(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023065305
(43)【公開日】2023-05-12
(54)【発明の名称】成膜方法及び成膜システム
(51)【国際特許分類】
H01L 21/318 20060101AFI20230502BHJP
H01L 21/31 20060101ALI20230502BHJP
C23C 16/42 20060101ALI20230502BHJP
【FI】
H01L21/318 B
H01L21/318 C
H01L21/31 C
C23C16/42
【審査請求】未請求
【請求項の数】25
【出願形態】OL
(21)【出願番号】P 2022150161
(22)【出願日】2022-09-21
(31)【優先権主張番号】P 2021175804
(32)【優先日】2021-10-27
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000219967
【氏名又は名称】東京エレクトロン株式会社
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(72)【発明者】
【氏名】軍司 勲男
(72)【発明者】
【氏名】岡 正浩
(72)【発明者】
【氏名】本多 稔
(72)【発明者】
【氏名】小林 岳志
【テーマコード(参考)】
4K030
5F045
5F058
【Fターム(参考)】
4K030AA06
4K030AA13
4K030AA14
4K030AA16
4K030AA18
4K030BA40
4K030CA04
4K030CA12
4K030DA08
4K030FA01
4K030JA09
4K030JA16
4K030LA02
4K030LA15
5F045AA08
5F045AB33
5F045AB34
5F045AC01
5F045AC11
5F045AC12
5F045AC15
5F045AC16
5F045AD06
5F045AD07
5F045AD08
5F045AD09
5F045AE17
5F045AE19
5F045AE21
5F045BB19
5F045DP03
5F045EB08
5F045EF05
5F045EH14
5F045EK07
5F045EN04
5F045HA13
5F045HA25
5F058BA09
5F058BC08
5F058BC10
5F058BF07
5F058BF23
5F058BF29
5F058BF30
5F058BH12
5F058BH16
5F058BJ05
5F058BJ06
(57)【要約】
【課題】基板に形成された凹部へのシリコン含有膜の埋め込み性能を高める。
【解決手段】(a)処理容器内に凹部を有する基板を準備する工程と、(b)シリコンを含むガスをプラズマにより活性化させて基板に供給し、シリコン含有膜を前記基板に形成する工程と、(c)前記シリコン含有膜が前記凹部の開口部を閉塞した後、前記シリコン含有膜を部分的に改質する工程と、(d)改質した前記シリコン含有膜を選択的にエッチングする工程と、を含む成膜方法が提供される。
【選択図】
図1
【特許請求の範囲】
【請求項1】
(a)処理容器内に凹部を有する基板を準備する工程と、
(b)シリコンを含むガスをプラズマにより活性化させて基板に供給し、シリコン含有膜を前記基板に形成する工程と、
(c)前記シリコン含有膜が前記凹部の開口部を閉塞した後、前記シリコン含有膜を部分的に改質する工程と、
(d)改質した前記シリコン含有膜を選択的にエッチングする工程と、
を含む成膜方法。
【請求項2】
前記(b)のシリコン含有膜を形成する工程と、前記(c)のシリコン含有膜を改質する工程と、前記(d)のシリコン含有膜をエッチングする工程と、をこの順で1回以上行う、
請求項1に記載の成膜方法。
【請求項3】
前記(b)のシリコン含有膜を形成する工程の後、前記(c)のシリコン含有膜を改質する工程と、前記(d)のシリコン含有膜をエッチングする工程と、をこの順で1回以上行う、
請求項1に記載の成膜方法。
【請求項4】
前記(b)のシリコン含有膜を形成する工程は、シリコン含有膜を形成するための処理装置の処理容器内の圧力を段階的又は連続的に制御する、
請求項1~3のいずれか一項に記載の成膜方法。
【請求項5】
前記(b)のシリコン含有膜を形成する工程は、(b-1)前記シリコン含有膜を形成するための処理装置の処理容器内の前記圧力を第1の圧力に制御する工程と、
(b-2)前記シリコン含有膜を形成するための処理装置の処理容器内の前記圧力を前記第1の圧力より高い第2の圧力に制御する工程と、を含む、
請求項4に記載の成膜方法。
【請求項6】
前記(b)のシリコン含有膜を形成する工程は、シリコン含有ガスを含む複数の混合ガスに対するシリコン含有ガスの流量比を段階的又は連続的に制御する、
請求項1~5のいずれか一項に記載の成膜方法。
【請求項7】
前記(b)のシリコン含有膜を形成する工程は、
(b-3)前記シリコン含有ガスを含む複数の混合ガスに対する前記シリコン含有ガスの流量比を第1の流量比に制御する工程と、
(b-2)前記シリコン含有ガスを含む複数の混合ガスに対する前記シリコン含有ガスの流量比を前記第1の流量比より大きい第2の流量比に制御する工程と、を含む、
請求項6に記載の成膜方法。
【請求項8】
前記(c)のシリコン含有膜を改質する工程は、前記シリコン含有膜を部分的に酸化させる、
請求項1~7のいずれか一項に記載の成膜方法。
【請求項9】
前記(d)のシリコン含有膜をエッチングする工程は、改質させた前記シリコン含有膜を除去して前記凹部の開口部を形成する、
請求項1~8のいずれか一項に記載の成膜方法。
【請求項10】
前記(d)のシリコン含有膜をエッチングする工程は、プラズマを使用せずに前記シリコン含有膜を除去する、
請求項1~9のいずれか一項に記載の成膜方法。
【請求項11】
前記(d)のシリコン含有膜をエッチングする工程は、
(d-1)フッ素を含むガスと窒素を含むガスとを前記基板に供給し、前記改質されたシリコン含有膜と反応させることにより反応副生成物を形成する工程と、
(d-2)前記反応副生成物を除去する工程と、を含む、
