(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024133686
(43)【公開日】2024-10-02
(54)【発明の名称】イオンエネルギー分布関数(IEDF)の生成
(51)【国際特許分類】
H01L 21/3065 20060101AFI20240925BHJP
H05H 1/46 20060101ALI20240925BHJP
【FI】
H01L21/302 100
H05H1/46 A
【審査請求】有
【請求項の数】1
【出願形態】OL
(21)【出願番号】P 2024111356
(22)【出願日】2024-07-11
(62)【分割の表示】P 2022181622の分割
【原出願日】2017-12-11
(31)【優先権主張番号】62/433,204
(32)【優先日】2016-12-12
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】15/834,939
(32)【優先日】2017-12-07
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】390040660
【氏名又は名称】アプライド マテリアルズ インコーポレイテッド
【氏名又は名称原語表記】APPLIED MATERIALS,INCORPORATED
【住所又は居所原語表記】3050 Bowers Avenue Santa Clara CA 95054 U.S.A.
(74)【代理人】
【識別番号】100101502
【弁理士】
【氏名又は名称】安齋 嘉章
(72)【発明者】
【氏名】ドルフ レオニッド
(72)【発明者】
【氏名】コー トラビス
(72)【発明者】
【氏名】ルエール オリビア
(72)【発明者】
【氏名】ジュベール オリビア
(72)【発明者】
【氏名】クラウス フィリップ エー
(72)【発明者】
【氏名】ディンドサ ラジンダー
(72)【発明者】
【氏名】ロジャーズ ジェームズ ヒュー
(57)【要約】 (修正有)
【課題】整形パルスバイアスを用いて任意形状のイオンエネルギー分布関数を生成するためのシステム及び方法を提供する。
【解決手段】一実施形態では、方法は、ポジティブジャンプ電圧を処理チャンバの電極に印加してウエハ表面を中和することと、ネガティブジャンプ電圧を電極に印加してウエハ電圧を設定することと、ウエハ電圧の振幅を変調して所定数のパルスを生成しイオンエネルギー分布関数を決定することとを含む。別の実施形態では、方法は、ポジティブジャンプ電圧を処理チャンバの電極に印加してウエハ表面を中和することと、ネガティブジャンプ電圧を電極に印加してウエハ電圧を設定することと、ウエハ上のイオン電流を過補償するランプ電圧を電極に印加すること、又はウエハ上のイオン電流を不足補償するランプ電圧を電極に印加することとを含む。
【選択図】
図8
【特許請求の範囲】
【請求項1】
ネガティブジャンプ電圧を処理チャンバの電極に印加してウエハ用のウエハ電圧を設定するステップと、
前記ウエハ電圧の振幅を変調して所定数のパルスを生成するステップであって、特定の振幅における相対パルス数が前記特定の振幅に対応するイオンエネルギーにおける相対イオン分率を決定するステップとを含む、方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示の実施形態は、一般に、基板を処理するためのシステム及び方法に関し、特に、基板をプラズマ処理するためのシステム及び方法に関する。
【背景】
【0002】
典型的な反応性イオンエッチング(RIE)プラズマ処理チャンバは、高周波(RF)電圧を「パワー電極」に供給するRFバイアス発生器と、より一般的には「カソード」と呼ばれる「静電チャック」(ESC)に埋め込まれた金属ベースプレートとを含む。
図1(a)は、典型的な処理チャンバ内のパワー電極に供給される典型的なRF電圧のプロットを示す。パワー電極は、ESCアセンブリの一部であるセラミック層を介して処理システムのプラズマと容量結合される。プラズマシースの非線形でダイオードの様な性質により、印加されたRF電場の整流が行われ、カソードとプラズマとの間に直流(DC)電圧降下、すなわち「自己バイアス」が現れる。この電圧降下により、カソードに向かって加速されるプラズマイオンの平均エネルギー、従ってエッチング異方性が決定される。
【0003】
