8A】
図8Aは、熱処理(アニール)が施された基板をXPS分析した分析結果の一例を示す図である。
【
図8B】
図8Bは、熱処理(アニール)が施された基板をXPS分析した分析結果の一例を示す図である。
【
図8C】
図8Cは、熱処理(アニール)が施された基板をXPS分析した分析結果の一例を示す図である。
【
図9】
図9は、一実施形態に係る成膜装置の一例を示す概略断面図である。
【発明を実施するための形態】
【0008】
以下、図面を参照して種々の実施形態について詳細に説明する。なお、以下の実施形態により開示技術が限定されるものではない。
【0009】
ところで、グラフェン膜をシリコン基板や絶縁膜上に直接形成する場合、形成されるグラフェン膜に結晶粒界が発生する。グラフェン膜に結晶粒界が発生することにより、シリコン基板とグラフェン膜の界面でのバリア性が低下する場合がある。すなわち、グラフェン膜の結晶粒界が拡散パスとなり、シリコン基板から元素が拡散したり、グラフェン膜の上に形成された金属含有膜等からシリコン基板側へと元素が拡散したりする。
【0010】
そこで、基板とグラフェン膜の界面でのバリア性を向上させることが期待されている。
【0011】
[一実施形態に係る成膜方法の流れの一例]
図1は、一実施形態に係る成膜方法の流れの一例を示すフローチャートである。
【0012】
まず、基板が処理容器内に搬入され、処理容器内に配置された載置台上に載置される(ステップS101、搬入工程)。
【0013】
次に、炭素含有ガスを含む第1混合ガスのプラズマにより、基板上にアモルファス構造、又は微結晶構造有する界面層(以下では、界面アモルファス層と言う場合がある。)を形成する(ステップS102、界面アモルファス層形成工程)。炭素含有ガスとしては、例えば、アセチレン(C2H2)、エチレン(C2H4)、メタン(CH4)、エタン(C2H6)、プロパン(C3H8)、プロピレン(C3H6)、メタノール(CH3OH)、エタノール(C2H5OH)等を用いることができる。また、第1混合ガスは、炭素含有ガスに加えて、水素含有ガス及び不活性ガスを含む。水素含有ガスとしては、例えば、H2ガス、NH3ガス等を用いることができる。不活性ガスとしては、例えば、Arガス、N2ガス、Heガス等を用いることができる。また、第1混合ガスのプラズマは、例えば、マイクロ波を用いて生成される。なお、界面アモルファス層形成工程においては、第1混合ガスにおける水素含有ガスの流量を時間の経過に応じて異なる流量に制御してもよい。界面アモルファス層形成工程は、第1工程の一例である。
【0014】
次に、炭素含有ガスを含む第2混合ガスのプラズマにより、界面アモルファス層上にグラフェン膜を形成する(ステップS103、グラフェン膜形成工程)。炭素含有ガスとしては、第1混合ガスに含まれる炭素含有ガスと同様のガスを用いることができる。また、第2混合ガスは、炭素含有ガスに加えて、水素含有ガス及び不活性ガスを含む。水素含有ガスとしては、第1混合ガスに含まれる水素含有ガスと同様のガスを用いることができる。不活性ガスとしては、第1混合ガスに含まれる不活性ガスと同様のガスを用いることができる。また、第2混合ガスのプラズマは、例えば、マイクロ波を用いて生成される。なお、グラフェン膜形成工程においては、第2混合ガスにおける水素含有ガスの流量を一定値に維持する。この場合、第2混合ガスにおける水素含有ガスの流量は、第1混合ガスにおける水素含有ガスの流量以上であることが好ましい。水素含有ガスは、グラフェン膜を形成する際に、グラフェン膜に対するエッチャントとして寄与する。このため、第2混合ガスにおける水素含有ガスの流量を大きくすることにより、グラフェン膜から不安定な炭素結合を除去することができることから、グラフェン膜の構造を安定化させることができる。グラフェン膜形成工程は、第2工程の一例である。
【0015】
グラフェン膜の形成が完了すると、図示しない搬送機構を用いて、処理容器内から基板が搬出される(ステップS104)。
【0016】
処理容器内から基板が搬出されると、処理容器内をクリーニングする(ステップS105)。例えば、ダミーウエハを載置台に載置してクリーニングガスを処理容器内に供給し、処理容器の内壁に付着したアモルファスカーボン膜等のカーボン膜を除去する。なお、クリーニングガスとしてはO2ガスを用いることができるが、COガス、CO2ガス等の酸素を含むガスであってもよい。また、クリーニングガスは、Arガス等の希ガスが含まれていてもよい。また、ダミーウエハはなくてもよい。また、クリーニングは、成膜処理毎に実施してもよいし、予め決められた成膜処理枚数を到達した時点で実施してもよい。クリーニングが完了すると、処理が終了する。
【0017】