請求項1~10のいずれか一項に記載の成膜方法。
【請求項12】
前記(d-2)の反応副生成物を除去する工程は、熱処理により前記反応副生成物を昇華させて除去する、
請求項11に記載の成膜方法。
【請求項13】
前記(d-2)の反応副生成物を除去する工程は、基板を載置する載置台の温度を50℃以上に制御する、
請求項11又は12に記載の成膜方法。
【請求項14】
(h)前記(d)の後、前記凹部の上部及び側壁部のシリコン含有膜をさらにエッチングする工程を行う、
請求項1~13のいずれか一項に記載の成膜方法。
【請求項15】
前記(h)のシリコン含有膜をさらにエッチングする工程は、
(h-1)フッ素を含むガスと窒素を含むガスとを前記基板に供給し、前記改質されたシリコン含有膜と反応させることにより反応副生成物を形成する工程と、
(h-2)前記反応副生成物を除去する工程と、を含む、
請求項14に記載の成膜方法。
【請求項16】
前記(h-1)の反応副生成物を形成する工程と、前記(h-2)の反応副生成物を除去する工程と、を1回以上行う、
請求項15に記載の成膜方法。
【請求項17】
(g)前記(d)の後、前記凹部に形成した前記シリコン含有膜をプラズマで活性化させた窒素を含むガスにより改質する工程を更に含む、
請求項1~16のいずれか一項に記載の成膜方法。
【請求項18】
前記シリコン含有膜は、シリコンと窒素とを含む膜である、
請求項1~17のいずれか一項に記載の成膜方法。
【請求項19】
前記シリコンと窒素とを含む膜は、SiN膜、SiCN膜、SiON膜、SiOCN膜のいずれかの膜である、
請求項18に記載の成膜方法。
【請求項20】
前記シリコン含有膜は、Si膜である、
請求項1~17のいずれか一項に記載の成膜方法。
【請求項21】
前記基板は複数の凹部を有し、
(e)前記シリコン含有膜が複数の前記凹部の開口部を閉塞したかを判定する工程を更に含み、
前記(c)のシリコン含有膜を改質する工程は、前記(e)の工程において前記シリコン含有膜がすべての前記凹部の開口部を閉塞していると判定された場合、前記シリコン含有膜の改質を開始する、
請求項1~20のいずれか一項に記載の成膜方法。
【請求項22】
(f)前記凹部の開口部を閉塞したシリコン含有膜が酸化したかを判定する工程を更に含み、
前記(d)のシリコン含有膜をエッチングする工程は、前記(f)の工程において前記凹部の開口部を閉塞したシリコン含有膜が酸化したと判定された場合、前記シリコン含有膜のエッチングを開始する、
請求項1~21のいずれか一項に記載の成膜方法。
【請求項23】
前記(b)のシリコン含有膜を形成する工程と、前記(c)のシリコン含有膜を改質する工程とは、同一の処理装置で行う、
請求項1~22のいずれか一項に記載の成膜方法。
【請求項24】
複数の処理装置を有する成膜システムであって、
前記複数の処理装置は、
シリコンを含むガスをプラズマにより活性化させて凹部を有する基板に供給し、シリコン含有膜を前記基板に形成する工程を実行するように構成された第1の処理装置と、
前記シリコン含有膜が前記凹部の開口部を閉塞した後、前記シリコン含有膜を部分的に改質する工程を実行するように構成された第2の処理装置と、
改質した前記シリコン含有膜を選択的にエッチングする工程を実行するように構成された第3の処理装置と、を有し、
前記第1の処理装置と前記第2の処理装置は同一の処理装置又は別の処理装置であり、
前記第1の処理装置と前記第3の処理装置、及び前記第2の処理装置と第3の処理装置は別の処理装置である、成膜システム。
【請求項25】
複数の基板を処理する処理装置を有する成膜システムであって、
前記処理装置は、
前記複数の基板を載置する複数の載置台と、
前記載置台に対応する複数の処理空間と、
を備え、
前記複数の処理空間は、
シリコンを含むガスをプラズマにより活性化させて凹部を有する基板に供給し、シリコン含有膜を前記基板に形成する工程を実行するように構成された第1の処理空間と、
前記シリコン含有膜が前記凹部の開口部を閉塞した後、前記シリコン含有膜を部分的に改質する工程を実行するように構成された第2の処理空間と、
フッ素を含むガスと窒素を含むガスとを前記基板に供給し、前記改質されたシリコン含有膜と反応させることにより反応副生成物を形成する工程を実行するように構成された第3の処理空間と、
前記反応副生成物を除去する工程を実行するように構成された第4の処理空間と、
を備える、成膜システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、成膜方法及び成膜システムに関する。
【背景技術】
【0002】
半導体デバイスの微細化に伴い、高アスペクト比を有する凹部へのボイドやシームの発生がない高品質な膜の埋め込みが求められている。
【0003】
例えば、特許文献1は、シリコン含有ガス及び酸素含有ガスを供給することにより、基板上に酸化シリコン膜を成膜する工程と、フッ酸ガス及びアンモニアガスを供給することにより、酸化シリコン膜をエッチングするエッチング工程と、を含み、成膜工程とエッチング工程とが交互に繰り返される成膜方法が開示される。
【0004】
例えば、特許文献2は、第1工程において基板と配線に対して絶縁膜を堆積させるための成膜処理と、Ar及びイオンによってスパッタエッチングするエッチング処理とを同時に行い、配線間にボイドが形成されたあと、第2工程において配線上部の絶縁膜と配線間の絶縁膜を選択的にエッチングし、配線上部の絶縁膜を平坦状にするとともに配線間に開口を形成し、第1工程と第2工程を繰り返す成膜方法が開示される。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2012-199306号公報
【特許文献2】特開2003-37103号公報
【特許文献3】特開2007-180418号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本開示は、基板に形成された凹部へのシリコン含有膜の埋め込み性能を高めることができる技術を提供する。
【課題を解決するための手段】
【0007】