より具体的には、イオンの指向性、フィーチャプロファイル、及びマスクと停止層の選択性はイオンエネルギー分布関数(IEDF)によって制御される。RFバイアスを有するプラズマでは、IEDFは、通常、低エネルギーと高エネルギーにおいて2つのピークを有し、中間にイオン群を有する。IEDFの2つのピークの中間にイオン群が存在することは、カソードとプラズマの間の電圧降下がバイアス周波数で振動するという事実を反映している。より低い周波数、例えば2MHzのRFバイアス発生器を使用してより高い自己バイアス電圧を得る場合、これら2つのピーク間のエネルギー差はかなり大きくなる可能性があり、低エネルギーピークにあるイオンによるエッチングはより等方的であり、フィーチャ壁の湾曲につながる可能性がある。高エネルギーイオンと比較して、低エネルギーイオンは(例えば、帯電効果により)フィーチャ底部の角に到達するという点で効果は少ないが、マスク材料のスパッタリングは少なくなる。これは、高アスペクト比エッチング用途(例えば、ハードマスク開口部等)において重要である。
【0004】
フィーチャサイズが縮小し続けてアスペクト比が増大するにつれて、フィーチャプロファイル制御要件がより厳しくなる一方で、処理中に基板表面において適切に制御されたIEDFを有することがより望ましくなる。単一ピークIEDFを使用して、独立して制御されたピーク高さとピークエネルギーを有する2ピークIEDFを含め任意のIEDFを構成することができ、このことは高精度プラズマ処理にとって非常に有益である。単一ピークIEDFを生成するには、プラズマに対して基板表面の電圧がほぼ一定であること、すなわちイオンエネルギーを決定するシース電圧を有することが必要である。プラズマ電位(処理プラズマにおいては、通常、ゼロか接地電位に近い)が時間的に一定であると仮定すると、接地に対する基板における電圧、すなわち基板電圧をほぼ一定に維持することが必要である。イオン電流は基板表面を常に帯電させているので、単にDC電圧をパワー電極に印加することによってこれを達成することはできない。結果として、印加された全DC電圧は、プラズマシース(すなわち、シース容量)ではなく、基板とESCのセラミック部分(すなわち、チャック容量)の両端で降下することになる。これを打開するために、印加電圧がチャック容量とシース容量との間で分担されるようになる特別整形パルスバイアス方式が開発された(通常、基板容量はシース容量よりはるかに大きいので、本発明者らは基板での電圧降下を無視している)。この方式ではイオン電流に対する補償が行われており、これにより各バイアス電圧サイクルの最大90%までの間、シース電圧及び基板電圧を一定に保つことが可能になる。より正確には、このバイアス方式により特定の基板電圧波形の維持が可能になり、この波形は負の直流オフセットの上に一連の周期的な短い正のパルスとして説明することができる(
図1(b))。各パルスの間、基板電位はプラズマ電位に達してシースは短時間で崩壊するが、各サイクルの~90%の間、シース電圧は一定かつ各パルスの終端におけるネガティブ電圧ジャンプに等しいままなので、平均イオンエネルギーが決定される。
図1(a)は、この特定の基板電圧波形を生成し、それによってシース電圧をほぼ一定に保つことを可能にするために開発された特別整形パルスバイアス電圧波形のプロットを示す。
図2に示されるように、整形パルスバイアス波形は、(1)補償フェーズの間にチャック容量に蓄積された余分な電荷を除去するためのポジティブジャンプ、(2)シース電圧(V
SH)値を設定するためのネガティブジャンプ(V
OUT)-すなわち、V
OUTは直列に接続されたチャック容量とシース容量の間で分担されるので、基板電圧波形におけるネガティブジャンプが決定される(但し、V
OUTは、一般的に、基板電圧波形におけるネガティブジャンプよりも大きい)、(3)イオン電流を補償し、この長い「イオン電流補償フェーズ」の間、シース電圧を一定に保つためのネガティブ電圧ランプ、を含む。本発明者らは、
図1(b)に示す特定の基板電圧波形(ほぼ一定のシース電圧によって特徴付けられる)を維持することもできる、従って単一エネルギーIEDFを生成することができる他の整形パルスバイアス波形が存在し得ることを強調しておく。例えば、静電チャック容量がシース容量よりもはるかに大きい場合、上記の(3)で説明したネガティブ電圧ランプフェーズを定電圧フェーズで置き換えることができる。これら他の整形パルスバイアス波形を用いても以下で提案するシステム及び方法のいくつかを実施することができ、該当する場合には、本発明者らはそのことについて特筆することになるだろう。
