(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023098917
(43)【公開日】2023-07-11
(54)【発明の名称】撮像素子
(51)【国際特許分類】
H01L 27/146 20060101AFI20230704BHJP
H04N 25/70 20230101ALI20230704BHJP
H04N 25/702 20230101ALI20230704BHJP
H04N 25/703 20230101ALI20230704BHJP
H04N 25/704 20230101ALI20230704BHJP
H04N 25/705 20230101ALI20230704BHJP
G03B 13/36 20210101ALI20230704BHJP
G02B 7/34 20210101ALI20230704BHJP
【FI】
H01L27/146 A
H04N25/70
H04N25/702
H04N25/703
H04N25/704
H04N25/705
G03B13/36
G02B7/34
H01L27/146 D
【審査請求】有
【請求項の数】1
【出願形態】OL
(21)【出願番号】P 2023059982
(22)【出願日】2023-04-03
(62)【分割の表示】P 2021134440の分割
【原出願日】2016-12-26
(31)【優先権主張番号】P 2015254898
(32)【優先日】2015-12-25
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000004112
【氏名又は名称】株式会社ニコン
(74)【代理人】
【識別番号】100161207
【弁理士】
【氏名又は名称】西澤 和純
(74)【代理人】
【識別番号】100140774
【弁理士】
【氏名又は名称】大浪 一徳
(74)【代理人】
【識別番号】100175824
【弁理士】
【氏名又は名称】小林 淳一
(72)【発明者】
【氏名】高原 宏明
(57)【要約】 (修正有)
【課題】射出瞳位置が異なる交換レンズが装着されたとき焦点検出精度の低下を抑制する。
【解決手段】撮像素子は、光学系を透過した光を光電変換する第1光電変換部と、第1光電変換部から第1間隔で設けられ第1光電変換部へ入射する光の一部を遮光する第1遮光部とを有し、第1光電変換部での光電変換に基づく焦点検出に用いる信号を出力する複数の第1画素と、光学系を透過した光を光電変換して電荷を生成する第2光電変換部と、第2光電変換部から第1間隔と異なる第2間隔で設けられ第2光電変換部へ入射する光の一部を遮光する第2遮光部とを有し、第2光電変換部での光電変換に基づく焦点検出に用いる信号を出力する複数の第2画素と、光学系の光軸からの距離および被写界深度の少なくとも一つの情報に基づいて、複数の前記第1画素から出力された信号および複数の前記第2画素から出力された信号の少なくとも一方を出力する出力部と、を備える。
【選択図】なし
【特許請求の範囲】
【請求項1】
光学系を透過した光を光電変換する第1光電変換部と、前記第1光電変換部から第1間隔で設けられ前記第1光電変換部へ入射する光の一部を遮光する第1遮光部とを有し、前記第1光電変換部での光電変換に基づく焦点検出に用いる信号を出力する複数の第1画素と、
前記光学系を透過した光を光電変換して電荷を生成する第2光電変換部と、前記第2光電変換部から前記第1間隔と異なる第2間隔で設けられ前記第2光電変換部へ入射する光の一部を遮光する第2遮光部とを有し、前記第2光電変換部での光電変換に基づく焦点検出に用いる信号を出力する複数の第2画素と、
前記光学系の光軸からの距離および被写界深度の少なくとも一つの情報に基づいて、複数の前記第1画素から出力された信号および複数の前記第2画素から出力された信号の少なくとも一方を出力する出力部と、
を備える撮像素子。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、撮像素子に関する。
【背景技術】
【0002】
従来から、撮像面上における瞳分割方式の焦点検出画素の位置に応じて、マイクロレンズと遮光部との間の距離を異ならせた撮像素子が知られている(例えば特許文献1)。しかしながら、特許文献1の技術では、射出瞳位置が異なる交換レンズが装着されたとき焦点検出の精度が低下するという課題がある。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】日本国 特開2012-43939号公報
【発明の概要】
【0004】
第1の態様によると、撮像素子は、光学系を透過した光を光電変換する第1光電変換部と、前記第1光電変換部から第1間隔で設けられ前記第1光電変換部へ入射する光の一部を遮光する第1遮光部とを有し、前記第1光電変換部での光電変換に基づく焦点検出に用いる信号を出力する複数の第1画素と、前記光学系を透過した光を光電変換して電荷を生成する第2光電変換部と、前記第2光電変換部から前記第1間隔と異なる第2間隔で設けられ前記第2光電変換部へ入射する光の一部を遮光する第2遮光部とを有し、前記第2光電変換部での光電変換に基づく焦点検出に用いる信号を出力する複数の第2画素と、前記光学系の光軸からの距離および被写界深度の少なくとも一つの情報に基づいて、複数の前記第1画素から出力された信号および複数の前記第2画素から出力された信号の少なくとも一方を出力する出力部と、を備える。
【図面の簡単な説明】
【0005】
【
図1】実施の形態による撮像装置の構成を説明する横断面図である。
【
図2】実施の形態による撮像装置の要部構成を説明するブロック図である。
【
図3】実施の形態による撮像素子の撮像画素と焦点検出画素の配置の一例を示す図である。
【
図4】撮像画素と焦点検出画素の構造の一例を模式的に説明する断面図である。
【
図5】焦点検出画素が有する遮光部がマイクロレンズにより投影される位置を示す図である。
【
図6】実施の形態における焦点検出画素に入射する光束と、撮影光学系の射出瞳領域との関係を模式的に示す図である。
【
図7】変形例における焦点検出画素の遮光部の一例を示す図である。
【
図8】別の例における焦点検出画素の構造の一例を模式的に説明する断面図である。
【
図9】別の例における焦点検出画素の構造の一例を模式的に説明する断面図である。
【発明を実施するための形態】
【0006】
図面を参照しながら、本実施の形態による撮像素子と、当該撮像素子を備える焦点検出装置および撮像装置とについて説明する。
図1は本実施の形態による撮像装置であるデジタルカメラ100の構成を説明する横断面図である。なお、説明の都合上、x軸、y軸、z軸からなる座標系を図示の通りに設定する。
【0007】
デジタルカメラ100は、カメラ本体200と撮影レンズ本体300とにより構成され、撮影レンズ本体300はマウント部(不図示)を介して装着される、いわゆるミラーレスカメラである。カメラ本体200には、マウント部を介して種々の撮影光学系を有する撮影レンズ本体300が装着可能である。上記のマウント部には電気接点201、202が設けられ、カメラ本体200と撮影レンズ本体300とが結合された時には、電気接点201および202を介して電気的な接続が確立される。
