(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023060139
(43)【公開日】2023-04-27
(54)【発明の名称】光学系、光学機器、および光学系の製造方法
(51)【国際特許分類】
G02B 13/00 20060101AFI20230420BHJP
G02B 13/18 20060101ALI20230420BHJP
G02B 15/20 20060101ALI20230420BHJP
【FI】
G02B13/00
G02B13/18
G02B15/20
【審査請求】有
【請求項の数】1
【出願形態】OL
(21)【出願番号】P 2023032735
(22)【出願日】2023-03-03
(62)【分割の表示】P 2021073058の分割
【原出願日】2017-12-15
(71)【出願人】
【識別番号】000004112
【氏名又は名称】株式会社ニコン
(74)【代理人】
【識別番号】100092897
【弁理士】
【氏名又は名称】大西 正悟
(74)【代理人】
【識別番号】100157417
【弁理士】
【氏名又は名称】並木 敏章
(72)【発明者】
【氏名】山下 雅史
(72)【発明者】
【氏名】伊藤 智希
(72)【発明者】
【氏名】籔本 洋
(72)【発明者】
【氏名】山本 浩史
(72)【発明者】
【氏名】三輪 哲史
(72)【発明者】
【氏名】坪野谷 啓介
(72)【発明者】
【氏名】槇田 歩
(72)【発明者】
【氏名】上原 健
(57)【要約】
【課題】諸収差が良好に補正された光学系を提供する。
【解決手段】光学系LSは、開口絞りSと、開口絞りSより像側に配置された以下の条件式を満足する負レンズ(L32)とを有している。
ndN2+(0.01425×νdN2)<2.12
18.0<νdN2<35.0
0.702<θgFN2+(0.00316×νdN2)
但し、ndN2:負レンズのd線に対する屈折率
νdN2:負レンズのd線を基準とするアッベ数
θgFN2:負レンズの部分分散比であり、負レンズのg線に対する屈折率をngN2とし、負レンズのF線に対する屈折率をnFN2とし、負レンズのC線に対する屈折率をnCN2としたとき、次式で定義される
θgFN2=(ngN2-nFN2)/(nFN2-nCN2)
【選択図】
図1
【特許請求の範囲】
【請求項1】
開口絞りと、前記開口絞りより像側に配置された以下の条件式を満足する負レンズとを有する光学系。
ndN2+(0.01425×νdN2)<2.12
18.0<νdN2<35.0
0.702<θgFN2+(0.00316×νdN2)
但し、ndN2:前記負レンズのd線に対する屈折率
νdN2:前記負レンズのd線を基準とするアッベ数
θgFN2:前記負レンズの部分分散比であり、前記負レンズのg線に対する屈折率をngN2とし、前記負レンズのF線に対する屈折率をnFN2とし、前記負レンズのC線に対する屈折率をnCN2としたとき、次式で定義される
θgFN2=(ngN2-nFN2)/(nFN2-nCN2)
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学系、光学機器、および光学系の製造方法に関する。
【背景技術】
【0002】
近年、デジタルカメラやビデオカメラ等の撮像装置に用いられる撮像素子は、高画素化が進んでいる。このような撮像素子を用いた撮像装置に設けられる撮影レンズは、球面収差、コマ収差等の基準収差(単一波長の収差)に加え、白色光源において像の色にじみがないように色収差も良好に補正された、高い解像力を有するレンズであることが望まれている。特に、色収差の補正においては、1次の色消しに加え、2次スペクトルが良好に補正されていることが望ましい。色収差の補正の手段として、例えば、異常分散性を有する樹脂材料を用いる方法(例えば、特許文献1を参照)が知られている。このように、近年の撮像素子の高画素化に伴い、諸収差が良好に補正された撮影レンズが望まれている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【0004】
第1の態様に係る光学系は、開口絞りと、前記開口絞りより像側に配置された以下の条件式を満足する負レンズとを有する。
ndN2+(0.01425×νdN2)<2.12
18.0<νdN2<35.0
0.702<θgFN2+(0.00316×νdN2)
但し、ndN2:前記負レンズのd線に対する屈折率
νdN2:前記負レンズのd線を基準とするアッベ数
θgFN2:前記負レンズの部分分散比であり、前記負レンズのg線に対する屈折率をngN2とし、前記負レンズのF線に対する屈折率をnFN2とし、前記負レンズのC線に対する屈折率をnCN2としたとき、次式で定義される
θgFN2=(ngN2-nFN2)/(nFN2-nCN2)
【0005】
第2の態様に係る光学機器は、上記光学系を備えて構成される。
【0006】
第3の態様に係る光学系の製造方法は、開口絞りと、前記開口絞りより像側に配置された以下の条件式を満足する負レンズとを有するように、レンズ鏡筒内に各レンズを配置する。
ndN2+(0.01425×νdN2)<2.12
18.0<νdN2<35.0
0.702<θgFN2+(0.00316×νdN2)
但し、ndN2:前記負レンズのd線に対する屈折率
νdN2:前記負レンズのd線を基準とするアッベ数
θgFN2:前記負レンズの部分分散比であり、前記負レンズのg線に対する屈折率をngN2とし、前記負レンズのF線に対する屈折率をnFN2とし、前記負レンズのC線に対する屈折率をnCN2としたとき、次式で定義される
θgFN2=(ngN2-nFN2)/(nFN2-nCN2)
【図面の簡単な説明】
【0007】
【
図1】第1実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。
【
図2】第1実施例に係る光学系の無限遠合焦状態における諸収差図である。
【
図3】第2実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。
【
図4】第2実施例に係る光学系の無限遠合焦状態における諸収差図である。
【
図5】第3実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。
【
図6】
図6(A)、
図6(B)、および
図6(C)はそれぞれ、第3実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。
【
図7】第4実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。
【
図8】
図8(A)、
図8(B)、および
図8(C)はそれぞれ、第4実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。
【
図9】第5実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。
【
図10】第5実施例に係る光学系の無限遠合焦状態における諸収差図である。
【
図11】本実施形態に係る光学系を備えたカメラの構成を示す図である。
【
図12】本実施形態に係る光学系の製造方法を示すフローチャートである。