【0005】
単一ピークIEDFは、選択性及びフィーチャプロファイルの改善をもたらす、非常に望ましいIEDF形状であると広く考えられているが、幾つかのエッチング用途では、異なる形状(より幅の広い形状のIEDF等)を有するIEDFが必要とされる。
【概要】
【0006】
本明細書で、整形パルスバイアスを用いて任意形状のイオンエネルギー分布関数を生成するためのシステム及び方法が提供される。
【0007】
幾つかの実施形態では、方法は、所定のやり方で、整形パルスバイアスを処理チャンバの電極に印加すること、及びネガティブ電圧ジャンプの振幅(V
OUT)、従ってシース電圧(V
SH)を変調することを含み、特定の振幅における相対パルス数がこの振幅に対応するイオンエネルギーにおける相対イオン分率を決定する。本発明者らは、
図1(b)に示す(ほぼ一定のシース電圧によって特徴付けられる)特定の基板電圧波形を維持することができる、従って単一エネルギーIEDFを生成することができる、任意の整形パルスバイアス波形(必ずしも
図1(a)に示される波形ではない)を用いて本方式を実施できることを強調しておく。
【0008】
幾つかの別の実施形態では、方法は、
図1(a)に示す電圧波形の整形パルスバイアスを印加すること、及び基板電圧を一定に維持するために必要とされるよりも大きい負の勾配(dV/dt)を有する、すなわちイオン電流を過補償する、イオン補償フェーズ中に電圧ランプを生成することを含む。幾つかの別の実施形態では、方法は、
図1(a)に示す電圧波形の整形パルスバイアスを印加すること、及び基板電圧を一定に維持するために必要とされるよりも小さい負の勾配(dV/dt)を有する、すなわちイオン電流を不足補償する、イオン補償フェーズ中に電圧ランプを生成することを含む。
【0009】
本開示の他の及び更なる実施形態を以下に説明する。
【図面の簡単な説明】
【0010】
上記で簡潔に要約し、以下でより詳細に説明する本開示の実施形態は、添付図面に示された本開示の例示的な実施形態を参照することによって理解することができる。しかしながら、添付図面は本開示の典型的な実施形態を示しているに過ぎず、従って範囲を制限していると解釈されるべきではなく、本開示は他の等しく有効な実施形態を含み得る。
【0011】
【
図1(a)】シース電圧を一定に保つことを可能にするために開発された特別整形パルスのプロットを示す。
【
図1(b)】各バイアス電圧サイクルの最大90%までの間、シース電圧及び基板電圧を一定に保つことが可能になる、
図1(a)のバイアス方式から生ずる特定の基板電圧波形のプロットを示す。
【
図1(c)】
図1(a)のバイアス方式から生ずる単一ピークIEDFのプロットを示す。
【
図2】本原理による実施形態を適用することができる基板処理システムを示す。
【
図3】本原理の一実施形態による、基板電圧の値を設定する電圧パルスのプロットを示す。
【
図4】本原理の一実施形態による、
図3の選択された電圧パルスに対して、結果として生じるIEDFの図形を示す。
【
図5】本原理の一実施形態による、イオン電流を過補償及び不足補償するように修正された、
図1の特別整形パルスのプロットを示す。
【
図6】
図5の特別整形パルスから生じるウエハ上での誘導電圧パルスのプロットを示す。
【
図7】本原理の一実施形態による、
図6の電圧パルスに対して、結果として生じるIEDFの図形を示す。
【
図8】本原理の一実施形態による、任意形状のイオンエネルギー分布関数を生成する方法の流れ図を示す。
【
図9】本原理の別の実施形態による、任意形状のイオンエネルギー分布関数を生成する方法の流れ図を示す。
【
図10】本原理の別の実施形態による、任意形状のイオンエネルギー分布関数を生成する方法の流れ図を示す。
【0012】
理解を促進するために、図面に共通する同一の要素を示す際には、可能な限り同一の参照番号を使用している。図面は、比例して描かれているわけではなく、明確にするために簡素化されている場合もある。一実施形態の要素及び構成は、更なる説明なしに他の実施形態に有益に組み込むことができる。
【詳細な説明】
【0013】
