(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023087971
(43)【公開日】2023-06-26
(54)【発明の名称】コンバイン
(51)【国際特許分類】
A01B 69/00 20060101AFI20230619BHJP
G05D 1/02 20200101ALI20230619BHJP
【FI】
A01B69/00 303Z
A01B69/00 303M
G05D1/02 N
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2021202560
(22)【出願日】2021-12-14
(71)【出願人】
【識別番号】501203344
【氏名又は名称】国立研究開発法人農業・食品産業技術総合研究機構
(71)【出願人】
【識別番号】000001878
【氏名又は名称】三菱マヒンドラ農機株式会社
(74)【代理人】
【識別番号】100085394
【弁理士】
【氏名又は名称】廣瀬 哲夫
(74)【代理人】
【識別番号】100165456
【弁理士】
【氏名又は名称】鈴木 佑子
(72)【発明者】
【氏名】加藤 仁
(72)【発明者】
【氏名】関 正裕
(72)【発明者】
【氏名】建石 邦夫
(72)【発明者】
【氏名】木村 敦
(72)【発明者】
【氏名】石橋 俊之
【テーマコード(参考)】
2B043
5H301
【Fターム(参考)】
2B043AA04
2B043AB20
2B043BA02
2B043BA09
2B043BB14
2B043DA17
2B043EA26
2B043EA32
2B043EB05
2B043EB15
2B043EC12
2B043EC13
2B043EC15
2B043ED12
2B043EE01
5H301AA03
5H301BB01
5H301CC03
5H301CC06
5H301CC10
(57)【要約】
【課題】圃場の栽植領域を正確に把握し、栽植面積、予測収穫量、予測作業時間、予測消費燃料などを高精度に算出可能とする。
【解決手段】コンバインは、機体位置情報を取得するGNSSユニット102と、収穫走行と非収穫走行とを判別する走行状態判別手段と、機体位置情報と走行状態判別手段の判別結果とに基づいて機体の収穫走行経路を特定する収穫走行経路特定手段と、収穫走行経路に基づいて圃場外形マップを算出する圃場外形マップ算出手段と、を備える。
【選択図】
図11
【特許請求の範囲】
【請求項1】
機体位置情報を取得する位置情報取得手段と、
収穫走行と非収穫走行とを判別する走行状態判別手段と、
前記機体位置情報と前記走行状態判別手段の判別結果とに基づいて機体の収穫走行経路を特定する収穫走行経路特定手段と、
前記収穫走行経路に基づいて圃場外形マップを算出する圃場外形マップ算出手段と、を備えることを特徴とするコンバイン。
【請求項2】
前記収穫走行経路が閉じ図形であるか否かを判定する閉じ図形判定手段を更に備えることを特徴とする請求項1に記載のコンバイン。
【請求項3】
前記圃場外形マップ算出手段は、前記収穫走行経路が閉じ図形の場合、前記収穫走行経路に基づいて圃場外形マップを算出することを特徴とする請求項1又は2に記載のコンバイン。
【請求項4】
前記収穫走行経路が閉じ図形でない場合、前記収穫走行経路の端部と端部の間に仮想線分を生成する仮想線分生成手段を更に備えることを特徴とする請求項1~3のいずれか1項に記載のコンバイン。
【請求項5】
前記圃場外形マップの元となる前記収穫走行経路の可否をオペレータに選択させる可否選択手段を更に備えることを特徴とする請求項1~4のいずれか1項に記載のコンバイン。
【請求項6】
圃場をグリッドで示すグリッドマップを生成するグリッドマップ生成手段と、
前記収穫走行経路上のグリッドを塗り潰すグリッド塗り潰し手段と、を更に備え、
前記閉じ図形判定手段は、塗り潰されたグリッドの形状に基づいて前記収穫走行経路が閉じ図形であるか否かを判定し、
前記圃場外形マップ算出手段は、塗り潰されたグリッドの形状の輪郭に位置する前記機体位置情報に基づいて圃場外形マップを算出することを特徴とする請求項2~5のいずれか1項に記載のコンバイン。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、圃場の外形マップ情報を取得可能なコンバインに関する。
【背景技術】
【0002】
自動走行などを行うために、ティーチング走行を行う作業車両が提案されている。例えば、特許文献1に開示された圃場作業車両の無人作業方法では、まず、作業領域である圃場の外周を手動運転により一周走行する外周ティーチングを行って、当該圃場の地図座標及び基準走行方位が算定される。次いで、圃場内の全領域を作業走行するための、走行作業経路を設定し、その経路上を時々刻々得られる車両の圃場内位置情報と走行方位情報とに基づき自動的に作業走行することで、圃場内の全領域に対する作業走行が自動操縦で行われる。