本開示の一の態様によれば、(a)処理容器内に凹部を有する基板を準備する工程と、(b)シリコンを含むガスをプラズマにより活性化させて基板に供給し、シリコン含有膜を前記基板に形成する工程と、(c)前記シリコン含有膜が前記凹部の開口部を閉塞した後、前記シリコン含有膜を部分的に改質する工程と、(d)改質した前記シリコン含有膜を選択的にエッチングする工程と、を含む成膜方法が提供される。
【発明の効果】
【0008】
一の側面によれば、基板に形成された凹部へのシリコン含有膜の埋め込み性能を高めることができる。
【図面の簡単な説明】
【0009】
【
図1】実施形態に係る成膜方法STを示すフローチャート。
【
図3】実施形態に係る成膜時間と膜厚との関係を示す図。
【
図4】実施形態に係る成膜時間と圧力との関係を示す図。
【
図5】実施形態に係る成膜時間とガス流量比との関係を示す図。
【
図6】実施形態に係る成膜システムの構成例を示す図。
【
図8】実施形態に係る他の処理装置の構成例を示す図。
【発明を実施するための形態】
【0010】
以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
【0011】
[成膜方法ST]
半導体製造プロセスの工程において半導体デバイスの微細化に伴い、高アスペクト比を有する凹部へのボイドやシームの発生がない高品質な膜の埋め込みが求められている。従来技術のAtomic Layer Deposition(ALD)では、低スループット、シームやボイドの発生、後工程での凹部の形状変形、膜の電気特性の劣化等の課題が挙げられる。
【0012】
また、従来技術のHigh-Density Plasma Chemical Vapor Deposition(HDP(高密度プラズマ) CVD)では、CD(Critical Dimention)の縮小化、高アスペクト比による凹部への膜の埋め込み性能の劣化、イオンの打ち込みによる基板構造の変形、膜質の劣化等の課題が挙げられる。
【0013】
また、従来技術のFlowable Chemical Vapor Deposition(FCVD)では、流動性膜の成膜工程とキュア・トリートメント工程との複雑化、成膜の深さ方向の膜質傾斜による電気特性の劣化等の課題が挙げられる。
【0014】
本開示では、以上の課題を解決し、基板に形成された凹部へのシリコン含有膜の埋め込み性能を高めることができる成膜方法を提案する。
【0015】
図1は、実施形態に係る成膜方法STを示すフローチャートである。
図2は、実施形態に係る成膜方法STの説明図である。本開示の成膜方法STは、ウェハ(半導体ウェハ)を一例とする基板Wに形成された凹部にシリコン含有膜を成膜する。
【0016】
(基板の準備工程S1)
まず、
図1の基板の準備工程S1において、処理装置の処理容器内に基板Wを提供する工程を実行する。
図2(a)は凹部114を有する基板Wの一例を示す。基板Wは、シリコン基板110上に複数の凹部114を有する。基板Wの凹部114はトレンチ構造を有し、上面112、底面116、側面118を持つ。凹部114は、ホールであってもよいし、ラインであってもよい。
【0017】
(成膜工程S3)
次に、
図1の成膜工程S3において、基板Wの凹部114にシリコン含有膜を堆積する。本開示では、CVD法によりシリコン含有膜を形成する。具体的には、シリコンを含むガスをプラズマにより活性化させて基板Wに供給し、シリコン含有膜を基板Wに形成する。
【0018】
ここでは、シリコン含有膜の一例としてシリコン窒化膜(SiN)を堆積させる。この場合、シリコン含有ガスと窒素含有ガスとを含む処理ガスを処理装置の処理容器内に供給してプラズマを生成し、そのプラズマで活性化されたガス種を化学的に反応させてシリコン窒化膜を形成する。シリコン含有ガスはシラン(SiH4)ガス、窒素含有ガスはアンモニア(NH3)ガスであってよい。ただし、シリコン含有ガス及び窒素含有ガスの種類はこれに限らない。例えば窒素含有ガスは窒素(N2)ガスであってもよい。成膜工程S3では、凹部114の上面112近傍、および、凹部114の底面116に優先的にシリコン窒化膜を形成させる条件で成膜を行い、凹部114の上面112近傍に成膜されたシリコン窒化膜で凹部114の開口部を閉塞させる。以下に成膜工程S3のプロセス条件を示す。
<成膜工程S3のプロセス条件>
成膜ガス SiH4、N2、及びAr
圧力 5Pa~50Pa
プラズマ電力 500W~4500W
SiH4ガス、NH3ガス及びArガスは処理容器内に供給され、プラズマにより活性化させて基板Wに供給し、これにより、シリコン窒化膜を基板Wに形成する。
【0019】
図2(b)は、シリコン窒化膜120が、凹部114の底面116及び上面112に堆積し、凹部114の開口部がシリコン窒化膜120によって閉塞している状態を示す。成膜工程S3では、凹部の上面112と底面116に優先的にシリコン窒化膜120を形成するようなプロセス条件で成膜し、側面118にはなるべくシリコン窒化膜120を成膜させない。つまり、成膜工程S3ではコンフォーマルに膜を成膜しない。このようなプロセス条件として、例えば、処理容器内の圧力を高くする。また、例えば、処理容器内に供給するSiH
4ガス、NH
3ガス、および、Arガス等の混合ガスの全流量に対するSiH
4ガス、および/または、NH
3ガスの流量を高く(大きく)する。
【0020】
図2(b)は、シリコン窒化膜120が凹部114の底面116及び上面112に堆積し、上面112に堆積したシリコン窒化膜120がマッシュルーム状になり、隣接するシリコン窒化膜120と接触して凹部114の開口部を閉塞している状態を示す。凹部114の開口部が閉塞されるまで優先的にシリコン窒化膜120を形成すると、凹部114の底面116にもシリコン窒化膜120が形成され、その上部には空隙115が形成される。
【0021】
(酸化工程S5(改質工程))
次に、
図1の酸化工程S5において、凹部114の開口部を閉塞しているシリコン窒化膜120を含むシリコン窒化膜120を部分的に酸化する。酸化工程S5は、シリコン窒化膜120を部分的に改質する工程の一例である。
【0022】
酸化工程S5は、シリコン窒化膜120を部分的に酸化させてよい。以下に、シリコン窒化膜120を酸化させるときの酸化工程S5のプロセス条件を示す。酸化工程S5は次に示すようにプラズマを使用してもよいし、プラズマを使用しなくてもよい。
