IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日鉄住金エレクトロデバイス株式会社の特許一覧 ▶ 日本碍子株式会社の特許一覧

<>
  • 特開-パッケージ 図1
  • 特開-パッケージ 図2
  • 特開-パッケージ 図3
  • 特開-パッケージ 図4
  • 特開-パッケージ 図5
  • 特開-パッケージ 図6
  • 特開-パッケージ 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023082392
(43)【公開日】2023-06-14
(54)【発明の名称】パッケージ
(51)【国際特許分類】
   H01L 23/36 20060101AFI20230607BHJP
   H01L 23/08 20060101ALI20230607BHJP
   H01L 23/06 20060101ALI20230607BHJP
   H01L 23/12 20060101ALI20230607BHJP
【FI】
H01L23/36 Z
H01L23/08 C
H01L23/06 B
H01L23/12 J
【審査請求】未請求
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2021196136
(22)【出願日】2021-12-02
(71)【出願人】
【識別番号】391039896
【氏名又は名称】NGKエレクトロデバイス株式会社
(71)【出願人】
【識別番号】000004064
【氏名又は名称】日本碍子株式会社
(74)【代理人】
【識別番号】100088672
【弁理士】
【氏名又は名称】吉竹 英俊
(74)【代理人】
【識別番号】100088845
【弁理士】
【氏名又は名称】有田 貴弘
(74)【代理人】
【識別番号】100134991
【弁理士】
【氏名又は名称】中尾 和樹
(74)【代理人】
【識別番号】100148507
【弁理士】
【氏名又は名称】喜多 弘行
(72)【発明者】
【氏名】河村 卓
(72)【発明者】
【氏名】山口 哲平
【テーマコード(参考)】
5F136
【Fターム(参考)】
5F136BA30
5F136FA03
5F136FA05
5F136FA14
5F136GA02
(57)【要約】
【課題】枠体が接合される際に大きな温度変化にさらされるヒートシンク中の熱応力に起因しての層間界面での剥離の発生を抑制することができるパッケージを提供する。
【解決手段】ヒートシンク10の第1の層11aは、厚み方向において互いに反対の第1の面S1および第2の面S2を有しており、ヒートシンク10の側面H3に含まれる第1の側部H1aをなしている。ヒートシンク10の第2の層12aは、第1の面S1に積層されており、ヒートシンク10の側面H3に含まれる第2の側部H2aをなしている。ヒートシンク10の第3の層12bは、第2の面S2に積層されており、ヒートシンク10の側面H3に含まれる第3の側部H2bをなしている。第1の面S1は、ヒートシンク10の側面H3から離れた第1の平坦部SF1と、ヒートシンク10の側面H3に達し、第2の層12aへ食い込むように第1の平坦部SF1から傾斜した第1の端部SG1とを含む。
【選択図】図2
【特許請求の範囲】
【請求項1】
蓋体によって封止されることになるキャビティを有するパッケージであって、
絶縁体からなり、平面視において前記キャビティを囲む枠体と、
前記枠体を支持する支持面と、前記平面視に垂直な厚み方向において前記支持面と反対の底面と、前記支持面と前記底面とを互いにつなぐ側面と、を有するヒートシンクと、
前記枠体と前記ヒートシンクとを互いに接合する第1の接合材と、
を備え、
前記ヒートシンクは、
前記厚み方向において互いに反対の第1の面および第2の面を有し、前記ヒートシンクの前記側面に含まれる第1の側部をなし、第1の金属材料からなる第1の層と、
前記第1の層の前記第1の面に直接に積層され、前記ヒートシンクの前記側面に含まれる第2の側部をなし、前記第1の金属材料とは異なる第2の金属材料からなる第2の層と、
前記第1の層の前記第2の面に直接に積層され、前記ヒートシンクの前記側面に含まれる第3の側部をなし、前記第1の金属材料とは異なる第3の金属材料からなる第3の層と、を含み、
前記第1の層の前記第1の面は、前記厚み方向に平行な断面視において、
前記厚み方向に垂直であって前記ヒートシンクの前記側面から離れた第1の平坦部と、
前記ヒートシンクの前記側面に達し、前記第2の層へ食い込むように前記第1の平坦部から傾斜した第1の端部と、を含む、パッケージ。
【請求項2】
前記第1の層の前記第2の面は、前記断面視において、
前記厚み方向に垂直であって前記ヒートシンクの前記側面から離れた第2の平坦部と、
前記ヒートシンクの前記側面に達し、前記第3の層へ食い込むように前記第2の平坦部から傾斜した第2の端部と、を含む、請求項1に記載のパッケージ。
【請求項3】
前記ヒートシンクの前記側面において、前記第1の層の前記第1の側部は、前記第2の層の前記第2の側部および前記第3の層の前記第3の側部に対して凹んだ凹部分を有している、請求項1または2に記載のパッケージ。
【請求項4】