特許文献2には、直線作業走行の繰り返しで苗植付け作業を行う自動走行田植機の目標走行経路を算定する方法が開示されている。この田植機は、車体位置を計測するGPSを備え、ティーチング開始時にティーチングSWを押下した時のGPSアンテナの位置を開始点とし、ティーチング終了時にティーチングSWを押下した時のGPSアンテナの位置を終了点とする。得られた開始点と終了点の情報に基づいて、開始点と終了点を結ぶ基準線が算定され、この基準線(線分)に平行で、植付け幅を考慮した直線を植付け作業走行のための目標経路として生成する。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平10-66406号公報
【特許文献2】特開2008-67617号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
近年、圃場の栽植面積などの算出を行うために、圃場の外形マップ情報を取得することが提案されている。特許文献1では、外周ティーチング走行を行うため、圃場の外形マップ情報を取得可能であるが、ティーチング走行時には実質的な圃場作業は行われないため、作業対象となる圃場が広大になればなるほど、外周ティーチング走行に必要とされる時間や燃料が無駄な経費となる。なお、特許文献2では、外周ティーチング走行を行わないため、圃場外形マップ情報の取得が困難である。
【課題を解決するための手段】
【0005】
本発明は、上記の如き実情に鑑みこれらの課題を解決することを目的として創作されたものであって、請求項1の発明は、機体位置情報を取得する位置情報取得手段と、収穫走行と非収穫走行とを判別する走行状態判別手段と、前記機体位置情報と前記走行状態判別手段の判別結果とに基づいて機体の収穫走行経路を特定する収穫走行経路特定手段と、前記収穫走行経路に基づいて圃場外形マップを算出する圃場外形マップ算出手段と、を備えることを特徴とする。
また、請求項2の発明は、請求項1に記載のコンバインであって、前記収穫走行経路が閉じ図形であるか否かを判定する閉じ図形判定手段を更に備えることを特徴とする。
また、請求項3の発明は、請求項1又は2に記載のコンバインであって、前記圃場外形マップ算出手段は、前記収穫走行経路が閉じ図形の場合、前記収穫走行経路に基づいて圃場外形マップを算出することを特徴とする。
また、請求項4の発明は、請求項1~3のいずれか1項に記載のコンバインであって、前記収穫走行経路が閉じ図形でない場合、前記収穫走行経路の端部と端部の間に仮想線分を生成する仮想線分生成手段を更に備えることを特徴とする。
また、請求項5の発明は、請求項1~4のいずれか1項に記載のコンバインであって、前記圃場外形マップの元となる前記収穫走行経路の可否をオペレータに選択させる可否選択手段を更に備えることを特徴とする。
また、請求項6の発明は、請求項2~5のいずれか1項に記載のコンバインであって、圃場をグリッドで示すグリッドマップを生成するグリッドマップ生成手段と、前記収穫走行経路上のグリッドを塗り潰すグリッド塗り潰し手段と、を更に備え、前記閉じ図形判定手段は、塗り潰されたグリッドの形状に基づいて前記収穫走行経路が閉じ図形であるか否かを判定し、前記圃場外形マップ算出手段は、塗り潰されたグリッドの形状の輪郭に位置する前記機体位置情報に基づいて圃場外形マップを算出することを特徴とする。
【発明の効果】
【0006】
請求項1の発明によれば、コンバインの収穫作業では、圃場の外周側から収穫走行が行われることに着目し、実際の収穫走行経路に基づいて圃場外形マップを算出するので、ティーチング走行による時間や燃料の無駄を無くすことができるだけでなく、圃場の栽植領域を正確に把握し、栽植面積、予測収穫量、予測作業時間、予測消費燃料などを高精度に算出することが可能になる。
また、請求項2の発明によれば、収穫走行経路が閉じ図形であるか否かを判定する閉じ図形判定手段を備えるので、正確な圃場外形マップを算出可能な状況を明示できる。
また、請求項3の発明によれば、収穫走行経路が閉じ図形の場合、収穫走行経路に基づいて圃場外形マップを算出するので、正確な圃場外形マップが得られる。
また、請求項4の発明によれば、収穫走行経路が閉じ図形でない場合、収穫走行経路の端部と端部の間に仮想線分を生成する仮想線分生成手段を備えるので、収穫走行経路が閉じ図形でない場合であっても、仮想線分によって閉じられた図形に基づいて圃場外形マップを算出することができる。
また、請求項5の発明によれば、圃場外形マップの元となる収穫走行経路の可否をオペレータに選択させる可否選択手段を備えるので、不整形の圃場への適応性を向上できるだけでなく、圃場外形マップの誤算出を防止できる。
また、請求項6の発明によれば、閉じ図形判定手段は、塗り潰されたグリッドの形状に基づいて収穫走行経路が閉じ図形であるか否かを判定するので、機体位置情報に基づいて閉じ図形を判定する場合に比べて計算負荷を軽減できる。また、圃場外形マップ算出手段は、塗り潰されたグリッドの形状の輪郭に位置する機体位置情報に基づいて圃場外形マップを算出するので、グリッド形状に基づいて算出する場合に比べて精度の高い圃場外形マップが得られる。
【図面の簡単な説明】
【0007】
【
図1】本発明の一実施形態に係るコンバインの平面図である。
