(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024110014
(43)【公開日】2024-08-15
(54)【発明の名称】導電性基板
(51)【国際特許分類】
H05K 1/09 20060101AFI20240807BHJP
G06F 3/044 20060101ALI20240807BHJP
G06F 3/041 20060101ALI20240807BHJP
【FI】
H05K1/09 D
G06F3/044 122
G06F3/041 495
G06F3/041 660
【審査請求】未請求
【請求項の数】12
【出願形態】OL
(21)【出願番号】P 2022033777
(22)【出願日】2022-03-04
(31)【優先権主張番号】P 2021066694
(32)【優先日】2021-04-09
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2021141363
(32)【優先日】2021-08-31
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】306037311
【氏名又は名称】富士フイルム株式会社
(74)【代理人】
【識別番号】100152984
【弁理士】
【氏名又は名称】伊東 秀明
(74)【代理人】
【識別番号】100148080
【弁理士】
【氏名又は名称】三橋 史生
(72)【発明者】
【氏名】中山 亜矢
(72)【発明者】
【氏名】温井 克行
(72)【発明者】
【氏名】澤木 大悟
(72)【発明者】
【氏名】武尾 厚
【テーマコード(参考)】
4E351
【Fターム(参考)】
4E351AA01
4E351AA06
4E351AA13
4E351BB33
4E351CC06
4E351DD04
4E351DD05
4E351DD06
4E351DD19
4E351DD20
4E351DD52
4E351EE13
4E351EE14
4E351EE16
4E351GG12
(57)【要約】
【課題】導電性細線間のマイグレーションの抑制性能に優れ、かつ、耐光性に優れる導電性基板を提供することを課題とする。
【解決手段】基材と、基材上に配置され、金属を含む導電性細線と、を有する導電性基板であって、導電性基板に、式(1)で表される化合物、式(2)で表される化合物、並びに、式(3)で表される化合物およびそのプロトン互変異性体からなる群より選択される特定化合物が少なくとも1つ含まれている、導電性基板。
【選択図】
図1
【特許請求の範囲】
【請求項1】
基材と、
前記基材上に配置され、金属を含む導電性細線と、を有する
導電性基板であって、
前記導電性基板に、下記式(1)で表される化合物、下記式(2)で表される化合物、並びに、下記式(3)で表される化合物およびそのプロトン互変異性体からなる群より選択される特定化合物が少なくとも1つ含まれている、導電性基板。
【化1】
式(1)中、Aは水素原子または有機基を表し、
R
1およびR
2は、それぞれ独立して、置換基を有してもよい脂肪族炭化水素基を表す。
R
1およびR
2は、互いに結合して、R
1およびR
2の両者と結合する窒素原子とともに、置換基を有してもよい窒素含有ヘテロ環を形成してもよい。
【化2】
式(2)中、X
n+はn価の対イオンを表し、
nは1~3の整数を表し、
R
1およびR
2は、それぞれ独立して、置換基を有してもよい脂肪族炭化水素基を表す。
R
1およびR
2は、互いに結合して、R
1およびR
2の両者と結合する窒素原子とともに、置換基を有してもよい窒素含有ヘテロ環を形成してもよい。
【化3】
式(3)中、R
3~R
6は、それぞれ独立して、水素原子または有機基を表す。
R
4およびR
5は、互いに結合して、前記式(3)において表されている2個の窒素原子および炭素原子とともに、置換基を有してもよい窒素含有ヘテロ環を形成してもよい。
ただし、R
4およびR
5が互いに結合して前記窒素含有ヘテロ環を形成する場合、R
3およびR
6は、それぞれ独立して、水素原子または前記有機基を表す。
【請求項2】
前記式(1)および前記式(2)中、前記R1および前記R2が、それぞれ独立して、フェニル基およびヒドロキシ基からなる群より選択される置換基を有してもよい炭素数1~5のアルキル基を表し、
前記R1および前記R2が互いに結合して形成される前記窒素含有ヘテロ環が、メチル基もしくはエチル基を有してもよい環員数が5~7個の窒素含有非芳香族ヘテロ環である、
請求項1に記載の導電性基板。
【請求項3】
前記式(1)中、前記Aで表される有機基が、下記式(4)で表される基である、請求項1または2に記載の導電性基板。
*-A1-A2 (4)
式(4)中、A1は、炭素数1~5の2価の脂肪族炭化水素基、チオカルボニル基、および、チオカルボニルスルフィド基からなる群より選択される2価の連結基を表し、
A2は、水素原子、ヒドロキシ基、カルボキシ基、炭素数1~4のアルキル基を1個または2個有してもよいアミノ基、および、フェニル基からなる群より選択される基を表し、
*は、前記式(1)中の硫黄原子と結合する箇所を表す。
【請求項4】
前記式(1)中、前記R1および前記R2が、それぞれ独立してメチル基もしくはエチル基を表すか、または、互いに結合して前記窒素原子とともに1-ピロリジン環または1-ピペリジン環を形成し、
前記Aが、水素原子、メチル基、エチル基、カルボキシメチル基、ベンジル基、ジメチルチオカルバモイル基、ジメチルチオカルバモイルスルフィド基、ジエチルチオカルバモイル基またはジエチルチオカルバモイルスルフィド基を表す、
請求項1~3のいずれか1項に記載の導電性基板。
【請求項5】
前記式(2)中、前記nが1を表し、前記Xn+が、水素イオン、金属イオン、または、脂肪族炭化水素基を有してもよいアンモニウムイオンを表す、
請求項1~4のいずれか1項に記載の導電性基板。
【請求項6】
前記式(2)中、前記R1および前記R2が、それぞれ独立してメチル基もしくはエチル基を表すか、または、互いに結合して前記窒素原子とともに1-ピロリジン環または1-ピペリジン環を形成し、
前記Xn+が、水素イオン、ナトリウムイオン、アンモニウムイオン、ジメチルアンモニウムイオン、ジエチルアンモニウムイオン、または、ピペリジニウムイオンを表し、前記nが1を表す、
請求項1~5のいずれか1項に記載の導電性基板。
【請求項7】
前記式(3)中、前記R3~R6が、それぞれ独立して、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基、フェニル基、ベンジル基、または、シクロヘキシル基を表し、
前記R4および前記R5が互いに結合して前記窒素含有ヘテロ環を形成する場合、前記窒素含有ヘテロ環基が、置換基としてメチル基もしくはエチル基を有してもよいイミダゾリン環もしくはイミダゾリジン環、または、置換基としてメチル基、エチル基、メトキシ基もしくはアミノ基を有してもよいベンゾイミダゾリン環であり、かつ、
前記R3および前記R6の少なくとも一方が水素原子を表す、
請求項1~6のいずれか1項に記載の導電性基板。
【請求項8】
前記式(3)中、前記R3~R6のうち1~3個が水素原子を表し、前記R3~R6の残りが、炭素数1~5のアルキル基、アセチル基、または、フェニル基を表し、R4およびR5が互いに結合しない、請求項1~7のいずれか1項に記載の導電性基板。
【請求項9】
前記特定化合物が、前記導電性細線、および、前記導電性基板の表面において複数の前記導電性細線の間に配置される非導電部の少なくとも一方に含まれている、
請求項1~8のいずれか1項に記載の導電性基板。
【請求項10】
前記特定化合物が前記導電性細線に含まれている、請求項1~9のいずれか1項に記載の導電性基板。
【請求項11】
前記金属が銀を含む、請求項1~10のいずれか1項に記載の導電性基板。
【請求項12】
前記導電性細線によって形成されたメッシュパターンを有する、請求項1~11のいずれか1項に記載の導電性基板。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、導電性基板に関する。
【背景技術】
【0002】
導電性細線(導電性を示す細線状の配線)を有する導電性基板は、タッチパネル、太陽電池、および、EL(エレクトロルミネッセンス:Electro luminescence)素子等種々の用途に幅広く利用されている。特に、近年、携帯電話および携帯ゲーム機器へのタッチパネルの搭載率が上昇しており、多点検出が可能な静電容量方式のタッチパネル用の導電性基板の需要が急速に拡大している。
【0003】
導電性基板が有する導電性細線の劣化を防止する技術として、例えば、特許文献1には、透明フィルム基材上に銀ナノ材料を含有する金属導電性パターンを有する透明導電性フィルムと、透明導電性フィルムの金属導電性パターン側の面に積層された、紫外線吸収剤を含有する透明アクリル粘着剤とから形成された、パターン電極シートにおいて、粘着剤層に光安定剤または防錆剤を更に添加する技術が開示されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
近年、導電性細線のより一層の細線化が求められているところ、このような導電性細線を用いて形成される金属導電性パターンでは、マイグレーションがより発生しやすいという問題がある。マイグレーションが導電性細線間で起こると、導電性細線間が導通してしまい、回路機能を果たさなくなるため、マイグレーションの抑制性能が向上した導電性基板が求められている。
本発明者らは、特許文献1に記載されたような特定成分を含む部材を導電性基材に積層する技術では、マイグレーションの抑制性能が十分ではないことを知見した。
また、導電性細線を有する導電性基板に対しては、上述の通り各種光学部材の用途で利用されることから、耐光性に優れることも求められている。
【0006】
本発明は、上記実情に鑑みて、導電性細線間のマイグレーションの抑制性能に優れ、かつ、耐光性に優れる導電性基板を提供することを課題とする。
【課題を解決するための手段】
【0007】
本発明者らは、上記課題について鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。
【0008】
〔1〕
基材と、上記基材上に配置され、金属を含む導電性細線と、を有する導電性基板であって、上記導電性基板に、後述する式(1)で表される化合物、後述する式(2)で表される化合物、並びに、後述する式(3)で表される化合物およびそのプロトン互変異性体からなる群より選択される特定化合物が少なくとも1つ含まれている、導電性基板。
〔2〕
式(1)および式(2)中、R1およびR2が、それぞれ独立して、フェニル基およびヒドロキシ基からなる群より選択される置換基を有してもよい炭素数1~5のアルキル基を表し、R1およびR2が互いに結合して形成される上記窒素含有ヘテロ環が、メチル基もしくはエチル基を有してもよい環員数が5~7個の窒素含有非芳香族ヘテロ環である、〔1〕に記載の導電性基板。
〔3〕
式(1)中、Aで表される有機基が、後述する式(4)で表される基である、〔1〕または〔2〕に記載の導電性基板。
〔4〕
式(1)中、R1およびR2が、それぞれ独立してメチル基もしくはエチル基を表すか、または、互いに結合して上記窒素原子とともに1-ピロリジン環または1-ピペリジン環を形成し、Aが、水素原子、メチル基、エチル基、カルボキシメチル基、ベンジル基、ジメチルチオカルバモイル基、ジメチルチオカルバモイルスルフィド基、ジエチルチオカルバモイル基またはジエチルチオカルバモイルスルフィド基を表す、〔1〕~〔3〕のいずれかに記載の導電性基板。
〔5〕
式(2)中、nが1を表し、Xn+が、水素イオン、金属イオン、または、脂肪族炭化水素基を有してもよいアンモニウムイオンを表す、〔1〕~〔4〕のいずれかに記載の導電性基板。
〔6〕
式(2)中、R1およびR2が、それぞれ独立してメチル基もしくはエチル基を表すか、または、互いに結合して上記窒素原子とともに1-ピロリジン環または1-ピペリジン環を形成し、Xn+が、水素イオン、ナトリウムイオン、アンモニウムイオン、ジメチルアンモニウムイオン、ジエチルアンモニウムイオン、または、ピペリジニウムイオンを表し、nが1を表す、〔1〕~〔5〕のいずれかに記載の導電性基板。