【0008】
撮影レンズ本体300は、撮影光学系1と、駆動機構3と、レンズデータ部4とを備えている。撮影光学系1は、被写体像を撮像素子8の撮像面上に結像させるための光学系であり、焦点調節レンズを含む複数のレンズによって構成されている。駆動機構3は、電気接点201を介してカメラ本体200側から入力したデフォーカス量を用いてレンズ駆動量を算出し、レンズ駆動量に応じて撮影光学系1を構成する焦点調節レンズを光軸Lの方向(z軸方向)に沿って合焦位置へ駆動する。
【0009】
レンズデータ部4は、たとえば不揮発性の記録媒体により構成され、撮影レンズ本体300に関連する各種のレンズ情報、たとえば撮影光学系1の射出瞳の位置等が格納されている。レンズデータ部4は電気接点202を介してカメラ本体200との間で上記のレンズ情報等を送信する。
【0010】
カメラ本体200内部には、制御部5と、撮像素子駆動回路6と、撮像素子8と、電子ビューファインダ(EVF)9と、接眼レンズ10とが設けられている。カメラ本体200には操作部11が設けられている。撮像素子8には、CCDやCMOS等の撮像画素と焦点検出画素がxy平面上において二次元状(行と列)に配置される。撮像画素は、撮影光学系1の射出瞳領域の全体を通過した光束を受光して、画像信号を制御部5へ出力する。焦点検出画素は、撮影光学系1の左右または上下等の一部の射出瞳領域を通過した光束を受光して、焦点検出信号を制御部5へ出力する。撮像素子8の撮像画素には、それぞれR(赤)、G(緑)、B(青)のカラーフィルタが設けられている。撮像画素がカラーフィルタを通して被写体像を撮像するため、撮像信号はRGB表色系の色情報を有する。なお、焦点検出画素にはカラーフィルタが設けられていなくても良いし、全ての焦点検出画素に同一(たとえばG)のカラーフィルタが設けられても良い。なお、撮像素子8については、詳細を後述する。
【0011】
電子ビューファインダ9は、制御部5により生成された表示画像データに対応する画像の表示を行う。また、電子ビューファインダ9は、撮影条件に関連する各種情報(シャッタ速度、絞り値、ISO感度など)の表示を行う。電子ビューファインダ9に表示された画像や各種情報は、接眼レンズ10を介してユーザにより観察される。なお、画像や各種情報を背面モニタ(不図示)に表示させても良い。
【0012】
操作部11はユーザによって操作される種々の操作部材に対応して設けられた種々のスイッチを含み、操作部材の操作に応じた操作信号を制御部5へ出力する。操作部材は、たとえばレリーズボタンや、カメラ本体200の背面に設けられた背面モニタ(不図示)にメニュー画面を表示させるためのメニューボタンや、各種の設定等を選択操作する時に操作される十字キー、十字キーにより選択された設定等を決定するための決定ボタン、撮影モードと再生モードとの間でデジタルカメラ100の動作を切替える動作モード切替ボタン、露出モードを設定する露出モード切替ボタン等を含む。
【0013】
さらに、
図2に示すブロック図を用いて、デジタルカメラ100の制御系について説明する。
図2に示すようにデジタルカメラ100は、A/D変換部12と、画像処理回路13と、焦点検出演算回路14と、ボディ-レンズ通信部15と、記憶部16とを有している。制御部5は、CPU、ROM、RAMなどを有し、制御プログラムに基づいて、デジタルカメラ100の各構成要素を制御したり、各種のデータ処理を実行したりする演算回路である。制御プログラムは、制御部5内の不図示の不揮発性メモリに格納されている。制御部5は、選択部51を機能として備え、装着された撮影レンズ本体300に応じて、撮像素子8が有する焦点検出画素のうち、焦点検出演算に用いる焦点検出信号を出力する焦点検出画素を選択する。なお、選択部51については、詳細を後述する。撮像素子駆動回路6は、制御部5によって制御され、撮像素子8およびA/D変換部12の駆動を制御して、撮像素子8に電荷蓄積および撮像信号の読み出し等を行わせる。A/D変換部12は、撮像素子8から出力されたアナログの撮像信号をデジタルに変換する。
【0014】
画像処理回路13は、撮像素子8の撮像画素から出力された撮像信号を画像信号として用い、画像信号に対して種々の画像処理を施して画像データを生成した後、付加情報等を付与して画像ファイルを生成する。画像処理回路13は、生成した画像ファイルをメモリカード等の記録媒体(不図示)に記録する。画像処理回路13は、生成した画像データや記録媒体に記録されている画像データに基づいて、電子ビューファインダ9や背面モニタ(不図示)に表示するための表示画像データを生成する。
【0015】
焦点検出演算回路14は、撮像素子8の焦点検出画素から出力された焦点検出信号を用いて、公知の位相差検出方式によりデフォーカス量を算出する。ボディ-レンズ通信部15は、制御部5に制御され、電気接点201、202を介して撮影レンズ本体300内の駆動機構3やレンズデータ部4と通信を行い、カメラ情報(デフォーカス量や絞り値など)の送信やレンズ情報(射出瞳の位置など)の受信を行う。
記憶部16は、たとえば不揮発性の記憶媒体であり、制御部5が各種の処理を実行するためのプログラムや、制御部5が各種の処理を実行するためのデータ等が記憶される。
【0016】
次に、本実施の形態における撮像素子8について詳細に説明する。
図3(a)は撮像素子8の撮像面800を模式的に示す図である。なお、
図3においても、x軸、y軸、z軸からなる座標系を、
図1に示す例と同様にして設定する。撮像面800には、デフォーカス量の演算に用いる焦点検出信号を取得するための焦点検出領域810が設けられている。なお、図においては、9個の焦点検出領域810が設けられた例を示しているが、焦点検出領域810の個数はこれに限定されない。
【0017】
図3(b)は、複数の焦点検出領域810のうち、X軸+側の撮像面800の周辺部に設けられた焦点検出領域810aの一部を拡大して模式的に示す図である。焦点検出領域810aは、第1画素群851と第2画素群852と第3画素群853(総称する場合には画素群850と呼ぶ)とを有する。なお、
図3(b)では一例として3行の画素群850を有する場合を示すが、画素群は3行に限定されない。また、第1画素群851と第2画素群852と第3画素群853のY軸方向に沿った配置順序は、
図3(b)の例に限定されず、どのような順序に設けても良い。また、第1画素群851と第2画素群852と第3画素群853との相違点については、説明を後述する。
【0018】
画素群850には、X軸方向に沿って、撮像画素80と焦点検出画素81、82とが交互に、すなわち複数の焦点検出画素81の間に撮像画素80が設けられる。すなわち、画素群850はX軸方向に沿って設けられる。第1画素群851と第2画素群852と第3画素群853とは、Y軸方向に設けられる。Y軸方向における、第1画素群851と第2画素群852と間および第2画素群852と第3画素群853との間には、撮像画素80が設けられる。
【0019】