このように、基板上にアモルファス構造、又は微結晶構造有する界面層を形成した後にグラフェン膜を形成することにより、グラフェン膜の結晶粒界を、結晶粒界を有さないアモルファス構造、又は微結晶構造有する界面層で塞ぐことができ、その結果、基板とグラフェン膜の界面でのバリア性を向上させることができる。
【0018】
[グラフェン膜の形成までの状態遷移]
次に、
図2を用いて、アモルファス構造、又は微結晶構造有する界面層の形成からグラフェン膜の形成までの基板の状態遷移について説明する。なお、界面層はアモルファス構造を有する界面アモルファス層として説明し、以降では併記する場合がある。
図2は、一実施形態における界面アモルファス層の形成からグラフェン膜の形成までの基板の状態遷移の一例を示す図である。
図2では、下地膜15が形成された基板Wに対して、界面アモルファス層形成工程及びグラフェン膜形成工程を行った場合の状態遷移を模式的に示している。状態21は、基板Wが処理容器内に搬入された状態であり、下地膜15の表面上に自然酸化膜(酸素含有層の一例)17が形成されている。下地膜15は、例えば、ポリシリコン(多結晶シリコン)膜又はシリコン膜であり、自然酸化膜17は、例えば、シリコン酸化膜(SiO2)である。自然酸化膜17は、例えば、搬送装置内や処理容器内等における酸素や水分等に由来する酸素によって下地膜15の表面が酸化されることによって形成される。
【0019】
状態21の基板Wに対して界面アモルファス層形成工程を行うと、基板Wは状態22へと遷移する。界面アモルファス層形成工程では、第1混合ガスのプラズマに含まれる炭素の活性種が下地膜15上の自然酸化膜17と反応することにより、状態22に示すように、シリコンである下地膜15上に界面アモルファス層18が形成される。界面アモルファス層18は、シリコンカーバイド(SiC)及び炭素含有シリコン酸化物(SiOC)の少なくとも一方を含む層である。状態22では、自然酸化膜17中の炭素濃度が所定値まで増加して飽和すると、炭素の活性種と自然酸化膜17との反応が進行しなくなり、界面アモルファス層18の形成が完了する。
【0020】
界面アモルファス層18の形成が完了すると状態22の基板Wに対してグラフェン膜形成工程を行い、グラフェン膜の形成が進行すると、基板Wは状態23へと遷移する。状態23では、界面アモルファス層18上にグラフェン膜19が形成される。すなわち、下地膜15とグラフェン膜19との間に、結晶粒界を有さない界面アモルファス層18が位置する状態を実現することができる。
【0021】
下地膜15とグラフェン膜19との間に界面アモルファス層18が位置することにより、グラフェン膜をシリコン基板や絶縁膜上に直接形成する場合と比較して、基板Wとグラフェン膜19の界面でのバリア性を向上させることができる。すなわち、グラフェン膜をシリコン基板や絶縁膜上に直接形成する場合、グラフェン膜の結晶粒界が拡散パスとなり、シリコン基板から元素が拡散したり、グラフェン膜の上に形成された金属含有膜等からシリコン基板側へと元素が拡散したりする。これに対して、一実施形態に係る成膜方法においては、下地膜15とグラフェン膜19との間に界面アモルファス層18を形成することにより、グラフェン膜19の拡散パスとなる結晶粒界を、結晶粒界を有さない界面アモルファス層で塞ぐ。このため、グラフェン膜19の拡散パスを介した元素の拡散が抑制され、基板Wとグラフェン膜19の界面でのバリア性を向上できる。
【0022】
なお、上述の説明においては、下地膜15が形成された基板Wに対して、界面アモルファス層形成工程及びグラフェン膜形成工程を行った場合を説明したが、成膜対象の基板Wは、下地膜15を有さないシリコン基板16であってもよい。この場合にも、状態21では、シリコン基板16の表面上に自然酸化膜17が形成されている。状態21の基板Wに対して界面アモルファス層形成工程を行うと、基板Wは状態22へと遷移する。界面アモルファス層形成工程では、第1混合ガスのプラズマに含まれる炭素の活性種がシリコン基板16上の自然酸化膜17と反応することにより、状態22に示すように、シリコン基板16上に界面アモルファス層18が形成される。界面アモルファス層18の形成が完了すると状態22の基板Wに対してグラフェン膜形成工程を行い、グラフェン膜の形成が進行すると、基板Wは状態23へと遷移する。
【0023】
[グラフェン膜の形成までの状態遷移におけるメカニズム]
次に、
図3を用いて、界面アモルファス層18の形成からグラフェン膜19の形成までの基板の状態遷移におけるメカニズムについて説明する。
図3は、界面アモルファス層18の形成からグラフェン膜19の形成までの基板の状態遷移におけるメカニズムの一例を示す図である。