〔7〕
式(3)中、R3~R6が、それぞれ独立して、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基、フェニル基、ベンジル基、または、シクロヘキシル基を表し、R4およびR5が互いに結合して上記窒素含有ヘテロ環を形成する場合、上記窒素含有ヘテロ環基が、置換基としてメチル基もしくはエチル基を有してもよいイミダゾリン環もしくはイミダゾリジン環、または、置換基としてメチル基、エチル基、メトキシ基もしくはアミノ基を有してもよいベンゾイミダゾリン環であり、かつ、R3およびR6の少なくとも一方が水素原子を表す、〔1〕~〔6〕のいずれかに記載の導電性基板。
〔8〕
式(3)中、R3~R6のうち1~3個が水素原子を表し、R3~R6の残りが、炭素数1~5のアルキル基、アセチル基、または、フェニル基を表し、R4およびR5が互いに結合しない、〔1〕~〔7〕のいずれかに記載の導電性基板。
〔9〕
上記特定化合物が、上記導電性細線、および、上記導電性基板の表面において複数の上記導電性細線の間に配置される非導電部の少なくとも一方に含まれている、〔1〕~〔8〕のいずれかに記載の導電性基板。
〔10〕
上記特定化合物が上記導電性細線に含まれている、〔1〕~〔9〕のいずれかに記載の導電性基板。
〔11〕
上記金属が銀を含む、〔1〕~〔10〕のいずれかに記載の導電性基板。
〔12〕
上記導電性細線によって形成されたメッシュパターンを有する、〔1〕~〔11〕のいずれかに記載の導電性基板。
【発明の効果】
【0009】
本発明によれば、導電性細線間のマイグレーションの抑制性能に優れ、かつ、耐光性に優れる導電性基板を提供できる。
【図面の簡単な説明】
【0010】
【
図1】本発明の導電性基板の構成の一例を示す模式的斜視図である。
【
図2】本発明の導電性基板の導電性細線により形成されるメッシュパターンの一例を示す平面図である。
【発明を実施するための形態】
【0011】
以下、図面を参照しながら、本発明の導電性基板について詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされるものであり、本発明はそのような実施形態に制限されない。また、以下に示す図は、本発明を説明するための例示的なものであり、以下に示す図によって本発明は制限されない。
本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
本明細書において、ある成分が2種以上存在する場合、その成分の「含有量」は、それら2種以上の成分の合計含有量を意味する。
本明細書において、「g」および「mg」は、「質量g」および「質量mg」をそれぞれ表す。
本明細書において、「高分子」または「高分子化合物」は、重量平均分子量が2000以上である化合物を意味する。ここで、重量平均分子量は、GPC(Gel Permeation Chromatography)測定によるポリスチレン換算値として定義される。
本明細書において、具体的な数値で表された角度、並びに、「平行」、「垂直」および「直交」等の角度に関する表記は、特に記載がなければ、該当する技術分野で一般的に許容される誤差範囲を含む。
本明細書中における「有機基」とは、少なくとも1個の炭素原子を含む基をいう。
【0012】
[導電性基板]
本発明に係る導電性基板は、基材と、基材上に配置され、金属を含む導電性細線とを有する。本発明に係る導電性基板には、更に、後述する特定化合物が含まれる。
図1は、本発明に係る導電性基板の構成の一例を示す模式的斜視図である。
図1に示す導電性基板10は、基材12と、基材12の表面12a上に配置された導電性細線14とを有する。なお、
図1では、一方向に延びる導電性細線14が2つ示されているが、導電性細線14の配置形態、および、その数は特に制限されない。
【0013】
〔基材〕
基材は、感光性層および導電性細線を支持できる部材であれば、その種類は特に制限されず、プラスチック基板、ガラス基板および金属基板が挙げられ、プラスチック基板が好ましい。
基材としては、得られる導電性部材の折り曲げ性に優れる点で、可撓性を有する基材が好ましい。可撓性を有する基材としては、上記プラスチック基板が挙げられる。
基材の厚みは特に制限されず、25~500μmの場合が多い。なお、導電性基板をタッチパネルに応用する際に、基材表面をタッチ面として用いる場合は、基材の厚みは500μmを超えていてもよい。
【0014】
基材を構成する材料としては、ポリエチレンテレフタレート(PET)(258℃)、ポリシクロオレフィン(134℃)、ポリカーボネート(250℃)、アクリルフィルム(128℃)、ポリエチレンナフタレート(269℃)、ポリエチレン(135℃)、ポリプロピレン(163℃)、ポリスチレン(230℃)、ポリ塩化ビニル(180℃)、ポリ塩化ビニリデン(212℃)、および、トリアセチルセルロース(290℃)等の融点が約290℃以下である樹脂が好ましく、PET、ポリシクロオレフィン、または、ポリカーボネートがより好ましい。なかでも、導電性細線との密着性が優れることから、PETが特に好ましい。上記の( )内の数値は融点またはガラス転移温度である。
基材の全光線透過率は、85~100%が好ましい。全光透過率は、JIS(日本工業規格) K 7375:2008に規定される「プラスチック-全光線透過率および全光線反射率の求め方」を用いて測定される。
【0015】
基材の表面上には、下塗り層が配置されていてもよい。
下塗り層は、後述する特定高分子を含むことが好ましい。この下塗り層を用いると、後述する導電性細線の基材に対する密着性がより向上する。
下塗り層の形成方法は特に制限されず、例えば、後述する特定高分子を含む下塗り層形成用組成物を基材上に塗布して、必要に応じて加熱処理を施す方法が挙げられる。下塗り層形成用組成物には、必要に応じて、溶剤が含まれていてもよい。溶剤の種類は特に制限されず、後述する感光性層形成用組成物で使用される溶剤が例示される。また、特定高分子を含む下塗り層形成用組成物として、特定高分子の粒子を含むラテックスを使用してもよい。
下塗り層の厚みは特に制限されず、導電層の基材に対する密着性がより優れる点で、0.02~0.3μmが好ましく、0.03~0.2μmがより好ましい。
【0016】
〔導電性細線〕
基材の表面には、金属を含む導電性細線が配置されている。導電性細線は、金属を含むことにより導電性基板の導電特性を担保する部分である。
金属としては、導電特性がより優れる点で、銀(金属銀)、銅(金属銅)、金(金属金)、ニッケル(金属ニッケル)およびパラジウム(金属パラジウム)からなる群より選択される1つ以上の金属との混合物が好ましく、銀単体、または、銀と銅の混合物がより好ましく、銀単体が更に好ましい。
【0017】
なお本明細書において、導電性細線とは、基材の表面に配置され、金属を含む材料で一体的に形成された細線状の領域を意図する。例えば、後述する工程Hにより形成されるハロゲン化銀不含有層、および、後述する工程Iにより形成される保護層は、後述する工程Aおよび工程Bにより形成される細線状の銀含有層とともに、導電性細線を構成する。
また、基材の表面に配置された導電性細線は、導電性基板の外部の部材と電気的に接続していてもよく、電気的に接続していなくてもよい。導電性細線の一部は、外部と電気的に絶縁されたダミー電極であってもよい。
【0018】
導電性細線に含まれる金属は、通常、固体粒子状である。金属の平均粒子径は、球相当径で10~1000nmが好ましく、10~200nmがより好ましい。なお、球相当径とは、同じ体積を有する球形粒子の直径であり、金属粒子の平均粒子径は、100個の対象物の球相当径を測定して、それらを算術平均した平均値として得られる。
金属粒子の形状は特に制限されず、例えば、球状、立方体状、平板状、八面体状、および、十四面体状等の形状が挙げられる。また、金属粒子が融着により一部または全体にわたって結合していてもよい。
導電性細線は、複数の金属が後述する高分子化合物中に分散してなる構造を有してもよく、高分子化合物中で金属粒子が凝集して凝集体として存在してもよい。また、導電性細線に含まれる複数の金属の少なくとも一部同士が、後述するめっき処理に用いる金属イオンに由来する金属によって接合されていてもよい。
導電性細線における金属の含有量は特に制限されず、導電性基板の導電性がより優れる点で、3.0~20.0g/m2が好ましく、5.0~15.0g/m2がより好ましい。
【0019】
導電性細線は、金属に加えて高分子化合物を含んでいてもよい。
導電性細線に含まれる高分子化合物の種類は特に制限されず、公知の高分子化合物が使用できる。なかでも、強度がより優れる銀含有層および導電性細線を形成できる点で、ゼラチンとは異なる高分子化合物(以下、「特定高分子」とも記載する。)が好ましい。
特定高分子の種類はゼラチンと異なれば特に制限されず、後述するゼラチンを分解する、タンパク質分解酵素または酸化剤で分解しない高分子が好ましい。
特定高分子としては、疎水性高分子(非水溶性高分子)が挙げられ、例えば、(メタ)アクリル系樹脂、スチレン系樹脂、ビニル系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリジエン系樹脂、エポキシ系樹脂、シリコーン系樹脂、セルロース系重合体、および、キトサン系重合体からなる群から選ばれる少なくともいずれかの樹脂、または、これらの樹脂を構成する単量体からなる共重合体等が挙げられる。
また、特定高分子は、後述する架橋剤と反応する反応性基を有することが好ましい。
特定高分子は、粒子状であることが好ましい。つまり、導電性細線は、特定高分子の粒子を含むことが好ましい。
【0020】
特定高分子としては、以下の一般式(1)で表される高分子(共重合体)が好ましい。
一般式(1): -(A)x-(B)y-(C)z-(D)w-
なお、一般式(1)中、A、B、C、およびDはそれぞれ、下記一般式(A)~(D)で表される繰り返し単位を表す。
【0021】
【0022】
R11は、メチル基またはハロゲン原子を表し、メチル基、塩素原子、または、臭素原子が好ましい。pは0~2の整数を表し、0または1が好ましく、0がより好ましい。
R12は、メチル基またはエチル基を表し、メチル基が好ましい。
R13は、水素原子またはメチル基を表し、水素原子が好ましい。Lは、2価の連結基を表し、下記一般式(2)で表される基が好ましい。
一般式(2):-(CO-X1)r-X2-
一般式(2)中、X1は、酸素原子または-NR30-を表す。ここでR30は、水素原子、アルキル基、アリール基、または、アシル基を表し、それぞれ置換基(例えば、ハロゲン原子、ニトロ基、および、ヒドロキシル基)を有してもよい。R30としては、水素原子、炭素数1~10のアルキル基(例えば、メチル基、エチル基、n-ブチル基、および、n-オクチル基)、または、アシル基(例えば、アセチル基、および、ベンゾイル基)が好ましい。X1としては、酸素原子または-NH-が好ましい。
X2は、アルキレン基、アリーレン基、アルキレンアリーレン基、アリーレンアルキレン基、または、アルキレンアリーレンアルキレン基を表し、これらの基には-O-、-S-、-CO-、-COO-、-NH-、-SO2-、-N(R31)-、または、-N(R31)SO2-等が途中に挿入されてもよい。R31は、炭素数1~6の直鎖状または分岐鎖状のアルキル基を表す。X2としては、ジメチレン基、トリメチレン基、テトラメチレン基、o-フェニレン基、m-フェニレン基、p-フェニレン基、-CH2CH2OCOCH2CH2-、または、-CH2CH2OCO(C6H4)-が好ましい。
rは0または1を表す。
qは0または1を表し、0が好ましい。
【0023】
R14は、アルキル基、アルケニル基、または、アルキニル基を表し、炭素数5~50のアルキル基が好ましく、炭素数5~30のアルキル基がより好ましく、炭素数5~20のアルキル基が更に好ましい。
R15は、水素原子、メチル基、エチル基、ハロゲン原子、または、-CH2COOR16を表し、水素原子、メチル基、ハロゲン原子、または、-CH2COOR16が好ましく、水素原子、メチル基、または、-CH2COOR16がより好ましく、水素原子が更に好ましい。