<酸化工程S5のプロセス条件>
酸化ガス O3、又はO2、又は亜酸化窒素(N2O)
プラズマの有無 O3の場合、O3ガスを基板に暴露(プラズマを使用しない)
O2、又はN2Oの場合、プラズマにより活性化(プラズマを使用する)
載置台(基板)温度 200℃~500℃
圧力 5Pa~400Pa
プラズマ電力 500W~4500W(プラズマを使用する場合)
【0023】
これにより、上面112に堆積したシリコン窒化膜120が部分的に酸化されてシリコン酸化(SiOx)膜121になる。シリコン窒化膜120のうち少なくとも凹部114の開口部を閉塞している部分が酸化されるまで本工程は続けられる。
図2(c)は、シリコン窒化膜120が部分的に酸化されてシリコン酸化膜121に改質(変質)した状態を示す。凹部114の開口部を閉塞しているシリコン窒化膜120が部分的に酸化されてシリコン酸化膜121に改質している。上面112近傍に形成されたシリコン窒化膜は、膜厚が厚くなるため、酸化工程S5は、例えば、圧力が高く、酸化ガスの流量が大きい条件が好適である。また、例えば、プラズマを用いる場合は、圧力が高く、プラズマ電力が大きい条件が好適である。また、処理温度は、成膜工程S3以上の温度が好適である。
【0024】
酸化部分は上面112近傍(例えば、上面112よりも上層)のシリコン窒化膜120であり、凹部114の底部に形成されたシリコン窒化膜120は凹部114の開口部が閉塞しているので、酸化工程S5による酸化を回避できる。よって、本工程によれば、凹部114の底部のシリコン窒化膜120を保護しつつ(改質せずに)、凹部114の開口部を閉塞しているシリコン窒化膜120をシリコン酸化膜121に改質できる。このようにして凹部114の上面112近傍のシリコン窒化膜120だけをシリコン酸化膜121に改質(酸化)させる。これにより、後述するエッチング工程S7において凹部114の開口部を閉塞しているシリコン酸化膜121を選択的にエッチングし易くする。
【0025】
(エッチング工程S7(第1のエッチング工程))
次に、
図1のエッチング工程S7において、改質させたシリコン酸化膜121を選択的にエッチングする。シリコン窒化膜120とシリコン酸化膜121とでは、シリコン酸化膜121が下記のプロセス条件においてエッチングされ易い。これにより、シリコン窒化膜120に対してシリコン酸化膜121を選択的にエッチングし、シリコン酸化膜121を選択的に除去できる。この結果、本エッチング工程S7によっても凹部114の底面116のシリコン窒化膜120は除去されない。
【0026】
シリコン酸化膜121を除去したことによって再び凹部114の開口部が形成される。
図2(d)は、シリコン酸化膜121が除去され、凹部114の開口部が再び開口し、酸化していないシリコン窒化膜120が残っている状態を示す。エッチング工程S7は、プラズマを使用せずにシリコン酸化膜121を除去する。以下に、エッチング工程S7のプロセス条件を示す。これらのエッチング工程は特許文献3にも詳細が記述されている。
<エッチング工程S7のプロセス条件>
CORエッチングガス NH
3及びフッ化(HF)水素
COR工程 載置台(基板)温度 20℃~90℃
COR工程圧力 5Pa~133Pa
【0027】
これにより、シリコン窒化膜120に対してシリコン酸化膜121が選択的にエッチングされる。エッチング工程S7は、COR(Chemical Oxide Remover)工程とPHT(Post Heat Treatment)工程とを含む。COR工程では、フッ素を含むガスと窒素を含むガスとを基板Wに供給し、フッ素を含むガスと窒素を含むガスとシリコン酸化膜121とを反応させて気化しやすい物質を形成する。PHT工程では、形成された気化しやすい物質を加熱して気化させて除去する。例えばCOR工程及びPHT工程においてNH3ガス及びHFガスを反応ガスとして用いることにより、以下の化学反応を利用してシリコン酸化膜121を除去する。なお、フッ素を含むガスの一例としてHFガスが挙げられ、窒素を含むガスの一例としてNH3ガスが挙げられるが、これに限らない。
【0028】
COR工程では、次の化学反応式に示すようにプラズマを使用しないでシリコン酸化膜121を気化しやすい物質に変化させる。プラズマを使用しないことで、凹部114に形成されたシリコン窒化膜120が変質したり、ダメージを受けたりすることを軽減できる。
【0029】
<COR工程の化学反応式/気化しやすい生成物の形成>
SiO2(Solid)+2NH3(gas)+6HF(gas)→(NH4)2SiF6(Solid、気化しやすい生成物)+2H2O(gas)
【0030】
シリコン酸化膜121に対してNH3ガスとHFガスとを暴露させると、気化しやすい生成物としてケイフッ化アンモニウム((NH4)2SiF6)に変わる。
【0031】
PHT工程では、COR工程により形成したケイフッ化アンモニウムを次の化学反応式に示すように熱処理することでケイフッ化アンモニウムをSiF4、HF、NH3にして気化させて除去する。ケイフッ化アンモニウムをこのようにして気化させるために、PHT工程では、基板を載置する載置台の温度又は基板の温度を50℃以上に制御することが好ましい。もしくは、特許文献3にあるように高温の加熱ガスを供給することで気化させてもよい。
【0032】
<PHT工程の化学反応式>
(NH4)2SiF6→SiF4↑+2NH3↑+2HF↑
これにより、プラズマを使用せずに、凹部114の開口部を閉塞しているシリコン窒化膜120を含む上面112よりも上層のシリコン酸化膜121を除去できる。これにより、凹部114の開口部が再び開口され、次の成膜工程S3において底面116からボトムアップでシリコン窒化膜120を成膜させることが可能になる。
【0033】
(埋め込み判定工程S9)
次に、
図1の埋め込み判定工程S9において、凹部114がシリコン窒化膜120で埋まったかを判定する。凹部114がシリコン窒化膜120で埋まったと判定されるまで工程S3~S7に示す処理を行う。これにより、工程S3~S7に含まれる成膜工程S3、酸化工程S5、エッチング工程S7の処理が繰り返される。