【発明を実施するための形態】
【0008】
以下、本実施形態に係る光学系および光学機器について図を参照して説明する。まず、本実施形態に係る光学系を備えたカメラ(光学機器)を
図11に基づいて説明する。このカメラ1は、
図11に示すように撮影レンズ2として本実施形態に係る光学系を備えたデジタルカメラである。カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、撮像素子3へ到達する。これにより被写体からの光は、当該撮像素子3によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。なお、このカメラは、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであっても良い。
【0009】
本実施形態に係る光学系(撮影レンズ)LSの一例としての光学系LS(1)は、
図1に示すように、開口絞りSと、開口絞りSより像側に配置された以下の条件式(1)~(3)を満足する負レンズ(L32)とを有している。
【0010】
ndN2+(0.01425×νdN2)<2.12 ・・・(1)
18.0<νdN2<35.0 ・・・(2)
0.702<θgFN2+(0.00316×νdN2) ・・・(3)
但し、ndN2:負レンズのd線に対する屈折率
νdN2:負レンズのd線を基準とするアッベ数
θgFN2:負レンズの部分分散比であり、負レンズのg線に対する屈折率をngN2とし、負レンズのF線に対する屈折率をnFN2とし、負レンズのC線に対する屈折率をnCN2としたとき、次式で定義される
θgFN2=(ngN2-nFN2)/(nFN2-nCN2)
なお、負レンズのd線を基準とするアッベ数νdN2は、次式で定義される
νdN2=(ndN2-1)/(nFN2-nCN2)
【0011】
本実施形態によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された光学系、およびこの光学系を備えた光学機器を得ることが可能になる。本実施形態に係る光学系LSは、
図3に示す光学系LS(2)でも良く、
図5に示す光学系LS(3)でも良く、
図7に示す光学系LS(4)でも良く、
図9に示す光学系LS(5)でも良い。
【0012】
条件式(1)は、負レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な
関係を規定するものである。条件式(1)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
【0013】
条件式(1)の対応値が上限値を上回ると、例えばペッツバール和が小さくなることで、像面湾曲の補正が困難になるため、好ましくない。条件式(1)の上限値を2.11に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(1)の上限値を、2.10、2.09、2.08、2.07、さらに2.06とすることが好ましい。
【0014】
条件式(2)は、負レンズのd線を基準とするアッベ数の適切な範囲を規定するものである。条件式(2)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
【0015】
条件式(2)の対応値が上限値を上回ると、例えば、開口絞りSより像側の部分群において軸上色収差の補正が困難となるため、好ましくない。条件式(2)の上限値を32.5に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2)の上限値を、32.0、31.5、31.0、30.5、30.0、さらに29.5とすることが好ましい。
【0016】
条件式(2)の対応値が下限値を下回ると、例えば、開口絞りSより像側の部分群において軸上色収差の補正が困難となるため、好ましくない。条件式(2)の下限値を20.0に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2)の下限値を、23.0、23.5、24.0、24.5、25.0、25.5、26.0、26.5、27.0、27.5、さらに27.7とすることが好ましい。
【0017】
条件式(3)は、負レンズの異常分散性を適切に規定するものである。条件式(3)を満足することで、色収差の補正において、1次の色消しに加え、2次スペクトルを良好に補正することができる。
【0018】
条件式(3)の対応値が下限値を下回ると、負レンズの異常分散性が小さくなるため、色収差の補正が困難となる。条件式(3)の下限値を0.704に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3)の下限値を、0.708、0.710、0.712、さらに0.715とすることが好ましい。
【0019】
本実施形態の光学系において、負レンズは、以下の条件式(4)を満足することが望ましい。
1.83<ndN2+(0.00787×νdN2) ・・・(4)
【0020】
条件式(4)は、負レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(4)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
【0021】
条件式(4)の対応値が下限値を下回ると、例えば負レンズの屈折率が小さくなることで、基準収差、特に球面収差の補正が困難になるため、好ましくない。条件式(4)の下限値を1.84に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4)の下限値を、1.85、さらに1.86とすることが好ましい。
【0022】
本実施形態の光学系において、負レンズは、以下の条件式(2-1)および条件式(4-1)を満足してもよい。
18.0<νdN2<26.5 ・・・(2-1)
1.83<ndN2+(0.00787×νdN2) ・・・(4-1)
【0023】
条件式(2-1)は、条件式(2)と同様の式であり、条件式(2)と同様の効果を得ることができる。条件式(2-1)の上限値を26.0に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2-1)の上限値を、25.5、さらに25.0とすることが好ましい。一方、条件式(2-1)の下限値を23.5に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2-1)の下限値を、24.0、さらに24.5とすることが好ましい。
【0024】
条件式(4-1)は、条件式(4)と同様の式であり、条件式(4)と同様の効果を得ることができる。条件式(4-1)の下限値を1.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4-1)の下限値を、1.92、さらに下限値を1.94とすることが好ましい。
【0025】
本実施形態の光学系において、負レンズは、以下の条件式(2-2)および条件式(4-2)を満足してもよい。
25.0<νdN2<35.0 ・・・(2-2)
1.83<ndN2+(0.00787×νdN2) ・・・(4-2)
【0026】