本実施の形態では、第1画素群851と、第2画素群852と、第3画素群853とは、それぞれが備える焦点検出画素81、82で焦点検出信号を出力可能となる撮影光学系1の射出瞳の位置が異なるように構成されている。このため、第1画素群851、第2画素群852、第3画素群853のそれぞれにおける遮光部の位置が互いに異なる。以下、第1画素群851と、第2画素群852と、第3画素群853とが有する撮像画素80と焦点検出画素81、82との構造について説明する。
【0020】
図4(a)は、第1画素群851が有する撮像画素80と焦点検出画素81、82との構造を模式的に示す断面図であり、
図4(b)は、第2画素群852が有する撮像画素80と焦点検出画素81、82との構造を模式的に示す断面図であり、
図4(c)は、第3画素群853が有する撮像画素80と焦点検出画素81、82との構造を模式的に示す断面図である。なお、
図4においても、x軸、y軸、z軸からなる座標系を、
図1、
図3に示す例と同様にして設定する。
【0021】
-第1画素群851-
第1画素群851の焦点検出画素81は、マイクロレンズ811と、マイクロレンズ811の下に設けられた光電変換部812と、遮光部813とを有する。遮光部813は、マイクロレンズ811と光電変換部812との間に設けられる。光電変換部812には、撮影光学系1からの光束がマイクロレンズ811を介して通過した後、一部が遮光部813により遮光(制限)されて入射する。
【0022】
遮光部813は、たとえばアルミ等の導電性部材を用いて製造された焦点検出画素81の回路用配線により構成される。遮光部813は、焦点検出画素81のX軸+側に向かう光束を制限する。遮光部813は、マイクロレンズ811からの距離がそれぞれ異なる第1遮光部813aと第2遮光部813bと第3遮光部813cとを有する。本実施の形態では、マイクロレンズ811と第1遮光部813aとの距離よりも、マイクロレンズ811と第2遮光部813bとの距離の方が大きい。マイクロレンズ811と第2遮光部813bとの距離よりも、マイクロレンズ811と第3遮光部813cとの距離の方が大きい。
【0023】
第1画素群851の焦点検出画素81では、XY平面に平行な面上における第3遮光部813cの面積(すなわち遮光面積)は、第1遮光部813aの遮光面積と第2遮光部813bの遮光面積と比べて大きい。換言すると、焦点検出画素81では、マイクロレンズ811からの距離が最も大きい第3遮光部813cによって光束が制限される。
【0024】
第1画素群851の焦点検出画素82は、マイクロレンズ821と、マイクロレンズ821の下に設けられた光電変換部822と、遮光部823とを有する。マイクロレンズ821は、焦点検出画素81のマイクロレンズ811と焦点距離が等しい。光電変換部822とマイクロレンズ821との距離は、焦点検出画素81の光電変換部812とマイクロレンズ811との距離に等しい。遮光部823は、マイクロレンズ821と光電変換部822との間に設けられる。光電変換部822には、撮影光学系1からの光束がマイクロレンズ821を介して通過した後、一部が遮光部823により遮光(制限)されて入射する。
【0025】
遮光部823は、たとえばアルミ等の導電性部材を用いて製造された焦点検出画素82の回路用配線により構成される。遮光部823は、焦点検出画素82のX軸-側に向かう光束を制限する。遮光部823は、マイクロレンズ821からの距離がそれぞれ異なる第1遮光部823aと第2遮光部823bと第3遮光部823cとを有する。本実施の形態では、マイクロレンズ821と第1遮光部823aとの距離よりも、マイクロレンズ821と第2遮光部823bとの距離の方が大きい。マイクロレンズ821と第2遮光部823bとの距離よりも、マイクロレンズ821と第3遮光部823cとの距離の方が大きい。第3遮光部823cとマイクロレンズ821との間の距離は、焦点検出画素81の第3遮光部813cとマイクロレンズ811との間の距離に等しい。
【0026】
焦点検出画素82においても、XY平面に平行な面上における第3遮光部823cの面積(すなわち遮光面積)は、第1遮光部823aの遮光面積と第2遮光部823bの遮光面積と比べて大きい。換言すると、焦点検出画素81では、マイクロレンズ821からの距離が最も大きい第3遮光部823cによって光束が制限される。
【0027】
第1画素群851では、焦点検出画素81、82が上述した構造を有することにより、マイクロレンズ811、821からの距離が等しい第3遮光部813c、823cにより撮影光学系1の異なる領域からの光束を制限する。すなわち、第1画素群851の焦点検出画素81、82の光電変換部812、822には、撮影光学系の異なる領域からの光束が入射され、焦点検出演算回路14が位相差検出演算に用いる一対の被写体光束が入射する。
【0028】
撮像画素80は、マイクロレンズ801と、1つのマイクロレンズ801の下に設けられた光電変換部802とを有する。光電変換部802には、撮影光学系1の全領域を通過した光束がマイクロレンズ801を介して入射する。なお、撮像画素80の構造は、第2画素群852に設けられた場合でも、第3画素群853に設けられた場合でも、同様の構造を有する。さらに、各画素群850の外部に設けられた撮像画素80についても同様の構造を有する。
【0029】
-第2画素群852-
第2画素群852が有する焦点検出画素81、82について、第1画素群851が有する焦点検出画素81、82との差異を主に説明する。特に説明を行わない点につては、第1画素群851の焦点検出画素81、82と同様である。第2画素群852の焦点検出画素81では、XY平面に平行な面上における第2遮光部813bの遮光面積は、第1遮光部813aの遮光面積と第3遮光部813cの遮光面積と比べて大きい。換言すると、焦点検出画素81では、マイクロレンズ821から見て第1遮光部813aと第3遮光部813cとの間に設けられた第2遮光部813bによってX軸+側への光束の入射が制限される。
【0030】
第2画素群852の焦点検出画素82では、XY平面に平行な面上における第2遮光部823bの遮光面積は、第1遮光部823aの遮光面積と第3遮光部823cの遮光面積と比べて大きい。換言すると、焦点検出画素82では、マイクロレンズ821から見て第1遮光部823aと第3遮光部823cとの間に設けられた第2遮光部823bによってX軸-側への光束の入射が制限される。第2画素群852では、焦点検出画素81、82が上述した構造を有することにより、マイクロレンズ811、821からの距離が等しい第2遮光部813b、823bにより撮影光学系1の異なる領域からの光束を制限する。すなわち、第2画素群852の焦点検出画素81、82の光電変換部812、822には、撮影光学系の異なる領域からの光束が入射され、焦点検出演算回路14が位相差検出演算に用いる一対の被写体光束が入射する。
【0031】
-第3画素群853-
第3画素群853が有する焦点検出画素81、82について、第1画素群851が有する焦点検出画素81、82との差異を主に説明する。特に説明を行わない点につては、第1画素群851の焦点検出画素81、82と同様である。第3画素群853の焦点検出画素81では、XY平面に平行な面上における第1遮光部813aの遮光面積は、第2遮光部813bの遮光面積と第3遮光部813cの遮光面積と比べて大きい。換言すると、焦点検出画素81では、マイクロレンズ821からの距離が最も小さい第1遮光部813aによってX軸+側への光束の入射が制限される。
