(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024014793
(43)【公開日】2024-02-01
(54)【発明の名称】リソグラフィ装置用の光学素子を製造する方法
(51)【国際特許分類】
G03F 7/20 20060101AFI20240125BHJP
G02B 1/02 20060101ALI20240125BHJP
G02B 5/00 20060101ALI20240125BHJP
【FI】
G03F7/20 502
G02B1/02
G02B5/00 Z
【審査請求】有
【請求項の数】14
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2023116893
(22)【出願日】2023-07-18
(31)【優先権主張番号】10 2022 118 146.4
(32)【優先日】2022-07-20
(33)【優先権主張国・地域又は機関】DE
(71)【出願人】
【識別番号】503263355
【氏名又は名称】カール・ツァイス・エスエムティー・ゲーエムベーハー
(71)【出願人】
【識別番号】396000455
【氏名又は名称】カール ツァイス イエナ ゲゼルシャフト ミット ベシュレンクテル ハフツング
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100109070
【弁理士】
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100067013
【弁理士】
【氏名又は名称】大塚 文昭
(74)【代理人】
【識別番号】100120525
【弁理士】
【氏名又は名称】近藤 直樹
(74)【代理人】
【識別番号】100139712
【弁理士】
【氏名又は名称】那須 威夫
(74)【代理人】
【識別番号】100141553
【弁理士】
【氏名又は名称】鈴木 信彦
(74)【代理人】
【識別番号】100196612
【弁理士】
【氏名又は名称】鎌田 慎也
(72)【発明者】
【氏名】コンラート ヴォルケ
(72)【発明者】
【氏名】フォルカー トーナーゲル
(72)【発明者】
【氏名】シュテファン クリンクハマー
(72)【発明者】
【氏名】ケルスティン ヒルト
(72)【発明者】
【氏名】ニルス ルント
【テーマコード(参考)】
2H042
2H197
【Fターム(参考)】
2H042AA02
2H042AA03
2H042AA16
2H042AA19
2H042AA25
2H042AA33
2H197BA07
2H197BA09
2H197BA15
2H197CA08
2H197FB03
(57)【要約】
【課題】リソグラフィ装置用の光学素子を製造する方法を提供すること。
【解決手段】リソグラフィ装置(100)用の光学素子(200)を製造する方法であって、a)光学素子(200)の結晶基板(202)の表面(208)の高さプロファイル(216)を検出するステップ(S2)と、
b)検出された高さプロファイル(216)を使用して、偏光放射(204)の入射に対する応力誘起複屈折に関連してリソグラフィ装置(100)の光学システム(102、104)の光学素子(200)の取り付け方位(δ2、δ4、δ6)を突き止める(S3)ステップであり、取り付け方位(δ2、δ4、δ6)が、表面(208)を通り抜ける光学素子(200)の中心軸(214)を中心とした光学素子(200)の回転に関する方位である、突き止める(S3)ステップと
を含む、方法。
【選択図】
図2
【特許請求の範囲】
【請求項1】
リソグラフィ装置(100)用の光学素子(200)を製造する方法であって、
a)前記光学素子(200)の結晶基板(202)の表面(208)の高さプロファイル(216)を検出するステップ(S2)と、
b)検出された前記高さプロファイル(216)を使用して、偏光放射(204)の入射に対する応力誘起複屈折に関連して前記リソグラフィ装置(100)の光学システム(102、104)の前記光学素子(200)の取り付け方位(δ2、δ4、δ6)を突き止めるステップ(S3)であって、前記取り付け方位(δ2、δ4、δ6)は、前記表面(208)を通り抜ける前記光学素子(200)の中心軸(214)を中心とした前記光学素子(200)の回転に関する方位を有する、突き止めるステップ(S3)と
を含む、方法。
【請求項2】
前記方法は、ステップa)に先行する以下のステップ、すなわち、