整形パルスバイアスを用いて任意形状のイオンエネルギー分布関数を生成するためのシステム及び方法が本明細書で提供される。本発明のシステム及び方法により、整形パルスバイアス波形の振幅変調による任意形状のイオンエネルギー分布関数(IEDF)の生成が有利に促進される。本発明の方法の実施形態は、電圧波形の整形を有利に行い、任意のIEDF形状、例えばより幅広いプロファイルを有するIEDFを提供することができる。本明細書での説明において、ウエハ及び基板という用語は交換可能に使用される。
【0014】
図2は、本原理による実施形態を適用することができる基板処理システム200の高レベルの概略図を示す。
図2の基板処理システム200は、例示的に、基板支持アセンブリ205、及びバイアス電源230を含む。
図2の実施形態では、基板支持アセンブリ205は、基板支持台座210、パワー電極213、及びパワー電極213を基板支持アセンブリ205の表面207から分離するセラミック層214を含む。様々な実施形態では、
図2のシステム200は、プラズマ処理チャンバ(例えば、カリフォルニア州サンタクララのApplied Materials、Inc.から入手可能なSYM3(登録商標)、DPS(登録商標)、ENABLER(登録商標)、ADVANTEDGE(商標)及びAVATAR(商標)処理チャンバ、又はその他の処理チャンバ)のコンポーネントを含むことができる。
【0015】
幾つかの実施形態では、バイアス電源230は、制御プログラムを記憶するためのメモリと、制御プログラムを実行するためのプロセッサを含み、当該制御プログラムは、バイアス電源230によってパワー電極213に供給される電圧を制御し、ウエハ電圧の振幅を少なくとも変調して所定数のパルスを生成し、代替的に、又は追加して、ネガティブジャンプ電圧を電極に印加してウエハ用のウエハ電圧を設定し、又は本明細書に記載の本原理の実施形態により、ウエハ上のイオン電流を過補償又は不足補償するランプ電圧を電極に印加する。代替の実施形態では、
図2の基板処理システム200は、制御プログラムを記憶するためのメモリと、バイアス電源230と通信するために制御プログラムを実行するためのプロセッサとを含む任意のコントローラ220を備え、当該制御プログラムは、バイアス電源230によってパワー電極213に供給される電圧を少なくとも制御するために、ウエハ電圧の振幅を少なくとも変調して所定数のパルスを生成し、代替的に、又は追加して、ネガティブジャンプ電圧を電極に印加してウエハ用のウエハ電圧を設定し、又は本明細書に記載の本原理の実施形態によりウエハ上のイオン電流を過補償又は不足補償するランプ電圧を電極に印加する。
【0016】
オペレーション中、処理されるべき基板は、基板支持台座210の表面上に配置される。
図2のシステム200では、バイアス電源230からの電圧(整形パルスバイアス)がパワー電極213に供給される。プラズマシースの非線形でダイオードの様な性質により、印加されたRF電場が整流され、カソードとプラズマとの間に直流(DC)電圧降下、すなわち「自己バイアス」が現れる。この電圧降下は、カソードに向かって加速されるプラズマイオンの平均エネルギーを決定する。イオンの指向性とフィーチャプロファイルは、イオンエネルギー分布関数(IEDF)によって制御される。本明細書に記載の本原理の実施形態により、バイアス電源230は特別整形パルスバイアスをパワー電極213に供給することができる。このバイアス方式により、負のDCオフセットの上に周期的な一連の短い正のパルスとして記述できる特定の基板電圧波形を維持することができる(
図1(b))。各パルスの間、基板電位はプラズマ電位に達してシースは短時間で崩壊するが、各サイクルの~90%の間、シース電圧は一定かつ各パルスの終端におけるネガティブ電圧ジャンプに等しいままなので、平均イオンエネルギーが決定される。
【0017】
図1(a)に戻って参照すると、整形パルスバイアス信号の振幅、従ってウエハ電圧はVoutで表される。本発明者らは、本原理による少なくとも幾つかの実施形態では、IEDFの形状を整形パルスバイアス信号の振幅と周波数を変調することによって制御できると判断した。この方法は、所定のやり方で、整形パルスバイアスを処理チャンバの電極に印加すること、及びネガティブ電圧ジャンプの振幅(V
OUT)、従ってシース電圧(V