図2(e)は、空隙115が形成され、凹部114のシリコン窒化膜120による埋め込みが完了していないと判定され(工程S9にて「No」)、次の成膜工程S3が実行された後の状態を示す。エッチング工程S7において凹部114の開口部が再び開口されたため、次の成膜工程S3において凹部114の底面からボトムアップでシリコン窒化膜120が成膜されている。
【0034】
つまり、成膜工程S3、酸化工程S5、エッチング工程S7の処理は、凹部114へのシリコン窒化膜120が埋まるまでこの順で繰り返し行われる。
【0035】
また、成膜工程S3でシリコン窒化膜120が形成された後、酸化工程S5とエッチング工程S7を1回以上繰り返してもよい。これにより、凹部114の開口部を制御性良く開口することができる。
【0036】
また、エッチング工程S7(第1のエッチング工程)の後に凹部114の上部及び側壁部に残存するシリコン含有膜をエッチングする工程(第2のエッチング工程)を含んでもよい。例えば、
図2(d)に示すようにエッチング工程S7の後、凹部114の上部及び側壁部にシリコン窒化膜120が残存する場合がある。この状態で凹部114の底部にシリコン窒化膜120を形成する場合、凹部114の開口部が狭くなり、埋め込み性が悪化する恐れがある。そこで、エッチング工程S7の後に凹部114の上部及び側壁部に残存するシリコン窒化膜120を選択的にエッチングする。具体的には、エッチング工程S7と同じようにCOR工程と、PHT工程を用いてエッチングする。COR工程では、シリコン窒化膜120を選択的にエッチングできるように圧力、ガスの流量比、処理時間等を調整する。これにより、
図2(f)のように凹部114の上部及び側壁部のシリコン窒化膜120を除去し、制御性良くシリコン窒化膜120をボトムアップ成膜することができる。
【0037】
また、第2のエッチング工程のCOR工程とPHT工程は、1回以上繰り返してもよい。これにより、凹部114の開口部を制御性良く開口することができる。
【0038】
エッチング工程S7の後、凹部114の開口部が再び開口され、底面116に形成したシリコン窒化膜120が露出した状態で凹部114に形成したシリコン窒化膜120をプラズマで活性化させた窒素を含むガスにより改質する工程(第2の改質)を更に行ってもよい。エッチング工程S7の後に凹部114の上部及び側壁部に残存するシリコン窒化膜120を選択的にエッチングした後、第2の改質を更に行ってもよい。これにより、形成したシリコン窒化膜120の膜質を改善することができる。また、熱処理により膜を高密度化する工程を更に行ってもよい。これにより緻密なシリコン窒化膜120となり、膜質が改善される。
【0039】
また、
図1の成膜工程S3において、シリコン窒化膜120によって複数の凹部114の開口部のすべてが閉塞したかを判定し、凹部114の開口部のすべてが閉塞したと判定されるまで成膜工程S3を続ける判定工程を含んでもよい。
【0040】
凹部114の開口部が閉塞したかを判定する方法としては、上面112に堆積したシリコン窒化膜120の断面の形状を光学的手法で測定して判定してもよい。上面112のシリコン窒化膜120が完全に閉塞しているか、それとも完全には閉塞していないかによって、上面112に堆積したシリコン窒化膜120に照射した光の反射の状態が変わる。光の反射の状態のある変化点をもってシリコン窒化膜120による開口部の閉塞の有無を判定してよい。ただし、判定方法はこれに限らず、他の方法を用いることができる。例えば上面112に堆積したシリコン窒化膜120が閉塞するまでの時間を成膜制御時間として予め測定して記憶部に記憶しておく。成膜工程S3を開始してから成膜制御時間が経過したら次の酸化工程S5を開始してもよい。
【0041】
また、
図1の酸化工程S5において、凹部114の開口部を閉塞しているシリコン窒化膜120を酸化したかを判定する判定工程を含んでもよい。凹部114の開口部を閉塞しているシリコン窒化膜120がシリコン酸化膜121に改質されたと判定されるまで、酸化工程S5が実行される。これにより、酸化工程S5では、凹部114の開口部を閉塞しているシリコン窒化膜120がシリコン酸化膜121に酸化されるまで行われる。
【0042】
凹部114の開口部を閉塞しているシリコン窒化膜120がシリコン酸化膜121に改質されたかを判定する方法としては、前述したシリコン窒化膜120の断面の形状を光学的手法で測定して判定してもよい。凹部114の開口部を閉塞しているシリコン窒化膜120が酸化しているか、それとも完全に酸化しておらずシリコン窒化膜120の部分があるかによって、照射した光の反射の状態が変わる。光の反射の状態のある変化点をもって凹部114の開口部を閉塞しているシリコン窒化膜120がシリコン酸化膜121に改質されたと判定してよい。ただし、この判定方法に限らず、他の方法を用いることができる。例えば凹部114の開口部を閉塞しているシリコン窒化膜120がシリコン酸化膜121に改質されるまでの時間を改質制御時間として予め測定し記憶部に記憶しておく。酸化工程S5を開始してから改質制御時間が経過したら次のエッチング工程S7を開始してもよい。改質制御時間は、載置台(基板)の温度によって変わる。よって、載置台(基板)の制御温度に応じた改質制御時間を予め測定し記憶部に記憶してもよい。
【0043】
また、埋め込み判定工程S9において、凹部114のシリコン窒化膜120による埋め込みが完了したかを判定する判定工程を含んでもよい。判定の方法としては、凹部114がシリコン窒化膜120で埋まるまでの時間を予め測定して記憶し、その時間を埋め込み判定時間として使用してもよい。また、凹部114のシリコン窒化膜120の断面を光学的に判定してシリコン窒化膜120による埋め込み完了を示すエンドポイントを検出してもよいし、その他の方法でもよい。
【0044】
[効果]
以上に説明した成膜方法STの特徴と効果は以下である。
<特徴>
1.成膜工程時に凹部114の開口部が閉塞するようにシリコン窒化膜を成膜する。
2.閉塞しているシリコン窒化膜を含む上面よりも上層を選択的に酸化する。
3.酸化されたシリコン酸化膜をシリコン窒化膜に対して選択的にエッチングする。