R16は、水素原子または炭素数1~80のアルキル基を表し、R14と同じでも異なってもよく、R16の炭素数は1~70が好ましく、1~60がより好ましい。
【0024】
一般式(1)中、x、y、z、およびwは各繰り返し単位のモル比率を表す。
xは、3~60モル%であり、3~50モル%が好ましく、3~40モル%がより好ましい。
yは、30~96モル%であり、35~95モル%が好ましく、40~90モル%がより好ましい。
zは、0.5~25モル%であり、0.5~20モル%が好ましく、1~20モル%がより好ましい。
wは、0.5~40モル%であり、0.5~30モル%が好ましい。
一般式(1)において、xは3~40モル%、yは40~90モル%、zは0.5~20モル%、wは0.5~10モル%の場合が好ましい。
【0025】
一般式(1)で表される高分子としては、下記一般式(2)で表される高分子が好ましい。
【0026】
【0027】
一般式(2)中、x、y、zおよびwは、上述の定義の通りである。
【0028】
一般式(1)で表される高分子は、上述の一般式(A)~(D)で表される繰り返し単位以外の他の繰り返し単位を含んでもよい。
他の繰り返し単位を形成するためのモノマーとしては、例えば、アクリル酸エステル類、メタクリル酸エステル類、ビニルエステル類、オレフィン類、クロトン酸エステル類、イタコン酸ジエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、アクリルアミド類、不飽和カルボン酸類、アリル化合物、ビニルエーテル類、ビニルケトン類、ビニル異節環化合物、グリシジルエステル類、および、不飽和ニトリル類が挙げられる。これらのモノマーとしては、特許第3754745号公報の段落0010~0022にも記載されている。疎水性の観点から、アクリル酸エステル類またはメタクリル酸エステル類が好ましく、ヒドロキシアルキルメタクリレートまたはヒドロキシアルキルアクリレートがより好ましい。
一般式(1)で表される高分子は、一般式(E)で表される繰り返し単位を含むことが好ましい。
【0029】
【0030】
上述の式中、LEはアルキレン基を表し、炭素数1~10のアルキレン基が好ましく、炭素数2~6のアルキレン基がより好ましく、炭素数2~4のアルキレン基が更に好ましい。
【0031】
一般式(1)で表される高分子としては、下記一般式(3)で表される高分子が特に好ましい。
【0032】
【0033】
上述の式中、a1、b1、c1、d1、およびe1は各繰り返し単位のモル比率を表し、a1は3~60(モル%)、b1は30~95(モル%)、c1は0.5~25(モル%)、d1は0.5~40(モル%)、e1は1~10(モル%)を表す。
a1の好ましい範囲は上述のxの好ましい範囲と同じであり、b1の好ましい範囲は上述のyの好ましい範囲と同じであり、c1の好ましい範囲は上述のzの好ましい範囲と同じであり、d1の好ましい範囲は上述のwの好ましい範囲と同じである。
e1は、1~10モル%であり、2~9モル%が好ましく、2~8モル%がより好ましい。
【0034】
特定高分子は、例えば、特許第3305459号公報および特許第3754745号公報等を参照して合成できる。
特定高分子の重量平均分子量は特に制限されず、1000~1000000が好ましく、2000~750000がより好ましく、3000~500000が更に好ましい。
【0035】
導電性細線には、必要に応じて、上述した材料以外の他の材料が含まれていてもよい。
例えば、特開2009-004348号公報の段落0220~0241に記載されるような、帯電防止剤、造核促進剤、分光増感色素、界面活性剤、カブリ防止剤、硬膜剤、黒ポツ防止剤、レドックス化合物、モノメチン化合物、および、ジヒドロキシベンゼン類も挙げられる。更には、感光性層には、物理現像核が含まれていてもよい。
また、導電性細線には、上述の特定高分子同士を架橋するために使用される架橋剤が含まれていてもよい。架橋剤が含まれることにより、特定高分子同士間での架橋が進行し、導電性細線中の金属同士の連結が保たれる。
【0036】
導電性細線の線幅Waは、導電性細線が視認されにくい点から、5.0μm未満が好ましく、2.5μm以下がより好ましく、2.0μm以下が更に好ましい。下限は特に制限されないが、導電性細線の導電性がより優れる点から、0.5μm以上が好ましく、1.2μm以上がより好ましい。なお、導電性細線の線幅とは、基材の表面に沿った方向のうち、導電性細線が延在する方向に対して直交する方向における導電性細線の全長を意味する。
上述の導電性細線の線幅Waは、走査型電子顕微鏡を用いて、1本の導電性細線の線幅に相当する任意の5箇所を選択し、5箇所の線幅相当の算術平均値を線幅Waとする。
【0037】
導電性細線の厚みTは特に制限されないが、0.5~3.0μmが好ましく、1.0~2.0μmがより好ましい。
上述の導電性細線の厚みTは、走査型電子顕微鏡を用いて、1本の導電性細線の厚みに相当する任意の5箇所を選択し、5箇所の厚みに相当する部分の算術平均値を厚みTとする。
【0038】
導電性細線の線抵抗値は、200Ω/mm未満であることが好ましい。なかでも、タッチパネルとして用いた際の操作性の点から、100Ω/mm未満であることがより好ましく、60Ω/mm未満が更に好ましい。
線抵抗値とは、4探針法で測定した抵抗値を測定端子間距離で除したものである。より具体的には、メッシュパターンを構成する任意の1本の導電性細線の両端を断線させてメッシュパターンから切り離した後に、4本(A、B、C、D)のマイクロプローブ(株式会社マイクロサポート製タングステンプローブ(直径0.5μm))を該切り離された導電性細線に接触させて、最外プローブA、Dにソースメーター(KEITHLEY製ソースメーター 2400型汎用ソースメーター)を用いて内部プローブB、C間の電圧Vが5mVになるよう定電流Iを印加し、抵抗値Ri=V/Iを測定し、得られた抵抗値RiをB、C間距離で除して線抵抗値を求める。
【0039】
導電性細線は所定のパターンを形成していてもよい。即ち、導電性基板は、導電性細線によって形成されたパターンを有していてもよい。そのパターンは特に制限されず、例えば、正三角形、二等辺三角形および直角三角形等の三角形、正方形、長方形、菱形、平行四辺形および台形等の四角形、(正)六角形および(正)八角形等の(正)n角形、円、楕円、星形、並びに、これらの図形を組み合わせた幾何学図形であることが好ましく、メッシュ状(メッシュパターン)であることがより好ましい。
【0040】
図2は、本発明に係る導電性基板の導電性細線により形成されるメッシュパターンの一例を示す平面図である。
メッシュ状とは、
図2に示すように、交差する導電性細線14Bにより構成される複数の開口部(格子)20を含む形状を意図する。
図2において、開口部20は、一辺の長さがLであるひし形(正方形)の形状を有しているが、メッシュパターンの開口部は、他の形状であってもよく、例えば、多角形状(例えば、三角形、四角形、六角形、および、ランダムな多角形)であってもよい。また、辺の形状は、直線以外の湾曲した形状であってもよいし、円弧状であってもよい。円弧状とする場合は、例えば、対向する二辺については、外方に凸の円弧状とし、他の対向する二辺については、内方に凸の円弧状としてもよい。また、各辺の形状を、外方に凸の円弧と内方に凸の円弧が連続した波線形状としてもよい。もちろん、各辺の形状を、サイン曲線にしてもよい。
【0041】
開口部20の一辺の長さLは特に制限されないが、1500μm以下が好ましく、1300μm以下がより好ましく、1000μm以下が更に好ましい。長さLの下限値は特に制限されないが、5μm以上が好ましく、30μm以上がより好ましく、80μm以上が更に好ましい。開口部の一辺の長さが上述の範囲である場合には、更に透明性も良好に保つことが可能であり、導電性基板を表示装置の前面にとりつけた際に、違和感なく表示を視認することができる。
【0042】
可視光透過率の点から、導電性細線により形成されるメッシュパターンの開口率は、90%以上が好ましく、95%以上がより好ましく、99%以上が更に好ましい。上限は特に制限されないが、100%未満が挙げられる。
開口率とは、導電性基板の表面の法線方向から観察したときの、メッシュパターン領域中における導電性細線がある領域を除いた領域のメッシュパターン領域全体に占める割合の面積比に相当する。
【0043】
<他の部材>
導電性基板は、上述の基材および導電性細線以外に他の部材を有してもよい。
導電性基板が有してもよい他の部材としては、導電性基板の表面において複数の導電性細線の間に配置される非導電部、および、後述する導電性細線とは構成が異なる導電部が挙げられる。
【0044】
非導電部は、導電性を示さない領域であり、導電性の金属を実質的に含まない。ここで、「実質的に」とは、非導電部における金属の含有量が、非導電部の総質量に対して0.1質量%以下であることを意味する。
非導電部は、高分子化合物を主成分として含むことが好ましい。
非導電部に含まれる高分子化合物としては、導電性細線に含まれる高分子化合物が挙げられ、特定高分子が好ましい。なかでも、導電性細線に含まれる高分子化合物(好ましくは特定高分子)と同じ高分子化合物を含むことがより好ましい。
非導電部が高分子化合物を「主成分として含む」とは、高分子化合物の含有量が非導電部の総質量に対して50質量%以上であることを意味する。非導電部における高分子化合物の含有量は、90質量%以上が好ましく、95質量%以上がより好ましい。上限値は特に制限されず、100質量%であってよい。
【0045】
非導電部の形成方法は、特に制限されず、例えば、後述する導電性基板の製造方法において、ハロゲン化銀含有感光性層をパターン状に露光する露光処理を施すことにより未露光部を形成し、続いて未露光部に対して現像処理を実施することにより、高分子化合物を主成分とする非導電部が形成される。また、必要に応じてゼラチンを除去する処理を実施することにより、特定高分子を主成分とする非導電部が形成される。
【0046】
〔特定化合物〕
本発明に係る導電性基板には、後述する特定化合物が少なくとも1つ含まれる。本発明に係る導電性基材は特定化合物を含有することにより、導電性細線間のマイグレーションの抑制性能に優れ、かつ、耐光性に優れたものとなる。
以下、導電性基材において、導電性細線間のマイグレーションの抑制性能および耐光性のいずれか一方が優れることを「本発明の効果が優れる」とも記載する。
【0047】
以下、特定化合物について詳細に説明する。
特定化合物は、下記式(1)で表される化合物、下記式(2)で表される化合物、並びに、下記式(3)で表される化合物およびそのプロトン互変異性体からなる群より選択される化合物である。
特定化合物としては、下記式(1)で表される化合物が挙げられる。
【0048】
【0049】
式(1)中、Aは水素原子または有機基を表し、
R1およびR2は、それぞれ独立して、置換基を有してもよい脂肪族炭化水素基を表す。
また、R1およびR2は、互いに結合して、R1およびR2の両者と結合する窒素原子とともに、置換基を有してもよい窒素含有ヘテロ環を形成してもよい。
【0050】
Aで表される有機基としては、脂肪族炭化水素基、芳香族炭化水素基、および、これらの基を2個以上組み合わせてなる基からなる群より選択される1価の基が挙げられる。
Aで表される有機基の炭素数は、例えば1~20であり、1~15が好ましく、1~10がより好ましい。
脂肪族炭化水素基は、直鎖状、分岐鎖状および環状のいずれであってもよく、直鎖状または分岐鎖状であることが好ましく、直鎖状であることがより好ましい。脂肪族炭化水素基の炭素数は、1~10が好ましく、1~5がより好ましい。
芳香族炭化水素基としては、炭素数6~10の芳香族炭化水素基が好ましく、フェニル基がより好ましい。
【0051】
上記の脂肪族炭化水素基、芳香族炭化水素基、および、これらの基を2個以上組み合わせてなる基は、更に置換基を有してもよい。