【
図6】品質計測後の穀粒還元経路を示す脱穀部の正面断面図である。
【
図11】コンバインの制御構成を示すブロック図である。
【
図12】グリッドマップの塗り潰し処理を示す説明図である。
【
図13】表示部の表示画面(初期のグリッドマップによる圃場区画表示状態)を示す説明図である。
【
図14】表示部の表示画面(圃場区画の確定操作待ち状態)を示す説明図である。
【
図15】表示部の表示画面(再生成したグリッドマップによる圃場区画表示状態)を示す説明図である。
【
図16】(A)~(E)は矩形圃場の外形マップ作成手順を示す
【
図17】(A)~(E)は農道ターン圃場の外形マップ作成手順を示す
【
図18】(A)~(C)は欠損型圃場の外形マップ作成手順を示す
【
図19】(A)は最小2乗法による直線推定の説明図、(B)は曲線の接合点分割及び区間直線補間の説明図である。
【
図20】圃場区画推定制御の処理手順を示すフローチャートである。
【
図21】グリッド生成制御の処理手順を示すフローチャートである。
【
図22】収量計算の処理手順を示すフローチャートである。
【
図23】予測制御の処理手順を示すフローチャートである。
【発明を実施するための形態】
【0008】
以下、本発明の実施の形態について、図面に基づいて説明する。
図1及び
図2において、1はコンバインであって、該コンバイン1は、汎用コンバインであり、左右一対のクローラ式走行装置である走行装置2に支持された機体3を有している。機体3の前方には、圃場の穀稈を刈取る刈取部5が昇降自在に設けられており、機体3の前方一側には、オペレータが着座してコンバイン1を操縦する運転操作部6が設けられている。機体3の他側方には、刈取部5で刈取り・搬送された穀稈を脱穀処理及び選別処理する脱穀部7が設けられている。運転操作部6の後方には、脱穀部7で脱穀・選別された穀粒を貯留する穀粒タンク10が配置されており、穀粒タンク10の後方には、穀粒タンク10内に貯留された穀粒を機外に排出するための排出オーガ11が設けられている。
【0009】
刈取部5は、圃場の穀稈を分草するデバイダ12と、デバイダ12によって分草された穀稈を刈取るレシプロ式の刈刃13と、刈刃13の後方側に配設されたバケット状のプラットホーム14と、これらデバイダ12及び刈刃13の上方に配設され、穀稈を後方に掻き込むリール15と、を備えており、リール15によってプラットホーム14に掻き込まれた穀稈を、刈刃13が刈取るように構成されている。刈刃13によって刈り取られた穀稈は、プラットホーム14内のプラットホームオーガ16によって横送りされ、収穫した穀物をフィーダ17によって脱穀部7の扱室19内へ穀稈ごと投入するように構成されている。
【0010】
図2~
図4に示すように、脱穀部7は、刈取部5によって刈り取られた穀稈が投入される扱室19と、扱室19の下方に配置される選別室9と、を有し、扱室19において穀稈の脱穀処理を行なうと共に、選別室9において脱穀された処理物の選別処理を行なう。扱室19内には、その外周面にらせん状の案内板20aが取付けられた扱胴20が回転自在に収納されており、案内板20aには、穀稈を引っ掛けて扱胴20と共に回転させる突起状の扱歯20bが複数設けられている。また、扱室19は、その下方側(扱胴20の下方部分)が扱胴20の外周に沿った半円筒状の受網21によって形成されており、扱室19に投入された穀稈は、扱歯20bによって扱胴20と一緒に回転させられ、案内板20aによって機体後方側に搬送されながら、受網21によって擦り付けられて脱穀される。
【0011】
選別室9は、受網21の下方側に配設された揺動選別体22と、揺動選別体22の前部下方側から後部上方側に向かって選別風を送風する唐箕ファン23及び送風ファン24と、を有している。揺動選別体22は、上下二段構造となっており、上段のフィードパン25、チャフシーブ26及びストローラック27と、下段のグレンシーブ29、チャフシーブ30及びストローラック31と、からなり、これらが上段及び下段にて連続して設けられ、前後に揺動されることで処理物が比重選別される。
【0012】
フィードパン25は、波板状の移送板であって、受網21から漏下する処理物及び後述する二番物を受け止めて後方移送する。チャフシーブ26、30は、前後方向に所定間隔を存して並設される複数のフィンによって構成され、後方移送されたこれら処理物を唐箕ファン23及び送風ファン24の選別風によって風選別すると共に篩選別し、更に所定の目合の金網部材からなるグレンシーブ29を通過した穀粒は、一番物として一番ラセン32に落下する。
【0013】
一方、揺動選別体22の終端部まで移送された処理物は、ストローラック27、チャフシーブ30及びストローラック31を介して二番ラセン33に落下する。また、ストローラック31にて落下規制された長藁は、その終端まで移送され、機外に排出される。なお、扱室19及び選別室9は、機体3に開閉自在に支持されたサイドカバー36を上方に開くことで、作業者はアクセスすることができる。
【0014】
図3~