前記表面(208)の前記高さプロファイル(216)を作り出すために前記結晶基板(202)の前記表面(208)を磨くステップ(S1)
を含む、請求項1に記載の方法。
【請求項3】
前記磨くステップ(S1)は、前記表面(208)の磁気レオロジー研磨を含む、請求項2に記載の方法。
【請求項4】
前記表面(208)を磨くステップ(S1)は、螺旋状に前記表面(208)を横切って掃引することによって行われ、前記螺旋掃引は、前記表面(208)の外側領域(234)から、前記中心軸(214)によって定められる前記表面(208)の中心(232)を中心とした螺旋(218)状に、前記中心(232)に向かって進む、請求項2または3に記載の方法。
【請求項5】
前記表面(208)は、前記中心軸(214)を中心として前記光学素子(200)を回転させ、同時に、前記中心軸(214)によって定められる前記表面(208)の中心(232)に向かって半径方向に研磨ツール(222)を移動させることによって研磨される(S1)、請求項2~4のいずれかに記載の方法。
【請求項6】
前記方法は、ステップb)の後に以下のステップ、すなわち、
突き止められた前記取り付け方位(δ2、δ4、δ6)を前記光学素子(200)にマーキングするステップ(S4)
を含む、請求項1~5のいずれかに記載の方法。
【請求項7】
前記方法は、突き止められた前記取り付け方位(δ2、δ4、δ6)を前記光学素子(200)にマーキングするステップ(S4)の後に、前記表面(208)の前記高さプロファイル(216)を除去するために、突き止められた前記取り付け方位(δ2、δ4、δ6)を前記光学素子(200)において識別するマーキング(424)が保存されるように前記表面(208)を磨くステップ(S5)を含む、請求項6に記載の方法。
【請求項8】
前記結晶基板(202)は、立方対称性を有する結晶(300)、単結晶、フッ化物結晶、フッ化カルシウム、フッ化マグネシウム、フッ化バリウム、および/またはルテチウムアルミニウムガーネットを含む、請求項1~7のいずれかに記載の方法。
【請求項9】
前記結晶基板(202)の前記表面(208)は、前記結晶基板(202)の[111]結晶面(302)によって形成される、請求項1~8のいずれかに記載の方法。
【請求項10】
前記結晶基板(202)の前記表面(208)は、前記結晶基板(202)の[100]結晶面(304)、[010]結晶面(306)、または[001]結晶面(308)によって形成される、請求項1~8のいずれかに記載の方法。
【請求項11】
前記光学素子(200)は、前記リソグラフィ装置(100)の透過光学素子(130、114、116、118)、部分透過光学素子(130)、ビームスプリッタ(130)、光パルスエクステンダ(128)のビームスプリッタ(130)、レンズ素子(114、116、118)、および/またはチャンバ窓(134)を含む、請求項1~10のいずれかに記載の方法。
【請求項12】
前記光学素子(200)の前記取り付け方位(δ2、δ4、δ6)を突き止めるステップ(S3)は、前記中心軸を中心とした前記光学素子の回転に関する他の回転角と比較して前記偏光放射(204)の入射に対する応力誘起複屈折がより少ないおよび/または最小である、前記中心軸(214)を中心とした前記光学素子(200)の回転に関する前記光学素子(200)の回転角(α)を突き止める、請求項1~11のいずれかに記載の方法。
【請求項13】
前記光学素子(200)の前記取り付け方位(δ2、δ4、δ6)を突き止めるステップ(S3)は、前記入射偏光放射(204)の偏光面(212)に対する前記光学素子(200)の回転角(α)を突き止める、請求項1~12のいずれかに記載の方法。
【請求項14】
前記光学素子(200)の前記取り付け方位(δ2、δ4、δ6)を突き止めるステップ(S3)は、前記表面(208)の前記突き止められた高さプロファイル(216)の高さ値(H)の角度分布(416)を突き止め、前記角度分布(416)の角度(δ)が、前記中心軸(214)を中心とした前記光学素子(200)の回転に関する前記光学素子(200)のそれぞれの回転角(α)に対応する、請求項1~13のいずれかに記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、リソグラフィ装置用の光学素子を製造する方法に関する。
【0002】
優先権出願DE 10 2022 118 146.4の内容は、参照によりその全体が組み込まれている。