【0032】
第3画素群853の焦点検出画素82では、XY平面に平行な面上における第1遮光部823aの遮光面積は、第2遮光部823bの遮光面積と第3遮光部823cの遮光面積と比べて大きい。換言すると、焦点検出画素82では、マイクロレンズ821からの距離が最も小さい第1遮光部823aによってX軸-側への光束の入射が制限される。第3画素群853では、焦点検出画素81、82が上述した構造を有することにより、マイクロレンズ811、821からの距離が等しい第1遮光部813a、823aにより撮影光学系1の異なる領域からの光束を制限する。すなわち、第3画素群853の焦点検出画素81、82の光電変換部812、822には、撮影光学系の異なる領域からの光束が入射され、焦点検出演算回路14が位相差検出演算に用いる一対の被写体光束が入射する。
【0033】
以上で説明したように、第1画素群851と第2画素群852と第3画素群853との間では、焦点検出画素81、82の光束を制限するための遮光部813、823の位置(マイクロレンズ811、821からの距離)が異なる。
【0034】
図5は、撮影光学系1の異なる射出瞳位置PO1、PO2およびPO3の瞳が、マイクロレンズ811により投影される位置と、遮光部813のZ軸方向の位置との関係を模式的に示す。
図5(a)に示すように、撮影光学系1の射出瞳位置PO1の瞳は、マイクロレンズ811によって第1画素群851の焦点検出画素81の第3遮光部813c上に投影される。すなわち、第3遮光部813cは、射出瞳位置PO1の瞳がマイクロレンズ811に投影される位置に設けられる。
図5(b)に示すように、撮影光学系1の射出瞳位置PO2の瞳は、マイクロレンズ811によって第2画素群852の焦点検出画素81の第2遮光部813b上に投影される。すなわち、第2遮光部813bは、射出瞳位置PO2の瞳がマイクロレンズ811によって投影される位置に設けられる。
図5(c)に示すように、撮影光学系1の射出瞳位置PO3の瞳は、マイクロレンズ811によって第3画素群853の焦点検出画素81の第1遮光部813a上に投影される。すなわち、第1遮光部813aは、射出瞳位置PO3の瞳がマイクロレンズ811によって投影される位置に設けられる。なお、
図5(a)~(c)では、それぞれ、第3遮光部813c、第2遮光部813b、第1遮光部813aを代表して示す。また、焦点検出画素82は焦点検出画素81と軸対称に同一の構造を有しているので、焦点検出画素82の遮光部823の投影位置についても、焦点検出画素81の遮光部813と同様の関係を有する。
各画素群850ごとに、異なる射出瞳位置PO1、PO2、PO3の瞳がマイクロレンズ811により投影される位置が異なる。これにより、第1画素群851と、第2画素群852と、第3画素群853との間で、焦点検出の際に使用する焦点検出画素として適した射出瞳位置を有する撮影光学系1が異なる。
【0035】
図6は、第2画素群852の一部の領域に含まれる焦点検出画素81、82の光電変換部812、822と、撮影光学系1の射出瞳940の位置との関係を模式的に示す。
図6(a)は撮影光学系1の射出瞳位置PO2の瞳の投影位置と、第2画素群852の焦点検出画素81、82の第2遮光部813b、823bとが実質的に等しい撮影レンズ本体300が装着された場合を示す。すなわち、撮影光学系1の射出瞳位置PO2と第2遮光部813b、823bとがマイクロレンズ811、821に対して共役の場合を示す。
【0036】
焦点検出画素81の光電変換部812は、被写体からの光束のうち、撮影光学系1の一対の射出瞳領域941aおよび942aのうち、射出瞳領域941aを通過した光束951をマイクロレンズ811を介して受光する。換言すると、第2遮光部813bにより射出瞳領域942aからの光束が遮光される。焦点検出画素82の光電変換部822は、被写体からの光束のうち、撮影光学系1の射出瞳領域942aを通過した光束952をマイクロレンズ821を介して受光する。換言すると、第2遮光部823bにより射出瞳領域941aからの光束が遮光される。
図6(a)に示すように、光束951および952は撮影レンズ本体300の構造等によるケラレが無い、もしくはケラレが少ない状態にて光電変換部812、822にそれぞれ入射する。
【0037】
図6(b)は、射出瞳位置PO2の撮影レンズ本体300と比べて長い射出瞳位置PO3の撮影光学系1を有する撮影レンズ本体300が装着された場合を示す。この場合、焦点検出画素81、82の第2遮光部813b、823bが上述した撮影光学系1の射出瞳940の領域の一部の射出瞳領域941a、942aとは異なる部分(領域)を透過した光を遮光する。なお、
図6(b)においては、理解を容易にすることを目的として、射出瞳位置PO2を有する撮影光学系1の射出瞳940を破線にて示す。
【0038】
被写体からの光束952は、撮影光学系1の射出瞳領域942bを通過し、焦点検出画素82のマイクロレンズ821を介して光電変換部822に入射する。撮影光学系1の射出瞳位置PO3が射出瞳位置PO2と比べて長いため、被写体からの光束951は一部がケラレる。すなわち光束951のうち、光束951aが撮影光学系1の射出瞳領域941bを通過し、マイクロレンズ811を介して光電変換部812に入射し、光束951bはケラレて光電変換部812に入射しない。このため、焦点検出画素81と82との間で、それぞれの光電変換部812、822に入射する光束の光量が異なるので、光電変換部812からの焦点検出信号の出力は、光電変換部822からの焦点検出信号の出力と比べて低下する。すなわち、射出瞳位置PO3の撮影光学系1に対して第2遮光部813bの焦点検出画素81を使用すると、焦点検出演算の演算精度が低下する。
【0039】
撮影光学系1が射出瞳位置PO3を有している場合には、射出瞳位置PO3の瞳がマイクロレンズ811、821により投影される位置に設けられた第1遮光部813a、823aを有する焦点検出画素81、82に射出瞳領域941b、942bからの光束を入射させる。
図6(c)に示すように、マイクロレンズ811、821との距離が最も小さい第1遮光部813a、823aで光束を制限する焦点検出画素81、82が設けられた第3画素群853においては、
図5(b)に示すようなケラレが無い、もしくはケラレが少ない状態にて焦点検出画素81、82に光束が入射する。
【0040】
なお、撮影光学系1の射出瞳位置がPO2よりも短い場合には、たとえば射出瞳位置PO1の瞳がマイクロレンズ811、821により投影される位置に設けられた第3遮光部813c、823cを有する焦点検出画素81、82に、射出瞳領域からの光束を入射させる。すなわち、マイクロレンズ811、821との距離が最も大きい第3遮光部813c、823cで光束を制限する、第1画素群851の焦点検出画素81、82に射出瞳領域からの光束を入射させる。すなわち、撮影光学系1の射出瞳位置が異なる場合であっても、各画素群850何れかにおいて、ケラレ等の影響が無い、またはケラレ等の影響が少ない光束を光電変換部812、822に入射させることが可能となる。これにより、本実施の形態では、撮影レンズ本体300の種類が異なる場合や、撮影レンズ本体300が撮影光学系1の射出瞳の位置が変化するズームレンズの場合に、ケラレ等による影響の少ない光束を受光した焦点検出画素81、82からの焦点検出信号を用いて焦点検出が可能になる。