上記置換基としては、例えば、ヒドロキシ基、オキソ基、カルボキシ基、チオール基(メルカプト基)、チオキソ基、チオカルボニルスルフィド基、置換基を有してもよいアミノ基、リン酸基、スルホ基、シアノ基、ニトロ基、および、アリール基が挙げられ、ヒドロキシ基、オキソ基、カルボキシ基、チオール基、チオキソ基、チオカルボニルスルフィド基、炭素数1~4のアルキル基を1個または2個有してもよいアミノ基、または、フェニル基が好ましく、ヒドロキシ基、カルボキシ基、炭素数1~4のアルキル基を1個もしくは2個有してもよいアミノ基、または、フェニル基がより好ましい。
上記の置換基の個数は特に制限されず、例えば1~3個であり、1個または2個が好ましい。
また、上記の脂肪族炭化水素基は、その脂肪族炭化水素基を構成するメチレン基(-CH2-)に代えて、-S-、または、-O-を有してもよい。
【0052】
上記のAで表される有機基は、下記式(4)で表される基であることが好ましい。
*-A1-A2 (4)
式(4)中、A1は、炭素数1~5の2価の脂肪族炭化水素基、チオカルボニル基、および、チオカルボニルスルフィド基からなる群より選択される2価の連結基を表す。
A2は、水素原子、ヒドロキシ基、カルボキシ基、炭素数1~4のアルキル基を1個または2個有してもよいアミノ基、および、フェニル基からなる群より選択される基を表す。
*は、上記式(1)中の硫黄原子と結合する箇所を表す。
【0053】
A1で表される2価の連結基としては、なかでも、炭素数1~3のアルキレン基、チオカルボニル基、または、チオカルボニルスルフィド基が好ましい。
A2で表される基としては、なかでも、水素原子、カルボキシ基、メチル基もしくはエチル基を2個有するアミノ基、または、フェニル基が好ましい。
【0054】
式(1)中のAとしては、水素原子、または、上記式(4)で表される基が好ましく、水素原子、メチル基、エチル基、カルボキシメチル基、ベンジル基、ジメチルチオカルバモイル基、ジメチルチオカルバモイルスルフィド基、ジエチルチオカルバモイル基またはジエチルチオカルバモイルスルフィド基がより好ましい。
【0055】
R1およびR2で表される脂肪族炭化水素基としては、その好ましい態様も含めて、上記のAで表される脂肪族炭化水素基として挙げた基が挙げられる。
また、R1およびR2で表される脂肪族炭化水素基は、飽和脂肪族炭化水素基であることが好ましい。
【0056】
R1およびR2で表される脂肪族炭化水素基が有してもよい置換基としては、例えば、アリール基、ヒドロキシ基、オキソ基、カルボキシ基、チオール基、チオキソ基、および、チオカルボニルスルフィド基が挙げられ、フェニル基、ヒドロキシ基、カルボキシ基、または、チオール基が好ましく、フェニル基、または、ヒドロキシ基がより好ましい。
上記脂肪族炭化水素基が置換基を有する場合の置換基の個数は特に制限されないが、1個または2個が好ましく、1個がより好ましい。
【0057】
また、R1およびR2が互いに結合して、R1およびR2の両者と結合する窒素原子とともに形成される窒素含有ヘテロ環基としては、例えば、窒素含有非芳香族ヘテロ環が挙げられる。
上記窒素含有ヘテロ環基の環員数は、例えば5~8個であり、5~7個が好ましく、5個または6個がより好ましい。
上記窒素含有ヘテロ環基としては、1-ピロリジン環または1-ピペリジン環が好ましい。
【0058】
上記窒素含有ヘテロ環基が有してもよい置換基としては、例えば、炭素数1~5の脂肪族炭化水素基、および、上記のR1およびR2で表される脂肪族炭化水素基が有してもよい置換基として挙げた基が挙げられ、炭素数1~5のアルキル基が好ましく、メチル基またはエチル基がより好ましい。
上記窒素含有ヘテロ環基が置換基を有する場合の置換基の個数は、特に制限されないが、1個または2個が好ましく、1個がより好ましい。
上記窒素含有ヘテロ環基は、置換基を有さないことが好ましい。
【0059】
R1およびR2は、上記置換基(より好ましくはフェニル基またはヒドロキシ基)を有してもよい炭素数1~5のアルキル基を表すか、または、互いに結合して、メチル基もしくはエチル基を有してもよい環員数が5~7個の窒素含有非芳香族ヘテロ環を形成することが好ましく、メチル基もしくはエチル基を表すか、または、互いに結合して1-ピロリジン環もしくは1-ピペリジン環を形成することがより好ましい。
R1およびR2が環を形成しない場合、R1およびR2は同じであっても異なっていてもよいが、同じであることが好ましい。
【0060】
上記式(1)で表される化合物としては、式(1)中のAが上記の好ましい基であり、かつ、式(1)中のR1およびR2が上記の好ましい基である化合物が挙げられる。
【0061】
特定化合物としては、下記式(2)で表される化合物も挙げられる。
【0062】
【0063】
式(2)中、Xn+はn価の対イオンを表し、
nは1~3の整数を表し、
R1およびR2は、それぞれ独立して、置換基を有してもよい脂肪族炭化水素基を表す。
また、R1およびR2は、互いに結合して、R1およびR2の両者と結合する窒素原子とともに、置換基を有してもよい窒素含有ヘテロ環を形成してもよい。
なお、上記式(2)において、Xn+が2価または3価のカチオンを表す場合、式(2)で表されるXn+以外の構造を2または3個有する。
【0064】
上記式(2)において、R1およびR2により表される置換基を有してもよい脂肪族炭化水素基は、その好ましい態様も含めて、上記式(1)におけるR1およびR2により表される置換基を有してもよい脂肪族炭化水素基と同じであってよい。
また、上記式(2)において、R1およびR2が互いに結合して形成される置換基を有してもよい窒素含有ヘテロ環は、その好ましい態様も含めて、上記式(1)におけるR1およびR2が互いに結合して形成される置換基を有してもよい窒素含有ヘテロ環と同じであってよい。
【0065】
式(2)中、Xn+で表される対イオンとしては、例えば、水素イオン(H+)、金属イオン、および、脂肪族炭化水素基を有してもよいアンモニウムイオンが挙げられる。
金属イオンを構成する金属元素としては、ナトリウムおよびカリウム等のアルカリ金属元素、カルシウム、マグネシウムおよびストロンチウム等のアルカリ土類金属元素、並びに、銅、亜鉛、ニッケル、鉄、マンガンおよびコバルト等の遷移金属元素が挙げられる。なかでも、ナトリウム、カリウム、銅、亜鉛、ニッケル、または、鉄が好ましく、ナトリウムがより好ましい。
【0066】
脂肪族炭化水素基を有してもよいアンモニウムイオンとしては、下記式(5)で表される化合物が好ましい。
N+RpH(4-p) (5)
式(5)中、pは0~4の整数を表し、Rは炭素数1~5のアルキル基を表す。pが2~4の整数を表す場合、Rは同じであっても異なっていてもよい。また、pが2~4の整数を表す場合、2つのRが互いに結合して窒素原子とともに炭素数1~5のアルキル基を有してもよい窒素含有非芳香族ヘテロ環を形成してもよい。
【0067】
pとしては、0~3の整数が好ましく、0~2の整数がより好ましい。
Rで表される炭素数1~5のアルキル基としては、メチル基またはエチル基が好ましい。
上記の窒素含有非芳香族ヘテロ環は、その好ましい態様も含めて、上述の式(1)におけるR1およびR2が互いに結合して形成する窒素含有非芳香族ヘテロ環と同じであってよい。なかでも、メチル基またはエチル基を有してもよい1-ピペリジン環または1-アゼパン環が好ましく、1-ピペリジン環がより好ましい。
脂肪族炭化水素基を有してもよいアンモニウムイオンとしては、NH4
+、ジメチルアンモニウムイオン、ジエチルアンモニウムイオン、または、ピペリジニウムイオンが好ましい。
【0068】
式(2)において、Xn+で表される対イオンとしては、水素イオン(H+)、ナトリウムイオン(Na+)、カリウムイオン(K+)、銅イオン(Cu2+)、亜鉛イオン(Zn2+)、ニッケルイオン(Ni2+)、鉄イオン(Fe3+)、または、上記式(5)で表されるアンモニウムイオンが好ましく、水素イオン、ナトリウムイオン、アンモニウムイオン、ジメチルアンモニウムイオン、ジエチルアンモニウムイオン、または、ピペリジニウムイオンがより好ましい。
【0069】
上記式(2)で表される化合物としては、式(2)中のXn+が上記の好ましい基であり、nが1を表し、かつ、式(2)中のR1およびR2が上記の好ましい基である化合物が挙げられる。
【0070】
上記式(1)で表される化合物、および、上記式(2)で表される化合物の具体例を以下に示す。上記式(1)で表される化合物、および、上記式(2)で表される化合物は、下記の具体例に制限されない。
【0071】
【0072】
特定化合物としては、下記式(3)で表される化合物およびそのプロトン互変異性体も挙げられる。
【0073】
【0074】
式(3)中、R3~R6は、それぞれ独立して、水素原子または有機基を表す。
R4およびR5は、互いに結合して、上記式(3)において表されている2個の窒素原子および炭素原子とともに、置換基を有してもよい窒素含有ヘテロ環を形成してもよい。
ただし、R4およびR5が互いに結合して上記窒素含有ヘテロ環を形成する場合、R3およびR6は、それぞれ独立して、水素原子または上記有機基を表す。
上記式(3)で表される化合物のプロトン互変異性体としては、例えば、下記式(3a)で表される化合物および下記式(3b)で表される化合物が挙げられる。
【0075】
【0076】
式(3a)および式(3b)中、R3、R4およびR5は、それぞれ、上記式(3)におけるR3、R4およびR5と同じである。
式(3b)中、Xn+はn価の対イオンを表し、nは1~3の整数を表す。式(3b)におけるXn+およびnについては、それらの好ましい態様も含めて、上述した式(2)におけるXn+およびnと同じであってよい。
以下、式(3)で表される化合物に関する説明は、特に言及しない限り、式(3a)および式(3b)で表されるような、式(3)で表される化合物のプロトン互変異性体も含むものとする。
【0077】
R3~R6で表される有機基としては、脂肪族炭化水素基、芳香族炭化水素基、および、これらの基を2個以上組み合わせてなる基からなる群より選択される1価の基が挙げられる。
R3~R6で表される有機基の炭素数は、例えば1~20であり、1~15が好ましく、1~10がより好ましい。
脂肪族炭化水素基は、直鎖状、分岐鎖状および環状のいずれであってもよく、直鎖状または分岐鎖状であることが好ましく、直鎖状であることがより好ましい。脂肪族炭化水素基の炭素数は、1~8が好ましく、1~5がより好ましい。
芳香族炭化水素基としては、炭素数6~10の芳香族炭化水素基が好ましく、フェニル基がより好ましい。
【0078】
上記の脂肪族炭化水素基、芳香族炭化水素基、および、これらの基を2個以上組み合わせてなる基は、更に置換基を有してもよい。
上記置換基としては、例えば、ヒドロキシ基、オキソ基、カルボキシ基、チオール基、チオキソ基、チオカルボニルスルフィド基、置換基を有してもよいアミノ基、リン酸基、スルホ基、シアノ基、ニトロ基、および、アリール基が挙げられ、ヒドロキシ基、オキソ基、または、カルボキシ基が好ましい。
上記の置換基の個数は、例えば1~3個であり、1個が好ましい。
また、上記の脂肪族炭化水素基は、その脂肪族炭化水素基を構成するメチレン基(-CH2-)に代えて、-S-、または、-O-、を有してもよい。
【0079】
上記のR3~R6で表される有機基としては、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基、フェニル基、ベンジル基、または、シクロヘキシル基が好ましく、炭素数1~5のアルキル基、アセチル基、または、フェニル基がより好ましい。これらの基は置換基を有さないことが好ましい。
【0080】
また、R4およびR5が互いに結合して、上記式(3)において表される2個の窒素原子および炭素原子とともに形成される窒素含有ヘテロ環基としては、チオウレア構造(>N-C(=S)-N<)を含む環状構造を有するものであれば特に制限されない。
上記の窒素含有ヘテロ環基は、芳香族性および非芳香族性のいずれであってもよい。また、上記の窒素含有ヘテロ環基の環員数は、例えば5個または6個であり、5個が好ましい。上記の窒素含有ヘテロ環基としては、イミダゾリン環またはイミダゾリジン環が好ましい。
【0081】