前記第1の層の前記第1の側部の前記凹部分は、前記断面視における前記厚み方向に垂直な方向において、前記第1の層の前記第1の平坦部の外にのみ位置している、請求項3に記載のパッケージ。
【請求項5】
前記第1の金属材料は、前記第2の金属材料および前記第3の金属材料よりも硬い、請求項1から4のいずれか1項に記載のパッケージ。
【請求項6】
前記第2の金属材料と前記第3の金属材料とは同じである、請求項1から5のいずれか1項に記載のパッケージ。
【請求項7】
前記第1の層は、前記第2の層および前記第3の層の各々よりも薄い、請求項1から6のいずれか1項に記載のパッケージ。
【請求項8】
前記枠体の前記絶縁体はセラミック絶縁体である、請求項1から7のいずれか1項に記載のパッケージ。
【請求項9】
前記第1の接合材は、ろう材からなる、請求項1から8のいずれか1項に記載のパッケージ。
【請求項10】
前記枠体に支持された、前記キャビティの内部と外部との間での電気的接続を得るための金属リードと、
前記枠体と前記金属リードとを互いに接合する第2の接合材と、
をさらに備える、請求項1から9のいずれか1項に記載のパッケージ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、パッケージに関し、特に、蓋体によって封止されることになるキャビティを有するパッケージに関するものである。
【背景技術】
【0002】
電力用半導体素子などの電子部品を収納するために、キャビティを有するパッケージがしばしば用いられる。パッケージのキャビティ中へ電子部品が搭載された後、パッケージに蓋体が接合されることによって、キャビティが気密に封止される。これにより、外部環境から保護された電子部品を有する電子装置が得られる。電力半導体素子用のパッケージは、多くの場合、ヒートシンク(放熱板)を有している。ヒートシンクの底面(電子部品が搭載された面と反対の面)は、通常、それを支持する支持部材へ取り付けられることになる。支持部材は、例えば、実装ボードまたは放熱部材である。支持部材は、ヒートシンクの底面へ熱的に接触させられる。ヒートシンクを介することによって電子部品からの熱が効率的にパッケージの外部へ(典型的には支持部材へ)と排出される。これにより、電子部品の温度上昇が、例えば150℃程度までに抑えられる。
【0003】
特開2003-282751号公報(特許文献1)に開示された技術によれば、ヒートシンクとしてCuまたはCu系金属板が用いられる。Cuは、安価でありながら、300W/m・Kを超える高い熱伝導率を有している。よって、ヒートシンクの材料コストを抑えつつ、ヒートシンクの放熱性能を高めることができる。この技術によれば、まず、ヒートシンク上に半導体素子が、ろう付けによって実装される。次に、予め外部接続端子が接合されている枠体がヒートシンク上に、半導体素子を囲むように接合される。この接合に低融点接合材を用いることによって、半導体素子のろう付け温度未満の温度で枠体が接合される。次に、枠体の上面側に蓋体が接合されることによって、キャビティが封止される。これにより電子装置が得られる。
【0004】
特開2005-243819号公報(特許文献2)によれば、ヒートシンクにクラッド材が用いられていること、具体的にはCPC(登録商標)が用いられること、が開示されている。CPCは、Cu-Mo合金層と、その上下に設けられたCu層と、を有する複合金属板(複合材料)である。CPCの線膨張係数は、Cuの線膨張係数に比して低い。よって、ヒートシンク材料として、Cuに代わってCPCを用いることによって、ヒートシンクの線膨張係数をセラミックの線膨張係数に近づけることができる。
【0005】
特開2010-219441号公報(特許文献3)によれば、電子部品収納用パッケージは、クラッド材からなる放熱板と、枠体と、外部接続端子とを有している。枠体は、アルミナまたは窒化アルミニウムなどのセラミックからなる。枠体の両面には、タングステンまたはモリブデンなどからなるメタライズ膜が形成されている。Ag-Cuろうなどのろう材を用いて、放熱板と外部接続端子とが、枠体の両面にメタライズ膜を介してそれぞれ接合されている。クラッド材は、銅層と、厚さ0.2mm以下のモリブデン層とが交互に合計で5層以上積層されることによって構成されており、銅層が最表層を構成している。放熱板に対するモリブデン層の厚さの比率は合計で10~14%である。上記公報によれば、この構成は、放熱板の熱伝導率は大きく低下せず、熱膨張係数のみが小さくなるという作用を有している。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2003-282751号公報
【特許文献2】特開2005-243819号公報
【特許文献3】特開2010-219441号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
パッケージの製造方法は、通常、枠体をヒートシンクに接合材を用いて接合する工程を含む。この工程は、通常、加熱を要するものであり、特に、接合材がろう材の場合は、例えば、800℃程度の高温を要する。よってヒートシンクは、接合材が形成される際に、大きな温度変化にさらされる。その結果、ヒートシンク中に大きな熱応力が加わる。クラッド材からなるヒートシンクのように、層間界面を有するヒートシンクに対して、上記の大きな熱応力が加わると、層間界面の端を起点とした剥離が生じやすい。この剥離がヒートシンクにとっての許容できないダメージとなることがある。