図5に示すように、一番ラセン32には、穀粒タンク10に一番物である穀粒を揚送するための揚穀装置37が連動連結され、二番ラセン33には、二番物を扱室19の一側方に配置した還元室39に揚送還元する還元装置40が連動連結されている。還元室39内には、扱胴20と平行な還元横ラセン41が軸装されており、還元横ラセン41によって、還元装置40から還元室39の後端部に還元された二番物が扱胴20の搬送方向とは逆方向、即ち後方から前方に向けて搬送される。
【0015】
還元室39は、その前端部に扱室19の脱穀始端部に臨む扱室還元口42を有し、還元横ラセン41によって還元室39の前端部まで搬送された二番物は、還元横ラセン41の前端に固定された跳出板43によって跳ね出されて、扱室還元口42を通って扱室19に還元される。
【0016】
図3~
図5に示すように、揚穀装置37の上端部前方には、貯留横ラセン45及び品質計測部50が配置されている。貯留横ラセン45は、左右方向に沿って配置されており、揚穀装置37の上端部から前方に跳ね出される穀粒を受け止めて右側方へ搬送し、穀粒タンク10内に落下させる。また、品質計測部50は、貯留横ラセン45の前方に配置され、揚穀装置37の上端部から前方に跳ね出される穀粒を選択的に受け入れ、その品質を計測する。つまり、品質計測部50は、穀粒タンク10よりも上流側の穀粒流路で穀粒の品質計測を行う。これにより、穀粒タンク10内で品質計測を行う従来に比べ、品質計測のタイミングを早めることができる。
【0017】
図4~
図7に示すように、品質計測部50は、選別された穀粒を貯留部61に貯留し、貯留した多数の穀粒を対象として品質計測を行う貯留計測式穀粒計測装置60と、選別された1又は数個の穀粒を対象として品質計測を行う単粒計測式穀粒計測装置である水分センサ70(水分測定手段)と、を備える。
【0018】
貯留計測式穀粒計測装置60は、揚穀装置37の上端部から前方に跳ね出される穀粒を受け入れる穀粒入口62と、穀粒入口62を開閉する入口シャッタ63と、穀粒入口62から受け入れた穀粒を貯留する貯留部61と、貯留部61の下部に形成され、貯留部61内の穀粒を揺動選別体22上に還元する穀粒出口64と、穀粒出口64を開閉する底シャッタ65と、貯留部61の一側部に設けられ、透明部材66を介して貯留部61内の穀粒を視認可能な撮像室67と、撮像室67内に配置され、透明部材66を介して貯留部61内の穀粒を照らすLEDなどの発光素子68と、撮像室67内に配置され、発光素子68で照らされた貯留部61内の穀粒を撮像するカメラ69と、を備える。
【0019】
貯留計測式穀粒計測装置60による品質計測を行う場合は、底シャッタ65を閉じた状態で入口シャッタ63を開き、穀粒入口62から穀粒を受け入れ、受け入れた穀粒を貯留部61に貯留する。貯留部61内の穀粒が所定量に達したら、透明部材66を介して貯留部61内の穀粒を発光素子68で照らしつつ、発光素子68で照らされた貯留部61内の穀粒をカメラ69で撮像する。撮像後は、底シャッタ65を開いて貯留部61内の穀粒を揺動選別体22上に還元するとともに、入口シャッタ63を閉じる。カメラ69が撮像した穀粒画像は、例えば、運転操作部6に設けられる液晶モニタ101(タッチパネル付き液晶パネル)に表示される。
【0020】
水分センサ70は、貯留部61の他側部に設けられている。水分センサ70の穀粒取込部71は、穀粒入口62から貯留部61至る穀粒貯留経路に配置されており、穀粒貯留経路を通る穀粒の一部を分岐させて水分センサ70の計測部72に取り込み、取り込んだ穀粒の水分率計測を行う。また、計測後の穀粒は、排出口73から排出され、揺動選別体22上に還元される。
【0021】
具体的に説明すると、本実施形態の水分センサ70は、一対のサンプリングスクリュー74で構成される穀粒取込部71と、水分計(図示せず)などを内装した計測部72と、を備える。穀粒取込部71は、一対のサンプリングスクリュー74に乗った穀粒を一対のサンプリングスクリュー74の所定方向の回転駆動に基づいて一粒ずつ計測部72内に送り込む。計測部72は、送り込まれた穀粒を破砕する破砕部(図示せず)と、破砕した穀粒を挟むように配置された一対の電極間(図示せず)で穀粒の水分を計測する水分計と、を備える。水分計は、一対の電極間の電気抵抗や静電容量の変化に基づいて穀粒の水分率を計測する。水分計の計測結果は、例えば、液晶モニタ101に表示される。
【0022】
図8~
図10に示すように、穀粒タンク10の内部には、穀粒タンク10の底部に配置され、穀粒タンク10内の穀粒を排出オーガ11に対して排出する排出横ラセン46と、穀粒タンク10内の穀粒堆積高さを検出する第1~第3の堆積高さ検出センサ81~83(堆積高さ検出手段)と、穀粒タンク10内の穀粒を撹拌して穀粒の堆積面を均平化する均平装置90とが設けられている。
【0023】
第1及び第2の堆積高さ検出センサ81、82は、穀粒の堆積面に向けてレーザ光を照射し、その反射光の戻り時間に基づいて穀粒の堆積高さを検出するレーザ測距センサである。また、第3の堆積高さ検出センサ83は、上下方向に並ぶ複数の検出部83aを備え、検出部83aに対する穀粒の接触又は近接を検出する接触式センサ(例えば、静電容量センサ)である。