【背景技術】
【0003】
マイクロリソグラフィは、微細構造化構成要素部品、例えば、集積回路の製造に使用される。マイクロリソグラフィプロセスは、照明システムおよび投影システムを有するリソグラフィ装置により実行される。照明システムによって照明されるマスク(レチクル)の像は、ここでは、基板の感光コーティングにマスク構造を転写するために、感光層(フォトレジスト)でコーティングされ、投射システムの像面に配置される基板、例えば、シリコンウェハ上に、投射システムによって投影される。
【0004】
十分な寿命を保証するために、リソグラフィ装置の光学素子は、結晶基板、例えば、フッ化カルシウム(CaF2)から製造することができる。CaF2などの立方対称性をもつ結晶は、対称性を破るような不規則がなく、光学的に等方性である。しかしながら、結晶成長のプロセスは、例えば、材料処理または温度勾配に起因して応力を引き起こすことがある。これらの応力は、例えば機械的応力下で、応力誘起複屈折(stress-induced birefringence)をもたらすことがある。これは、当該の光学素子によって透過される放射の偏光特性に影響を与えることがある。これは、リソグラフィ装置の解像度の限界につながる。
【0005】
分かっていることは、放射が結晶基板の結晶格子の[111]結晶方向に伝搬する場合、偏光特性の歪みが最小であることである。その上、例えば、米国特許第6,904,073号は、偏光特性の歪みが、光学素子の中心軸を中心とした回転(クロッキング)によって変化し、特に、回転角の分布において6つの最小値を有することを開示している。したがって、光学素子の適切な回転方位によって、透過される偏光放射の場合に応力誘起複屈折の影響を最小にすることが可能である。しかしながら、最適な回転方位を突き止めるための既知の方法は、不便であり、複雑な試験セットアップを必要とする。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【0007】
この背景に対して、本発明の目的は、リソグラフィ装置用の光学素子を製造する(producing)改善された方法を提供することである。
【0008】
それに応じて、リソグラフィ装置用の光学素子を製造する方法が提案される。この方法は、以下のステップ、すなわち、
a)光学素子の結晶基板の表面の高さプロファイル(height profile)を検出するステップと、
b)検出された高さプロファイルを使用して、偏光放射(polarized radiation)の入射に対する応力誘起複屈折に関連してリソグラフィ装置の光学システムの光学素子の取り付け方位(installed orientation)を突き止める(ascertaining)ステップであって、取り付け方位が、表面を通り抜ける光学素子の中心軸を中心とした光学素子の回転に関する方位を有する、突き止めるステップとを含む。
【0009】
このようにして、より簡単なやり方で、応力誘起複屈折に関連して光学素子の最適な取り付け方位を突き止めることが可能である。特に、提案された最適な取り付け方位の突き止めは、連続的に、大きい余分な困難なしに、光学素子の結晶基板を製造する従来の方法に挿入することができる。これは、高さプロファイル(表面適合(surface fit))を検出するためにいずれにしても必要とされるプロセスステップに置き換わり、その結果、光学素子のユーザにとって大きい価値がある最適な取り付け方位に関する情報が、さらに、簡単なやり方で生成される。
【0010】
応力誘起複屈折の影響は、より詳細には、光学素子によって透過される放射の偏光特性が変更され歪められることである。例えば、応力誘起複屈折の場合には、光学素子を通過する放射は、偏光方向の変化に起因するコントラストの損失を受ける。
【0011】
応力誘起複屈折、およびそれによって引き起こされる透過放射の偏光特性の変化は、中心軸を中心とした光学素子の回転(「クロッキング(clocking)」)によって変わる。したがって、透過偏光放射の場合、光学素子の適切な回転方位によって、応力誘起複屈折の影響を最小にすることが可能である。
【0012】
取り付け方位は、特に、突き止められた高さプロファイルを参照して(例えば、その関数として)突き止められる。このように突き止められた取り付け方位は、特に、応力誘起複屈折に関連した取り付け方位である。検出された高さプロファイルを使用して突き止められた光学システムの光学素子の取り付け方位は、特に、偏光放射の入射に対する応力誘起複屈折が少ないおよび/または最小であり、その結果、光学素子を経由して透過される放射の偏光特性の歪みが少ない。