4.1.~3.の工程(成膜工程S3、酸化工程S5、エッチング工程S7)をトレンチ構造(凹部)が埋まるまで繰り返す。
【0045】
これにより、高アスペクト比を有する凹部に対して、シームやボイドの発生を抑制して高品質なシリコン窒化膜120の埋め込みを行うことができる。
【0046】
なお、
図1の成膜方法STでは、シリコン含有膜の一例としてシリコン窒化膜をトレンチ構造の凹部114に埋め込む例を挙げたが、シリコン含有膜は、シリコンと窒素とを含む膜であってよい。シリコンと窒素とを含む膜は、SiN膜、SiCN膜、SiBN膜、SiON膜、SiOCN膜のいずれかの膜であってよい。また、シリコン含有膜は、Si膜であってもよい。いずれの膜の場合も、酸化工程S5において酸化される。例えば、シリコン含有膜がSi膜の場合、Si膜は、酸化工程S5において酸化されてSiO膜となる。この場合にも、エッチング工程S7においてSi膜に対してSiO膜の選択比がとれ、SiO膜を選択的にエッチングできる。
【0047】
シリコン含有膜がSiON膜の場合、SiON膜を酸化させるとSiO膜になる。また、SiO膜の一部にSiONとしてNが残った部分があったとしても、改質が充分に行われていれば膜中のN成分は小量であるため、SiON膜に対してSiO膜の選択比がとれ、SiO膜を選択的にエッチングできる。
【0048】
[成膜時間と膜厚]
図3は、成膜工程S3の時間(成膜時間)と膜厚との関係を示す図であり、成膜方法STによりシリコン窒化膜を成膜した実験結果である。
図3の横軸は成膜工程S3の開始からの経過時間を「成膜時間(sec)」として示し、縦軸は凹部114に成膜したシリコン窒化膜120の膜厚を「Thickness(Å)」として示す。○で示す「Top」は凹部114の上面112から上層に堆積したシリコン窒化膜120の最も厚い部分の上面112からの厚さ(膜厚)を示す。●で示す「Bottom」は凹部114の底面116上に堆積したシリコン窒化膜120の最も厚い部分の底面116からの厚さ(膜厚)を示す。本実験のプロセス条件は以下の通りである。
<プロセス条件>
成膜ガス(流量比) SiH
4、NH
3、および、Ar(流量比 SiH
4:NH
3=20:10~20:20)
圧力 5Pa~50Pa
温度 200℃~600℃
電力 1500W~4500W
【0049】
図3に示す実験結果によれば、成膜時間に寄らず「Top」の膜厚は「Bottom」の膜厚よりも厚かった。また、成膜時間が長くなるほど、「Top」の膜厚と「Bottom」の膜厚との差が大きくなり、「Bottom」のシリコン窒化膜に対する「Top」のシリコン窒化膜の成長スピードが速くなった。
【0050】
[成膜時間と圧力]
図3に示した「Top」の膜厚を短時間で厚くできれば、シリコン含有膜により凹部114の開口部を短時間で閉塞できる。これにより、成膜工程S3を実行する処理装置の稼働率を高め、スループットを向上でき、有利である。
【0051】
そこで、「Top」の膜厚が短時間で厚くなり、シリコン含有膜により凹部114の開口部を短時間で閉塞できるように、圧力及び/又はガスの流量比の範囲を最適値に制御することが好ましい。
【0052】
図4は、実施形態に係る成膜時間と圧力との関係を示す図である。
図4の横軸は成膜時間を示し、縦軸は成膜工程S3を実行する処理装置の処理容器内の圧力を示す。成膜時間をstep1、step2、step3に分けたとき、成膜工程S3の初期工程step1では予め設定された圧力P1に設定し、これを維持するように制御する。中期工程step2では圧力が圧力P1よりも高い圧力P2になるように制御する。圧力が圧力P2に到達した後期工程step3では圧力P2に維持するように制御する。
【0053】
係る制御では、成膜時間を複数の工程に分けて成膜の初期、中期、後期に合わせて圧力を段階的に制御する。例えば初期工程step1において底面116へのシリコン含有膜の成膜がある程度行われた後、中期工程step2において上面112より上層のシリコン含有膜が早く成長する圧力条件に変えて目標圧力まで制御する。中期工程step2において目標圧力まで制御した後、後期工程step3では目標圧力を維持する。このように圧力を段階的に制御する。これにより、凹部114の底面へのシリコン含有膜の埋め込みを促進させつつ、シリコン含有膜によって凹部114の開口部をより早く閉塞させることができる。ただし、シリコン含有膜を形成する工程は、圧力が段階的に変わるように制御することに限らず、圧力が連続的に変わるように制御してもよい。
【0054】
[成膜時間とガス流量比]
成膜工程S3では、シリコンを含むガスの流量比を段階的に制御してもよい。
図5は、実施形態に係る成膜時間とガス流量比との関係を示す図である。
図5の横軸は成膜時間を示し、縦軸は成膜工程S3が行われる処理容器内に供給するガスとして、例えば、SiH
4ガスに対するNH
3ガス(及び/又はN
2ガス)の流量比を示す。成膜時間をstep1、step2、step3に分けたとき、成膜工程S3の初期工程step1ではSiH
4ガスに対するNH
3ガス(及び/又はN
2ガス)の流量比を予め設定された流量比R1に設定し、流量比R1を維持するように制御する。中期工程step2では当該流量比が流量比R1よりも高い流量比R2になるように制御する。ガスの流量比が流量比R2に到達した後期工程step3には流量比R2を維持するように制御する。このようにシリコンを含む複数のガスの流量比を段階的に制御することにより、凹部114のシリコン含有膜によって凹部114の開口部をより早く閉塞させることができる。ただし、シリコン含有膜を形成する工程は、流量比が段階的に変わるように制御することに限らず、流量比が連続的に変わるように制御してもよい。また、流量比R1及び流量比R2は、SiH
4ガスに対するNH
3ガス(及び/又はN
2ガス)の流量比に限るものではない。例えば、SiH
4ガスを含む全混合ガス(供給するすべてのガス)に対するSiH
4ガスの流量比であってもよい。
【0055】
[成膜システム]
図6は、実施形態に係る成膜システムの構成例を示す図である。成膜システムは、本開示の成膜方法STを実行する処理装置を含む。ただし、
図6の成膜システムの構成は一例であり、他の構成を取り得る。