【0041】
なお、撮像面800の中心に対して焦点検出領域810aと対称の位置に設けられた焦点検出領域810b(
図3(a)参照)においては、各画素群850の焦点検出画素81、82は、焦点検出領域810a内の焦点検出画素81、82とは異なる。この場合、焦点検出領域810bにおいては、撮像面800の中心に対して焦点検出領域810aの焦点検出画素81と対称の位置には、焦点検出画素82が設けられる。撮像面800の中心に対して焦点検出領域810aの焦点検出画素82と対称の位置には、焦点検出画素81が設けられる。
【0042】
焦点検出領域810aに設けられた各画素群850においては、X軸-側の端部に設けられた焦点検出画素81、82と、X軸+側の端部に設けられた焦点検出画素81、82とでは、撮影光学系1を通過した光束の斜入射による影響が異なる。このため、X軸+側の端部に設けられた焦点検出画素81、82の遮光部813、823の遮光面積は、X軸-側の端部に設けられた焦点検出画素81、82の遮光部813、823の遮光面積と比べてX軸方向に沿って大きくする必要がある。遮光面積の増加量は、焦点検出画素81、82の撮像面800の中心からの距離、すなわち像高に所定の係数を乗算して決定することができる。この場合、画素群850のX軸+方向の位置の増加に伴って、遮光部813、823の遮光面積を線形的にX軸方向に増加させても良いし、所定の焦点検出画素81、82の個数ごとに、段階的に遮光部813、823の遮光面積をX軸方向に沿って増加させても良い。
【0043】
焦点検出領域810bに設けられた各画素群850においては、X軸-側の端部に設けられた焦点検出画素81、82の遮光部813、823の遮光面積は、X軸+側の端部に設けられた焦点検出画素81、82の遮光部813、823の遮光面積と比べてX軸方向に沿って大きくする。この場合も、画素群850のX軸+方向の位置の増加に伴って、遮光部813、823の遮光面積を線形的にX軸方向に増加させても良いし、所定の焦点検出画素81、82の個数ごとに、段階的に遮光部813、823の遮光面積をX軸方向に増加させても良い。換言すると、画素群850のうちのX軸方向の一端部に設けられた焦点検出画素81、82の遮光部813、823とマイクロレンズ811、812との、マイクロレンズ811、812の光軸に直交するX軸方向における位置関係は、他端部に設けられた焦点検出画素81、82の遮光部813、823とマイクロレンズ811、812との、マイクロレンズ811、812の光軸に直交するX軸方向における位置関係と異なる。
なお、撮像素子8の撮像面800の中央部に設けられた焦点検出領域810c(
図3(a)参照)では、光束がケラレによる影響を受けることがないので、遮光部813、823の遮光面積を増加させなくて良い。
【0044】
また、撮像素子8の撮像面800の周辺部に設けられた焦点検出領域810においては、撮像面800の中央部に設けられた焦点検出領域810が有する画素群850と比較して、各画素群850の個数を多く配置し、また、高い密度で配置してもよい。この場合、周辺部の焦点検出領域810において、第2画素群852と比較して、第1画素群851および第3画素群853の個数を多く、密に配置することができる。焦点検出領域810の位置が周辺部であるほど、第1画素群851および第3画素群853の個数が増加し、より高い密度で配置されるようにすることもできる。
【0045】
あるいは、
図5(c)に示す射出瞳位置PO3に対応した焦点検出画素81、82が設けられる第1画素群851が、
図5(a)の射出瞳位置PO1に対応した焦点検出画素81、82が設けられる第3画素群853と比較して、多く配置され、また、高い密度で配置されてもよい。すなわち、第3画素群853は、第1画素群851よりも少なく、粗い密度で配置されてもよい。撮影レンズ本体300が射出瞳位置の長い撮影光学系1を有する場合(たとえば望遠レンズ等)には被写界深度が浅いので、合焦位置におけるずれが目立ちやすい。これに対して、撮影レンズ本体300が射出瞳位置の短い撮影光学系1を有する場合(たとえば広角レンズ等)には被写界深度が深いので、合焦位置におけるずれが目立ちにくい。そのため、射出瞳位置PO3に対応した第1画素群851の個数を多く、高い密度で配置することにより、撮影レンズ300として射出瞳位置の長いレンズがデジタルカメラ100に装着された場合であっても、焦点検出精度の低下を抑制できる。
あるいは、ユーザによる使用頻度が高い撮影レンズ本体300(たとえば標準レンズ、広角レンズ等)が有する撮影光学系1の射出瞳位置に対応する焦点検出画素81、82が設けられた画素群850の個数を多く、高い密度にて焦点検出領域810内に配置してもよい。
【0046】
上記の構成を有する撮像素子8を備えたデジタルカメラ100の焦点検出動作について説明する。
撮影レンズ本体300がカメラ本体200に装着され、マウント部に設けられた電気接点201、202によりカメラ本体200と撮影レンズ本体300との間で電気的な接続が確立される。ボディ-レンズ通信部15は、電気接点201、202を介して、撮影レンズ本体300のレンズデータ部4からレンズ情報、すなわち射出瞳の位置に関する情報を受信する。
【0047】
制御部5の選択部51は、撮影レンズ本体300から受信したレンズ情報に基づいて、装着された撮影レンズ本体300が備える撮影光学系1に適した焦点検出画素81、82を有する画素群850を選択する。選択部51は、撮影光学系1の射出瞳の位置が所定の第1閾値を超える場合には、マイクロレンズ811、821と遮光部813、823との距離が最も小さい焦点検出画素81、82を有する第3画素群853を選択する。選択部51は撮影光学系1の射出瞳の位置が所定の第2閾値未満(<第1閾値)の場合には、マイクロレンズ811、821と遮光部813、823との距離が最も大きい焦点検出画素81、82を有する第1画素群851を選択する。選択部51は、撮影光学系1の射出瞳の位置が第2閾値以上第1閾値未満の場合には第2画素群852を選択する。すなわち、選択部51は、撮影光学系1の射出瞳位置との差が小さい測距瞳の位置を有する焦点検出画素81、82を有する画素群850を選択する。
なお、選択部51は、撮像素子8の撮像面800上における焦点検出領域810の位置や、撮影光学系1の射出瞳の位置に基づいて、焦点検出領域810内の画素群850の個数や種類を切り替えて選択することができる。
また、撮影レンズ本体300がズームレンズの場合には、ズーム位置によって射出瞳の位置が変化する。この場合、選択部51は、受信したレンズ情報に基づいて、設定されたズームに対応する射出瞳の位置の情報を取得し、取得した射出瞳の位置の情報に適した画素群850を、上述のようにして選択する。これにより、設定されたズームに基づいて、選択される画素群850が選択部851により自動的に切り替えることができる。ズームに対応した射出瞳の位置の情報は、レンズデータ部4に予め記憶されている。なお、デジタルカメラ100の記憶部16に予めズームに対応した射出瞳の位置の情報が記憶されていてもよい。