【0008】
本発明は以上のような課題を解決するためになされたものであり、その目的は、枠体が接合される際に大きな温度変化にさらされるヒートシンク中の熱応力に起因しての層間界面での剥離の発生を抑制することができるパッケージを提供することである。
【課題を解決するための手段】
【0009】
パッケージは、蓋体によって封止されることになるキャビティを有している。パッケージは、枠体と、ヒートシンクと、第1の接合材とを含む。枠体は、絶縁体からなり、平面視においてキャビティを囲んでいる。ヒートシンクは、枠体を支持する支持面と、平面視に垂直な厚み方向において支持面と反対の底面と、支持面と底面とを互いにつなぐ側面と、を有している。第1の接合材は枠体とヒートシンクとを互いに接合している。ヒートシンクは、第1の金属材料からなる第1の層と、第1の金属材料とは異なる第2の金属材料からなる第2の層と、第1の金属材料とは異なる第3の金属材料からなる第3の層と、を含む。第1の層は、厚み方向において互いに反対の第1の面および第2の面を有しており、ヒートシンクの側面に含まれる第1の側部をなしている。第2の層は、第1の層の第1の面に直接に積層されており、ヒートシンクの側面に含まれる第2の側部をなしている。第3の層は、第1の層の第2の面に直接に積層されており、ヒートシンクの側面に含まれる第3の側部をなしている。第1の層の第1の面は、厚み方向に平行な断面視において、厚み方向に垂直であってヒートシンクの側面から離れた第1の平坦部と、ヒートシンクの側面に達し、第2の層へ食い込むように第1の平坦部から傾斜した第1の端部と、を含む。
【発明の効果】
【0010】
一実施の形態のパッケージによれば、第1の層の第1の面は、第2の層へ食い込むように第1の平坦部から傾斜した第1の端部を含む。これにより、第1の層の第1の平坦部と第2の層との間の界面の端が面内方向において第1の層に覆われる。よって、第1の接合材が形成される際に大きな温度変化にさらされるヒートシンク中の熱応力に起因しての第1の層と第2の層との間の界面での剥離の発生を抑制することができる。
【0011】
第1の層の第2の面は、断面視において、厚み方向に垂直であってヒートシンクの側面から離れた第2の平坦部と、ヒートシンクの側面に達し、第3の層へ食い込むように第2の平坦部から傾斜した第2の端部と、を含んでよい。その場合、第1の層の第2の平坦部と第3の層との間の界面の端が面内方向において第1の層に覆われる。よって、ヒートシンク中の熱応力に起因しての第1の層と第3の層との間の界面での剥離の発生を抑制することができる。
【0012】
ヒートシンクの側面において、第1の層の第1の側部は、第2の層の第2の側部および第3の層の第3の側部に対して凹んだ凹部分を有していてよい。その場合、第1の層のうち第1の層の第1の平坦部と第2の層との間の界面の端を面内方向において覆う部分を、凹部分にあった材料を用いて形成することができる。
【0013】
第1の層の第1の側部の凹部分は、断面視における厚み方向に垂直な方向において、第1の層の第1の平坦部の外にのみ位置していてよい。その場合、凹部分に起因してのヒートシンクの破壊を十分に避けることができる。
【0014】
第1の金属材料は、第2の金属材料および第3の金属材料よりも硬くてよい。その場合、第1の層のうち第1の層の第1の平坦部と第2の層との間の界面の端を面内方向において覆う部分が、硬い材料からなる。よって、ヒートシンク中の熱応力に起因しての第1の層と第2の層との間の界面での剥離の発生を、より抑制することができる。
【0015】
第2の金属材料と第3の金属材料とは同じであってよい。その場合、ヒートシンクの材料構成を簡素化することができる。
【0016】
第1の層は、第2の層および第3の層の各々よりも薄くてよい。その場合、ヒートシンクの層間界面を面内方向において覆う層として、相対的に薄い層を用いることができる。
【0017】
枠体の絶縁体はセラミック絶縁体であってよい。その場合、枠体は、高い耐熱性を有する。よって、第1の接合材を高温で形成することができる。それにともなってヒートシンクへ大きな熱応力が加わっても、上述した理由によって、第1の層と第2の層との間の界面での剥離の発生を抑制することができる。
【0018】
第1の接合材は、ろう材からなっていてよい。その場合、第1の接合材の形成には、高温が必要である。それにともなってヒートシンクへ大きな熱応力が加わっても、上述した理由によって、第1の層と第2の層との間の界面での剥離の発生を抑制することができる。
【0019】
パッケージは、キャビティの内部と外部との間での電気的接続を得るための金属リードと、第2の接合材とをさらに含んでよい。金属リードは枠体に支持されている。第2の接合材は枠体と金属リードとを互いに接合している。この場合、第2の接合材が形成される際の温度変化にヒートシンクがさらされたとしても、上述した理由によって、ヒートシンク中の熱応力に起因しての第1の層と第2の層との間の界面での剥離の発生を抑制することができる。
【0020】