【0056】
成膜システムは、処理装置101~104と、真空搬送室200と、ロードロック室301~303と、大気搬送室400と、ロードポート501~504と、制御部600と、を備える。
【0057】
処理装置101~104は、それぞれゲートバルブG11~G14を介して真空搬送室200と接続されている。処理装置101~104内は所定の真空雰囲気に減圧され、その内部にて基板Wに所望の処理を施す。処理装置101は、
図1の成膜工程S3を実行し、基板Wの凹部にシリコン含有膜を形成するように構成された第1の処理装置の一例である。処理装置102は、
図1の酸化工程S5(改質工程)を実行し、凹部に形成されたシリコン含有膜を部分的に酸化(改質)するように構成された第2の処理装置の一例である。処理装置103、104は、
図1のエッチング工程S7を実行し、酸化(改質)したシリコン含有膜を選択的にエッチングするように構成された第3の処理装置の一例である。例えば処理装置103はCOR工程を実行し、処理装置104はPHT工程を実行する。処理装置101で成膜工程S3及び酸化工程S5を実行してよい。この場合、処理装置102は、処理装置101と同じ処理を行う装置であってもよく、別の処理を行う装置であってもよい。なお、処理装置101の構成例については、
図7を用いて後述する。
【0058】
真空搬送室200内は、所定の真空雰囲気に減圧されている。真空搬送室200には、減圧状態で基板Wを搬送可能な搬送機構201が設けられている。搬送機構201は、処理装置101~104、ロードロック室301~303に対して、基板Wを搬送する。搬送機構201は、例えば2つの搬送アームを有する。ただし、搬送アームは1つでもよい。
【0059】
ロードロック室301~303は、それぞれゲートバルブG21~G23を介して真空搬送室200と接続され、ゲートバルブG31~G33を介して大気搬送室400と接続されている。ロードロック室301~303内は、大気雰囲気と真空雰囲気とを切り替えることができるようになっている。
【0060】
大気搬送室400内は、大気雰囲気となっており、例えば清浄空気のダウンフローが形成されている。大気搬送室400内には、基板Wのアライメントを行う図示しないアライナが設けられている。また、大気搬送室400には、搬送機構402が設けられている。搬送機構402は、例えば1つの搬送アームを有する。ただし、搬送アームは2つ又はそれ以上でもよい。搬送機構402は、ロードロック室301~303、後述するロードポート501~504のキャリアC、アライナに対して、基板Wを搬送する。
【0061】
ロードポート501~504は、大気搬送室400の長辺の壁面に設けられている。ロードポート501~504は、ゲートバルブG41~G44を介して基板Wが収容されたキャリアC又は空のキャリアCが取り付けられる。キャリアCとしては、例えばFOUP(Front Opening Unified Pod)を利用できる。
【0062】
制御部600は、成膜システムの各部を制御する。例えば、制御部600は、処理装置101~104の動作、搬送機構201,402の動作、ゲートバルブG11~G14,G21~G23,G31~G33,G41~G44の開閉、ロードロック室301~303内の雰囲気の切り替え等を実行する。制御部600は、例えばコンピュータであってよい。
【0063】
[成膜装置]
図7は、実施形態に係る成膜装置100の構成例を示す図である。成膜装置100は、成膜工程S3を実行し、減圧状態の処理容器1内で基板Wの凹部にシリコン含有膜を形成する装置であり、
図6の処理装置101の一例である。成膜装置100は、成膜工程S3に続けて酸化工程S5を実行する装置であってよい。つまり、酸化工程S5は
図7の成膜装置100を構成例とする処理装置101で実行してもよいし、処理装置101とは別の処理装置102で実行してもよい。
【0064】
ただし、
図7の成膜装置100の構成は一例であり、成膜装置は、Capacitively Coupled Plasma(CCP)、Inductively Coupled Plasma(ICP)、Micro Surface Wave Plasma、Electron Cyclotron Resonance Plasma(ECR)、Helicon Wave Plasma(HWP)のいずれのタイプのプラズマ処理装置でも適用可能である。プラズマを用いない熱CVD装置でも、成膜により開口部が閉塞するようなプロセス条件であれば適応可能である。また、成膜装置は、基板を一枚ずつ処理する枚葉装置、複数枚の基板を一括処理するバッチ装置及びセミバッチ装置のいずれにも適用可能である。
【0065】
成膜装置100は、内壁面に陽極酸化処理が施されたアルミニウム等によって略円筒状に形成された処理容器1を有する。処理容器1は、接地されている。処理容器1の内部には、サセプタ2が設けられている。サセプタ2は、処理容器1の中央下部に設けられた略円筒状の支持部材3により支持されている。サセプタ2は、基板Wを水平に支持するための載置台(ステージ)であり、例えば窒化アルミニウム(AlN)等のセラミックス材料、または、アルミニウムやニッケル合金等の金属材料等で形成されている。サセプタ2は、支持部材3を介して接地されている。
【0066】
サセプタ2の外縁部には、基板Wをガイドするためのガイドリング4が設けられる。また、サセプタ2には、モリブデン等の高融点金属で構成されたヒータ5が埋め込まれる。ヒータ5には、ヒータ電源6が接続されている。ヒータ5は、ヒータ電源6から供給された電力によって、サセプタ2に支持された基板Wを予め定められた温度に加熱する。
【0067】
処理容器1の天壁1aには、絶縁部材9を介してシャワーヘッド10が設けられている。本実施形態におけるシャワーヘッド10は、プリミックスタイプのシャワーヘッドであり、ベース部材11と、シャワープレート12とを有する。シャワープレート12の外周部は、ベース部材11に固定されている。
【0068】
シャワープレート12は、フランジ状をなし、シャワープレート12の内部には、凹部が形成されている。即ち、ベース部材11とシャワープレート12との間には、ガス拡散空間14が形成されている。ベース部材11の外周部にはフランジ部11aが形成されており、ベース部材11は、フランジ部11aを介して絶縁部材9に支持されている。