【0048】
また、選択部851は、撮像素子8の撮像面800の中央付近の焦点検出領域810(
図3(a)における810a)からの出力に基づいて焦点検出を行う場合、第1画素群851、第2画素群852および第3画素群853の焦点検出画素81、82を選択してもよい。これにより、焦点検出精度の向上と、被写体追尾性能の向上と、被写体判別性能の向上とが得られる。撮像素子8の撮像面800の周辺部の焦点検出領域810からの出力に基づいて焦点検出を行う場合、選択部851は、撮影光学系1の射出瞳の位置に対応した焦点検出画素81、82を有する画素群850のみを選択する。撮像面800の周辺部においては、撮影光学系1の射出瞳の位置に対応する焦点検出画素81、82以外の焦点検出画素81、82からの出力はケラレ等の影響を受けている。したがって、このようなケラレ等の影響を受けた焦点検出画素81、82からの出力は焦点検出の際には使用されないので、焦点検出精度の低下を防ぐことができる。
【0049】
焦点検出演算回路14は、焦点検出画素81、82から出力された焦点検出用信号のうち、選択された画素群850の焦点検出画素81、82から出力された焦点検出信号を用いて、公知の位相差検出方式を用いてデフォーカス量を算出する。焦点検出演算回路14は、焦点検出画素81の光電変換部812からの焦点検出信号を順次並べた第1信号列{an}と、焦点検出画素82の光電変換部822からの焦点検出信号を順次並べた第2信号列{bn}との相対的なズレ量を検出し、撮影光学系1の焦点調節状態、すなわちデフォーカス量を検出する。換言すると、選択部851により上述したようにして焦点検出画素81、82が選択されるので、焦点検出演算回路14は、第1画素群851の焦点検出画素81、82からの出力、第2画素群852の焦点検出画素81、82からの出力、および第3画素群853の焦点検出画素81、82からの出力の少なくとも一つに基づいて、撮影光学系1による像が撮像素子8に合焦する位置を検出する。
【0050】
上述した実施の形態によれば、次の作用効果が得られる。
(1)各画素群850には、撮影光学系1の一部の瞳領域を通過した光束を受光する焦点検出画素81、82がX軸方向沿って設けられる。第1画素群851の焦点検出画素81、82が有する第3遮光部813c、823cは、マイクロレンズ811、822と光電変換部812、822との間に設けられ、撮影光学系1の射出瞳領域の一部を通過した光束を制限する。第2画素群852の焦点検出画素81、82が有する第2遮光部813b、823bは、マイクロレンズ811、822と光電変換部812、822との間に設けられ、撮影光学系1の射出瞳領域の一部を通過した光束を制限する。第3画素群853の焦点検出画素81、82が有する第1遮光部813a、823aは、マイクロレンズ811、822と光電変換部812、822との間に設けられ、撮影光学系1の瞳領域の一部を通過した光束を制限する。第1画素群851の焦点検出画素81、82のマイクロレンズ811、821と第3遮光部813c、823cとの間の距離、第2画素群852の焦点検出画素81、82のマイクロレンズ811、821と第2遮光部813b、823bとの間の距離、第3画素群853の焦点検出画素81、82のマイクロレンズ811、821と第1遮光部813a、823aとの間の距離は、互いに異なる。したがって、撮影光学系1の射出瞳の位置が異なる場合であっても、各画素群850のうち、ケラレ等の影響の少ない光束が入射した焦点検出画素81、82からの焦点検出信号が出力される。すなわち、焦点検出演算の精度の低下を抑制することができる。
【0051】
(2)遮光部813、823は、回路用配線である。したがって、他の部材と共用して部品点数の増加を防ぐことができる。
【0052】
(3)各画素群850に設けられた焦点検出画素81、82では、マイクロレンズ811、812の焦点距離が等しく、マイクロレンズ811、821と光電変換部812、822との間の距離はそれぞれ等しい。これにより、同一構造を有する焦点検出画素81、82に遮光部813、823を設けることで、異なる射出瞳距離の撮影光学系1に適した焦点検出を行うことができる。
【0053】
(4)撮像素子8の撮像面800の周辺部に設けられた各画素群850では、画素群850の一端部(X軸-側)に設けられた焦点検出画素81、82の遮光部813、823とマイクロレンズ811、821とのZ軸方向における位置関係は、他端部(X軸+側)に設けられた焦点検出画素81、82の遮光部813、823とマイクロレンズ811、821とのZ軸方向における位置関係と異なる。これにより、撮像面800の周辺部で斜入射する光束を、ケラレの影響が無いまたは少ない状態で光電変換部812、822で受光することができる。また、撮像素子8の撮像面800の周辺部での焦点検出が可能になる。
【0054】
(5)焦点検出演算回路14は、第1画素群851の焦点検出画素81、82から出力された焦点検出信号と、第2画素群の焦点検出画素81、82から出力された焦点検出信号と、第3画素群853の焦点検出画素81、82から出力された焦点検出信号との、何れかを用いて撮影光学系1の焦点状態を検出する。撮像素子8の撮像面800には、焦点状態の検出に用いる複数の焦点検出領域810が設けられ、焦点検出領域810は、画素群850を有する。したがって、撮影光学系1の射出瞳の位置が異なる場合であっても、焦点検出領域810内でケラレ等の影響の少ない焦点検出画素81、82からの焦点検出信号を用いて焦点検出演算を行うことができる。
【0055】
(6)選択部51は、撮影光学系1の射出瞳の位置に関連するレンズ情報に基づいて、第1、第2および第3画素群の何れかを選択し、焦点検出演算回路14は、選択部51により選択された画素群850の焦点検出画素81、82から出力された焦点検出信号を用いて撮影光学系1の焦点状態を検出する。したがって、複数の画素群850の中から、ケラレ等の影響の最も少ない焦点検出画素81、82からの焦点検出信号を用いて焦点検出演算を行うことができる。
【0056】
上述した実施の形態においては、
図4を参照しながら焦点検出画素81、82の構造について説明したが、焦点検出画素81、82の構造は
図4に示すものに限定されない。
図8は、他の例の焦点検出画素81、82の構造を模式的に示す断面図である。
図8(a)、
図8(b)、
図8(c)は、それぞれ、
図4(a)、
図4(b)、
図4(c)と同様に、第1画素群851、第2画素群852、第3画素群853(
図3(b)参照)が有する撮像画素80と焦点検出用画素81、82との構造を示す。なお、
図8においても、x軸、y軸、z軸からなる座標系を、
図1、
図3に示す例と同様にして設定する。
【0057】
図8に示す例では、焦点検出画素81、82はそれぞれ1つの遮光部813、823を有する。
図8(a)に示す第1画素群851においては、焦点検出画素81、82は
図4(a)と同様の第3遮光部813c、823cを有し、