図3に示す状態21aは
図2の状態21に対応し、状態22aは
図2の状態22に対応し、状態23aは
図2の状態23に対応する。状態21aに示すように、自然酸化膜17の表面に対して炭素(C)、水素(H)、アルゴン(Ar)の活性種が供給されることにより、自然酸化膜17中及び下地膜15の表面において、下記の式(1)~(4)の反応が起こる。
【0024】
2H+O → H2O↑ ・・・(1)
C+O → CO↑ ・・・(2)
C+4H → CH4↑ ・・・(3)
SiO+2C → SiC+CO↑ ・・・(4)
【0025】
つまり、式(1)、(2)の反応によって自然酸化膜17の表面から酸素が除去される。その後、自然酸化膜17の表面の酸素が減少すると、状態22aに示すように、自然酸化膜17中及び下地膜15の表面において、式(4)の反応が起こることにより、Si-C結合が形成される。そして、式(4)の反応が飽和すると、界面アモルファス層18の形成が完了する。
【0026】
界面アモルファス層18の形成が完了すると、状態23aに示すように、界面アモルファス層18の表面において、炭素どうしが結合してグラフェン膜19が形成される。
【0027】
[H2ガスの流量制御に応じた界面アモルファス層の組成変化]
次に、
図4を用いて、水素含有ガス(H2ガス)の流量制御に応じた界面アモルファス層18の組成変化について説明する。
図4は、H2ガスの流量制御パターンと界面アモルファス層18におけるSiC及びSiOの各組成比との関係の一例を示す図である。
図4において、横軸は第1混合ガスにおけるH2ガスの流量を時間の経過に応じて0sccmから33sccmに制御する4つの流量制御パターンを示している。4つの流量制御パターンは、以下のパターン(1)~(4)である。
パターン(1):
H2ガスの流量を0sccmに0秒間設定した後、33sccmに70秒間設定するパターン(「0>70s」として表記)
パターン(2):
H2ガスの流量を0sccmに5秒間設定した後、33sccmに60秒間設定するパターン(「5>60s」として表記)
パターン(3):
H2ガスの流量を0sccmに20秒間設定した後、33sccmに50秒間設定するパターン(「20>50s」として表記)
パターン(4):
H2ガスの流量を0sccmに60秒間設定した後、33sccmに0秒間設定するパターン(「60>0s」として表記)
【0028】
また、
図4において、縦軸は界面アモルファス層18におけるSiC及びSiOの各組成比を示している。SiC及びSiOの各組成比は、界面アモルファス層18をTEM(Transmission Electron Microscope)-EELS(Electron Energy-Loss Spectroscopy)分析した分析結果を用いて算出された値である。
【0029】
図4に示すように、第1混合ガスにおけるH2ガスの流量を0sccmに設定する時間が増加するにつれて、界面アモルファス層18におけるSiCの組成比が減少するとともにSiOの組成比が増加する。一方、第1混合ガスにおけるH2ガスの流量を0sccmに設定する時間が減少するにつれて、界面アモルファス層18におけるSiCの組成比が増加するとともにSiOの組成比が減少する。
【0030】
図4の結果から、第1混合ガスにおけるH2ガスの流量が時間の経過に応じて第1流量(0sccm)から第1流量よりも大きい第2流量(33sccm)に制御されると、界面アモルファス層18におけるSiC及びSiOの各組成比が変化することが分かる。換言すれば、界面アモルファス層形成工程において、第1混合ガスにおける水素含有ガスの流量を時間の経過に応じて異なる流量に制御することで、形成する界面アモルファス層18の組成を水素含有ガスの流量に応じて変化させることができる。例えば、界面アモルファス層形成工程において、第1混合ガスにおける水素含有ガスの流量を第1流量から第2流量に制御する場合、第1流量の設定時間を減少させることで界面アモルファス層18におけるSiCの組成比を増加させることができる。これにより、下地膜15とグラフェン膜19との間に位置する界面アモルファス層18にSi-C結合による結合力が付与されるため、下地膜15とグラフェン膜19との密着性を向上させることができる。一方で、界面アモルファス層形成工程において、第1流量の設定時間を減少させることで界面アモルファス層18におけるSiCの組成比を減少させることができる。これにより、下地膜15とグラフェン膜19との間に位置する界面アモルファス層18の電気抵抗値が変化するため、下地膜15とグラフェン膜19とのコンタクト抵抗特性を適切に調整することができる。
【0031】
[バリア性の評価]
次に、
図5~