この発明の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
【図面の簡単な説明】
【0021】
図1】一実施の形態に係る電子装置の構成を、キャビティ内部が見えるようにその一部の図示を省略して示す概略斜視図である。
図2図1の電子装置の線II-IIに沿う概略断面図である。
図3図2の電子装置の部品としてのパッケージの構成を示す概略断面図である。
図4図3の一部拡大図であり、ヒートシンクの構成を概略的に示す部分断面図である。
図5図4の一部拡大図である。
図6図5に対応した顕微鏡写真の一例である。
図7】ヒートシンクの側面の形成方法を概略的に示す部分断面図である。
【発明を実施するための形態】
【0022】
以下、図面に基づいて本発明の実施の形態について説明する。図面間での方向関係を理解しやすくするために、いくつかの図にはxyz直交座標が示されている。なお本明細書において、金属は、特段の記載がない限り、純金属および合金のいずれをも意味し得る。また平面視は、厚み方向に垂直な平面への射影を意味する。言い換えれば、厚み方向は、平面視に垂直な方向である。上記xyz座標系によれば、厚み方向はz方向に対応し、厚み方向に垂直な平面はxy平面に対応する。
【0023】
図1は、本実施の形態に係る電子装置90の構成を示す概略斜視図である。図2は、図1の電子装置90の線II-IIに沿う概略断面図である。電子装置90は、パッケージ50と、蓋体80と、電子部品8とを有している。また電子装置90は接着層70を有していてよい。また電子装置90は、ワイヤ9(配線部材)を有していてよい。なお図1においては、パッケージ50が有するキャビティCVの内部が部分的に見えるように、蓋体80および接着層70の図示が部分的に省略されている。電子部品8はパワー半導体素子であってよく、この場合、電子装置90はパワーモジュールである。パワー半導体素子は高周波(RF:Radio Frequency)用であってよく、この場合、電子装置90はRFパワーモジュールである。なお、図1および図2においては1つの電子部品8が図示されているが、パッケージ50へは複数の電子部品8が搭載されていてよい。
【0024】
図3は、電子装置90(図2)の部品としてのパッケージ50の構成を示す概略断面図である。電子装置90の製造のためにパッケージ50が準備された時点では、図3に示されているように、電子部品8は未だ実装されていない。パッケージ50は、蓋体80(図2)によって封止されることになるキャビティCVを有している。パッケージ50は、枠体20と、ヒートシンク10と、第1の接合材21とを含む。またパッケージ50は、本実施の形態においては、金属リード30(金属端子)と、第2の接合材22とをさらに含む。
【0025】
枠体20は、平面視においてキャビティCVを囲んでいる。枠体20は、絶縁体からなる。この絶縁体は、具体的にはセラミック絶縁体であり、例えば、実質的にアルミナである。セラミック絶縁体はジルコニアであってもよい。枠体20の表面の、第1の接合材21および第2の接合材22に面する部分には、第1の接合材21および第2の接合材22との接合を容易とするために、メタライズ膜(図示せず)が設けられていてよい。枠体20の外縁は、図1に示されているように矩形形状を有していてよく、その各辺の大きさは、例えば、10mm以上、40mm以下である。枠体20の厚みは、例えば、0.25mm以上、1.25mm以下である。枠体20の厚みが0.25mm未満であると、キャビティCVの高さが不足する可能性が高い。枠体20の厚みが1.25mmより大きいと、枠体20上の金属リード30への接続が必要なワイヤ9(図2)の長さも大きくなり、その結果、ワイヤ9のインダクタンスも大きくなる。ワイヤ9のインダクタンスの増大は、電気特性上、通常は望まれないことである。
【0026】
ヒートシンク10は、枠体20を支持する支持面H1と、z方向(平面視に垂直な厚み方向)において支持面H1と反対の底面H2と、支持面H1と底面H2とを互いにつなぐ側面H3と、を有している。ヒートシンク10の構造の詳細は後述する。
【0027】
第1の接合材21は枠体20とヒートシンク10とを互いに接合している。第1の接合材21は、ろう材からなる。このろう材は、銀を含有したろう材、すなわち銀ろう材であってよく、その融点は、例えば、650℃以上、950℃以下である。第1の接合材21の厚みは、枠体20およびヒートシンク10の各々の厚みよりも小さくてよい。
【0028】
金属リード30は、キャビティCVの内部と外部との間での電気的接続を得るためのものである。金属リード30は枠体20に支持されている。金属リード30の材料は、例えば、Fe-Ni合金、Cu、またはCu合金である。Fe-Ni合金は、例えば、42アロイである。42アロイは、主成分としてFe原子を含有しており、かつ約42wt%(重量パーセント)のNi原子を含有している。
【0029】
第2の接合材22は枠体20と金属リード30とを互いに接合している。第2の接合材22は、ろう材からなる。このろう材は、銀を含有したろう材、すなわち銀ろう材であってよく、その融点は、例えば、650℃以上、950℃以下である。第2の接合材22の材料は、第1の接合材21の材料と同じであってよい。第2の接合材22の厚みは、枠体20および金属リード30の各々の厚みよりも小さくてよい。