【0024】
第1の堆積高さ検出センサ81は、穀粒タンク10の天井部に設けられ、下方に向けて照射するレーザ光の反射光に基づいて穀粒堆積高さを検出するが、穀粒堆積高さが低く、且つ穀粒タンク10内に塵埃が舞う状況では、レーザ光が減衰して検出精度が低下する可能性があり、また、穀粒堆積高さが満杯に近い状況では、堆積面までの距離が近くなり過ぎて検出精度が低下する可能性がある。
【0025】
第2の堆積高さ検出センサ82は、穀粒タンク10の前壁部の中間高さ(タンク高さの1/3程度)に設けられ、斜め下方に向けて照射するレーザ光の反射光に基づいて穀粒堆積高さを検出する。このような第2の堆積高さ検出センサ82によれば、第1の堆積高さ検出センサ81の検出精度が低下する低堆積状況でも穀粒堆積高さを精度良く検出できる。
【0026】
第3の堆積高さ検出センサ83は、穀粒タンク10の天井部に吊り下げ状に設けられ、上下方向に並ぶ複数の検出部83aによって穀粒堆積高さを検出する。このような第3の堆積高さ検出センサ83によれば、第1の堆積高さ検出センサ81の検出精度が低下する満杯に近い状況でも穀粒堆積高さを精度良く検出できる。
【0027】
均平装置90は、穀粒タンク10の底部と天井部との間に回転可能に架設される回転軸91と、回転軸91から水平方向に突設される複数(例えば6)の攪拌棒92と、穀粒タンク10の天井部に設けられ、回転軸91を回転駆動させる均平駆動モータ93とを備える。複数の攪拌棒92は、高さ方向において所定の距離を介して設けられ、且つ回転方向において所定の角度を介して設けられる。このような均平装置90によれば、均平駆動モータ93の駆動に応じて回転軸91及び複数の攪拌棒92が回転すると、複数の攪拌棒92によって穀粒タンク10内の穀粒が撹拌され、その堆積面が均平化される。
【0028】
図9に示すように、コンバイン1には、機体3の位置情報を取得する位置情報取得手段としてGNSSユニット102を備える。GNSSユニット102としては、例えば、数cmの誤差で高精度な測位が可能なRTK-GNSS測位システムが採用される。RTK-GNSS測位システムは、固定設置された基地局と、移動する移動局(コンバイン1)とのそれぞれで、GPSなどのGNSS測位を行い、基地局から移動局に送信される補正信号でリアルタイムに測位データを補正することで、誤差数cmの高精度な測位を実現するものである。また、移動局に所定の間隔をあけて2つのGNSSアンテナを設置すれば、移動局の絶対位置だけでなく、2つの測位結果に基づいて、移動局の進行方向(方位)も高精度に検出することが可能になる。
【0029】
図11に示すように、コンバイン1には、各種の制御を行う制御部100が設けられている。制御部100の入力側には、前述した水分センサ70、液晶モニタ101のタッチパネル、堆積高さ検出センサ81~83及びGNSSユニット102の他に、後述する収量計算の実行をON/OFFする測定スイッチ103と、収量計算を中断する測定中断スイッチ104と、収穫する作物を設定する作物設定スイッチ105と、水分センサ70による水分測定を強制的に実行させる強制水分測定スイッチ106と、刈取クラッチ及び脱穀クラッチをON/OFF操作するパワークラッチスイッチ107と、排出オーガ11による穀粒排出をON/OFFする穀粒排出スイッチ108と、車速を検出する車速センサ109と、燃料タンク(図示せず)内の燃料の残量を検出する燃料残量検出センサ116と、後述するグリッドサイズを調整するグリッド調整ボタン110とが接続されている。
【0030】
また、制御部100の出力側には、前述した液晶モニタ101及び均平駆動モータ93の他に、刈取クラッチをON/OFFさせる刈取クラッチ駆動モータ111と、脱穀クラッチをON/OFFさせる脱穀クラッチ駆動モータ112と、
排出クラッチをON/OFFさせる排出クラッチ駆動モータ113とが接続されている。また、制御部100は、スマートフォンなどの外部通信装置114と通信可能であり、外部通信装置114を介してクラウド115に各種のデータを保存することができる。
【0031】
制御部100は、ハードウェアとソフトウェアとの協働により実現される機能的な構成として、走行状態判別手段と、収穫走行経路特定手段と、グリッドマップ生成手段と、グリッド塗り潰し手段と、圃場外形取得手段と、長辺判定手段と、グリッドサイズ変更手段と、収穫体積算出手段と、収穫重量算出手段とを備える。また、圃場外形取得手段を実現する具体的な機能構成として、閉じ図形判定手段と、可否選択手段と、仮想線分生成手段と、圃場外形マップ算出手段とを備える。
【0032】
走行状態判別手段は、収穫走行と非収穫走行とを判別する。例えば、パワークラッチスイッチ107において刈取クラッチ及び脱穀クラッチがON操作され、且つ車速センサ109が所定以上の車速を検出したとき、収穫走行状態であると判定する。
【0033】
収穫走行経路特定手段は、GNSSユニット102が取得した機体位置情報と走行状態判別手段の判別結果とに基づいて機体3の収穫走行経路を特定する。例えば、