条件式(2-2)は、条件式(2)と同様の式であり、条件式(2)と同様の効果を得ることができる。条件式(2-2)の上限値を32.5に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2-2)の上限値を、31.5、さらに29.5とすることが好ましい。一方、条件式(2-2)の下限値を26.2に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2-2)の下限値を、26.7、さらに27.7とすることが好ましい。
【0027】
条件式(4-2)は、条件式(4)と同様の式であり、条件式(4)と同様の効果を得ることができる。条件式(4-2)の下限値を1.84に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4-2)の下限値を1.85とすることが好ましい。
【0028】
本実施形態の光学系において、負レンズは、以下の条件式(5)を満足することが望ましい。
DN2>0.80 ・・・(5)
但し、DN2:負レンズの光軸上の厚さ[mm]
【0029】
条件式(5)は、負レンズの光軸上の厚さの適切な範囲を規定するものである。条件式(5)を満足することで、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。
【0030】
条件式(5)の対応値が下限値を下回ると、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を補正することが困難になり、好ましくない。条件式(5)の下限値を0.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5)の下限値を、1.00、1.
10、1.20、さらに1.30とすることが好ましい。
【0031】
本実施形態の光学系は、最も像側に配置された像側レンズを有し、開口絞りSが像側レンズより物体側に配置され、像側レンズより物体側で、負レンズが開口絞りSより像側に配置されることが望ましい。これにより、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。
【0032】
本実施形態の光学系において、負レンズは、ガラスレンズであることが望ましい。これにより、材料が樹脂である場合と比較して、経年変化に強く、温度変化等の環境変化に強いレンズを得ることができる。
【0033】
本実施形態の光学系において、負レンズは、以下の条件式(6)~(7)を満足することが望ましい。
ndN2<1.63 ・・・(6)
ndN2-(0.040×νdN2-2.470)×νdN2<39.809・・・(7)
【0034】
条件式(6)は、負レンズのd線に対する屈折率の適切な範囲を規定するものである。条件式(6)を満足することで、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。
【0035】
条件式(6)の対応値が上限値を上回ると、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を補正することが困難になり、好ましくない。条件式(6)の上限値を1.62に設定することで、本実施形態の効果をより確実なものとすることができる。
【0036】
条件式(7)は、負レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(7)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
【0037】
条件式(7)の対応値が上限値を上回ると、例えばペッツバール和が小さくなることで、像面湾曲の補正が困難になるため、好ましくない。条件式(7)の上限値を39.800に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(7)の上限値を、39.500、39.000、38.500、38.000、37.500、さらに36.800とすることが好ましい。
【0038】
本実施形態の光学系において、負レンズは、以下の条件式(8)を満足することが望ましい。
ndN2-(0.020×νdN2-1.080)×νdN2<16.260・・・(8)
【0039】
条件式(8)は、負レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(8)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
【0040】
条件式(8)の対応値が上限値を上回ると、例えばペッツバール和が小さくなることで、像面湾曲の補正が困難になるため、好ましくない。条件式(8)の上限値を16.240に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(8)の上限値を、16.000、15.800、15.500、15.300、15.000、14.800、14.500、14
.000、さらに13.500とすることが好ましい。
【0041】
続いて、
図12を参照しながら、上述の光学系LSの製造方法について概説する。まず、開口絞りSと、少なくとも開口絞りSより像側に負レンズを配置する(ステップST1)。このとき、開口絞りSより像側に配置された負レンズのうち少なくとも1枚が上記条件式(1)~(3)等を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST2)。このような製造方法によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された光学系を製造することが可能になる。
【実施例0042】
以下、本実施形態の実施例に係る光学系LSを図面に基づいて説明する。
図1、
図3、
図5、
図7、
図9は、第1~第5実施例に係る光学系LS{LS(1)~LS(5)}の構成及び屈折力配分を示す断面図である。第1~第2実施例に係る光学系LS(1)~LS(2)および第5実施例に係る光学系LS(5)の断面図では、合焦レンズ群が無限遠から近距離物体に合焦する際の移動方向を、「合焦」という文字とともに矢印で示している。第3~第4実施例に係る光学系LS(3)~LS(4)の断面図では、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群の光軸に沿った移動方向を矢印で示している。
【0043】
これら
図1、
図3、
図5、
図7、
図9において、各レンズ群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。
【0044】
以下に表1~表5を示すが、この内、表1は第1実施例、表2は第2実施例、表3は第3実施例、表4は第4実施例、表5は第5実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長λ=587.6nm)、g線(波長λ=435.8nm)、C線(波長λ=656.3nm)、F線(波長λ=486.1nm)を選んでいる。
【0045】