上記の窒素含有ヘテロ環基が有してもよい置換基としては、例えば、炭素数1~5の脂肪族炭化水素基、および、上記のR3~R6で表される脂肪族炭化水素基が有してもよい置換基として挙げた基が挙げられ、炭素数1~5のアルキル基が好ましく、メチル基またはエチル基がより好ましい。
上記置換基の個数は、例えば1~3個であり、1個または2個が好ましい。
上記窒素含有ヘテロ環基において、隣接する炭素原子がそれぞれ有する水素原子と置換した置換基が互いに結合して、置換基を有してもよいフェニル基を形成してもよい。即ち、R4およびR5は、互いに結合して、上記式(3)において表される2個の窒素原子および炭素原子とともに、置換基を有してもよいベンゾイミダゾリン環を形成してもよい。このベンゾイミダゾリン環が有してもよい置換基としては、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、アミノ基およびスルホ基が挙げられ、メチル基、エチル基、メトキシ基、アミノ基またはスルホ基が好ましい。
【0082】
R4およびR5が互いに結合して窒素含有ヘテロ環基を形成する場合、R3およびR6の少なくとも一方が水素原子を表すことが好ましく、R3およびR6の一方が水素原子を表し、他方が水素原子、メチル基またはエチル基を表すことがより好ましい。
【0083】
上記式(3)におけるR3~R6のうち、1~3個が水素原子を表すことが好ましく、2個が水素原子を表すことがより好ましい。
【0084】
上記式(3)で表される化合物としては、R3~R6が、それぞれ独立して、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基、フェニル基、ベンジル基、または、シクロヘキシル基を表し、R4およびR5が互いに結合して窒素含有ヘテロ環を形成する場合、その窒素含有ヘテロ環基が、置換基としてメチル基もしくはエチル基を有してもよいイミダゾリン環もしくはイミダゾリジン環、または、置換基としてメチル基、エチル基、メトキシ基、スルホ基もしくはアミノ基を有してもよいベンゾイミダゾリン環であり、かつ、R3およびR6の少なくとも一方が水素原子を表す化合物であることが、好ましい。
【0085】
上記式(3)で表される化合物の具体例を以下に示す。上記式(3)で表される化合物は、下記の具体例に制限されない。
【0086】
【0087】
【0088】
特定化合物は、導電性基板を構成する任意の部材に存在してよいが、導電性細線および上述の非導電部の少なくとも一方に含まれていることが好ましく、導電性細線に含まれていることがより好ましい。
【0089】
導電性基板に含まれる特定化合物の含有量は、本発明の効果がより優れる点で、導電性基板の重量当たり、1.0μg/g以上が好ましく、3.0μg/g以上がより好ましく、8.0μg/g以上が更に好ましい。
上限値は特に制限されないが、導電性および面状がより優れる点で、導電性基板の重量当たり、1000μg/g以下が好ましく、400μg/g以下がより好ましい。
導電性基板に含まれる特定化合物の含有量は、導電性基板を抽出溶媒に浸漬して特定化合物を抽出した後、抽出溶媒中の特定化合物の含有量を定量することにより、測定できる。特定化合物の含有量の詳しい測定方法は、後述する実施例に記載する。
【0090】
導電性基板に特定化合物を含有させる方法は特に制限されず、例えば、導電性細線または非導電部の形成に用いる組成物に特定化合物を予め含有させる方法、および、導電性細線を有する導電性基板を製造する途中または製造した後、特定化合物を導電性基板に接触させる方法が挙げられる。なかでも、後述する工程Pにより、特定化合物を導電性基板に接触させることが好ましい。
【0091】
〔導電性基板の製造方法〕
次に、導電性基板の製造方法について説明する。
導電性基板の製造方法は、上述した構成の導電性基板が製造できれば特に制限されず、公知の方法が採用される。例えば、ハロゲン化銀を用いて露光および現像を行う方法、支持体の全面に金属含有層を形成した後、レジストパターンを用いて金属含有層の一部を除去して、細線状の金属含有層を形成する方法、並びに、金属および樹脂を含む組成物をインクジェット等の公知の印刷方法により基材上に吐出して細線状の金属含有層を形成する方法が挙げられる。
なかでも、生産性および導電性細線の導電性がより優れる点で、ハロゲン化銀を用いて露光および現像を行う方法が好ましい。具体的には、後述する工程A~工程Eをこの順に有する導電性基板の製造方法が挙げられる。
以下、工程A~工程Eを有する導電性基板の製造方法について詳述するが、本発明に係る導電性基板の製造方法は、下記の製造方法に制限されない。
【0092】
<工程A>
工程Aは、基材上に、ハロゲン化銀とゼラチンと特定高分子(ゼラチンとは異なる高分子化合物)とを含むハロゲン化銀含有感光性層(以下、「感光性層」ともいう。)を形成する工程である。本工程により、後述する露光処理が施される感光性層付き基材が製造される。
まず、工程Aで使用される材料および部材について詳述し、その後、工程Aの手順について詳述する。
なお、工程Aで使用される基材、および、特定高分子については上述の通りである。
【0093】
(ハロゲン化銀)
ハロゲン化銀に含まれるハロゲン原子は、塩素原子、臭素原子、ヨウ素原子およびフッ素原子のいずれであってもよく、これらを組み合わせでもよい。例えば、塩化銀、臭化銀またはヨウ化銀を主体としたハロゲン化銀が好ましく、塩化銀または臭化銀を主体としたハロゲン化銀がより好ましい。なお、塩臭化銀、ヨウ塩臭化銀またはヨウ臭化銀も、好ましく用いられる。
ここで、例えば、「塩化銀を主体としたハロゲン化銀」とは、ハロゲン化銀組成中、全ハロゲン化物イオンに占める塩化物イオンのモル分率が50%以上のハロゲン化銀をいう。この塩化銀を主体としたハロゲン化銀は、塩化物イオンのほかに、臭化物イオンおよび/またはヨウ化物イオンを含んでいてもよい。
【0094】
ハロゲン化銀は、通常、固体粒子状であり、ハロゲン化銀の平均粒子径は、球相当径で10~1000nmが好ましく、10~200nmがより好ましく、湿熱環境下において導電性細線の抵抗値の変化がより小さい点で、50~150nmが更に好ましい。
なお、球相当径とは、同じ体積を有する球形粒子の直径である。
上述のハロゲン化銀の平均粒子径として用いられる「球相当径」は平均値であり、100個のハロゲン化銀の球相当径を測定して、それらを算術平均したものである。
【0095】
ハロゲン化銀の粒子の形状は特に制限されず、例えば、球状、立方体状、平板状(6角平板状、三角形平板状、4角形平板状等)、八面体状、および、14面体状等の形状が挙げられる。
【0096】
(ゼラチン)
ゼラチンの種類は特に制限されず、例えば、石灰処理ゼラチン、および、酸処理ゼラチンが挙げられる。また、ゼラチンの加水分解物、ゼラチンの酵素分解物、並びに、アミノ基および/またはカルボキシル基で修飾されたゼラチン(フタル化ゼラチン、および、アセチル化ゼラチン)等を用いてもよい。
【0097】
感光性層には、上述の特定高分子が含まれる。この特定高分子が感光性層に含まれることにより、感光性層より形成される導電性細線の強度がより向上する。
【0098】
(工程Aの手順)
工程Aにおいて上述の成分を含む感光性層を形成する方法は特に制限されないが、生産性の点から、ハロゲン化銀とゼラチンと特定高分子とを含む感光性層形成用組成物を基材上に接触させ、基材上に感光性層を形成する方法が好ましい。
以下に、この方法で使用される感光性層形成用組成物の形態について詳述し、その後、工程の手順について詳述する。
【0099】
(感光性層形成用組成物に含まれる材料)
感光性層形成用組成物には、上述したハロゲン化銀とゼラチンと特定高分子とが含まれる。なお、必要に応じて、特定高分子は粒子状の形態で感光性層形成用組成物中に含まれていてもよい。
感光性層形成用組成物には、必要に応じて、溶剤が含まれていてもよい。
溶剤としては、水、有機溶剤(例えば、アルコール類、ケトン類、アミド類、スルホキシド類、エステル類およびエーテル類)、イオン性液体、並びに、これらの混合溶剤が挙げられる。
【0100】
感光性層形成用組成物と基材とを接触させる方法は特に制限されず、例えば、感光性層形成用組成物を基材上に塗布する方法、および、感光性層形成用組成物中に基材を浸漬する方法等が挙げられる。
なお、上述の処理後、必要に応じて、乾燥処理を実施してもよい。
【0101】
(ハロゲン化銀含有感光性層)
上述の手順により形成された感光性層には、ハロゲン化銀とゼラチンと特定高分子とが含まれる。
感光性層中におけるハロゲン化銀の含有量は特に制限されず、導電性基板の導電性がより優れる点で、銀換算で3.0~20.0g/m2が好ましく、5.0~15.0g/m2がより好ましい。銀換算とは、ハロゲン化銀が全て還元されて生成される銀の質量に換算したことを意味する。
感光性層中における特定高分子の含有量は特に制限されず、導電性基板の導電性がより優れる点で、0.04~2.0g/m2が好ましく、0.08~0.40g/m2がより好ましく、0.10~0.40g/m2が更に好ましい。
【0102】
<工程B>
工程Bは、感光性層を露光した後、現像処理して、金属銀とゼラチンと高分子とを含む細線状の銀含有層を形成する工程である。
【0103】
感光性層に露光処理を施すことにより、露光領域において潜像が形成される。
露光はパターン状に実施してもよく、例えば、後述する導電性細線からなるメッシュパターンを得るためには、メッシュ状の開口パターンを有するマスクを介して、露光する方法、および、レーザー光を走査してメッシュ状に露光する方法が挙げられる。
露光の際に使用される光の種類は特に制限されず、ハロゲン化銀に潜像を形成できるものであればよく、例えば、可視光線、紫外線、および、X線が挙げられる。
【0104】
露光された感光性層に現像処理を施すことにより、露光領域(潜像が形成された領域)では、金属銀が析出する。
現像処理の方法は特に制限されず、例えば、銀塩写真フィルム、印画紙、印刷製版用フィルム、および、フォトマスク用エマルジョンマスクに用いられる公知の方法が挙げられる。
現像処理では、通常、現像液を用いる。現像液の種類は特に制限されず、例えば、PQ(phenidone hydroquinone)現像液、MQ(Metol hydroquinone)現像液、および、MAA(メトール・アスコルビン酸)現像液が挙げられる。
【0105】
本工程は、未露光部分のハロゲン化銀を除去して安定化させる目的で行われる定着処理を更に有していてもよい。
定着処理は、現像と同時および/または現像の後に実施される。定着処理の方法は特に制限されず、例えば、銀塩写真フィルム、印画紙、印刷製版用フィルム、および、フォトマスク用エマルジョンマスクに用いられる方法が挙げられる。
定着処理では、通常、定着液を用いる。定着液の種類は特に制限されず、例えば、「写真の化学」(笹井著、株式会社写真工業出版社)p321記載の定着液が挙げられる。
【0106】
上述の処理を実施することにより、金属銀とゼラチンと特定高分子とを含む、細線状の銀含有層が形成される。
銀含有層の幅を調整する方法としては、例えば、露光時に使用されるマスクの開口幅を調整する方法が挙げられる。例えば、マスクの開口幅を1.0μm以上5.0μm未満にすることにより、露光領域を調整できる。
また、露光時にマスクを使用する際には、露光量を調整することにより、形成される銀含有層の幅を調整することもできる。例えば、マスクの開口幅が目標とする銀含有層の幅よりも狭い場合には、露光量を通常よりも増加させることにより、潜像が形成される領域の幅を調整できる。すなわち、露光量により、導電性細線の線幅を調整できる。
更に、レーザー光を用いる場合は、レーザー光の集光範囲および/または走査範囲を調整することにより、露光領域を調整できる。
【0107】
銀含有層の幅は、1.0μm以上5.0μm未満が好ましく、形成される導電性細線が視認されにくい点から、2.0μm以下がより好ましい。
なお、上述の手順によって得られる銀含有層は細線状であり、銀含有層の幅とは細線状の銀含有層が延在する方向に直交する方向における銀含有層の長さ(幅)を意味する。
【0108】
<工程C>