図12に示すように、収穫走行経路と非収穫走行経路を識別可能な状態で、収穫走行及び非収穫走行を含むすべての走行経路を方向座標群として記憶する。
【0034】
グリッドマップ生成手段は、圃場をグリッドGで示すグリッドマップGMを生成する。初期のグリッドマップGMは、例えば、方位を基準とし、東西方向及び南北方向に並ぶグリッドGで構成される。初期のグリッドGは、例えば、収穫物の条間に相当する0.3m×0.3mの正方形グリッドである。
【0035】
グリッド塗り潰し手段は、収穫走行経路上のグリッドDを塗り潰す。例えば、
図13に示すように、液晶モニタ101にグリッドマップGMを表示し、リアルタイムで収穫走行経路上のグリッドGを塗り潰し表示する。このとき、コンバイン1の収穫作業幅を考慮し、
図12に示すように、収穫作業幅と重なるグリッドGを塗り潰す。コンバイン1による収穫作業では、通常、圃場の外周側から反時計回りで収穫走行が行われるので、グリッドGの塗り潰し表示に基づいて、圃場の外形を認識できるだけでなく、収穫作業の進捗状況を容易に把握できる。
【0036】
圃場外形取得手段は、圃場の外形情報(以下、圃場区画情報と称する場合がある)を取得する。例えば、圃場外形マップ算出手段が算出した圃場外形マップを取得する。なお、圃場外形マップ算出手段による圃場外形マップの算出については後述する。
【0037】
長辺判定手段は、圃場の外形の長辺を判定する。グリッドマップ生成手段は、長辺判定手段による判定が終わると、グリッドGの並び方向が長辺の方向に対して平行又は直角となるグリッドマップGMを再生成し、液晶モニタ101に表示させる。例えば、
図15に示すように、液晶モニタ101が、縦方向よりも横方向が長い横長モニタである場合は、グリッドGが縦方向及び横方向に並ぶように表示し、グリッドマップGMの再生成後は、表示するグリッドGの並び方向を変更せず、長辺が横方向に沿うように圃場外形マップを表示させる。これにより、横長な液晶モニタ101に合わせて圃場外形マップを効率良く表示できる。
【0038】
グリッドサイズ変更手段は、グリッド調整ボタン110の操作に応じてグリッドGのサイズを変更する。例えば、圃場が大きい場合は、グリッドGを粗くして処理を軽減し、圃場が小さい場合は、グリッドGを細かくして高精度なグリッドマップ表示を行うことができる。
【0039】
閉じ図形判定手段は、収穫走行経路が閉じ図形であるか否か、又は収穫走行経路及び非収穫走行経路を含む走行経路が閉じ図形であるか否かを判定する。このとき、閉じ図形判定手段は、塗り潰されたグリッドGの形状に基づいて閉じ図形であるか否かを判定する。
【0040】
可否選択手段は、圃場外形マップの元となる収穫走行経路の可否をオペレータに選択させる。例えば、収穫走行経路が閉じ図形であると判定された後、
図14に示すように、液晶モニタ101の画面に可否を問う区画確定ボタン(OKボタンB1及びキャンセルボタンB2を含む)をポップアップ表示する。なお、図示しない強制確定ボタンが操作された場合は、閉じ図形とならない収穫走行経路を元に圃場外形マップの算出が実行される。
【0041】
仮想線分生成手段は、圃場外形マップの元となる収穫走行経路が閉じ図形でない場合、収穫走行経路の端部と端部との間に仮想線分を生成し、収穫走行経路を強制的に閉じ図形とする。例えば、
図16の(A)に示すように、GNSSの通信不良などに起因して収穫走行経路の一部が途切れている場合、
図16の(B)に示すように、閉じ図形となるように途切れた部分(断裂部分)のグリッドGを塗り潰す処理を行う。また、農道において旋回を行う農道ターンで収穫走行を行う場合、
図17の(A)に示すように、収穫走行経路が閉じ図形とはならないため、
図17の(B)に示すように、収穫走行経路を示す2本の直線の一端部同士及び他端部同士を最短の直線で結ぶようにグリッドGを塗り潰す処理を行う。
【0042】
圃場外形マップ算出手段は、収穫走行経路に基づいて圃場外形マップを算出する。例えば、本実施形態の圃場外形マップ算出手段には、グリッドマップGMにおける閉じ図形の外枠領域を確定する処理と(
図16の(C)、
図17の(C))、外枠領域に含まれる方向座標群を抽出する処理と(
図16の(D)、
図17の(D))、抽出した方向座標群の途切れた部分を追加方向座標群で連結する処理と(
図16の(E)、
図17の(E))、連結処理した方向座標群に基づいて圃場区画の輪郭線を生成する処理と(
図19の(A)、(B))が含まれる。
【0043】
圃場区画の輪郭線を生成する処理は、例えば、圃場の輪郭に相当する方向座標群から最小2乗法で直線を推定する処理を基本とし(
図19の(A))、曲線となる場合は、曲線を接合点で分割し、分割区間を直線で補間する処理を行う(
図19の(B))。その後、隣接する直線の交点を計算し、交点間を直線で結んだ多角形を生成し、これを圃場区画の輪郭線(圃場外形マップ)とする。
【0044】
また、本実施形態の圃場外形マップ算出手段は、
図18に示すような欠損型圃場の圃場外形マップも算出することができる。このような欠損型圃場では、
図18の(A)に示すように、圃場に進入した後、圃場の出っ張り部分を時計回り方向で収穫してから、反時計方向で回り刈りをする場合があり、このような収穫走行経路の方向座標群を連結処理すると、