【0030】
図4は、図3の一部拡大図であり、ヒートシンク10の構成を概略的に示す部分断面図である。図5は、図4の一部拡大図である。図6は、図5に対応した顕微鏡写真の一例である。
【0031】
ヒートシンク10は、少なくとも3層以上の積層構造を有するクラッド材である。本実施の形態においては、ヒートシンク10は、5層の積層構造を有するクラッド材であり、具体的には、第1の層11aと、第2の層12aと、第3の層12bと、第4の層11bと、第5の層12cとを含む。
【0032】
上記のようにヒートシンク10に含まれる第1の層11aと第2の層12aと第3の層12bとのそれぞれは、第1の金属材料と第2の金属材料と第3の金属材料とからなる。第2の金属材料および第3の金属材料の各々は、第1の金属材料とは異なっている。第1の金属材料は、第2の金属材料および第3の金属材料よりも硬くてよい。第2の金属材料と第3の金属材料とは同じであってよい。本実施の形態においては、第1の金属材料は実質的にMo(モリブデン)であり、第2の金属材料および第3の金属材料の各々は実質的にCu(銅)である。よって、以下において、第1の層11aと第2の層12aと第3の層12bとのそれぞれを、Mo層11aとCu層12aとCu層12bと称することがある。Mo層11aは、Cu層12aおよびCu層12bの各々よりも薄くてよい。本実施の形態においては、Cu層12aは、ヒートシンク10の支持面H1をなしている。
【0033】
また上記のように、ヒートシンク10に含まれる第4の層11bと第5の層12cとのそれぞれは、第4の金属材料と第5の金属材料とからなる。第3の金属材料および第5の金属材料の各々は、第4の金属材料とは異なっている。第4の金属材料は、第3の金属材料および第5の金属材料よりも硬くてよい。第3の金属材料と第5の金属材料とは同じであってよい。本実施の形態においては、第4の金属材料は実質的にMoであり、第5の金属材料は実質的にCuである。よって、以下において、第4の層11bと第5の層12cとのそれぞれを、Mo層11bとCu層12cと称することがある。Mo層11bは、Cu層12bおよびCu層12cの各々よりも薄くてよい。本実施の形態においては、Cu層12cは、ヒートシンク10の底面H2をなしている。
【0034】
Mo層11aは、z方向において互いに反対の面S1(第1の面)および面S2(第2の面)を有しており、ヒートシンク10の側面H3に含まれる側部H1a(第1の側部)をなしている。Cu層12aは、Mo層11aの面S1に直接に積層されており、ヒートシンク10の側面H3に含まれる側部H2a(第2の側部)をなしている。図4および図5の断面視において、側部H2aは実質的に、z方向に平行な直線部とみなされてよい。Cu層12bは、Mo層11aの面S2に直接に積層されており、ヒートシンク10の側面H3に含まれる側部H2b(第3の側部)をなしている。図4および図5の断面視において、側部H2bは実質的に、z方向に平行な直線部とみなされてよい。この直線部は、図6のような写真に対して、必要に応じて、z方向に平行な直線部をフィッティングすることによって定められてよい。Mo層11aの面S1は、図4および図5(z方向に平行な断面視)において、z方向に垂直であってヒートシンク10の側面H3から離れた平坦部SF1(第1の平坦部)と、ヒートシンク10の側面H3に達し、Cu層12aへ食い込むように平坦部SF1から傾斜した端部SG1(第1の端部)と、を含む。Mo層11aの面S2は、断面視において、z方向に垂直であってヒートシンク10の側面H3から離れた平坦部SF2(第2の平坦部)と、ヒートシンク10の側面H3に達し、Cu層12bへ食い込むように平坦部SF2から傾斜した端部SG2(第2の端部)と、を含む。z方向における端部SG1および端部SG2の各々の寸法(図4および図5における縦方向における寸法)は、例えば、5μm以上、100μm以下である。
【0035】
ヒートシンク10の側面H3において、Mo層11aの側部H1aは、Cu層12aの側部H2aおよびCu層12bの側部H2bに対して凹んだ凹部分を有している。言い換えれば、Mo層11aの側部H1aは、側部H2aおよび側部H2bを含む仮想平面VF(図5)に対して凹んだ凹部分を有している。Mo層11aの側部H1aの凹部分は、x方向において、Mo層11aの平坦部SF1の外にのみ位置している。ここで、x方向は、図4および図5に示された断面視(zx面の視野)における厚み方向(z方向)に垂直な方向である。x方向におけるこの凹部分の深さは、例えば1μm以上、10μm未満である。
【0036】