工程Cは、工程Bで得られた銀含有層に対して加熱処理を施す工程である。本工程を実施することにより、銀含有層中の特定高分子間での融着が進行し、銀含有層の強度が向上する。
【0109】
加熱処理の方法は特に制限されず、銀含有層と過熱蒸気とを接触させる方法、および、温調装置(例えば、ヒーター)で銀含有層を加熱する方法が挙げられ、銀含有層と過熱蒸気とを接触させる方法が好ましい。
【0110】
過熱蒸気としては、過熱水蒸気でもよいし、過熱水蒸気に他のガスを混合させたものでもよい。
過熱蒸気と銀含有層との接触時間は特に制限されず、10~70秒間が好ましい。
過熱蒸気の供給量は、500~600g/m3が好ましく、過熱蒸気の温度は、1気圧で100~160℃(好ましくは100~120℃)が好ましい。
【0111】
温調装置で銀含有層を加熱する方法における加熱条件としては、100~200℃(好ましくは100~150℃)で1~240分間(好ましくは60~150分間)加熱する条件が好ましい。
【0112】
<工程D>
工程Dは、工程Cで得られた銀含有層中のゼラチンを除去する工程である。本工程を実施することにより、銀含有層からゼラチンが除去され、銀含有層中に空間が形成される。
【0113】
ゼラチンを除去する方法は特に制限されず、例えば、タンパク質分解酵素を用いる方法(以下、「方法1」ともいう。)、および、酸化剤を用いてゼラチンを分解除去する方法(以下、「方法2」ともいう。)が挙げられる。
【0114】
方法1において用いられるタンパク質分解酵素としては、ゼラチン等のタンパク質を加水分解できる植物性または動物性酵素で公知の酵素が挙げられる。
タンパク質分解酵素としては、例えば、ペプシン、レンニン、トリプシン、キモトリプシン、カテプシン、パパイン、フィシン、トロンビン、レニン、コラゲナーゼ、ブロメライン、および、細菌プロテアーゼが挙げられ、トリプシン、パパイン、フィシン、または、細菌プロテアーゼが好ましい。
方法1における手順としては、銀含有層と上述のタンパク質分解酵素とを接触させる方法であればよく、例えば、銀含有層とタンパク質分解酵素を含む処理液(以下、「酵素液」ともいう。)とを接触させる方法が挙げられる。接触方法としては、銀含有層を酵素液中に浸漬させる方法、および、銀含有層上に酵素液を塗布する方法が挙げられる。
酵素液中におけるタンパク質分解酵素の含有量は特に制限されず、ゼラチンの分解除去の程度が制御しやすい点で、酵素液全量に対して、0.05~20質量%が好ましく、0.5~10質量%がより好ましい。
酵素液には、上述のタンパク質分解酵素に加え、水が含まれることが多い。
酵素液には、必要に応じて、他の添加剤(例えば、pH緩衝剤、抗菌性化合物、湿潤剤、および、保恒剤)が含まれていてもよい。
酵素液のpHは、酵素の働きが最大限得られるように選ばれるが、5~9が好ましい。
酵素液の温度は、酵素の働きが高まる温度が好ましい。具体的には20~45℃が好ましい。
【0115】
なお、必要に応じて、酵素液での処理後に、得られた銀含有層を温水にて洗浄する洗浄処理を実施してもよい。
洗浄方法は特に制限されず、銀含有層と温水とを接触させる方法が好ましく、例えば、温水中に銀含有層を浸漬する方法、および、銀含有層上に温水を塗布する方法が挙げられる。
温水の温度は使用されるタンパク質分解酵素の種類に応じて適宜最適な温度が選択され、生産性の点から、20~80℃が好ましく、40~60℃がより好ましい。
温水と銀含有層との接触時間(洗浄時間)は特に制限されず、生産性の点から、1~600秒間が好ましく、30~360秒間がより好ましい。
【0116】
方法2で用いられる酸化剤としては、ゼラチンを分解できる酸化剤であればよく、標準電極電位が+1.5V以上である酸化剤が好ましい。なお、ここで標準電極電位とは、酸化剤の水溶液中における標準水素電極に対する標準電極電位(25℃、E0)を意図する。
上述の酸化剤としては、例えば、過硫酸、過炭酸、過リン酸、次過塩素酸、過酢酸、メタクロロ過安息香酸、過酸化水素水、過塩素酸、過ヨウ素酸、過マンガン酸カリウム、過硫酸アンモニウム、オゾン、次亜塩素酸またはその塩等が挙げられるが、生産性、経済性の観点で、過酸化水素水(標準電極電位:1.76V)、次亜塩素酸またはその塩が好ましく、次亜塩素酸ナトリウムがより好ましい。
【0117】
方法2における手順としては、銀含有層と上述の酸化剤とを接触させる方法であればよく、例えば、銀含有層と酸化剤を含む処理液(以下、「酸化剤液」ともいう。)とを接触させる方法が挙げられる。接触方法としては、銀含有層を酸化剤液中に浸漬させる方法、および、銀含有層上に酸化剤液を塗布する方法が挙げられる。
酸化剤液に含まれる溶剤の種類は特に制限されず、水、および、有機溶剤が挙げられる。
【0118】
<工程E>
工程Eは、工程Dで得られた銀含有層に対してめっき処理を施し、導電性細線を得る工程である。本工程を実施することにより、ゼラチンを除去することにより形成された空間に金属(めっき金属)が充填された導電性細線が形成される。
【0119】
めっき処理の種類は特に制限されないが、無電解めっき(化学還元めっき、または、置換めっき)および電解めっきが挙げられ、無電解めっきが好ましい。無電解めっきとしては、公知の無電解めっき技術が用いられる。
めっき処理としては、例えば、銀めっき処理、銅めっき処理、ニッケルめっき処理、および、コバルトめっき処理が挙げられ、導電性細線の導電性がより優れる点で、銀めっき処理または銅めっき処理が好ましく、銀めっき処理がより好ましい。
【0120】
めっき処理で用いられるめっき液に含まれる成分は特に制限されないが、通常、溶剤(例えば、水)の他に、1.めっき用の金属イオン、2.還元剤、3.金属イオンの安定性を向上させる添加剤(安定剤)、4.pH調整剤が主に含まれている。このめっき浴には、これらに加えて、めっき浴の安定剤等、公知の添加剤が含まれていてもよい。
めっき液に含まれるめっき用の金属イオンの種類は析出させたい金属種に応じて適宜選択でき、例えば、銀イオン、銅イオン、ニッケルイオン、および、コバルトイオンが挙げられる。
【0121】
上述のめっき処理の手順は特に制限されず、銀含有層とめっき液とを接触させる方法であればよく、例えば、めっき液中に銀含有層を浸漬させる方法、および、めっき液を銀含有層に塗布する方法が挙げられる。
銀含有層とめっき液との接触時間は特に制限されず、導電性細線の導電性がより優れる点および生産性の点から、20秒間~30分間が好ましい。
【0122】
<工程F>
導電性基板の製造方法は、上記の工程で得られた導電性細線に、更に平滑化処理を施す工程Fを有していてもよい。
【0123】
平滑化処理の方法は特に制限されず、例えば、導電性細線を有する基材を、少なくとも一対のロール間を加圧下で通過させるカレンダー処理工程が好ましい。以下、カレンダーロールを用いた平滑化処理をカレンダー処理と記す。
カレンダー処理に用いられるロールとしては、プラスチックロール、および、金属ロールが挙げられ、シワ防止の点から、プラスチックロールが好ましい。
ロール間の圧力は特に制限されず、2MPa以上が好ましく、4MPa以上がより好ましく、120MPa以下が好ましい。なお、ロール間の圧力は、富士フイルム株式会社製プレスケール(高圧用)を用いて測定できる。
平滑化処理の温度は特に制限されず、10~100℃が好ましく、10~50℃がより好ましい。
【0124】
<工程G>
導電性基板の製造方法は、上記の工程で得られた導電性細線に加熱処理を施す工程Gを有していてもよい。本工程を実施することにより、導電性により優れる導電性細線が得られる。
導電性細線に加熱処理を施す方法は特に制限されず、工程Cで述べた方法が挙げられる。
【0125】
<工程H>
導電性基板の製造方法は、工程Aの前に、基材上にゼラチンおよび特定高分子を含むハロゲン化銀不含有層を形成する工程Hを有していてもよい。本工程を実施することにより、基材とハロゲン化銀含有感光性層との間にハロゲン化銀不含有層が形成される。このハロゲン化銀不含有層は、いわゆるアンチハレーション層の役割を果たすと共に、導電層と基材との密着性向上に寄与する。
ハロゲン化銀不含有層には、上述したゼラチンと特定高分子とが含まれる。一方、ハロゲン化銀不含有層には、ハロゲン化銀が含まれない。
ハロゲン化銀不含有層中における、ゼラチンの質量に対する、特定高分子の質量の比(特定高分子の質量/ゼラチンの質量)は特に制限されず、0.1~5.0が好ましく、1.0~3.0がより好ましい。
ハロゲン化銀不含有層中の特定高分子の含有量は特に制限されず、0.03g/m2以上の場合が多く、導電性細線の密着性がより優れる点で、1.0g/m2以上が好ましい。上限は特に制限されないが、1.63g/m2以下の場合が多い。
【0126】
ハロゲン化銀不含有層の形成方法は特に制限されず、例えば、ゼラチンと特定高分子とを含有する層形成用組成物を基材上に塗布して、必要に応じて加熱処理を施す方法が挙げられる。
層形成用組成物には、必要に応じて溶剤が含まれていてもよい。溶剤の種類は、上述した感光性層形成用組成物で使用される溶剤が例示される。
ハロゲン化銀不含有層の厚みは特に制限されず、0.05μm以上の場合が多く、導電性細線の密着性がより優れる点で、1.0μm超が好ましく、1.5μm以上がより好ましい。上限は特に制限されないが、3.0μm未満であることが好ましい。
【0127】
<工程I>
導電性基板の製造方法は、工程Aの後で工程Bの前に、ハロゲン化銀含有感光性層上にゼラチンと特定高分子とを含む保護層を形成する工程Iを有していてもよい。保護層を設けることにより、感光性層の擦り傷防止および力学特性を改良できる。
保護層中における、ゼラチンの質量に対する、特定高分子の質量の比(特定高分子の質量/ゼラチンの質量)は特に制限されず、0超2.0以下が好ましく、0超1.0以下がより好ましい。
また、保護層中の特定高分子の含有量は特に制限されず、0g/m2超0.3g/m2以下が好ましく、0.005~0.1g/m2がより好ましい。
【0128】
保護層の形成方法は特に制限されず、例えば、ゼラチンと特定高分子とを含む保護層形成用組成物をハロゲン化銀含有感光性層上に塗布して、必要に応じて加熱処理を施す方法が挙げられる。
保護層形成用組成物には、必要に応じて溶剤が含まれていてもよい。溶剤の種類は、上述した感光性層形成用組成物で使用される溶剤が例示される。
保護層の厚みは特に制限されず、0.03~0.3μmが好ましく、0.075~0.20μmがより好ましい。
【0129】
なお、上述した工程H、工程Aおよび工程Iは、同時重層塗布によって同時に実施してもよい。
【0130】
<工程P>
工程Pは、上記の導電性基板に特定化合物を接触させ、特定化合物が導電性細線に含まれている本発明の導電性基板を作製する工程である。
導電性基板と特定化合物とを接触させる方法は特に制限されず、例えば、特定化合物を含む処理液中に導電性基板を浸漬する方法、および、特定化合物を含む処理液を導電性細線が形成された基材の表面に塗布する方法が挙げられる。また、上記処理液中に細線状の金属含有層を有する基材を浸漬する方法、および、上記処理液を細線状の金属含有層を有する基材の表面に塗布する方法も挙げられる。
工程Pを実施することにより、特定化合物が導電性細線に浸透および吸着し、導電性細線間のマイグレーションが抑制される。
【0131】
上記の特定化合物を含む処理液は、特定化合物を溶剤に溶解させてなる溶液であることが好ましい。使用される溶剤の種類は特に制限されず、上述した感光性層形成用組成物で使用される溶剤が挙げられる。
上記の処理液における特定化合物の含有量は、目的とする導電性基板に含有させる特定化合物の量、および、処理条件に応じて適宜すればよいが、処理液の総質量に対して、0.01~2質量%が好ましく、0.1~0.5質量%がより好ましい。
上記処理液を導電性基板に接触させる際の処理液の温度は、例えば、25~60℃である。
特定化合物と導電性基板との接触時間は特に制限されないが、0.1~10分間が好ましく、0.2~3分間がより好ましい。
【0132】
〔導電性基板の用途〕