図18の(B)に示すように、一部が交差した輪郭線となってしまう。本実施形態の圃場外形マップ算出手段は、
図18の(C)に示すように、閉じ図形の外枠領域に含まれる方向座標群の向きを刈取走行方向(反時計回り)に統一する整列処理を行う。これにより、欠損型圃場であっても正確な圃場外形マップを算出することが可能になる。
【0045】
収穫体積算出手段は、作物の種類に拘らず、第1~第3の堆積高さ検出センサ81~83の検出結果も基づいて、穀粒タンク10内の作物の収穫体積を算出(テーブル参照を含む)する。例えば、第2の堆積高さ検出センサ82の検出高さが第1閾値以下の場合、第2の堆積高さ検出センサ82の検出高さに基づいて作物の収穫体積を算出し、第2の堆積高さ検出センサ82の検出高さが第1閾値を超え、且つ第1の堆積高さ検出センサ81の検出高さが第2閾値(第2閾値>第1閾値)以下の場合は、第1の堆積高さ検出センサ81の検出高さに基づいて作物の収穫体積を算出し、第1の堆積高さ検出センサ82の検出高さが第2閾値を超える場合は、第3の堆積高さ検出センサ83の検出高さに基づいて作物の収穫体積を算出する。
【0046】
収穫重量算出手段は、収穫体積算出手段が算出した収穫体積と、水分センサ70の検出結果と、作物設定スイッチ105で設定された作物のかさ密度とに基づいて、穀粒タンク10内の作物の収穫重量を算出する。かさ密度は、単位体積あたりの重量を示すデータであり、制御部100は、作物設定スイッチ105で設定可能な作物毎のかさ密度を予め記憶している。また、かさ密度は、水分量(水分率)に応じて変化するため、水分センサ70の検出結果に基づいて収穫重量を増減させる。なお、制御部100は、作物設定スイッチ105により作物の種類が変更された場合、収穫重量の算出に用いるかさ密度を変更するだけでなく、水分センサ70の検出結果から作物の水分量を算出する際に用いる検量線も作物の種類に応じて変更する。
【0047】
つぎに、上記のような機能構成を実現する制御部100の処理手順について、
図20~
図23に示すフローチャートを参照して説明する。
【0048】
図20に示すように、制御部100は、圃場区画推定制御において、まず、グリッドGが東西方向及び南北方向に並ぶ仮のグリッドマップGMを生成した後(S101)、GNSSユニット102による機体位置情報を取得し(S102)、収穫走行経路を示す方向座標群を生成するとともに、収穫走行経路上のグリッドGを塗り潰す(S103)。
【0049】
つぎに、制御部100は、強制確定ボタンの操作を判断し(S104)、この判断結果が有りの場合は、ステップS105~S107をスキップしてステップS108にジャンプし、判断結果が無しの場合は、塗り潰し領域が閉じ図形か否かを判断する(S105)。制御部100は、この判断結果がNOの場合、ステップS102に戻り、判断結果がYESの場合は、区画確定ボタンを表示し(S106)、区画確定ボタンの操作を判断する(S107)。制御部100は、区画確定ボタンのOKボタンB1が操作されたと判断した場合は、ステップS108に進み、区画確定ボタンのキャンセルボタンB2が操作されたと判断した場合は、ステップS102に戻る。
【0050】
制御部100は、ステップS108に進むと、前述した圃場外形マップの算出に関する複数の処理(S108~S114)を順次実行する。これらの処理には、収穫走行経路を示すグリッド線分の断裂部分を補完して閉じ図形とする処理と(S108:
図16の(B)、
図17の(B)に相当する処理)、閉じ図形の外枠領域を抽出する処理と(S109:
図16の(C)、
図17の(C)に相当する処理)、外枠領域に含まれる外枠線分(方向座標群)を抽出する処理と(S110:
図16の(D)、
図17の(D)に相当する処理)、外枠線分の収穫走行方向を統一する処理と(S111:
図18の(C)に相当する処理)、外枠線分のうち近接する線分を連結する処理と(S112:
図16の(E)に相当する処理)、外枠線分のうち乖離した線分を連結する処理と(S113:
図17の(E)に相当する処理)、圃場区画の輪郭線を生成する処理(S114:
図19に相当する処理)が含まれる。
【0051】
図21に示すように、制御部100は、グリッド生成制御において、圃場区画情報(圃場外形マップ)を取得した後(S201)、圃場区画の最も長い辺を判別し(S202)、最も長い辺を基準としてグリッドGが並ぶグリッドマップGMを再生成する(S203)。これにより、
図15に示すように、横長な液晶モニタ101に合わせて圃場区画を効率良く表示することが可能になる。
【0052】