[全体諸元]の表において、fはレンズ全系の焦点距離、FNОはFナンバー、2ωは画角(単位は°(度)で、ωが半画角である)、Yは像高を示す。TLは無限遠合焦時の光軸上でのレンズ最前面からレンズ最終面までの距離にBFを加えた距離を示し、BFは無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの距離(バックフォーカス)を示す。なお、光学系が変倍光学系である場合、これらの値は、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態におけるそれぞれについて示している。
【0046】
[レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材料のd線に対する屈折率、νdは光学部材の材料のd線を基準とするアッベ数を、θgFは光学部材の材料の部分分散比をそれぞれ示す。曲率半径の「∞」は平面又は開口を、(絞りS)は開口絞りSをそれぞれ示す。空気の屈折率nd=1.00000の
記載は省略している。光学面が非球面である場合には面番号に*a印を付し、光学面が回折光学面である場合には面番号に*b印を付して、曲率半径Rの欄には近軸曲率半径を示している。
【0047】
光学部材の材料のg線(波長λ=435.8nm)に対する屈折率をngとし、光学部
材の材料のF線(波長λ=486.1nm)に対する屈折率をnFとし、光学部材の材料のC線(波長λ=656.3nm)に対する屈折率をnCとする。このとき、光学部材の材料の部分分散比θgFは次式(A)で定義される。
【0048】
θgF=(ng-nF)/(nF-nC) …(A)
【0049】
[非球面データ]の表には、[レンズ諸元]に示した非球面について、その形状を次式(B)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離(ザグ量)を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、その記載を省略している。
【0050】
X(y)=(y2/R)/{1+(1-κ×y2/R2)1/2}+A4×y4+A6×y6+A8×y8+A10×y10 …(B)
【0051】
光学系が回折光学素子を有する場合、[回折光学面データ]において示す回折光学面の位相形状ψは、次式(C)によって表わされる。
【0052】
ψ(h,m)={2π/(m×λ0)}×(C2×h2+C4×h4+C6×h6…) …(
C)
但し、
h:光軸に対して垂直な方向の高さ、
m:回折光の回折次数、
λ0:設計波長、
Ci:位相係数(i=2,4,…)。
【0053】
なお、任意の波長λおよび任意の回折次数mにおける回折面の屈折力φDは、最も低次の位相係数C2を用いて、次式(D)のように表わすことができる。
【0054】
φD(h,m)=-2×C2×m×λ/λ0 …(D)
【0055】
[回折光学面データ]の表には、[レンズ諸元]に示した回折光学面について、式(C)における設計波長λ0、回折次数m、2次の位相係数C2、4次の位相係数C4を示す。
「E-n」は、[非球面データ]の表と同様、「×10-n」を示す。
【0056】
光学系が変倍光学系でない場合、[近距離撮影時可変間隔データ]として、fはレンズ全系の焦点距離を、βは撮影倍率をそれぞれ示す。また、[近距離撮影時可変間隔データ]の表には、各焦点距離および撮影倍率に対応する、[レンズ諸元]において面間隔が「可変」となっている面番号での面間隔を示す。
【0057】
光学系が変倍光学系である場合、[変倍撮影時可変間隔データ]として、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態に対応する、[レンズ諸元]において面間隔が「可変」となっている面番号での面間隔を示す。また、[レンズ群データ]の表には、各レンズ群のそれぞれの始面(最も物体側の面)と焦点距離を示す。
【0058】
[条件式対応値]の表には、各条件式に対応する値を示す。
【0059】
以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例
縮小しても同等の光学性能が得られるので、これに限られるものではない。
【0060】
ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。
【0061】
(第1実施例)
第1実施例について、
図1~
図2および表1を用いて説明する。
図1は、本実施形態の第1実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第1実施例に係る光学系LS(1)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2と第3レンズ群G3とが異なる移動量で光軸に沿って物体側に移動する。開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配設され、合焦の際、第3レンズ群G3とともに光軸に沿って移動する。各レンズ群記号に付けている符号(+)もしくは(-)は各レンズ群の屈折力を示し、このことは以下の全ての実施例でも同様である。
【0062】
第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11および物体側に凸面を向けた負メニスカスレンズL12からなる接合レンズと、物体側に凹面を向けた正メニスカスレンズL13および両凹形状の負レンズL14からなる接合レンズと、両凸形状の正レンズL15と、から構成される。
【0063】
第2レンズ群G2は、物体側から順に並んだ、両凸形状の正レンズL21と、両凸形状の正レンズL22および両凹形状の負レンズL23からなる接合レンズと、から構成される。
【0064】
第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL31および両凹形状の負レンズL32からなる接合レンズと、両凸形状の正レンズL33および両凹形状の負レンズL34からなる接合レンズと、両凸形状の正レンズL35と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。本実施例では、第3レンズ群G3の正レンズL35が像側レンズに該当し、第3レンズ群G3の負レンズL32が条件式(1)~(3)等を満足する負レンズに該当する。正レンズL35は、像側のレンズ面が非球面である。
【0065】
以下の表1に、第1実施例に係る光学系の諸元の値を掲げる。
【0066】
(表1)
[全体諸元]
f 48.500
FNO 1.419
2ω 48.286
Y 21.63
TL 142.000
BF 38.800
[レンズ諸元]
面番号 R D nd νd θgF
1 54.34110 7.000 2.00100 29.13 0.599
2 117.24740 2.500 1.54814 45.78 0.569
3 27.06680 13.200
4 -55.51090 6.000 1.49700 81.61 0.539
5 -28.83210 2.000 1.61266 44.46 0.564
6 96.35070 2.747
7 89.09580 7.500 1.72916 54.61 0.544
8 -58.51470 D8(可変)
9 139.79460 5.000 2.00100 29.13 0.599