【0013】
この方法は、より詳細には、光学素子の結晶基板の製造に役立つ。結晶基板の表面は、特に、光学素子の端面である。結晶基板の表面は、平坦面であっても湾曲面であってもよい。
【0014】
表面の高さプロファイルは、特に、結晶基板の表面構造を記述する。表面の高さプロファイルは、特に、応力誘起複屈折に関して好ましい、リソグラフィ装置の光学システムにおける光学素子の取り付け方位を導き出すために使用することができる。
【0015】
表面の高さプロファイルの検出は、例えば、表面適合(表面適合像の)の検出、すなわち、意図された表面形状からの実際の表面の形状の変化の検出を含む。高さプロファイルは、例えば、干渉測定を用いて検出される。
【0016】
突き止められた取り付け方位は、例えば、中心軸を中心とした回転に関する回転角(方位角(azimuthal angle))の1つまたは複数の値を有し得る。
【0017】
中心軸は、例えば、表面の面法線である。中心軸は、例えば、光学素子の主広がり面(main plane of extent)に対して直角である。
【0018】
中心軸または回転軸は、例えば、光学素子の質量中心を通り抜ける軸である。中心軸または回転軸は、例えば、質量中心に最も近い、結晶基板の表面の外面の表面法線と平行に走る軸である。中心軸または回転軸の前記の特性は、完成した光学素子の最終形状に関連するのではなく、光学素子の最終形状を与えるための先行するプロセスの段階にも関連し得る。
【0019】
中心軸または回転軸は、例えば、偏光放射の入射に関するそれぞれの位置における光学素子の照明領域のすべての法線ベクトルの、光強度で重み付けされた合計である。
【0020】
光学システムの光学素子の動作における「偏光放射の入射」は、光学素子への直線偏光放射、垂直偏光放射、および/または水平偏光放射の入射を含む。偏光放射は、例えば、偏光DUV放射である。光学素子の動作中の光学素子に向かう放射の伝搬方向/放射方向は、例えば、中心軸に対して入射角だけ傾斜した方向である。入射角は、例えば、30°~60°の範囲の値を有し、および/または例えば45°である。しかしながら、入射角はまた、異なる値を有してもよい。
【0021】
突き止められた高さプロファイルを使用して光学素子の取り付け方位を突き止めることは、例えば、突き止められた高さプロファイルを使用して、中心軸を中心とした光学素子の回転に関する他の取り付け方位と比較して偏光放射の入射に対する応力誘起複屈折が少ないおよび/または最小である、光学システムの光学素子の取り付け方位を突き止めることを含む。
【0022】
1つの実施形態では、この方法は、ステップa)に先行する以下のステップ、すなわち、
表面の高さプロファイルを作り出すように結晶基板の表面を磨く(polishing)ステップ
を含む。
【0023】
特に、表面の研磨(polishing)は、偏光放射の入射に対する応力誘起複屈折に関連した好ましい取り付け方位を視覚化する表面の高さプロファイルを作り出す。さらに、表面の研磨は、表面上の応力誘起複屈折を示すおよび/または引き起こす結晶基板に存在する構造を、高さプロファイルをもつ表層構造として視覚化することと述べることもできる。
【0024】
表面の研磨は、例えば、結晶基板の一方の側(例えば、端面)の表面全体の研磨を含む。しかしながら、表面の研磨は、例えば、結晶基板の一方の側(例えば、端面)の表面の一部分のみ磨くことをさらに含むことができる。これは、高さプロファイルを除去するためのさらなる研磨ステップを省くことができるという利点を有することができる。
【0025】
さらなる実施形態では、研磨は、表面の磁気レオロジー研磨(magneto-rheological polishing)を含む。
【0026】
磁気レオロジー研磨または磁気レオロジー仕上げ(MRF)は、磁気粒子、研磨媒体、および水からなる磁気レオロジー流体を用いて実行される。例えば、流体は、ノズルによって回転ホイールに連続的に適用される。回転ホイールは、例えば、ホイール表面の下に、流体の粘性を変更する磁界を生成するための磁石を有する。例えば、流体の磁気粒子(例えば、鉄粒子)は、磁界内で整列するようになり、ホイールに付着する剛性構造を形成し、水および研磨粒子は、固化した薄い研磨層として表面に濃縮されるようになる。
【0027】