図7を用いて、実施形態に係る成膜方法により基板上に形成されたグラフェン膜のバリア性についての評価を説明する。本発明者らは、実施形態に係る成膜方法により試料上にグラフェン膜を形成し、形成したグラフェン膜と試料の界面でのバリア性を調べた。
図5は、評価に用いた試料30の構造の一例を示す図である。試料30は、シリコン基板31上に下地膜であるリン(P)ドープポリシリコン膜32を有する。
図5は、リンドープポリシリコン膜32上に、界面アモルファス層33、グラフェン膜34が下からこの順序で形成された状態を示している。グラフェン膜34上には、さらに金属含有膜としてタングステン(W)膜35が形成されている。バリア性の評価では、
図5に示す試料30をN2/H2ガスの雰囲気中において800℃で2時間加熱した後、試料30の表面をSIMS(Secondary Ion Mass Spectrometry)分析した。
【0032】
図6及び
図7は、試料30の表面をSIMS分析した分析結果の一例を示す図である。
図6及び
図7において、横軸は試料30の表面からの深さ[mm]を示す。また、
図6において、縦軸はリン(P)の原子濃度[atoms/cm3]を示し、
図7において、縦軸はシリコン(Si)の原子濃度[atoms/cm3]を示す。なお、
図6及び
図7は、2つ試料30に関する分析結果を示している。
【0033】
図6及び
図7の分析結果は、リンドープポリシリコン膜32とグラフェン膜34との間に界面アモルファス層33が位置することにより、リンドープポリシリコン膜32からタングステン膜35中へリン及びシリコンが拡散しないことを示している。すなわち、
図6及び
図7の分析結果は、実施形態に係る成膜方法を用いてグラフェン膜34を形成することにより、基板上の下地膜であるリンドープポリシリコン膜32とグラフェン膜34の界面でのバリア性を向上させることができることを示している。
【0034】
[密着性の評価]
なお、本発明者らは、
図5に示す試料30を用いて、基板上の下地膜であるリンドープポリシリコン膜32とグラフェン膜34との密着性を評価した。密着性の評価では、
図5に示す試料30について、JIS K5400-8.5(JIS D0202)「付着性-碁盤目試験」に準拠してリンドープポリシリコン膜32とグラフェン膜34との剥離の有無を調べた。その結果、リンドープポリシリコン膜32とグラフェン膜34との剥離は発生しなかった。この評価結果から、実施形態に係る成膜方法を用いてグラフェン膜34を形成することにより、基板上の下地膜であるリンドープポリシリコン膜32とグラフェン膜34との密着性を得ることができることが分かる。
【0035】
[変形例]
これまで一実施形態について説明したが、実施形態はさらに変形可能である。
【0036】
上記実施形態において、搬入工程(ステップS101)と界面アモルファス形成工程(ステップS102)との間に、水素含有ガスを含む第3混合ガスのプラズマにより、下地膜上、又はシリコン基板上の自然酸化膜を改質する第3工程を実行してもよい。水素含有ガスとしては、例えば、H2ガスを用いることができる。また、第3混合ガスは、水素含有ガスに加えて、不活性ガスを含んでもよい。不活性ガスとしては、例えば、Arガスを用いることができる。第3工程では、下地膜上、又はシリコン基板上の自然酸化膜を自然酸化膜よりも酸素欠陥が多い膜(以下、「改質酸化膜」と呼ぶ。)に改質することができる。これにより、界面アモルファス層形成工程では、炭素の活性種を改質酸化膜の酸素欠損に補填することができ、結果として、界面アモルファス層の成膜レートを上げることができる。
【0037】
また、上記実施形態において、界面アモルファス形成工程(ステップS102)とグラフェン膜形成工程(ステップS103)との間に、水素含有ガスを含む第3混合ガスのプラズマにより、界面アモルファス層の表層を改質する第4工程を実行してもよい。水素含有ガスとしては、例えば、H2ガスを用いることができる。また、第3混合ガスは、水素含有ガスに加えて、不活性ガスを含んでもよい。不活性ガスとしては、例えば、Arガスを用いることができる。第4工程では、界面アモルファス層の表層をより酸素欠陥が多い層(以下、「改質層」と呼ぶ。)に改質することができる。これにより、グラフェン膜形成工程では、炭素の活性種を改質層の酸素欠損に補填することができ、結果として、グラフェン膜の成膜レートを上げることができる。
【0038】
また、上記実施形態において、搬入工程(ステップS101)と界面アモルファス形成工程(ステップS102)との間に、下地膜上、又はシリコン基板上の自然酸化膜をエッチングする第5工程を実行してもよい。第5工程では、例えば、炭素含有ガス、水素含有ガス及び不活性ガスを含む第4混合ガスのプラズマにより自然酸化膜の一部が除去される。これにより、界面アモルファス形成工程では、炭素の活性種と薄厚の自然酸化膜とを反応させることができ、結果として、界面アモルファス層の成膜レートを上げることができる。