10 -162.67090 0.100
11 76.23360 7.500 1.49700 81.61 0.539
12 -50.22910 1.800 1.64769 33.72 0.593
13 99.85150 D13
14 ∞ 4.463 (絞りS)
15 -67.43970 4.000 1.49782 82.57 0.539
16 -44.95420 1.600 1.65940 26.87 0.633
17 89.68770 8.144
18 53.87590 9.000 1.80420 46.50 0.558
19 -40.82290 1.800 1.54814 45.78 0.569
20 38.77380 1.890
21 87.46220 4.500 1.77250 49.62 0.550
22*a -67.90670 BF
[非球面データ]
第22面
κ=-14.3910
A4=-2.55E-06,A6=6.09E-09,A8=0.00E+00,A10=0.00E+00
[近距離撮影時可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=48.500 β=-0.180
D8 10.949 0.100
D13 1.508 4.855
[条件式対応値]
条件式(1)
ndN2+(0.01425×νdN2)=2.042
条件式(2),(2-1),(2-2)
νdN2=26.87
条件式(3)
θgFN2+(0.00316×νdN2)=0.7179
条件式(4),(4-1),(4-2)
ndN2+(0.00787×νdN2)=1.871
条件式(5)
DN2=1.600
条件式(6)
ndN2=1.65940
条件式(7)
ndN2-(0.040×νdN2-2.470)×νdN2=35.830
条件式(8)
ndN2-(0.020×νdN2-1.080)×νdN2=12.920
【0067】
図2は、第1実施例に係る光学系の無限遠合焦状態における諸収差図である。各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーまたは開口数の値を示し、非点収差図および歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(波長λ=587
.6nm)、gはg線(波長λ=435.8nm)、CはC線(波長λ=656.3nm
)、FはF線(波長λ=486.1nm)をそれぞれ示す。非点収差図において、実線は
サジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。
【0068】
各諸収差図より、第1実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
【0069】
(第2実施例)
第2実施例について、
図3~
図4および表2を用いて説明する。
図3は、本実施形態の第2実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第2実施例に係る光学系LS(2)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って像側に移動する。開口絞りSは、第3レンズ群G3内に配設されている。
【0070】
第1レンズ群G1は、物体側から順に並んだ、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凸形状の正レンズL13および両凹形状の負レンズL14からなる接合レンズと、から構成される。
【0071】
第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL21および両凹形状の負レンズL22からなる接合レンズ、から構成される。
【0072】
第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32および両凹形状の負レンズL33からなる接合レンズと、両凸形状の正レンズL34と、両凹形状の負レンズL35および物体側に凸面を向けた正メニスカスレンズL36からなる接合レンズと、両凹形状の負レンズL37および両凸形状の正レンズL38からなる接合レンズと、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3における負レンズL33と正レンズL34との間に、開口絞りSが配置される。本実施例では、第3レンズ群G3の正レンズL38が像側レンズに該当し、第3レンズ群G3の負レンズL37が条件式(1)~(3)等を満足する負レンズに該当する。
【0073】
以下の表2に、第2実施例に係る光学系の諸元の値を掲げる。
【0074】
(表2)
[全体諸元]
f 102.890
FNO 1.450
2ω 23.554
Y 21.63
TL 150.819
BF 41.316
[レンズ諸元]
面番号 R D nd νd θgF
1 234.65900 5.211 1.59349 67.00 0.537
2 -3574.17780 0.100
3 93.58400 9.232 1.49782 82.57 0.539
4 -1217.36840 0.100
5 70.43160 12.063 1.49782 82.57 0.539
6 -224.04700 3.500 1.72047 34.71 0.583
7 171.70550 D7(可変)
8 -151.55960 4.000 1.65940 26.87 0.633
9 -80.06770 2.500 1.48749 70.32 0.529
10 46.21880 D10(可変)
11 69.71830 7.132 2.00100 29.13 0.599
12 -255.66290 0.100
13 216.69850 7.584 1.69680 55.52 0.543
14 -52.55750 1.800 1.72825 28.38 0.607
15 31.26990 6.330
16 ∞ 0.600 (絞りS)
17 88.47780 5.183 1.59319 67.90 0.544
18 -95.38130 1.184
19 -54.31770 1.600 1.65412 39.68 0.574
20 31.94510 7.378 1.79500 45.31 0.560
21 241.73250 1.710
22 -110.87090 1.800 1.65940 26.87 0.633
23 125.19550 5.209 2.00100 29.13 0.599
24 -63.04960 BF
[近距離撮影時可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=102.890 β=-0.136
D7 7.973 19.973
D10 17.215 5.215
[条件式対応値]
条件式(1)
ndN2+(0.01425×νdN2)=2.042
条件式(2),(2-1),(2-2)
νdN2=26.87
条件式(3)
θgFN2+(0.00316×νdN2)=0.7179
条件式(4),(4-1),(4-2)
ndN2+(0.00787×νdN2)=1.871
条件式(5)
DN2=1.800
条件式(6)
ndN2=1.65940