図4(a)に示す第1遮光部813a、823a、第2遮光部813b、823bを備えていない。すなわち、
図8(a)の焦点検出画素81、82は、
図4(a)に示す遮光部813、823のうち、遮光面積が最も大きい第3遮光部813c、823cのみを備える。この場合も、焦点検出画素81、82の光電変換部812、822には、撮影光学系1からの光束がマイクロレンズ811、821を介して通過した後、一部が第3遮光部813c、823cにより遮光(制限)されて入射する。
【0058】
図8(b)に示す第2画素群852においては、焦点検出画素81、82は
図4(b)と同様の第2遮光部813b、823bを有し、
図4(b)に示す第1遮光部813a、823a、第3遮光部813c、823cを備えていない。すなわち、
図8(b)の焦点検出画素81、82は、
図4(b)に示す遮光部813、823のうち、遮光面積が最も大きい第2遮光部813b、823bのみを備える。この場合も、焦点検出画素81、82の光電変換部812、822には、撮影光学系1からの光束がマイクロレンズ811、821を介して通過した後、一部が第2遮光部813b、823bにより遮光(制限)されて入射する。
【0059】
図8(c)に示す第3画素群853においては、焦点検出画素81、82は
図4(c)と同様の第1遮光部813a、823aを有し、
図4(c)に示す第2遮光部813b、823b、第3遮光部813c、823cを備えていない。すなわち、
図8(a)の焦点検出画素81、82は、
図4(c)に示す遮光部813、823のうち、遮光面積が最も大きい第1遮光部813a、823aのみを備える。この場合も、焦点検出画素81、82の光電変換部812、822には、撮影光学系1からの光束がマイクロレンズ811、821を介して通過した後、一部が第1遮光部813a、823aにより遮光(制限)されて入射する。
【0060】
図8に示す他の例の焦点検出画素81、82は、上述した構成を有することにより、実施の形態の場合と同様にして撮影光学系1からの光束を制限できるとともに、部品点数を減らすことが可能となる。
なお、
図8(a)~(c)に示したように焦点検出画素81、82がともに1つの遮光部813、823を有するものに限定されない。たとえば、
図8(d)に示すように、第1画素群851の焦点検出画素81は、
図4(a)に示す場合と同様に、遮光部813として第1遮光部813a、第2遮光部813b、第3遮光部813cを備える。焦点検出画素82は、遮光部823として、第3遮光部823cのみを備え、第1遮光部823a、第2遮光部823bを備えていない。この場合も、実施の形態の焦点検出画素81、82と同様に、撮影光学系1からの光束を第3遮光部813c、823cにて遮光(制限)することができる。なお、
図8(d)に示す例に限られず、焦点検出画素81が1つの遮光部813を備え、焦点検出画素82が
図4(a)に示すように複数の遮光部823を備えてもよい。また、
図8(d)では、第1画素群851の焦点検出画素81、82の構造を例に挙げたが、第2画素群852や第3画素群853に含まれる焦点検出画素81、82に上記の構造を適用することができる。
【0061】
また、
図9を用いて、さらに別の例の焦点検出画素81、82の構造を説明する。以下の説明では、焦点検出画素81、82は、撮像素子8の撮像面800上に配置された位置に基づいて、異なる構造を有する場合を例に挙げる。すなわち、撮像素子8の撮像面800の中央付近(たとえば、
図3(a)の焦点検出領域810c)に配置された焦点検出画素81、82と、撮像面800の周辺付近(たとえば
図3(a)の焦点検出領域810d)に配置された焦点検出画素81、82とは、異なる構造を有する。
【0062】
図9(a)は、撮像面800の中央付近の焦点検出領域810cに設けられた画素群850の焦点検出画素81、82の断面構造を模式的に示す図である。
図9(a)に示す焦点検出画素81の遮光部813に含まれる第1遮光部813a、第2遮光部813bおよび第3遮光部813cは、それぞれ
図4(c)の第1遮光部813a、
図4(b)の第2遮光部813bおよび
図4(a)の第3遮光部813cと同様の遮光面積を有している。同様に、
図9(a)に示す焦点検出画素82の遮光部823に含まれる第1遮光部823a、第2遮光部823bおよび第3遮光部823cは、それぞれ
図4(c)の第1遮光部823a、
図4(b)の第2遮光部823bおよび
図4(a)の第3遮光部823cと同様の遮光面積を有している。
【0063】
撮像面800の中央付近のようにケラレの影響を受けにくい位置に配置された焦点検出画素81、82は、第1遮光部813a、823a、第2遮光部813b、823bおよび第3遮光部813c、823cによって撮影光学系1からの光束を遮光(制限)することができる。複数の遮光部により光束を遮光することにより、光の回折等を抑制することができるので、光束に対する遮光性をより向上させることができる。遮光性が向上する、すなわち瞳分割精度が向上することにより、焦点検出演算回路14にて行われる焦点検出の精度を向上させることができる。
【0064】
図9(b)は、撮像面800の周辺部付近の焦点検出領域810dに設けられた第1画素群851の焦点検出画素81、82の断面構造を模式的に示す図である。焦点検出画素81の遮光部813では、第1遮光部813aよりも第2遮光部813bの遮光面積が大きく、第2遮光部813bよりも第3遮光部813cの遮光面積が大きい。焦点検出画素82の遮光部823では、第1遮光部823aよりも第2遮光部823bの遮光面積が大きく、第2遮光部823bよりも第3遮光部823cの遮光面積が大きい。
【0065】
図9(c)は、焦点検出領域810dに設けられた第3画素群853の焦点検出画素81、82の断面構造を模式的に示す。焦点検出画素81の遮光部813では、第3遮光部813cよりも第2遮光部813bの遮光面積が大きく、第2遮光部813bよりも第1遮光部813aの遮光面積が大きい。焦点検出画素82の遮光部823では、第3遮光部823cよりも第2遮光部823bの遮光面積が大きく、第2遮光部823bよりも第1遮光部823aの遮光面積が大きい。
【0066】
上述したように、第1画素群851の焦点検出画素81、82と第3画素群853の焦点検出画素81、82とにおいて、第1遮光部813a、823a、第2遮光部813b、823bおよび第3遮光部813c、823cによって撮影光学系1からの光束を遮光(制限)することができる。複数の遮光部により光束を遮光することにより、光の回折等を抑制することができるので、光束に対する遮光性をより向上させることができる。撮像素子8の撮像面800の周辺部において焦点検出画素81、82の遮光性が向上する、すなわち瞳分割精度が向上することにより、焦点検出演算回路14にて行われる焦点検出の精度を向上させることができる。
なお、撮像面800の周辺部に設けられた焦点検出領域810においては、第2画素群852の焦点検出画素81、82は、
図9(a)の構造を有しても良いし、
図4(b)の構造を有しても良い。
【0067】
また、第1画素群851の焦点検出画素81、82が、