Mo層11b(図4)は、z方向において互いに反対の面S3および面S4を有しており、ヒートシンク10の側面H3に含まれる側部H1bをなしている。Cu層12bは、Mo層11bの面S3に直接に積層されている。Cu層12cは、Mo層11bの面S4に直接に積層されており、ヒートシンク10の側面H3に含まれる側部H2cをなしている。断面視(図4)において、側部H2cは実質的に、z方向に平行な直線部とみなされてよい。この直線部は、図6のような写真に対して、必要に応じて、z方向に平行な直線部をフィッティングすることによって定められてよい。Mo層11bの面S3は、図4(z方向に平行な断面視)において、z方向に垂直であってヒートシンク10の側面H3から離れた平坦部SF3と、ヒートシンク10の側面H3に達し、Cu層12bへ食い込むように平坦部SF3から傾斜した端部SG3と、を含む。Mo層11bの面S4は、断面視において、z方向に垂直であってヒートシンク10の側面H3から離れた平坦部SF4と、ヒートシンク10の側面H3に達し、Cu層12cへ食い込むように平坦部SF4から傾斜した端部SG4と、を含む。z方向における端部SG3および端部SG4の各々の寸法(図4における縦方向における寸法)は、例えば、5μm以上、100μm以下である。Mo層11bの端部SG3は、Mo層11aの端部SG2から離れていてよい。
【0037】
ヒートシンク10の側面H3において、Mo層11bの側部H1bは、Cu層12bの側部H2bおよびCu層12cの側部H2cに対して凹んだ凹部分を有している。Mo層11bの側部H1bの凹部分は、x方向において、Mo層11bの平坦部SF3の外にのみ位置している。ここで、x方向は、図4に示された断面視(zx面の視野)における厚み方向(z方向)に垂直な方向である。x方向におけるこの凹部分の深さは、例えば1μm以上、10μm未満である。
【0038】
断面視(図5)において、面S1は平坦部SF1と端部SG1との間に境界点BN1を有しており、また、面S2は平坦部SF2と端部SG2との間に境界点BN2を有している。図5においては、面S1および面S2のそれぞれが境界点BN1および境界点BN2において局所的に屈曲している例が示されている。言い換えれば、端部SG1および端部SG2の各々が、z方向から傾いたおおよそ平坦な面である例が示されている。平坦部SF1と端部SG1とが境界点BN1においてなす角度は100°~175°であってよい。平坦部SF2と端部SG2とが境界点BN2においてなす角度も100°~175°であってよい。しかしながら、端部SG1および端部SG2は、平坦な面に限定されるものではなく、z方向から傾いた曲面であってよい。この曲面は、凸状であってもよいし凹状であってもよい。
【0039】
また断面視(図5)において、平坦部SF1の端は点VL1から10μm以内に位置してよい。ここで、点VL1は、Cu層12aの側部H2aをz方向に沿って延長した線と、平坦部SF1をx方向に沿って延長した線との交点である。同様に、平坦部SF2の端は点VL2から10μm以内に位置してよい。ここで、点VL2は、Cu層12bの側部H2bをz方向に沿って延長した線と、平坦部SF2をx方向に沿って延長した線との交点である。Mo層11aの側部H1aの凹部分は、境界点BN1と点VL1との間に位置している。またMo層11aの側部H1aの凹部分は、境界点BN2と点VL2の間に位置している。
【0040】
図7は、ヒートシンク10の側面H3の形成方法を概略的に示す部分断面図である。まず、ヒートシンク10の材料としてのクラッド材10Pが形成される。ヒートシンク10(図4)は、二点鎖線(図7)で示すようにクラッド材10P(図7)から切り出されることによって形成される。よって、xy面内方向(厚み方向に垂直な面内方向)において、クラッド材10Pのサイズはヒートシンク10よりも大きい。クラッド材10Pが十分に大きい場合、1つのクラッド材10Pから複数のヒートシンク10を切り出すことができる。クラッド材10Pが有する積層構造は、ヒートシンク10(図4)における、側面H3から十分に離れた領域での積層構造と同じである。
【0041】
クラッド材10Pを、二点鎖線(図7)に沿って切断する際に、切断方法を適宜選択することによって、矢印(図7)で示されているように、Mo層11aからCu層12aおよびCu層12bへの物質移動を十分に発生させることができる。この物質移動を十分に発生させるために、例えば、ダイシング加工(言い換えれば、高速回転する回転刃を押し付けることによる切断方法)を採用しつつ、回転刃の形状、材料、回転数などの加工条件が適宜調整される。ダイシング加工の加工条件は、一般には切断面での物質移動がなるべく抑制されるように調整されるのが通常であるが、本実施の形態では切断面での物質移動が積極的に発生するように調整される。
【0042】
上記切断の結果、図5に示されているように、ヒートシンク10の側面H3において、Mo層11aの側部H1aに、前述した凹部分が形成され、かつ、Cu層12aおよびCu層12bのそれぞれへ食い込む端部SG1および端部SG2が形成される。よって、クラッド材10Pのうち切断後にヒートシンク10の凹部分となる領域を、ヒートシンク10においてMo層11aがCu層12aおよびCu層12bへと食い込むための材料として用いることができる。
【0043】
なお、変形例として、ダイシング加工に代わってプレス加工(言い換えれば、固定刃を押し付ける切断方法)を採用しつつ、固定刃の形状、材料、速度などの加工条件を適宜調整してよい。この場合、Mo層11aには、端部SG1および端部SG2の一方のみが形成される。例えば、図7において下から上へと固定刃が移動する場合、端部SG1(図5)は形成されるが、端部SG2(図5)は形成されず、端部SG2に代わって、平坦部SF2と同一平面上に延びる端部が形成される。よって、端部SG1および端部SG2の両方を形成する必要があるときは、プレス加工よりもダイシング加工が好ましい。