図22に示すように、制御部100は、収量計算において、測定スイッチ103のON操作に基づいて測定開始を判断し(S301)、この判断結果がYESの場合は、作物設定スイッチ105の設定を読み込み(S302)、設定された作物を判断する(S303)。制御部100は、設定作物が大豆の場合、水分センサ70の検量線として大豆用の検量線を設定するともに、かさ密度として大豆用の係数を読み込み(S304)、設定作物が稲の場合、水分センサ70の検量線として稲用の検量線を設定するともに、かさ密度として稲用の係数を読み込み(S305)、設定作物が麦の場合、水分センサ70の検量線として麦用の検量線を設定するともに、かさ密度として麦用の係数を読み込む(S306)。なお、本実施形態では、作物設定スイッチ105によって設定される作物として、大豆、稲、麦の3種類を例示しているが、設定作物の種類に制限はなく、トウモロコシ等の他の作物も設定することができる。
【0053】
つぎに、制御部100は、第1~第3の堆積高さ検出センサ81~83及び水分センサ70の検出値を読み込んだ後(S307)、穀粒タンク10内の収穫量(体積)、現在までの累積収穫量(体積)、及び圃場の予想収穫量(体積)を計算する(S308)。ここで、圃場の予想収穫量(体積)は、現在までの累積収穫量(体積)と現在までの累計収穫面積(グリッドマップGMから算出)に基づいて単位面積当たりの収穫量(体積)を算出し、単位面積当たりの収穫量(体積)と圃場の全体面積(圃場外形マップから算出)との乗算により求められる。
【0054】
つぎに、制御部100は、穀粒水分の平均値を計算した後、穀粒水分の平均値及びかさ密度に基づいて単位体積当たりの重量を換算し、この換算重量及び収穫量(体積)に基づいて、穀粒タンク10内の収穫量(重量)、現在までの累積収穫量(重量)、及び圃場の予想収穫量(重量)を計算する(S309)。制御部100は、これらの計算値を記憶した後(S310)、上位ルーチンに復帰する。
【0055】
図23に示すように、制御部100は、予測制御において、GNSSユニット102による機体位置情報、第1~第3の堆積高さ検出センサ81~83による収穫情報、算出した圃場区画情報などを取得した後(S401)、収穫走行経路の塗り潰し範囲から累計収穫面積を算出し(S402)、単位面積当たりの収穫量、作業時間及び消費燃料を算出する(S403)。その後、制御部100は、圃場の全体面積と、単位面積当たりの収穫量、作業時間及び消費燃料に基づいて、圃場全体における予想収穫量、予想燃料使用量、予想総作業時間、予想終了時刻、収穫作業の進捗度、予想排出回数などを算出する(S404)。これらの算出結果は、液晶モニタ101に表示したり、外部に送信することができる。
【0056】
叙述の如く構成された本実施形態によれば、コンバイン1は、機体位置情報を取得するGNSSユニット102と、収穫走行と非収穫走行とを判別する走行状態判別手段と、機体位置情報と走行状態判別手段の判別結果とに基づいて機体の収穫走行経路を特定する収穫走行経路特定手段と、収穫走行経路に基づいて圃場外形マップを算出する圃場外形マップ算出手段と、を備える。つまり、コンバイン1の収穫作業では、圃場の外周側から収穫走行が行われることに着目し、実際の収穫走行経路に基づいて圃場外形マップを算出するので、ティーチング走行による時間や燃料の無駄を無くすことができるだけでなく、圃場の栽植領域を正確に把握し、栽植面積、予測収穫量、予測作業時間、予測消費燃料などを高精度に算出することが可能になる。
【0057】
また、コンバイン1は、収穫走行経路が閉じ図形であるか否かを判定する閉じ図形判定手段を更に備えるので、正確な圃場外形マップを算出可能な状況を明示できる。
【0058】
また、圃場外形マップ算出手段は、収穫走行経路が閉じ図形の場合、収穫走行経路に基づいて圃場外形マップを算出するので、正確な圃場外形マップが得られる。
【0059】
また、収穫走行経路が閉じ図形でない場合、収穫走行経路の端部と端部の間に仮想線分を生成する仮想線分生成手段を更に備えるので、収穫走行経路が閉じ図形でない場合であっても、仮想線分によって閉じられた図形に基づいて圃場外形マップを算出することができる。
【0060】
また、コンバイン1は、圃場外形マップの元となる収穫走行経路の可否をオペレータに選択させる可否選択手段を更に備えるので、不整形の圃場への適応性を向上できるだけでなく、圃場外形マップの誤算出を防止できる。
【0061】
また、コンバイン1は、圃場をグリッドGで示すグリッドマップGMを生成するグリッドマップ生成手段と、収穫走行経路上のグリッドGを塗り潰すグリッド塗り潰し手段と、を更に備え、閉じ図形判定手段は、塗り潰されたグリッドGの形状に基づいて収穫走行経路が閉じ図形であるか否かを判定するので、機体位置情報に基づいて閉じ図形を判定する場合に比べて計算負荷を軽減できる。また、圃場外形マップ算出手段は、塗り潰されたグリッドGの形状の輪郭に位置する機体位置情報に基づいて圃場外形マップを算出するので、グリッド形状に基づいて算出する場合に比べて精度の高い圃場外形マップが得られる。
【符号の説明】
【0062】
1 コンバイン
3 機体
5 刈取部
7 脱穀部
10 穀粒タンク
70 水分センサ
81 第1の堆積高さ検出センサ
82 第2の堆積高さ検出センサ
83 第3の堆積高さ検出センサ
90 均平装置
100 制御部
101 液晶モニタ
102 GNSSユニット
105 作物設定スイッチ
110 グリッド調整ボタン
114 外部通信装置
115 クラウド
G グリッド
GM グリッドマップ