上述のようにして得られた導電性基板は、種々の用途に適用でき、タッチパネル(または、タッチパネルセンサー)、半導体チップ、各種電気配線板、FPC(Flexible Printed Circuits)、COF(Chip on Film)、TAB(Tape Automated Bonding)、アンテナ、多層配線基板、および、マザーボード等の用途に適用できる。なかでも、本発明の導電性基板は、タッチパネル(静電容量式タッチパネル)に用いることが好ましい。
本発明の導電性基板をタッチパネルに用いる場合、上述した導電性細線は検出電極として有効に機能し得る。
本発明の導電性基板をタッチパネルに用いる場合、導電性基板と組み合わせて使用する表示パネルとしては、例えば、液晶パネル、および、OLED(Organic Light Emitting Diode)パネルが挙げられ、OLEDパネルとの組合せが好ましい。
【0133】
なお、導電性基板においては、導電性細線とは別に、導電性細線とは構成が異なる導電部を有していてもよい。この導電部は、上述した導電性細線と電気的に接続して、導通していてもよい。導電部としては、例えば、上述した導電性細線に電圧を印加する機能を有する周辺配線、および、導電性基板と積層する部材の位置を調整するアライメントマーク等が挙げられる。
【0134】
本発明の導電性基板の上記以外の用途としては、例えば、パーソナルコンピュータおよびワークステーション等の電子機器から発生する電波およびマイクロ波(極超短波)等の電磁波を遮断し、かつ静電気を防止する電磁波シールドが挙げられる。このような電磁波シールドは、パーソナルコンピュータ本体以外に、映像撮影機器および電子医療機器等の電子機器にも使用できる。
本発明の導電性基板は、透明発熱体にも使用できる。
【0135】
本発明の導電性基板は、取り扱い時および搬送時において、導電性基板と、粘着シートおよび剥離シート等の他の部材とを有する積層体の形態で用いられてもよい。剥離シートは、積層体の搬送時に、導電性基板における傷の発生を防止するための保護シートとして機能する。
また、導電性基板は、例えば、導電性基板、粘着シートおよび保護層をこの順で有する複合体の形態で取り扱われてもよい。
【0136】
本発明は、基本的に以上のように構成されるものである。本発明の導電性基板について詳細に説明したが、本発明は上述の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更を行ってもよい。
【実施例0137】
以下に本発明の実施例を挙げて本発明をさらに具体的に説明する。なお、以下の実施例に示される材料、使用量、割合、処理内容、および、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
【0138】
[実施例1]
〔ハロゲン化銀乳剤の調製〕
38℃、pH4.5に保たれた下記1液に、下記の2液および3液の各々90%に相当する量を、1液を攪拌しながら同時に20分間にわたって加え、0.16μmの核粒子を形成した。続いて、得られた溶液に下記4液および5液を8分間にわたって加え、さらに、下記の2液および3液の残りの10%の量を2分間にわたって加え、核粒子を0.21μmまで成長させた。さらに、得られた溶液にヨウ化カリウム0.15gを加え、5分間熟成し、粒子形成を終了した。
【0139】
1液:
水 750ml
ゼラチン 8.6g
塩化ナトリウム 3g
1,3-ジメチルイミダゾリジン-2-チオン 20mg
ベンゼンチオスルホン酸ナトリウム 10mg
クエン酸 0.7g
2液:
水 300ml
硝酸銀 150g
3液:
水 300ml
塩化ナトリウム 38g
臭化カリウム 32g
ヘキサクロロイリジウム(III)酸カリウム
(0.005%KCl 20%水溶液) 5ml
ヘキサクロロロジウム酸アンモニウム
(0.001%NaCl 20%水溶液) 7ml
4液:
水 100ml
硝酸銀 50g
5液:
水 100ml
塩化ナトリウム 13g
臭化カリウム 11g
黄血塩 5mg
【0140】
その後、常法に従ってフロキュレーション法によって水洗した。具体的には、上述の得られた溶液の温度を35℃に下げ、硫酸を用いてハロゲン化銀が沈降するまでpHを下げた(pH3.6±0.2の範囲であった)。次に、得られた溶液から上澄み液を約3リットル除去した(第1水洗)。次に、上澄み液を除去した溶液に、3リットルの蒸留水を加えてから、ハロゲン化銀が沈降するまで硫酸を加えた。再度、得られた溶液から上澄み液を3リットル除去した(第2水洗)。第2水洗と同じ操作をさらに1回繰り返して(第3水洗)、水洗および脱塩工程を終了した。水洗および脱塩後の乳剤をpH6.4、pAg7.5に調整し、ゼラチン2.5g、ベンゼンチオスルホン酸ナトリウム10mg、ベンゼンチオスルフィン酸ナトリウム3mg、チオ硫酸ナトリウム15mgおよび塩化金酸10mgを加え、55℃にて最適感度を得るように化学増感を施した。その後、さらに、得られた乳剤に、安定剤として1,3,3a,7-テトラアザインデン100mg、および、防腐剤としてプロキセル(商品名、ICI Co.,Ltd.製)100mgを加えた。最終的に得られた乳剤は、沃化銀を0.08モル%含み、塩臭化銀の比率を塩化銀70モル%、臭化銀30モル%とする、平均粒子径(球相当径)200nm、変動係数9%の塩臭化銀立方体粒子乳剤であった。
【0141】
〔感光性層形成用組成物の調製〕
上述の乳剤に1,3,3a,7-テトラアザインデン(1.2×10-4モル/モルAg)、ハイドロキノン(1.2×10-2モル/モルAg)、クエン酸(3.0×10-4モル/モルAg)、2,4-ジクロロ-6-ヒドロキシ-1,3,5-トリアジンナトリウム塩(0.90g/モルAg)、および、微量の硬膜剤を添加し、組成物を得た。次に、クエン酸を用いて組成物のpHを5.6に調整した。
上述の組成物に、下記(P-1)で表される高分子(以下、「高分子1」ともいう。)とジアルキルフェニルPEO(PEOはポリエチレンオキシドの略号である。)硫酸エステルからなる分散剤と水とを含有するポリマーラテックス(高分子1の質量に対する分散剤の質量の比(分散剤の質量/高分子1の質量、単位はg/g)が0.02であって、固形分含有量が22質量%である。)を、組成物中のゼラチンの合計質量に対する、高分子1の質量の比(高分子1の質量/ゼラチンの質量、単位g/g)が0.25/1となるように添加して、ポリマーラテックス含有組成物を得た。ここで、ポリマーラテックス含有組成物において、ハロゲン化銀由来の銀の質量に対するゼラチンの質量の比(ゼラチンの質量/ハロゲン化銀由来の銀の質量、単位はg/gである。)は0.11であった。
さらに、架橋剤としてEPOXY RESIN DY 022(商品名:ナガセケムテックス株式会社製)を添加した。なお、架橋剤の添加量は、後述するハロゲン化銀含有感光性層中における架橋剤の量が0.09g/m2となるように調整した。
以上のようにして感光性層形成用組成物を調製した。
なお、高分子1は、特許第3305459号公報および特許第3754745号公報を参照して合成した。
【0142】
【0143】
厚み40μmのポリエチレンテレフタレートフィルム(「富士フイルム株式会社製ロール状の長尺フィルム」)からなる基材の表面に上述のポリマーラテックスを塗布して、厚み0.05μmの下塗り層を設けた。この処理はロール・トゥ・ロールで行い、以下の各処理(工程)もこれと同様にロール・トゥ・ロールで行った。なお、このときのロール幅は1m、長さは1000mであった。
【0144】
〔工程H1、工程A1、工程I1〕
次に、下塗り層上に、上述のポリマーラテックスとゼラチンとを混合したハロゲン化銀不含有層形成用組成物と、上述の感光性層形成用組成物と、ポリマーラテックスとゼラチンとを混合した保護層形成用組成物とを、同時重層塗布し、下塗り層上にハロゲン化銀不含有層と、ハロゲン化銀含有感光性層と、保護層とを形成した。
なお、ハロゲン化銀不含有層の厚みは2.0μmであり、ハロゲン化銀不含有層中における高分子1とゼラチンとの混合質量比(高分子1/ゼラチン)は2/1であり、高分子1の含有量は1.3g/m2であった。
また、ハロゲン化銀含有感光性層の厚みは2.5μmであり、ハロゲン化銀含有感光性層中における高分子1とゼラチンとの混合質量比(高分子1/ゼラチン)は0.25/1であり、高分子1の含有量は0.19g/m2であった。
また、保護層の厚みは0.15μmであり、保護層中における高分子1とゼラチンとの混合質量比(高分子1/ゼラチン)は0.1/1であり、高分子1の含有量は0.015g/m2であった。
【0145】
〔工程B1〕
作製した上述の感光性層に、
図1に示す試験パターンの現像銀像を与えうるフォトマスクを介して高圧水銀ランプを光源とした平行光を用いて露光した。マイグレーション試験パターンは、IPC-TM650orSM840に準拠したパターンであって、ライン幅が50μm、スペース幅が50μmで、ライン数は17本/18本である(以下、「くし型パターン電極」ともいう。)。
また、別途作製した上述の感光性層に、格子状のフォトマスクを介して高圧水銀ランプを光源とした平行光を用いて露光した(以下、「メッシュパターン電極」ともいう。)。フォトマスクとしてはパターン形成用のマスクを用いており、
図2に示すような格子を形成する単位正方格子の線幅は1.2μm、格子(開口部)の一辺の長さLは600μmになるようにした。
【0146】
露光後、得られた各サンプルに対して、後述する現像液で現像し、さらに定着液(商品名:CN16X用N3X-R:富士フイルム株式会社製)を用いて現像処理を行った後、25℃の純水でリンスし、その後乾燥して、くし型パターン状に形成された、金属銀を含む銀含有層を有するサンプルAと、メッシュパターン状に形成された、金属銀を含む銀含有層を有するサンプルBを得た。サンプルBにおいては、21.0cm×29.7cmの大きさの導電性メッシュパターン領域が形成されていた。
【0147】
(現像液の組成)
現像液1リットル(L)中に、以下の化合物が含まれる。
ハイドロキノン 0.037mol/L
N-メチルアミノフェノール 0.016mol/L
メタホウ酸ナトリウム 0.140mol/L
水酸化ナトリウム 0.360mol/L
臭化ナトリウム 0.031mol/L
メタ重亜硫酸カリウム 0.187mol/L
【0148】
得られた上述の各サンプルを、50℃の温水中に180秒間浸漬させた。この後、エアシャワーで水を切り、自然乾燥させた。
【0149】
〔工程C1〕
工程B1で得られた各サンプルを、110℃の過熱水蒸気処理槽に搬入し、30秒間静置して、過熱水蒸気処理を行った。なお、このときの蒸気流量は100kg/hであった。
【0150】
〔工程D1〕
工程C1で得られた各サンプルを、タンパク質分解酵素水溶液(40℃)に30秒間浸漬した。各サンプルをタンパク質分解酵素水溶液から取り出し、各サンプルを温水(液温:50℃)に120秒間浸漬して、洗浄した。この後、エアシャワーで水を切り、自然乾燥させた。
なお、使用したタンパク質分解酵素水溶液は、以下の手順に従って調製した。
タンパク質分解酵素(ナガセケムテックス社製ビオプラーゼ30L)の水溶液(タンパク質分解酵素の濃度:0.5質量%)に、トリエタノールアミンおよび硫酸を加えてpHを8.5に調整した。
【0151】
〔工程E1〕
工程D1で得られた各サンプルを、以下組成のめっき液(30℃)に5分間浸漬した。各サンプルをめっき液から取り出し、各サンプルを温水(50℃)に120秒間浸漬して、洗浄した。
めっき液(全量1200ml)の組成は、以下の通りであった。なお、めっき液のpHは9.9であり、炭酸カリウム(富士フイルム和光純薬株式会社製)を所定量加えることにより調整した。また、使用した以下の成分は、すべて富士フイルム和光純薬株式会社製を用いた。
【0152】
(めっき液の組成)
・AgNO3 2.1g
・亜硫酸ナトリウム 86g
・チオ硫酸ナトリウム五水和物 60g
・アロンT-50(東亞合成(株)製、固形分濃度40%) 36g
・メチルヒドロキノン 13g
・炭酸カリウム 所定量
・水 残部
【0153】
〔工程P1〕
工程E1で得られた各サンプルを、処理液A(30℃)に1分間浸漬した。各サンプルを処理液Aから取り出し、各サンプルを30℃の水に30秒間浸漬して、洗浄した。処理液A(全量1200mL)の組成は、以下の通りであった。また、使用した以下の成分は、すべて富士フイルム和光純薬株式会社製を用いた。