SH)を変調することを含み、特定の振幅における相対パルス数がこの振幅に対応するイオンエネルギーにおける相対イオン分率を決定する。各振幅におけるパルス数は、1つのシース電圧から次のシース電圧への移行を構成するのに十分でなければならず、その間にそれぞれのESC電荷が確立される。その後、所与の振幅を有するパルス列を含むバースト(
図3)は、処理ステップ期間に亘って何度も繰り返される。アクティブバースト(オンフェーズ)は、無音期間(オフフェーズ)と交互に配置することができる。バーストの全持続時間(オンフェーズとオフフェーズの組合せ)に対する各オンフェーズの持続時間はデューティサイクルによって決まり、バーストの全持続時間(周期)はバースト周波数の逆数に等しい。代替的に、各バーストは所与の(かつ同一の)振幅を有する一連のパルスから構成されてもよく、次いで、異なる振幅を有するバースト列を使用してIEDFが定義される。所与の振幅を有する(列内の)バーストの相対数が、特定のエネルギーにおけるイオンの相対量を決定し、これらのバースト内のパルスのネガティブジャンプ振幅(V
OUT)がイオンエネルギーを決定する。その後、レシピステップの間、定義済みのバースト列が何度も繰り返される。例えば、低エネルギーピークに25%のイオンが含まれ、高エネルギーピークに75%のイオンが含まれる2ピークIEDFを生成するには、バースト列を、高イオンエネルギーに対応するネガティブジャンプ振幅のパルスが3バースト、低イオンエネルギーに対応する振幅のパルスが1バーストで構成する必要がある。このような列は、「HHHL」と表わすことができる。次に、同じ高さの3つのエネルギーピーク(高(H)、中(M)、低(L))を持つIEDFを生成するには、H、M、Lのイオンエネルギーに対応する異なる振幅の3バーストの列が必要であり、「HML」と表わすことができる。単一ピークIEDFは、定義済みのネガティブジャンプ振幅を持つパルスの単一バースト(オンフェーズとオフフェーズの両方を含む)で構成される列によって生成される。本発明者らは、
図1(b)に示す(ほぼ一定のシース電圧によって特徴付けられる)特定の基板電圧波形を維持することができる、従って単一エネルギーIEDFを生成することができる、任意の整形パルスバイアス波形(必ずしも
図1(a)に示される波形ではない)を用いて本方式を実施できることを強調しておく。
【0018】
例えば、
図3は、本原理の一実施形態により、基板電圧の値を設定するために、電源が処理チャンバの電極に供給すべき電圧パルスのプロットを示す。
図3の実施形態では、ウエハ電圧のフルジャンプがイオンエネルギーを決定し、電圧ジャンプに対応するパルス数(例えば、全持続時間)がこのエネルギーでの相対イオン分率(すなわちIEDF)を決定する。
【0019】
図4は、本原理の一実施形態による、
図3の選択された電圧パルスに対して、結果として生じるIEDFの図形を示す。
図4に示すように、
図3の多数の電圧パルスにより、より幅広いIEDFがもたらされ、これはより幅広いイオンエネルギー分布を必要とするハードマスク開口部の高アスペクト比エッチングのような用途において有効であり得る。
【0020】
本原理に従って、電源が処理チャンバの電極に供給する電圧パルスの振幅と周波数の制御により、特定のエッチング処理及び用途に必要とされる適切に制御され明確に定義されたIEDF形状を得ることができる。
【0021】
本原理による別の実施形態では、方法は、
図1(a)に示す電圧波形の整形パルスバイアスを印加すること、及び基板電圧を一定に維持するために必要とされるよりも大きい負の勾配(dV/dt)を有する、すなわちイオン電流を過補償する、イオン補償フェーズ中に電圧ランプを生成することを含む。これにより、結果的に
図6に示す基板電圧波形が生じ、イオン電流補償フェーズ中に基板電圧の大きさ(従って、シース電圧及び瞬間的なイオンエネルギー)が増加する。これにより、IEDF幅は印加された整形パルスバイアス波形の負の勾配によって制御されて、
図7に示すイオンエネルギー幅の広がりと非単一エネルギーIEDFが生成される。例えば、
図5は、本原理の一実施形態による、ウエハを帯電させるイオン電流を過補償するように修正された
図1(a)の特別整形パルスのプロットを示す。
図5に示すように、ウエハを帯電させるイオン電流の補償を目的とした
図1(a)の電圧ランプは、本原理の
図5の特別整形パルスの中で、ウエハを帯電させるイオン電流を過補償するように修正される。
図5に示すように、ウエハ表面の中和を目的とした
図1のポジティブジャンプは、本原理の