結晶基板は、例えば、可動ホルダにクランプされ、処理されるべき表面まで研磨層に浸漬される。可動ホルダは、例えば、結晶基板を位置づける(例えば、(完全に)自動で)ために、駆動手段、制御ユニットなどをさらに含む。
【0028】
さらなる実施形態では、表面の研磨は、表面を横切って螺旋状に掃引すること(sweeping)によって行われ、螺旋掃引(spiral sweeping)は、表面の外側領域から、中心軸によって定められた表面の中心を中心とした螺旋で、中心に向かって進む。
【0029】
表面は、特に、R-ファイ法(R-phi method)とも呼ばれる、いわゆるラウンド法(round method)によって研磨される。特に、表面は、ピックアップがフォノグラフィックレコードの端から端まで掃引するやり方と同様に、半径の減少に伴う方位角で掃引される。
【0030】
本出願人は、実験において、高さプロファイルをもつ表面構造が作り出されるように、ラウンド法による研磨が表面の材料を除去し、そこから、応力誘起複屈折に関連する好ましい取り付け方位を推測することができることを確立した。言い換えれば、表面の研磨は、表面上の応力誘起複屈折を示すおよび/または引き起こす結晶基板に存在する構造を、高さプロファイルをもつ表層構造として視覚化することが見いだされた。
【0031】
表面の螺旋掃引は、例えば、結晶基板を移動させることによって、および/または研磨デバイスの研磨ツール/研磨ヘッドを移動させることによって行うことができる。
【0032】
さらなる実施形態では、表面は、中心軸を中心として光学素子を回転させることによって、および同時に中心軸によって定められた表面の中心に向かって半径方向に研磨ツールを移動させることによって研磨される。
【0033】
さらなる実施形態では、この方法は、ステップb)の後に以下のステップ、すなわち、
突き止められた取り付け方位を光学素子にマーキングする(marking)ステップ
を含む。
【0034】
これにより、突き止められた取り付け方位が、後の時点において光学素子自体で読み取られることが可能になり、および/または測定器、例えば市販の干渉計によって確認されることが可能になる。
【0035】
マーキング作業において、特に、マーキングは、光学素子に対して、例えば、結晶基板、結晶基板の外面、結晶基板の表面、および/または結晶基板の表面の縁部領域に適用される。
【0036】
マーキングは、永久または非永久マーキングとすることができる。マーキングは、例えば、塗料で描かれる(例えば、ペン、マーカーペン、および/またはシルバーマーカーペンで)、または刻印される(例えば、レーザ刻印および/またはサンドブラスト刻印によって)。
【0037】
さらなる実施形態では、この方法は、突き止められた取り付け方位を光学素子にマーキングした後に、突き止められた取り付け方位を光学素子において識別するマーキングが保存されるように表面の高さプロファイルを除去するために表面を磨くステップを含む。
【0038】
これにより、第1の研磨ステップで導入された表面構造を、例えばラウンド法によって、第2の研磨ステップで再度除去することができる。これにより、最適な取り付け方位のマーキングを失うことなしに、表面のより低い表面粗さを達成することができる。
【0039】
第2の研磨ステップは、例えば、蛇行磁気レオロジー研磨によって行われる。
【0040】
さらなる実施形態では、結晶基板は、立方対称性(cubic symmetry)を有する結晶、単結晶(monocrystal)、フッ化物結晶、フッ化カルシウム、フッ化マグネシウム、フッ化バリウム、および/またはルテチウムアルミニウムガーネットを含む。
【0041】
立方対称性を有する結晶、例えばフッ化カルシウム(CaF2)は、高い結晶対称性を有する。単結晶(単結晶(single crystal)とも呼ばれる)は、巨視的な結晶であり、その単位(原子、イオン、または分子)が、連続的に均一で均質な結晶格子を形成する。フッ化マグネシウムの実験式はMgF2であり、フッ化バリウムの実験式はBaF2であり、ルテチウムアルミニウムガーネットの実験式はLuAGである。
【0042】
さらなる実施形態では、結晶基板の表面は、結晶基板の[111]結晶面によって形成される。
【0043】
さらなる実施形態では、結晶基板の表面は、結晶基板の[100]結晶面、[010]結晶面、または[001]結晶面によって形成される。
【0044】
結晶面[111]、[100]、[010]、および[001]の命名法は、結晶学において慣例であるミラー指数a、b、cに基づく結晶格子の面の命名法に対応する。