条件式(7)
ndN2-(0.040×νdN2-2.470)×νdN2=35.830
条件式(8)
ndN2-(0.020×νdN2-1.080)×νdN2=12.920
【0075】
図4は、第2実施例に係る光学系の無限遠合焦状態における諸収差図である。各諸収差図より、第2実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
【0076】
(第3実施例)
第3実施例について、
図5~
図6および表3を用いて説明する。
図5は、本実施形態の第3実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第3実施例に係る光学系LS(3)は、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3
と、正の屈折力を有する第4レンズ群G4とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第4レンズ群G1~G4がそれぞれ
図5の矢印で示す方向に移動する。開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配設され、変倍の際、第2レンズ群G2とともに光軸に沿って移動する。
【0077】
第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、両凹形状の負レンズL13と、両凸形状の正レンズL14と、から構成される。負メニスカスレンズL11は、両側のレンズ面が非球面である。負レンズL13は、像側のレンズ面が非球面である。
【0078】
第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21および物体側に凸面を向けた正メニスカスレンズL22からなる接合レンズと、両凸形状の正レンズL23と、から構成される。本実施例では、第2レンズ群G2の負メニスカスレンズL21が条件式(1)~(3)等を満足する負レンズに該当する。
【0079】
第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31および両凹形状の負レンズL32からなる接合レンズと、物体側に凹面を向けた負メニスカスレンズL33と、両凸形状の正レンズL34と、から構成される。本実施例では、無限遠物体から近距離(有限距離)物体への合焦の際、第3レンズ群G3の負メニスカスレンズL33および正レンズL34が光軸に沿って像側に移動する。
【0080】
第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41および両凹形状の負レンズL42からなる接合レンズと、両凸形状の正レンズL43と、両凸形状の正レンズL44および両凹形状の負レンズL45からなる接合レンズと、から構成される。第4レンズ群G4の像側に、像面Iが配置される。本実施例では、第4レンズ群G4の負レンズL45が像側レンズに該当する。負レンズL45は、像側のレンズ面が非球面である。
【0081】
以下の表3に、第3実施例に係る光学系の諸元の値を掲げる。
【0082】
(表3)
[全体諸元]
変倍比 2.07
W M T
f 16.65 24.00 34.44
FNO 4.12 4.12 4.18
2ω 53.80 41.66 31.60
Y 21.60 21.60 21.60
TL 168.91 164.50 169.42
BF 39.00 48.25 65.00
[レンズ諸元]
面番号 R D nd νd θgF
1*a 157.02850 3.000 1.76684 46.78 0.5576
2*a 19.73150 8.955
3 397.62390 1.550 1.88300 40.66 0.5668
4 51.01700 5.065
5 -57.91430 1.500 1.88300 40.66 0.5668
6 51.94950 0.400 1.55389 38.09 0.5928
7*a 70.15770 1.237
8 44.62150 6.911 1.69895 30.13 0.6021
9 -47.20650 D9(可変)
10 ∞ 0.000 (絞りS)
11 42.61580 1.050 1.74971 24.66 0.6272
12 17.74250 4.132 1.59154 39.29 0.5779
13 75.16900 0.100
14 34.28950 4.194 1.53404 48.26 0.5617
15 -63.55520 D15(可変)
16 151.28780 2.518 1.62004 36.40 0.5833
17 -33.01780 1.000 1.88300 40.66 0.5668
18 44.83300 2.756
19 -20.44030 0.800 1.88300 40.66 0.5668
20 -59.69050 0.150
21 151.29690 3.966 1.84666 23.80 0.6215
22 -32.91290 D22(可変)
23 34.01270 10.039 1.49782 82.57 0.5386
24 -29.32300 1.100 1.83400 37.18 0.5778
25 71.52300 0.100
26 34.90120 10.548 1.49782 82.57 0.5386
27 -38.97720 0.100
28 40.26640 11.985 1.50377 63.91 0.536
29 -23.35670 1.600 1.80610 40.97 0.5688
30*a -1764.39570 BF
[非球面データ]
第1面
κ=1.0000
A4=3.00E-06,A6=3.39E-09,A8=0.00E+00,A10=0.00E+00
第2面
κ=1.0000
A4=-2.11E-05,A6=0.00E+00,A8=0.00E+00,A10=0.00E+00
第7面
κ=1.0000
A4=1.75E-05,A6=-2.74E-08,A8=1.77E-11,A10=0.00E+00
第30面
κ=1.0000
A4=1.53E-05,A6=8.95E-09,A8=0.00E+00,A10=0.00E+00
[変倍撮影時可変間隔データ]
W M T
D9 29.355 13.227 2.000
D15 6.263 12.605 16.459
D22 9.534 5.666 1.200
[レンズ群データ]
群 始面 焦点距離
G1 1 -23.700
G2 10 41.700
G3 16 -62.000
G4 23 49.100
[条件式対応値]
条件式(1)
ndN2+(0.01425×νdN2)=2.101
条件式(2),(2-1),(2-2)
νdN2=24.66
条件式(3)
θgFN2+(0.00316×νdN2)=0.7051
条件式(4),(4-1),(4-2)
ndN2+(0.00787×νdN2)=1.944
条件式(5)
DN2=1.050
条件式(6)
ndN2=1.74971
条件式(7)
ndN2-(0.040×νdN2-2.470)×νdN2=34.836
条件式(8)
ndN2-(0.020×νdN2-1.080)×νdN2=12.721
【0083】
図6(A)、