図5の特別整形パルスの中で、もはやウエハ表面を中和しない。
【0022】
図6は、
図5の特別整形パルスから生じるウエハ上での誘導電圧パルスのプロットを示す。
図6に示されるように、電圧ジャンプはイオンエネルギーを決定し、エネルギー幅はサイクル中の最小及び最大のウエハ電圧ジャンプによって決定される。
【0023】
図7は、本原理の一実施形態により、
図6の電圧パルスに対して、結果として生じるIEDFの図形を示す。
図7に示すように、
図5の過補償特別整形パルスの印加から得られるIEDFはより幅広い二重ピークのプロファイルを含むが、IEDF幅を決定するVmin及びVmaxは当該プロファイルにおけるエネルギーピークと必ずしも一致しない。本原理による過補償により、2つのRF周波数(例えば、2MHzと13.56MHz)を混合することによって達成できる精度よりも高い精度の制御が可能になる。
【0024】
本原理による別の実施形態では、方法は、
図1(a)に示す電圧波形の整形パルスバイアスを印加すること、及び基板電圧を一定に維持するために必要とされるよりも小さい負の勾配(dV/dt)を有する、すなわちイオン電流を不足補償する、イオン補償フェーズ中に電圧ランプを生成することを含む。これにより、結果的に
図6に示す基板電圧波形が生じ、イオン電流補償フェーズ中に基板電圧の大きさ(従って、シース電圧及び瞬間的なイオンエネルギー)が減少する。これにより、IEDF幅は印加された整形パルスバイアス波形の負の勾配によって制御されて、
図7に示すイオンエネルギー幅の広がりと非単一エネルギーIEDFが生成される。例えば、
図5に戻って参照すると、
図5は、本原理の一実施形態による、ウエハを帯電させるイオン電流を不足補償するように修正された
図1の特別整形パルスのプロットを示す。
図5に示すように、ウエハを帯電させるイオン電流の補償を目的とした
図1の電圧ランプは、本原理の
図5の特別整形パルスの中で、ウエハを帯電させるイオン電流を不足補償するように修正される。
図5に示すように、ウエハ表面の中和を目的とした
図1のポジティブジャンプは、本原理の
図5の特別整形パルスの中で、ウエハ表面をもはや中和しない。
【0025】
図7に戻って参照すると、本原理の一実施形態の不足補償に対して、結果として生じるIEDFの図形が示されている。
図7に示すように、
図5の不足補償特別整形パルスの印加から生じるIEDFは、より幅広い単一ピークのプロファイルを含む。
【0026】
図8は、本原理の一実施形態による、任意形状のイオンエネルギー分布関数を生成する方法の流れ図を示す。方法800は802から開始することができ、802の間、ネガティブジャンプ電圧が電極に印加されてウエハ電圧が設定される。次に、方法800は804に進むことができる。
【0027】
804で、ウエハ電圧の振幅は所定数のパルスを生成するように変調され、イオンエネルギー分布関数が決定される。
【0028】
次に、方法800は終了することができる。
【0029】
図9は、本原理の別の実施形態による、任意形状のイオンエネルギー分布関数を生成する方法の流れ図を示す。方法900は、902から開始することができ、902の間、ポジティブジャンプ電圧が処理チャンバの電極に印加されてウエハ表面が中和される。次に、方法900は904に進むことができる。
【0030】
904で、ネガティブジャンプ電圧が電極に印加されてウエハ電圧が設定される。次に、方法900は906に進むことができる。
【0031】
906で、ウエハ上のイオン電流を過補償するランプ電圧が電極に印加される。次に、方法900は終了することができる。
【0032】
図10は、本原理の別の実施形態による、任意形状のイオンエネルギー分布関数を生成する方法の流れ図を示す。方法1000は、1002から開始することができ、1002の間、ポジティブジャンプ電圧が処理チャンバの電極に印加されてウエハ表面が中和される。次に、方法1000は1004に進むことができる。
【0033】
1004で、ネガティブジャンプ電圧が電極に印加されてウエハ電圧が設定される。
次に、方法1000は1006に進むことができる。
【0034】
1006で、ウエハ上のイオン電流を不足補償するランプ電圧が電極に印加される。
次に、方法1000は終了することができる。
【0035】
上記は本開示の実施形態を対象としているが、本開示の他の及び更なる実施形態は本開示の基本的な範囲を逸脱することなく創作することができる。