【0039】
さらに、上記第5工程と界面アモルファス形成工程(ステップS102)との間に、処理容器内に酸素含有ガスを供給する第6工程を実行してもよい。第6工程では、自然酸化膜の除去後に、自然酸化膜よりも酸素欠陥が多い疑似自然酸化膜を形成することができる。これにより、界面アモルファス層形成工程では、炭素の活性種を疑似自然酸化膜の酸素欠損に補填することができ、結果として、界面アモルファス層の成膜レートを上げることができる。
【0040】
また、上記実施形態において、搬入工程(ステップS101)の前に、処理容器内に基板が存在しない状態で、水素含有ガスのプラズマにより、処理容器内の酸素を除去する第7工程を実行してもよい。これにより、基板が処理容器内に搬入された後に基板の表面や基板上の下地膜の表面が処理容器内の酸素によって酸化されることを抑制することができる。
【0041】
また、上記実施形態において、グラフェン膜形成工程(ステップS103)の後に、水素ガス及び不活性ガス(例えば、アルゴンガス、ヘリウムガス、窒素ガスなど)の少なくとも一方を含む第4混合ガスの雰囲気の下で熱処理(アニール)を行って界面アモルファス層を改質する第8工程を実行してもよい。第8工程では、グラフェン膜の膜質を変化させずに界面アモルファス層のみを改質することができる。かかる界面アモルファス層の改質について、
図8A~
図8Cを参照して説明する。
【0042】
本発明者らは、基板W上に界面アモルファス層及びグラフェン膜を順に形成し、水素(H2)ガス及び不活性ガスとして窒素(N2)ガスを用いて、各々の雰囲気の下で熱処理(アニール)を行った場合の界面アモルファス層の結合強度を調べた。
図8A~
図8Cは、熱処理(アニール)が施された基板WをXPS(X-ray Photoelectron Spectroscopy)分析した分析結果の一例を示す図である。
図8A~
図8Cにおいては、下地膜であるシリコン膜が形成された基板Wを水素(H2)ガス及び窒素(N2)ガスの各々の雰囲気の下で熱処理(アニール)したときの、界面アモルファス層の各結合の結合強度を測定した結果が示されている。熱処理(アニール)は、温度:500℃以上の温度(例えば800℃)、水素ガス及び窒素ガスの各々の流量:100~10000sccm、処理時間:30分以上の処理条件で実施した。
【0043】
図8A~
図8Cにおいて、「Initial」は、熱処理(アニール)を行う前の界面アモルファス層の各結合の結合強度を示す。また、
図8A~
図8Cにおいて、「N2 anl」は、窒素ガスの雰囲気の下で熱処理(アニール)を行った後の界面アモルファス層の各結合の結合強度を示す。また、
図8A~
図8Cにおいて、「H2 anl」は、水素ガスの雰囲気の下で熱処理(アニール)を行った後の界面アモルファス層の各結合の結合強度を示す。
【0044】
図8Aでは、水素(H2)ガス及び窒素(N2)ガスの各々の雰囲気の下で熱処理(アニール)することにより、C-Si結合の結合強度が僅かに低下していることが分かる。また、
図8Bでは、C-C結合の結合強度は保持できることから、グラフェン膜の膜厚及び膜質には変化が生じていないことが推測できる。また、
図8Cでは、Si酸化物の価数が1価から3価へ増加していることが分かる。これらの結果から、熱処理(アニール)することでグラフェン膜の膜質等を変化させずに界面アモルファス層のみを改質できることが分かる。また、熱処理(アニール)することで、SiC及びSiOの各組成比を制御することが可能となることが分かる。
【0045】
また、上記実施形態においては、基板の下地膜がポリシリコン(多結晶シリコン)膜又はシリコン膜である場合を例に説明した。これに限らず、例えば、チタン(Ti)膜等の金属膜を基板の下地膜として利用してもよい。
【0046】
[一実施形態に係る成膜装置]
図9は、一実施形態に係る成膜装置の一例を示す概略断面図である。
図9に例示される成膜装置1は、例えばRLSA(登録商標)マイクロ波プラズマ方式のプラズマ処理装置として構成される。
【0047】
成膜装置1は、装置本体10と、装置本体10を制御する制御部11とを備える。装置本体10は、チャンバ101と、ステージ102と、マイクロ波導入機構103と、ガス供給機構104と、排気機構105とを有する。
【0048】