【0045】
結晶基板の表面は、代替として、結晶基板の結晶秩序に関して任意の他の面で形成されてもよい。
【0046】
さらなる実施形態では、リソグラフィ装置の光学素子は、透過光学素子、部分透過光学素子(partly transmitting optical element)、ビームスプリッタ、光パルスエクステンダ(optical pulse extender)のビームスプリッタ、レンズ素子、および/またはチャンバ窓を含む。
【0047】
光パルスエクステンダは、光パルスストレッチャとも呼ばれる。リソグラフィ装置のチャンバ窓は、例えば、リソグラフィ装置の光源のガスチャンバのチャンバ窓である。
【0048】
さらなる実施形態では、光学素子の取り付け方位の突き止めにより、中心軸を中心とした光学素子の回転に関する他の回転角と比較して偏光放射の入射に対する応力誘起複屈折が少ないおよび/または最小である、中心軸を中心とした光学素子の回転に関する光学素子の回転角が突き止められる。
【0049】
さらに、例えば、偏光放射の入射に対する応力誘起複屈折が最小値(例えば極小値)を有する、中心軸を中心とした光学素子の回転に関する光学素子の回転角の多数の値が突き止められる。
【0050】
さらなる実施形態では、光学素子の取り付け方位の突き止めにより、入射偏光放射の偏光面に対する光学素子の回転角が突き止められる。
【0051】
入射偏光放射の偏光面に対する光学素子の最適な回転角は、例えば、0°と90°との間の値を有する。
【0052】
電磁放射である入射偏光放射の偏光面は、例えば、直線偏光入射放射の電界のベクトルによって形成される。
【0053】
さらなる実施形態では、光学素子の取り付け方位の突き止めにより、表面の突き止められた高さプロファイルの高さ値の角度分布が突き止められ、角度分布の角度は、中心軸を中心とした光学素子の回転に関する光学素子のそれぞれの回転角に対応する。
【0054】
例えば、表面の高さプロファイルは、表面適合像を確認すること(ascertaining)によって検出され、高さ値、または高さ値に対応する強度値は、表面適合像の所定の方位角範囲(例えば、円形表面の場合には表面の円セグメント)内で積分および/または平均化される。
【0055】
本件における「1つの(a)」または「1つの(an)」は、必ずしも厳密に1つの要素に制限すると理解されるべきでない。代わりに、複数の要素、例えば、2つ、3つ、またはそれを超える要素がさらに設けられてもよい。また、本明細書で使用される任意の他の数字は、記載された数の要素に厳密に制限されるという趣旨で理解されるべきでない。代わりに、別段の記載がない限り、上方および下方への数値の逸脱はあり得る。
【0056】
本発明のさらなるあり得る実施態様は、例示的な実施形態に関して上記で説明したまたは下記で説明する特徴または実施形態の明示的に述べていない組合せをさらに含む。この場合、当業者は、さらに、本発明のそれぞれの基本形態への改善または補足として個々の態様を加えるであろう。
【0057】
本発明のさらなる有利な構成および態様は、従属請求項の主題であり、以下で説明する本発明の実施例の主題でもある。本発明は、添付の図を参照して好ましい実施形態に基づいて以下で詳細に説明される。
【図面の簡単な説明】
【0058】
【
図1】DUVリソグラフィ装置の1つの実施形態の概略図である。
【
図2】
図1のリソグラフィ装置の光学素子を示す図である。
【
図9】光学素子の表面の研磨作業中の
図2の光学素子の結晶基板を示す図である。
【
図10】研磨パターンを示す、
図9と同様の図である。
【
図11】研磨後の
図9の表面の高さプロファイルのグレースケール像を示す図である。
【
図12】
図11の高さプロファイルにおける像の高さ値の角度分布を示す図である。
【
図13】リソグラフィ装置用の光学素子を製造する方法を説明するための流れ図である。
【発明を実施するための形態】
【0059】
そうでないと指示されない限り、同じ要素、または機能的に同じ要素は、図において同じ参照符号が与えられる。図中の説明図は必ずしも縮尺通りではないことにも留意されたい。
【0060】