【0069】
シャワープレート12には、複数のガス吐出孔15が形成されている。ベース部材11の略中央付近には、ガス導入孔16が形成されている。ガス導入孔16は、配管30を介してガス供給機構20に接続されている。
【0070】
ガス供給機構20は、シリコン含有ガスの供給源21と、希ガスの供給源22と、窒素含有ガスの供給源23とを有する。本実施形態において、シリコン含有ガスは、例えばSiH4ガスである。また、本実施形態において、希ガスは、例えばArガスである。また、本実施形態において、窒素含有ガスは、例えばアンモニア(NH3)ガスである。
【0071】
供給源21は、バルブ28、マスフローコントローラ(MFC)27、およびバルブ28を介して配管30に接続されている。供給源22は、バルブ28、マスフローコントローラ(MFC)27、およびバルブ28を介して配管30に接続されている。供給源23は、バルブ28、マスフローコントローラ(MFC)27、およびバルブ28を介して配管30に接続されている。配管30を介してガス拡散空間14内の供給された処理ガスは、ガス拡散空間14内を拡散し、ガス吐出孔15を介して処理容器1内にシャワー状に吐出される。
【0072】
ベース部材11には、整合器44を介して、RF(Radio Frequency)電源45が接続されている。RF電源45は、整合器44を介してプラズマ生成用のRF電力をベース部材11に供給する。ベース部材11に供給されたRF電力は、中間部材13およびシャワープレート12を介して処理容器1内に放射される。処理容器1内に放射されたRF電力によって、処理容器1内に供給された処理ガスがプラズマ化される。本実施形態において、シャワーヘッド10は、平行平板電極の上部電極としても機能する。一方、サセプタ2は、平行平板電極の下部電極としても機能する。
【0073】
処理容器1の底壁1bにおける略中央部には、略円形の開口部50が形成されている。底壁1bの開口部50には、開口部50を覆うように下方に向けて突出する排気室51が設けられている。排気室51は、処理容器1を介して接地されている。排気室51の側壁には排気管52が接続されている。排気管52には、真空ポンプを含む排気装置53が接続されている。排気装置53により、処理容器1内を予め定められた真空度まで減圧することができる。
【0074】
サセプタ2には、基板Wを昇降させるための複数(たとえば、3本)のリフトピン54が、サセプタ2の表面に対して突没可能に設けられている。複数のリフトピン54は、支持板55によって支持されている。支持板55は、駆動機構56の駆動により昇降する。支持板55が昇降することにより、複数のリフトピン54が昇降する。
【0075】
処理容器1の側壁には、処理容器1と隣接して設けられた図示しない基板搬送室との間で基板Wの搬送を行うための搬送口57が設けられている。搬送口57は、ゲートバルブ58によって開閉される。
【0076】
成膜装置100は、制御装置60を備える。制御装置60は、例えばコンピュータであり、制御部61と記憶部62とを有する。記憶部62には、成膜装置100において実行される各種の処理を制御するプログラム等が予め格納されている。制御部61は、記憶部62に記憶されたプログラムを読み出して実行することによって成膜装置100の各部を制御する。
【0077】
なお、記憶部62内に予め格納されているプログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から記憶部62にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、例えばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカード等がある。
【0078】
また、制御装置60には、オペレータが成膜装置100を管理するためにコマンドの入力操作等を行うためのキーボードや、成膜装置100の稼働状況を可視化して表示するディスプレイ等で構成されるユーザインターフェース63が接続される。
【0079】
図6のシステムでは、処理装置101~104は、成膜工程、改質工程、COR工程、および、PHT工程のそれぞれの工程に対応する処理装置として説明してきたがその限りではない。例えば、
図8に示すように1つの処理装置内で複数枚の基板Wを処理してもよい。例えば、
図8に示す処理装置は、処理容器内に複数の載置台801~804を有し、複数の基板W(例えば、4枚)を載置台801~804のそれぞれに載置する。また複数の載置台801~804のそれぞれに対応した複数の処理空間805~808を備える。そして、それぞれの処理空間で成膜工程、改質工程、COR工程、および、PHT工程のそれぞれの工程を実施して基板Wに形成された凹部内にシリコン含有膜を埋め込む。このように1つの装置で複数枚の基板Wに対して複数の処理を実行できるので生産性を向上することができる。なお、処理空間805は、成膜工程を実施する第1の処理空間の一例である。処理空間806は、改質工程を実施する第2の処理空間の一例である。処理空間807は、COR工程を実施する第3の処理空間の一例である。処理空間808は、PHT工程を実施する第4の処理空間の一例である。
【0080】
以上に説明したように、本実施形態の成膜方法及び成膜システムによれば、基板に形成された凹部へのシリコン含有膜の埋め込み性能を高めることができる。
【0081】
今回開示された実施形態に係る成膜方法及び成膜システムは、すべての点において例示であって制限的なものではないと考えられるべきである。実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で変形及び改良が可能である。上記複数の実施形態に記載された事項は、矛盾しない範囲で他の構成も取り得ることができ、また、矛盾しない範囲で組み合わせることができる。
【符号の説明】
【0082】
114 凹部
120 シリコン窒化膜
121 シリコン酸化膜
ST 成膜方法
S3 成膜工程
S5 酸化工程
S7 エッチング工程
W 基板