【0044】
次に、電子装置90の製造方法の例について、以下に説明する。
【0045】
パッケージ50(図3)が準備される。パッケージ50のヒートシンク10の支持面H1上に電子部品8が搭載される。この搭載は、はんだ付けによって行われてよい。言い換えれば、電子部品8の搭載のための実装材として、はんだ材が用いられてよい。次に、電子部品8が金属リード30に、ワイヤ9によって電気的に接続される。ワイヤ9はワイヤボンディングによって形成されてよい。
【0046】
蓋体80(図1および図2)が準備される。蓋体80は、セラミック材料からなっていてよく、このセラミック材料は主成分としてアルミナを含んでいてよく、例えば、実質的にアルミナである。あるいは、蓋体80は樹脂を含んでいてよい。樹脂は、例えば、液晶ポリマーである。なお当該樹脂中に無機フィラーが分散されていてもよく、無機材フィラーは、例えばシリカ粒である。樹脂中に無機フィラーが分散されていることによって、蓋体80の強度および耐久性を高めることができる。
【0047】
次に、金属リード30が設けられた枠体20上に、蓋体80が接着層70を介して載置される。接着層70は、本例においては熱硬化性樹脂を含み、当該載置の時点では半硬化状態にある。接着層70は、枠体20上にキャビティCVを囲むように設けられる。接着層70は、図2に示されているように、枠体20上に金属リード30を介して設けられる部分を有していてよい。接着層70の、蓋体80とパッケージ50との間での厚みは、例えば、100μm以上、360μm以下である。蓋体80(図2)は、キャビティCVに面する内面81iと、その反対の外面81oとを有していてよく、また典型的には、内面81i上には、枠体20の枠形状におおよそ対応した枠形状を有する突起である枠部81pが設けられている。この場合、接着層70は枠部81pに接する。
【0048】
次に、蓋体80が枠体20へ所定の荷重で押し付けられる。適切な荷重は、パッケージ50の寸法設計に依存するが、例えば500g以上、1kg以下程度である。荷重での押し付けが行われながら、接着層70が加熱される。加熱された接着層70は、まず軟化状態へと変化する。これにより接着層70の粘度が低下する。その結果、接着層70が濡れ広がる。その後、加熱による硬化反応の進行にともなって、接着層70は硬化状態へと変化し、その結果、接着層70は蓋体80と枠体20とを互いに接着する。
【0049】
接着層70は、エポキシ樹脂、フェノール樹脂およびシリコーン(silicone)樹脂の少なくともいずれかを主成分として含んでいてよい。特にエポキシ樹脂は、耐熱性、機械的強度および耐薬品性をバランス良く備えている点で好ましい。これら特性を好適に有するためには、主成分としてのエポキシ樹脂の含有量が20~40wt%であることが好ましく、残部は硬化剤などの副成分からなってよい。具体的には、この副成分は、例えば、1~10wt%の硬化剤と、50~70wt%の無機フィラーと、0.5~2wt%のカップリング剤と、0.5~2wt%の触媒と、0.1~5wt%の低応力剤とであってよい。硬化剤としてはフェノキシ樹脂化合物が用いられてよい。無機フィラーとしてはシリカが用いられてよい。触媒としては有機リンまたはホウ素塩が用いられてよい。低応力剤としてはシリコーンが用いられてよい。接着層70は、蓋体80の曲げ弾性率よりも小さな曲げ弾性率を有していてよい。
【0050】
以上により、図1および図2に示されているように、蓋体80がキャビティCVを封止する構成が得られる。言い換えれば、電子装置90(図1および図2)が得られる。なお、電子装置90のヒートシンク10の底面H2(図2)は、支持部材(図示せず)に取り付けられることになる。支持部材は、例えば、実装ボードまたは放熱部材である。ヒートシンク10は、支持部材への取り付けのための固定具(例えば、ねじ)が通る貫通部(図示せず)を有していてよい。
【0051】
本実施の形態によれば、Mo層11aの面S1(図5)は、Cu層12aへ食い込むように平坦部SF1から傾斜した端部SG1を含む。これにより、Mo層11aの平坦部SF1とCu層12aとの間の界面の端(図5においては境界点BN1)が面内方向(図5においてはx方向)においてMo層11aに覆われる。よって、第1の接合材21(図3)が形成される際に大きな温度変化にさらされるヒートシンク10中の熱応力に起因してのMo層11aとCu層12aとの間の界面での剥離の発生を抑制することができる。
【0052】
Mo層11aの面S2は、断面視(図5)において、厚み方向に垂直であってヒートシンク10の側面H3から離れた平坦部SF2と、ヒートシンク10の側面H3に達し、Cu層12bへ食い込むように平坦部SF2から傾斜した端部SG2と、を含む。これにより、Mo層11aの平坦部SF2とCu層12bとの間の界面の端(図5においては境界点BN2)が面内方向(図5においてはx方向)においてMo層11aに覆われる。よって、ヒートシンク10中の熱応力に起因してのMo層11aとCu層12bとの間の界面での剥離の発生を抑制することができる。
【0053】