チャンバ101は、略円筒状に形成されており、チャンバ101の底壁101aの略中央部には開口部110が形成されている。底壁101aには、開口部110と連通し、下方に向けて突出する排気室111が設けられている。チャンバ101の側壁101sには、基板(以下、ウエハともいう。)Wが通過する開口部117が形成されており、開口部117は、ゲートバルブ118によって開閉される。なお、チャンバ101は、処理容器の一例である。
【0049】
ステージ102には、処理対象となる基板Wが載せられる。ステージ102は、略円板状をなしており、AlN等のセラミックスによって形成されている。ステージ102は、排気室111の底部略中央から上方に延びる円筒状のAlN等のセラミックスからなる支持部材112により支持されている。ステージ102の外縁部には、ステージ102に載せられた基板Wを囲むようにエッジリング113が設けられている。また、ステージ102の内部には、基板Wを昇降するための昇降ピン(図示せず)がステージ102の上面に対して突没可能に設けられている。
【0050】
さらに、ステージ102の内部には抵抗加熱型のヒータ114が埋め込まれており、ヒータ114はヒータ電源115から給電される電力に応じてステージ102に載せられた基板Wを加熱する。また、ステージ102には、熱電対(図示せず)が挿入されており、熱電対からの信号に基づいて、基板Wの温度を、例えば350~850℃に制御可能となっている。さらに、ステージ102内において、ヒータ114の上方には、基板Wと同程度の大きさの電極116が埋設されており、電極116には、バイアス電源119が電気的に接続されている。バイアス電源119は、予め定められた周波数および大きさのバイアス電力を電極116に供給する。電極116に供給されたバイアス電力により、ステージ102に載せられた基板Wにイオンが引き込まれる。なお、バイアス電源119はプラズマ処理の特性によっては設けられなくてもよい。
【0051】
マイクロ波導入機構103は、チャンバ101の上部に設けられており、アンテナ121と、マイクロ波出力部122と、マイクロ波伝送機構123とを有する。アンテナ121には、貫通孔である多数のスロット121aが形成されている。マイクロ波出力部122は、マイクロ波を出力する。マイクロ波伝送機構123は、マイクロ波出力部122から出力されたマイクロ波をアンテナ121に導く。
【0052】
アンテナ121の下方には誘電体で形成された誘電体窓124が設けられている。誘電体窓124は、チャンバ101の上部にリング状に設けられた支持部材132に支持されている。アンテナ121の上には、遅波板126が設けられている。アンテナ121の上にはシールド部材125が設けられている。シールド部材125の内部には、図示しない流路が設けられており、シールド部材125は、流路内を流れる水等の流体によりアンテナ121、誘電体窓124および遅波板126を冷却する。
【0053】
アンテナ121は、例えば表面が銀または金メッキされた銅板またはアルミニウム板等で形成されており、マイクロ波を放射するための複数のスロット121aが予め定められたパターンで配置されている。スロット121aの配置パターンは、マイクロ波が均等に放射されるように適宜設定される。好適なパターンの例としては、T字状に配置された2つのスロット121aを一対として複数対のスロット121aが同心円状に配置されているラジアルラインスロットを挙げることができる。スロット121aの長さや配列間隔は、マイクロ波の実効波長(λg)に応じて適宜決定される。また、スロット121aは、円形状、円弧状等の他の形状であってもよい。さらに、スロット121aの配置形態は特に限定されず、同心円状の他、例えば、螺旋状、放射状に配置されてもよい。スロット121aのパターンは、所望のプラズマ密度分布が得られるマイクロ波放射特性となるように、適宜設定される。
【0054】
遅波板126は、石英、セラミックス(Al2O3)、ポリテトラフルオロエチレン、ポリイミド等の真空よりも大きい誘電率を有する誘電体で形成されている。遅波板126は、マイクロ波の波長を真空中より短くしてアンテナ121を小さくする機能を有している。なお、誘電体窓124も同様の誘電体で構成されている。
【0055】
誘電体窓124および遅波板126の厚さは、遅波板126、アンテナ121、誘電体窓124、および、プラズマで形成される等価回路が共振条件を満たすように調整される。遅波板126の厚さを調整することにより、マイクロ波の位相を調整することができる。アンテナ121の接合部が定在波の「腹」になるように遅波板126の厚さを調整することにより、マイクロ波の反射が極小化され、マイクロ波の放射エネルギーを最大とすることができる。また、遅波板126と誘電体窓124を同じ材質とすることにより、マイクロ波の界面反射を防止することができる。
【0056】