図6(B)、および
図6(C)はそれぞれ、第3実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第3実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
【0084】
(第4実施例)
第4実施例について、
図7~
図8および表4を用いて説明する。
図7は、本実施形態の第4実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第4実施例に係る光学系LS(4)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第5レンズ群G1~G5がそれぞれ
図7の矢印で示す方向に移動する。開口絞りSは、第2レンズ群G2内に配設されている。
【0085】
第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および両凸形状の正レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。正メニスカスレンズL13における像側のレンズ面に、回折光学素子DOEが配設される。回折光学素子DOEは、例えば、互いに異なる材質の2種類の回折素子要素が同一の回折格子溝で接する密着複層型の回折光学素子であり、2種類の紫外線硬化樹脂によって所定の格子高さを有する1次の回折格子(光軸に対して回転対称形状の回折格子)が形成される。
【0086】
第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21および物体側に凸面を向けた正メニスカスレンズL22からなる接合レンズと、物体側に凹面を向けた正メニスカスレンズL23と、物体側に凸面を向けた正メニスカスレンズL24と、から構成される。第2レンズ群G2における正メニスカスレンズL23と正メニスカスレンズL24との間に、開口絞りSが配置される。第2レンズ群G2の負レンズL21および正メニスカスレンズL22からなる接合レンズと、正メニスカスレンズL23とは、光軸と垂直な方向へ移動可能な防振レンズ群(部分群)を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。
【0087】
第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL31と、両凸形状の正レンズL32と、から構成される。
【0088】
第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41および物体側
に凹面を向けた負メニスカスレンズL42からなる接合レンズ、から構成される。
【0089】
第5レンズ群G5は、物体側から順に並んだ、両凸形状の正レンズL51および両凹形状の負レンズL52からなる接合レンズ、から構成される。本実施例では、第5レンズ群G5の全体を光軸に沿って移動させることにより、合焦を行う。
【0090】
第6レンズ群G6は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL61および両凸形状の正レンズL62からなる接合レンズと、両凹形状の負レンズL63と、物体側に凹面を向けた負メニスカスレンズL64と、から構成される。第6レンズ群G6の像側に、像面Iが配置される。本実施例では、第6レンズ群G6の負メニスカスレンズL64が像側レンズに該当し、第6レンズ群G6の負メニスカスレンズL61が条件式(1)~(3)等を満足する負レンズに該当する。
【0091】
以下の表4に、第4実施例に係る光学系の諸元の値を掲げる。
【0092】
(表4)
[全体諸元]
変倍比 2.00
W M T
f 199.985 300.128 400.487
FNO 5.770 5.773 7.777
2ω 12.088 8.032 3.016
Y 21.60 21.60 21.60
TL 218.509 276.018 309.437
BF 63.575 63.605 63.797
[レンズ諸元]
面番号 R D nd νd θgF
1 338.9295 3.0000 1.806100 33.34
2 157.1292 7.1098 1.487490 70.32
3 -645.1901 0.1000
4 127.7241 6.3846 1.516800 64.13
5*b 1000.0000 D5(可変)
6 -122.6329 1.7000 1.743997 44.79
7 65.7202 3.5689 1.659398 26.87 0.6323
8 249.7691 15.0000
9 -47.9778 3.5000 1.756462 24.89 0.6196
10 -45.0509 2.2932
11 ∞ 0.5000 (絞りS)
12 43.2479 2.9936 1.620041 36.26
13 64.4050 D13(可変)
14 82.9323 1.7000 1.808090 22.74
15 46.2622 3.6463
16 71.4836 4.1939 1.612720 58.54
17 -405.4059 D17(可変)
18 56.3851 6.9255 1.497820 82.57
19 -60.8758 1.7000 1.755000 52.33
20 -374.3030 D20(可変)
21 102.7274 2.4918 1.592701 35.31
22 -125.8788 1.0000 1.755000 52.33
23 40.8982 D23(可変)
24 121.6273 1.7000 1.659398 26.87 0.6323
25 52.1810 5.7438 1.595510 39.21
26 -42.4345 0.1000
27 -97.3797 1.5000 1.456000 91.37
28 59.1706 12.2493
29 -26.6286 1.5000 1.755000 52.33
30 -37.6940 BF
[回折面データ]
第5面
λ0=587.6
m=1
C2=-2.57E-05
C4=-2.04E-11
[変倍撮影時可変間隔データ]
W M T
D5 11.860 93.192 119.742
D13 10.900 0.500 3.244
D17 0.600 5.172 0.600
D20 34.411 13.877 0.200
D23 6.561 9.070 31.254
[レンズ群データ]
群 始面 焦点距離
G1 1 213.671
G2 6 -546.584
G3 14 370.319
G4 18 149.206
G5 21 -72.703
G6 24 -875.523
[条件式対応値]
条件式(1)
ndN2+(0.01425×νdN2)=2.042
条件式(2),(2-1),(2-2)
νdN2=26.87
条件式(3)
θgFN2+(0.00316×νdN2)=0.7172
条件式(4),(4-1),(4-2)
ndN2+(0.00787×νdN2)=1.871
条件式(5)
DN2=1.7000
条件式(6)
ndN2=1.659398
条件式(7)
ndN2-(0.040×νdN2-2.470)×νdN2=35.830
条件式(8)