ヒートシンク10の側面H3において、Mo層11aの側部H1a(図5)は、Cu層12aの側部H2aおよびCu層12bの側部H2bに対して凹んだ凹部分を有している。これにより、Mo層11aのうちMo層11aの平坦部SF1とCu層12aとの間の界面の端(境界点BN1)を面内方向(図5においてはx方向)において覆う部分を、凹部分にあった材料を用いて形成することができる。また、Mo層11aのうちMo層11aの平坦部SF2とCu層12bとの間の界面の端(境界点BN2)を面内方向(図5においてはx方向)において覆う部分を、凹部分にあった材料を用いて形成することができる。
【0054】
Mo層11aの側部H1aの凹部分は、断面視(図5)における厚み方向(z方向)に垂直な方向、すなわちx方向、において、Mo層11aの平坦部SF1の外にのみ位置している。これにより、凹部分に起因してのヒートシンク10の破壊を十分に避けることができる。
【0055】
第1の層(Mo層)11aをなす第1の金属材料は、第2の層(Cu層)12aおよび第3の層(Cu層)12bのそれぞれをなす第2の金属材料および第3の金属材料よりも硬い。これにより、第1の層(Mo層)11aのうち第1の層11a(Mo層)の平坦部SF1と第2の層(Cu層)12aとの間の界面の端(境界点BN1)を面内方向(図5においてはx方向)において覆う部分が、硬い材料からなる。よって、ヒートシンク10中の熱応力に起因しての第1の層(Mo層)11aと第2の層(Cu層)12aとの間の界面での剥離の発生を、より抑制することができる。また、第1の層(Mo層)11aのうち第1の層11a(Mo層)の平坦部SF2と第3の層(Cu層)12bとの間の界面の端(境界点BN2)を面内方向(図5においてはx方向)において覆う部分が、硬い材料からなる。よって、ヒートシンク10中の熱応力に起因しての第1の層(Mo層)11aと第3の層(Cu層)12bとの間の界面での剥離の発生を、より抑制することができる。上述した硬さの関係をビッカース硬さを用いて表現するならば、次のようになる。第1の層(Mo層)11aをなす第1の金属材料は、第2の層(Cu層)12aおよび第3の層(Cu層)12bのそれぞれをなす第2の金属材料および第3の金属材料よりも大きなビッカース硬さを有している。なお典型的なビッカース硬さを例示すると、Moのビッカース硬さは1530MPaであり、Cuのビッカース硬さは369MPaであり、前者の方が大きい。
【0056】
第2の金属材料と第3の金属材料とは同じであり、例えば、両方とも実質的にCuである。これにより、ヒートシンク10の材料構成を簡素化することができる。
【0057】
Mo層11aは、Cu層12aおよびCu層12bの各々よりも薄い。これにより、ヒートシンク10の層間界面を面内方向(図5においてはx方向)において覆う層として、相対的に薄い層を用いることができる。さらに、Moの熱伝導率がCuの熱伝導率よりも低いので、上記のようにMo層11aがCu層12aおよびCu層12bの各々よりも薄いことによってヒートシンク10の放熱性能を高めることができる。
【0058】
枠体20の絶縁体はセラミック絶縁体である。これにより枠体20は、高い耐熱性を有する。よって、第1の接合材21を高温で形成することができる。それにともなってヒートシンク10へ大きな熱応力が加わっても、上述した理由によって、Mo層11aとCu層12aとの間の界面での剥離の発生を抑制することができる。また、他の同様の界面での剥離の発生も抑制することができる。
【0059】
第1の接合材21は、ろう材からなる。これにより、第1の接合材21の形成には、高温が必要である。それにともなってヒートシンク10へ大きな熱応力が加わっても、上述した理由によって、Mo層11aとCu層12aとの間の界面での剥離の発生を抑制することができる。また、他の同様の界面での剥離の発生も抑制することができる。
【0060】
パッケージ50は、キャビティCVの内部と外部との間での電気的接続を得るための金属リード30と、第2の接合材22とをさらに含む。第2の接合材22が形成される際の温度変化にヒートシンク10がさらされたとしても、上述した理由によって、ヒートシンク10中の熱応力に起因してのMo層11aとCu層12aとの間の界面での剥離の発生を抑制することができる。また、他の同様の界面での剥離の発生も抑制することができる。
【符号の説明】
【0061】
8 :電子部品
9 :ワイヤ
10 :ヒートシンク
10P :クラッド材
11a :Mo層(第1の層)
11b :Mo層(第4の層)
12a :Cu層(第2の層)
12b :Cu層(第3の層)
12c :Cu層(第5の層)
20 :枠体
21 :第1の接合材
22 :第2の接合材
30 :金属リード
50 :パッケージ
70 :接着層
80 :蓋体
90 :電子装置
CV :キャビティ
H1 :支持面
H1a :側部(第1の側部)
H1b :側部
H2 :底面
H2a :側部(第2の側部)
H2b :側部(第3の側部)
H2c :側部
H3 :側面
S1 :面(第1の面)
S2 :面(第2の面)
S3 :面
S4 :面
SF1 :平坦部(第1の平坦部)
SF2 :平坦部(第2の平坦部)
SF3 :平坦部
SF4 :平坦部
SG1 :端部(第1の端部)
SG2 :端部(第2の端部)
SG3 :端部
SG4 :端部
図1
図2
図3
図4
図5
図6
図7