マイクロ波出力部122は、マイクロ波発振器を有している。マイクロ波発振器は、マグネトロン型であってもよく、ソリッドステート型であってもよい。マイクロ波発振器によって生成されるマイクロ波の周波数は、例えば300MHz~10GHzの周波数である。一例として、マイクロ波出力部122は、マグネトロン型のマイクロ波発振器により、2.45GHzのマイクロ波を出力する。マイクロ波は、電磁波の一例である。
【0057】
マイクロ波伝送機構123は、導波管127と、同軸導波管128とを有する。なお、さらにモード変換機構を有してもよい。導波管127は、マイクロ波出力部122から出力されたマイクロ波を導く。同軸導波管128は、アンテナ121の中心に接続された内導体、および、その外側の外導体を含む。モード変換機構は、導波管127と同軸導波管128との間に設けられている。マイクロ波出力部122から出力されたマイクロ波は、TEモードで導波管127内を伝播し、モード変換機構によってTEモードからTEMモードへ変換される。TEMモードに変換されたマイクロ波は、同軸導波管128を介して遅波板126に伝搬し、遅波板126からアンテナ121のスロット121a、および、誘電体窓124を介してチャンバ101内に放射される。なお、導波管127の途中には、チャンバ101内の負荷(プラズマ)のインピーダンスをマイクロ波出力部122の出力インピーダンスに整合させるためのチューナ(図示せず)が設けられている。
【0058】
ガス供給機構104は、チャンバ101の内壁に沿ってリング状に設けられたシャワーリング142を有する。シャワーリング142は、内部に設けられたリング状の流路166と、流路166に接続されその内側に開口する多数の吐出口167とを有する。流路166には、配管161を介してガス供給部163が接続されている。ガス供給部163には、複数のガスソースおよび複数の流量制御器が設けられている。一実施形態において、ガス供給部163は、少なくとも1つの処理ガスを、対応するガスソースから対応の流量制御器を介してシャワーリング142に供給するように構成されている。シャワーリング142に供給されたガスは、複数の吐出口167からチャンバ101内に供給される。
【0059】
また、基板W上にグラフェン膜が成膜される場合、ガス供給部163は、予め定められた流量に制御された炭素含有ガス、水素含有ガス、および希ガスをシャワーリング142を介してチャンバ101内に供給する。本実施形態において、炭素含有ガスとは、例えばC2H2ガスである。なお、C2H2ガスに代えて、または、C2H2ガスに加えて、C2H4ガス、CH4ガス、C2H6ガス、C3H8ガス、またはC3H6ガス等が用いられてもよい。また、本実施形態において、水素含有ガスとは、例えば水素ガスである。なお、水素ガスに代えて、または、水素ガスに加えて、F2(フッ素)ガス、Cl2(塩素)ガス、またはBr2(臭素)ガス等のハロゲン系ガスが用いられてもよい。また、本実施形態において、希ガスとは、例えばArガスである。Arガスに代えて、Heガス等の他の希ガスが用いられてもよい。
【0060】
排気機構105は、排気室111と、排気室111の側壁に設けられた排気管181と、排気管181に接続された排気装置182とを有する。排気装置182は、真空ポンプおよび圧力制御バルブ等を有する。
【0061】
制御部11は、メモリ、プロセッサ、および入出力インターフェイスを有する。メモリには、プロセッサによって実行されるプログラム、および、各処理の条件等を含むレシピが格納されている。プロセッサは、一実施形態に係る成膜方法の各工程において、メモリから読み出したプログラムを実行し、メモリ内に記憶されたレシピに基づいて、入出力インターフェイスを介して、装置本体10の各部を制御する。
【0062】
(実施形態の効果)
上記実施形態に係る成膜方法は、搬入工程(例えば、ステップS101)と、第1工程(例えば、ステップS102、界面アモルファス形成工程)と、第2工程(例えば、ステップS103、グラフェン膜形成工程)とを含む。搬入工程は、基板(例えば、基板W)を処理容器(例えば、チャンバ101)内に搬入する。第1工程は、炭素含有ガスを含む第1混合ガスのプラズマにより、基板上にアモルファス構造、又は微結晶構造有する界面層(例えば、界面アモルファス層18)を形成する。第2工程は、炭素含有ガスを含む第2混合ガスのプラズマにより、アモルファス構造、又は微結晶構造有する界面層上にグラフェン膜(例えば、グラフェン膜19)を形成する。これにより、実施形態に係る成膜方法によれば、基板とグラフェン膜の界面でのバリア性を向上させることができる。
【0063】