ndN2-(0.020×νdN2-1.080)×νdN2=12.920
【0093】
図8(A)、
図8(B)、および
図8(C)はそれぞれ、第4実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第4実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
【0094】
(第5実施例)
第5実施例について、
図9~
図10および表5を用いて説明する。
図9は、本実施形態の第5実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第5実施例に係る光学系LS(5)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2と第3レンズ群G3とが異なる移動量で光軸に沿って物体側に移動する。開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配設され、合焦の際、第3レンズ群G3とともに光軸に沿って移動する。
【0095】
第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11および物体側に凸面を向けた負メニスカスレンズL12からなる接合レンズと、物体側に凹面を向けた正メニスカスレンズL13および両凹形状の負レンズL14からなる接合レンズと、両凸形状の正レンズL15と、から構成される。
【0096】
第2レンズ群G2は、物体側から順に並んだ、両凸形状の正レンズL21と、両凸形状の正レンズL22および両凹形状の負レンズL23からなる接合レンズと、から構成される。
【0097】
第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL31および両凹形状の負レンズL32からなる接合レンズと、両凸形状の正レンズL33および両凹形状の負レンズL34からなる接合レンズと、両凸形状の正レンズL35と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。本実施例では、第3レンズ群G3の正レンズL35が像側レンズに該当し、第3レンズ群G3の負レンズL32が条件式(1)~(3)等を満足する負レンズに該当する。正レンズL35は、像側のレンズ面が非球面である。
【0098】
以下の表5に、第5実施例に係る光学系の諸元の値を掲げる。
【0099】
(表5)
[全体諸元]
f 48.500
FNO 1.405
2ω 48.286
Y 21.63
TL 142.000
BF 38.800
[レンズ諸元]
面番号 R D nd νd θgF
1 52.54160 7.000 2.00100 29.13 0.599
2 110.48020 2.500 1.54814 45.78 0.569
3 26.51260 13.200
4 -54.54930 6.000 1.49700 81.61 0.539
5 -28.35840 2.000 1.61266 44.46 0.564
6 89.06350 2.911
7 87.07170 7.500 1.72916 54.61 0.544
8 -56.49940 D8(可変)
9 176.92530 4.500 2.00100 29.13 0.599
10 -163.53030 0.100
11 68.43160 7.500 1.49700 81.61 0.539
12 -56.04760 1.800 1.64769 33.72 0.593
13 91.91670 D13(可変)
14 ∞ 3.504 (絞りS)
15 -71.98140 4.000 1.49782 82.57 0.539
16 -32.38870 1.600 1.61155 31.26 0.618
17 95.98930 6.985
18 53.08170 9.000 1.80420 46.50 0.558
19 -41.18080 1.800 1.54814 45.78 0.569
20 38.38990 2.090
21 95.28680 4.500 1.77250 49.62 0.550
22*a -65.98280 BF
[非球面データ]
第22面
κ=-14.2137
A4=-2.94E-06,A6=6.71E-09,A8=0.00E+00,A10=0.00E+00
[近距離撮影時可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=48.500 β=-0.180
D8 11.533 0.100
D13 3.177 7.097
[条件式対応値]
条件式(1)
ndN2+(0.01425×νdN2)=2.057
条件式(2),(2-1),(2-2)
νdN2=31.26
条件式(3)
θgFN2+(0.00316×νdN2)=0.7173
条件式(4),(4-1),(4-2)
ndN2+(0.00787×νdN2)=1.858
条件式(5)
DN2=1.600
条件式(6)
ndN2=1.61155
条件式(7)
ndN2-(0.040×νdN2-2.470)×νdN2=36.513
条件式(8)
ndN2-(0.020×νdN2-1.080)×νdN2=12.605
【0100】
図10は、第5実施例に係る光学系の無限遠合焦状態における諸収差図である。各諸収差図より、第5実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
【0101】
上記各実施例によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された光学系を実現することができる。
【0102】
ここで、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。
【0103】
なお、以下の内容は、本実施形態の光学系の光学性能を損なわない範囲で適宜採用する
ことが可能である。
【0104】
合焦レンズ群とは、合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示すものとする。すなわち、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。この合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。
【0105】
本実施形態の光学系の第4実施例において、防振機能を有する構成のものを示したが、本願はこれに限られず、防振機能を有していない構成とすることもできる。また、防振機能を有していない他の実施例についても、防振機能を有する構成とすることができる。
【0106】
レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。
【0107】
レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれでも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。
【0108】
各レンズ面には、フレアやゴーストを軽減し、コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。