図9(d)に示す構造を有しても良い。焦点検出画素81は、遮光部813に加えて遮光部833を備える。遮光部813と833とはx軸に沿って互いに逆側、すなわち遮光部813がx軸+側、遮光部833がx軸-側に設けられる。
図9(d)に示す遮光部813は、
図9(b)と同様の構成が適用される。遮光部833は、第1遮光部833a、第2遮光部833bおよび第3遮光部833cを備える。マイクロレンズ811と第1遮光部833aとの距離よりも、マイクロレンズ811と第2遮光部833bとの距離の方が大きい。マイクロレンズ811と第2遮光部833bとの距離よりも、マイクロレンズ811と第3遮光部833cとの距離の方が大きい。さらに、第3遮光部833cよりも第2遮光部833bの遮光面積が大きく、第2遮光部833bよりも第1遮光部833aの遮光面積が大きい。焦点検出画素81がこのような構造を有することにより、x軸+側から遮光部813、x軸-側から遮光部833により撮影光学系1からの光束の遮光性を向上できる。この結果、瞳分割精度が向上し、焦点検出演算回路14にて行われる焦点検出の精度を向上させることができる。
【0068】
図9(d)の焦点検出画素82は、遮光部823に加えて遮光部843を備える。遮光部823と843とはx軸に沿って互いに逆側、すなわち遮光部823がx軸-側、遮光部843がx軸+側に設けられる。この場合、遮光部823は、
図9(b)と同様の構成が適用される。遮光部843は、第1遮光部843a、第2遮光部843bおよび第3遮光部843cを備える。マイクロレンズ811と第1遮光部843aとの距離よりも、マイクロレンズ811と第2遮光部843bとの距離の方が大きい。マイクロレンズ811と第2遮光部843bとの距離よりも、マイクロレンズ811と第3遮光部843cとの距離の方が大きい。さらに、第3遮光部843cよりも第2遮光部843bの遮光面積が大きく、第2遮光部843bよりも第1遮光部843aの遮光面積が大きい。焦点検出画素82がこのような構造を有することにより、x軸-側から遮光部823、x軸+側から遮光部843により撮影光学系1からの光束の遮光性を向上できる。その結果、瞳分割精度が向上し、焦点検出演算回路14にて行われる焦点検出の精度を向上させることができる。
なお、
図9(d)に示す例に限られず、第3画素群853の焦点検出画素81が遮光部813と遮光部833とを備え、焦点検出画素82が遮光部823と遮光部843とを備えてもよい。この場合、遮光部833においては、第1遮光部833aよりも第2遮光部833bの遮光面積は大きく、第2遮光部833bよりも第3遮光部833cの遮光面積は大きい。また、遮光部843においては、第1遮光部843aよりも第2遮光部843bの遮光面積は大きく、第2遮光部843bよりも第3遮光部843cの遮光面積は大きい。このような構造を有する第3画素群853の焦点検出画素81、82においても、第1画素群851の焦点検出画素81、82の場合と同様に、光束の遮光性を向上させることができる。その結果、瞳分割精度が向上し、焦点検出演算回路14にて行われる焦点検出の精度を向上させることができる。
【0069】
-変形例-
次のような変形も本発明の範囲内であり、上述の実施形態と組み合わせることも可能である。
図7は、変形例における撮像素子8に設けられた焦点検出画素81、82を模式的に示す平面図である。
図7(a)は第1画素群851を示し、
図7(b)は第2画素群852を示し、
図7(c)は第3画素群853を示す。変形例では、各画素群850で、X軸方向に沿った1組の焦点検出画素81、82の間に撮像画素80を設けず、ある組の焦点検出画素81、82と他の組の焦点検出画素81、82との間に撮像画素80を設ける。各組の焦点検出画素81、82は、遮光部813を共通に有する。遮光部813の遮光面積は、焦点検出画素81、82が何れの画素群850に設けられるかによらず、同一である。すなわち、第1画素群851における第3遮光部813cの遮光面積と、第2画素群852における第2遮光部813bの遮光面積と、第3画素群853における第1遮光部813aの遮光面積とは等しい。
【0070】
各画素群850ごとに、X軸方向に沿って遮光部813を設ける位置が異らせる。
図7(a)に示す第1画素群851では、
図7(b)に示す第2画素群852の第2遮光部813bの位置に対して、第3遮光部813cがX軸+側に所定のずれ量だけオフセットした位置に設けられる。
図7(c)に示す第3画素群853では、
図7(b)に示す第2画素群852の第2遮光部813bの位置に対して、第1遮光部813aがX軸-側に所定のずれ量だけオフセットした位置に設けられる。なお、所定のずれ量は、焦点検出画素81、82の撮像面800の中心からの距離、すなわち像高に所定の係数を乗算して決定すればよい。また、撮像素子8の撮像面800の中心に対して対称となる位置に設けられた場合には、第1画素群851の第3遮光部813cをX軸方向-側にオフセットし、第3画素群853の第1遮光部813aをX軸+側にオフセットすれば良い。
上記の構成とすることにより、部品点数の増加を抑制させることができる。
【0071】
また、上述した実施の形態では、選択部51がレンズ情報に基づいて、第1画素群851~第3画素群853のうち、装着された撮影レンズ本体300が備える撮影光学系1に適した画素群850を選択する例を用いて説明したが、これに限定されるものではない。
例えば、第1画素群851~第3画素群853を全て選択し、最も適したものに重み付けをして焦点検出の演算を行っても良い。例えば、第1画素群851が撮影光学系1に最も適し、第3画素群853が撮影光学系1に最も適していない場合、第1画素群851を用いて得られた焦点検出結果に重み付け1を付し、第2画素群852を用いて得られた焦点検出結果に重み付け0.5を付し、第3画素群853を用いて得られた焦点検出結果に重み付け0.1を付しても良い。
例えば、第1画素群851~第3画素群853のうち、撮影光学系1に最も適していない画素群850を除外し、2つの画素群850を用いて焦点検出演算を行っても良い。
また、画素群950の配置は任意である。例えば、撮像面800の中央部(例えば、
図3の810cの近傍)に1種類の画素群850(例えば、第2画素群852)を配置し、撮像面800の周辺部(例えば、
図3の810aの近傍)に3種類の画素群850(例えば、第1画素群851~第3画素群853)を配置しても良い。
【0072】
本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
【0073】
次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
日本国特許出願2015年第254898号(2015年12月25日出願)
【符号の説明】
【0074】
5…制御部、8…撮像素子、14…焦点検出演算回路、15…ボディ-レンズ通信部、51…選択部、80…撮像画素、81、82…焦点検出画素、100…デジタルカメラ、811、821…マイクロレンズ、813、823…遮光部、812、822…光電変換部、850…画素群、851…第1画素群、852…第2画素群、853…第3画素群