また、第1混合ガスは、水素含有ガスをさらに含んでもよい。そして、第1工程において、第1混合ガスにおける水素含有ガスの流量を時間の経過に応じて異なる流量に制御して、形成する界面アモルファス層の組成を水素含有ガスの流量に応じて変化させてもよい。これにより、実施形態に係る成膜方法によれば、形成する界面アモルファス層におけるSiCの組成比を増加又は減少させることができる。
【0064】
また、第2混合ガスは、水素含有ガスをさらに含んでもよい。そして、第2混合ガスにおける水素含有ガスの流量は、第1混合ガスにおける前記水素含入ガスの流量以上であってもよい。これにより、実施形態に係る成膜方法によれば、不安定な炭素結合に対して水素含有ガスをエッチング成分として寄与させることができ、形成されるグラフェン膜の構造を安定化させることができる。
【0065】
また、基板は、多結晶シリコン又はシリコンである下地膜(例えば、下地膜15)を有してもよい。そして、第1工程において、第1混合ガスのプラズマに含まれる炭素の活性種を下地膜上の酸素含有層(例えば、自然酸化膜17)と反応させることにより、界面アモルファス層を形成してもよい。これにより、実施形態に係る成膜方法によれば、基板の下地膜とグラフェン膜との間に、結晶粒界を有さない界面アモルファス層が位置する状態を実現することができることから、基板とグラフェン膜の界面でのバリア性を向上させることができる。
【0066】
また、基板は、下地膜を有さないシリコン基板(例えば、シリコン基板16)であってもよい。そして、第1工程において、第1混合ガスのプラズマに含まれる炭素の活性種をシリコン基板上の酸素含有層と反応させることにより、界面アモルファス層を形成してもよい。これにより、実施形態に係る成膜方法によれば、シリコン基板とグラフェン膜との間に、結晶粒界を有さない界面アモルファス層が位置する状態を実現することができることから、シリコン基板とグラフェン膜の界面でのバリア性を向上させることができる。
【0067】
また、界面アモルファス層は、SiC及びSiOCの少なくとも一方を含む層であってもよい。これにより、実施形態に係る成膜方法によれば、グラフェン膜の結晶粒界を、結晶粒界を有さない界面アモルファス層で塞ぐことができる。
【0068】
また、上記実施形態に係る成膜方法は、搬入工程と第1工程との間に、水素含有ガスを含む第3混合ガスのプラズマにより、酸素含有層を改質する第3工程をさらに含んでもよい。これにより、実施形態に係る成膜方法によれば、界面アモルファス層の成膜レートを上げることができる。
【0069】
また、上記実施形態に係る成膜方法は、第1工程と第2工程との間に、水素含有ガスを含む第3混合ガスのプラズマにより、界面アモルファス層の表層を改質する第4工程をさらに含んでもよい。これにより、実施形態に係る成膜方法によれば、グラフェン膜の成膜レートを上げることができる。
【0070】
また、上記実施形態に係る成膜方法は、搬入工程と第1工程との間に、酸素含有層をエッチングする第5工程をさらに含んでもよい。これにより、実施形態に係る成膜方法によれば、界面アモルファス層の成膜レートを上げることができる。
【0071】
また、上記実施形態に係る成膜方法は、第5工程と第1工程との間に、処理容器内に酸素含有ガスを供給する第6工程をさらに含んでもよい。これにより、実施形態に係る成膜方法によれば、界面アモルファス層の成膜レートを上げることができる。
【0072】
また、上記実施形態に係る成膜方法は、搬入工程の前に、処理容器内に基板が存在しない状態で、水素含有ガスのプラズマにより、処理容器内の酸素を除去する第7工程をさらに含んでもよい。これにより、実施形態に係る成膜方法によれば、基板が処理容器内に搬入された後に基板の表面や基板上の下地膜の表面が処理容器内の酸素によって酸化されることを抑制することができる。
【0073】
[その他]
上記した実施形態では、プラズマ源としてマイクロ波プラズマを用いてウエハWに対してエッチングや成膜等の処理を行う成膜装置1を例に説明したが、開示の技術はこれに限られない。プラズマを用いてウエハWに対して処理を行う装置であれば、プラズマ源はマイクロ波プラズマに限られず、例えば、容量結合型プラズマ、誘導結合型プラズマ、マグネトロンプラズマ等、任意のプラズマ源を用いることができる。
【0074】
なお、今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の特許請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
【符号の説明】
【0075】
1 成膜装置
11 制御部
15 下地膜
16 シリコン基板
17 自然酸化膜
18 界面アモルファス層
19 グラフェン膜
101 チャンバ
W 基板