(処理液Aの組成)
・ジエチルジチオカルバミン酸ジエチルアンモニウム 2.4g
・プロピレングリコール 360g
・水 残部
【0154】
〔工程G1〕
工程P1で得られた各サンプルに対して、110℃の過熱水蒸気処理槽に搬入し、30秒間静置して、過熱水蒸気処理を行った。なお、このときの蒸気流量は100kg/hであった。
【0155】
[実施例2~14、比較例2、比較例3]
実施例2~14、並びに、比較例2および3として、上記工程P1において、処理液Aに代えて後述する表1に示す組成を有する処理液B~Sをそれぞれ使用したこと以外は、実施例1に記載の手順に従って、くし型パターン電極を有するサンプルA、および、メッシュパターン電極を有するサンプルBをそれぞれ作製した。使用した浸漬液の成分は、すべて富士フイルム和光純薬株式会社製を用いた。
処理液Nについては、特定化合物を溶解後、水酸化ナトリウムを添加してpHが12となるように調整した。
【0156】
[比較例1]
工程E1で得られた各サンプルに対して、工程P1を実施せずに、工程G1を実施したこと以外は、実施例1に記載の手順に従って、サンプルAおよびBをそれぞれ作製した。
【0157】
[比較例4]
<粘着シートの製造>
ポリイソプレン重合物の無水マレイン酸付加物と2-ヒドロキシエチルメタクリレートとのエステル化物(商品名UC203、(株)クラレ製、分子量36000)21.8質量部、ポリブタジエン(商品名Polyvest110、エボニックデグサ社製)11.4質量部、ジシクロペンテニルオキシエチルメタクリレート(商品名 FA512M、日立化成工業(株)製)5質量部、2-エチルヘキシメタクリレート(和光純薬社製)20質量部、テルペン系水素添加樹脂(商品名クリアロンP-135、ヤスハラケミカル(株)製)38.8質量部、および、ジエチルジチオカルバミン酸0.05質量部を130℃の恒温槽中で混練機にて混練した。続いて、恒温槽の温度を80℃に調整し、光重合開始剤(商品名Lucirin TPO、BASF社製)0.6質量部、および、光重合開始剤(商品名IRGACURE184、BASF社製)2.4質量部を恒温槽に投入し、混練機にて混練し、粘着剤組成物を得た。
得られた粘着剤組成物を、厚さ75μmの剥離フィルム(重剥離フィルム)の表面処理面上に、形成される粘着層の厚みが50μmとなるように塗布した。得られた塗膜上に、厚さ50μmの剥離フィルム(軽剥離フィルム)の表面処理面を貼り合わせた。平行露光機(オーク製作所社製、型番:EXM-1172B-00)を用いて、剥離フィルムで挟まれた塗膜に対して、照射エネルギーが3J/cm2になるようにUV光を照射し、両面粘着シートを得た。
【0158】
上記両面粘着シートの一方の剥離フィルムを剥離することで他方の剥離フィルム(重剥離フィルム)(厚み:75μm)および粘着層(50μm)からなるフィルムBを得た。得られたフィルムBの粘着層の面を、比較例1と同様の手法で作製した導電性基板(サンプルAおよびB)の導電性細線側に貼り合わせ、比較例4のサンプルAおよびサンプルBをそれぞれ作製した。
【0159】
[評価]
〔マイグレーション試験(1)〕
作製した上述のくし型パターン電極を有するサンプルAを、60℃90%RHの湿熱雰囲気下に静置し、サンプルAの両端に配線を接続し、片側から直流5Vの電流を連続的に印加した。一定時間が経過するごとに、60℃90%RHの雰囲気下からサンプルAを取り出し、アドバンテスト社製のR8340Aを用いてサンプルAの絶縁性抵抗を測定した。
試験開始からの経過時間とサンプルAの絶縁性抵抗の測定値から、以下の基準に従って、サンプルAのマイグレーション抑制性能を評価した。
【0160】
(マイグレーション試験(1)評価基準)
「A」:試験開始から500時間以上経過しても絶縁抵抗値が1010Ω以上であった。
「B」:試験開始から240時間以上経過しても絶縁抵抗値が1010Ω以上であったが、500時間が経過するまでに絶縁抵抗値が1010Ω未満に低下した。
「C」:試験開始から240時間経過するまでに絶縁抵抗値が1010Ω未満に低下した。
【0161】
〔耐光性試験〕
作製した上述のメッシュパターン電極を有するサンプルBを用いて、評価面を上にして、上から順番に、「ガラス/OCA/サンプルB/OCA/偏光板1/OCA/偏光板2(偏光板1に対して互いの偏光軸が直交するように配置した)/黒PET」の順番で貼り合わせて、積層体を得た。
OCA:3M株式会社製、光学粘着剤8146-2
黒PET:(パナック株式会社製、工業用黒PET(GPH100E82A04)
【0162】
得られた積層体について、評価面の半分の領域に上からアルミホイルを被せて遮光した。積層体に対して、スガ試験機株式会社製X75Lを用いて、キセノンランプ(インナーフィルタ:石英、アウターフィルタ:#275)を、340nmの照度が70W/m2、ブラックパネル温度30℃、湿度50%RHの条件で80時間照射した。照射は積層体のガラス面側(評価面側)から行った。
照射から80時間後、アルミホイルを取り外して、アルミホイルで遮光されていた遮光部と、遮光されずにキセノンランプで照射されていた露光部のそれぞれについて、Gray値を測定した。
【0163】
Gray値は以下の方法で測定した。LEDライトを照度850で積層体のガラス面に対して入射角度8°で照射し、ガラス面の法線方向から検出器を用いて積層体を観測した。得られた画像をImageJにて白黒256階調化してGray値を取得した。256階調の値は毎回標準校正板で補正した値であった。
このようにして測定された遮光部のGray値および露光部のGray値から両者の差分であるΔGray値を算出し、下記の基準に従って、サンプルBの耐光性を評価した。
(ΔGray値)=(遮光部のGray値)-(露光部のGray値)
【0164】
(耐光性評価基準)
「A」:ΔGray値が10未満。
「B」:ΔGray値が10以上20未満。
「C」:ΔGray値が20以上。
【0165】
なお、ΔGray値が10未満である場合(評価A)、色調の違いを目視では確認できず、ΔGray値が10以上20未満である場合(評価B)、高輝度のLEDを照射することにより色調の違いを目視で確認でき、ΔGray値が20以上である場合(評価C)、蛍光灯下でも色調の違いを目視で確認できた。
【0166】
表1に、工程P1で使用した処理液の組成、並びに、マイグレーション試験(1)および耐光性試験の評価結果を示す。なお、処理液Hに含まれる2-メルカプトベンゾイミダゾールは、1H-ベンゾイミダゾール-2(3H)-チオンのプロトン互変異性体であり、処理液Sに含まれる2-メルカプト-5-ベンゾイミダゾールスルホン酸ナトリウムは、2,3-ジヒドロ-2-チオキソ-1H-ベンゾイミダゾール-5-スルホン酸ナトリウムのプロトン互変異性体である。
表中、「特定化合物(参照用化合物)」欄は、各処理液に添加した特定化合物または特定化合物以外の参照用化合物の種類を示す。
表中、「濃度(質量%)」欄は、各処理液の総量に対する特定化合物または参照用化合物の含有量(単位:質量%)を示す。
表中、「溶媒(質量比)」欄は、各処理液に含まれる溶媒の種類を示し、2種以上の溶媒を使用した場合は、各溶媒の含有量の比率(質量比)を示す。なお、「PG」はプロピレングリコールを表し、「DGMEE」はジエチレングリコールモノエチルエーテルを表す。
【0167】
【0168】
実施例1~13で得られたサンプルAおよびサンプルBに対して、Biイオン銃(Bi3
++)を備える飛行時間型2次イオン質量分析装置(TOF-SIMS:Time-of-Flight Secondary Ion Mass Spectrometry、ION-TOF社製)を用いて測定した結果、特定化合物が導電性細線に存在することが確認された。
【0169】
[実施例21~30、比較例5]
実施例21~30および比較例5として、上記工程P1において、後述する表2に示す組成を有する処理液をそれぞれ使用したこと以外は、実施例1に記載の手順に従って、くし型パターン電極を有するサンプルAを作製した。使用した浸漬液の成分は、すべて富士フイルム和光純薬株式会社製を用いた。
処理液NおよびP~Rについては、特定化合物を溶解後、水酸化ナトリウムを添加してpHが12となるように調整した。
【0170】
〔特定化合物の含有量の測定〕
以下の方法で、サンプルAが有する導電性細線に含まれる特定化合物(比較例5ではベンゾトリアゾール。以下同じ)の含有量を測定した。
得られたサンプルAの導電性細線(幅50μm)を基材ごと切り出し、導電性基板の試験片を得た。得られた試験片をエタノールに浸漬し、暗所で10時間以上静置し、特定化合物をエタノール中に抽出した。エタノール溶液から試験片を除去した後、乾燥N2フローで溶媒のエタノールを除去し、特定化合物を回収した。回収した特定化合物に、DMF(0.2mL)、炭酸ナトリウム飽和DMF(0.2mL)およびICH3(0.1mL)を加えて混合後、混合物を室温(25℃)で暗所に3時間静置することにより、特定化合物のメチル誘導体化を行った。
後述する特定化合物の定量に使用する標準試料に対しても、同様の手順でメチル誘導体化を行った。ただし、2-メルカプト-5-ベンゾイミダゾールスルホン酸ナトリウム、および、ベンゾトリアゾールについては、メチル化処理を行わなかった。
【0171】
上記で得られた特定化合物のメチル誘導体を含む試料(上記混合物)を、液体クロマトグラフィートリプル四重極質量分析法(LC-MS/MS法)により測定し、絶対検量線法にて特定化合物を定量した。測定には上記メチル誘導体の定量下限が0.04μg/mLより高い感度を有する測定装置を用いた。測定では、分離カラムとしてODS(Octadecyl Silyl)カラムを用いた。また、溶離液として溶離液A:10mM酢酸アンモニウム水溶液、および、溶離液B:10mM酢酸アンモニウムメタノールを用い、溶離液Bの濃度(時間)が、30%(開始時(0分))→100%(8分)→100% (12分)となるようなグラジエントプログラムでカラムを溶出した。試料注入量は2μLとした。イオン源として大気圧化学イオン化法(APCI)を使用した。
標準試料のメチル誘導体をLC-MS/MSにより測定して得られたピーク面積値から検量線を作成した。各実施例および比較例の試料の測定結果と検量線とを比較して、導電性基板の試験片の重量当たりの特定化合物の含有量を算出した。
【0172】
〔マイグレーション試験(2)〕
作製した上述のくし型電極を有するサンプルAを用いて、評価面を上にして、上から順番に、「ガラス/OCA/サンプルA」の順番で貼り合わせて、積層体を得た。その際、後述する配線を接続できるように、サンプルAのくし型電極の両端以外の場所にOCAを貼り付けた。
OCA:3M株式会社製、光学粘着剤8146-2
作製した積層体を、60℃90%RHの湿熱雰囲気下に静置し、サンプルAの両端に配線を接続し、片側から直流5Vの電流を連続的に印加した。一定時間が経過するごとに、60℃90%RHの雰囲気下からを取り出し、アドバンテスト社製のR8340Aを用いてサンプルAの絶縁性抵抗を測定した。
試験開始からの経過時間とサンプルAの絶縁性抵抗の測定値から、以下の基準に従って、サンプルAのマイグレーション抑制性能を評価した。
【0173】
(マイグレーション試験(2)評価基準)
「A」:試験開始から300時間以上経過しても絶縁抵抗値が1010Ω以上であった。
「B」:試験開始から200時間以上経過しても絶縁抵抗値が1010Ω以上であったが、300時間が経過するまでに絶縁抵抗値が1010Ω未満に低下した。
「C」:試験開始から200時間経過するまでに絶縁抵抗値が1010Ω未満に低下した。
【0174】
表2に、工程P1で使用した処理液の組成、特定化合物またはベンゾトリアゾールの吸着量、および、マイグレーション試験(2)の評価結果を示す。
表中、「吸着量(μg/g)」欄は、上記の方法で定量されたサンプルAが有する導電性基板の試験片の重量当たりの特定化合物またはベンゾトリアゾールの含有量を示す。その他の欄の内容は、表1と同様である。
【0175】
【0176】
表1及び表2に示すように、本発明の導電性基板によれば、所望の効果が得られることが確認された。