図1は、ビーム整形・照明システム(beam-shaping and illumination system)102と、投影システム104(以下、「投影レンズ」とも呼ぶ)とを含むDUVリソグラフィ装置100の概略図を示す。この場合、DUVは、「深紫外」を表し、30~250nmの作用光(working light)の波長を意味する。ビーム整形・照明システム102および投影システム104は、好ましくは、各々、真空ハウジング(図示せず)内に配置される。各真空ハウジングは、排気デバイス(図示せず)を用いて排気される。真空ハウジングは機械室(図示せず)によって囲まれ、機械室には、光学素子を機械的に移動または調節するための駆動装置を設けることができる。その上、電気コントローラなどを機械室内に配置することもできる。
【0061】
DUVリソグラフィ装置100は、光源106を有する。例えば、DUV範囲内で、例えば193nmで放射108を放出するArFエキシマレーザが、光源106として設けられてもよい。ビーム整形・照明システム102において、放射108は集束され、所望の動作波長(作用光)が、放射108から選別される。ビーム整形・照明システム102は、光学素子(図示せず)、例えばミラー、レンズ素子を有することができる。
【0062】
ビーム整形・照明システム102を通過した後、放射108は、フォトマスク(レチクル)110上に導かれる。フォトマスク110は、透過光学素子の形態をとり、システム102、104の外に配置することができる。フォトマスク110は、投影システム104によって縮小された形態でウェハ112上に結像される(imaged)構造を有する。
【0063】
投影システム104は、フォトマスク110の像をウェハ112上に投影するために複数のレンズ素子114、116、118、および/またはミラー120、122を有する。この場合、投影システム104の個々のレンズ素子114、116、118、および/またはミラー120、122は、投影システム104の光軸124に対して対称に配置することができる。ここで示されるレンズ素子およびミラーの数は、単に例示であり、図示の数に制限されないことに留意されたい。より多いまたはより少ない数のレンズ素子114、116、118、および/またはミラー120、122が、さらに、設けられてもよい。
【0064】
最後のレンズ素子(図示せず)とウェハ112との間の空隙は、1よりも大きい屈折率を有する液体媒体126と置き換えてもよい。例えば、液体媒体126は、高純度の水とすることができる。そのようなセットアップは、液浸リソグラフィとも呼ばれ、フォトリソグラフィの解像度が向上する。媒体126は、浸液と呼ぶこともできる。
【0065】
光源106としてDUVリソグラフィ装置100で例として使用されるArFエキシマレーザは、約20nsの持続期間の短い光パルスの形態の放射を放出する。10mJ以上の典型的なパルスエネルギーの場合、レーザの高いパワーピークは、ビーム整形・照明システム102および投影システム104の下流の光学素子にとってかなりの劣化リスクとなる。下流の光学システムの劣化を避けるために、光パルスエクステンダ(光パルスストレッチャ、OPuS)128を使用することが可能である。光パルスストレッチャ128は、放射108の一部分を外部結合する(outcouple)1つまたは複数のビーム分割器130(例えば、45°ビーム分割器)を含む。次いで、放射108の外部結合された部分は、高反射ミラー(図示せず)での多重反射を用いて、ビームスプリッタ130によって透過された放射108の部分に対して時間遅延を経験し、その後、ビームスプリッタ130で再び反射された後にビームスプリッタ130によって透過された放射108の部分に続く。高反射ミラーは、例えばホルダ132に調節可能に装着される。
【0066】
光パルスストレッチャ128に使用されるビーム分割器130は、ここでは、特に、立方対称性をもつ結晶材料、例えばフッ化カルシウム(CaF2)から製造される。
【0067】
DUVリソグラフィ装置100用のレンズ素子、例えば、レンズ素子114、116、118、または光源106のガスチャンバのチャンバ窓134はまた、立方対称性をもつ結晶材料、例えばCaF2から製造することができる。
【0068】
光学的に等方性の結晶は、例えば応力または機械的応力の結果として、入射光ビームの応力誘起複屈折を引き起こすことがあることが知られている。複屈折は、屈折率が偏光方向に依存することを意味する。また、本質的に光学的に等方であるCaF2などの立方晶系結晶は、例えば機械的応力下で複屈折性になる(応力誘起複屈折)ことがあり得る。そのような不規則および応力の原因は、結晶成長のプロセスから、材料処理から、機械的応力から、マウントとの機械的接触から、動作中の不均一な加熱から生じる温度勾配から、および/または材質劣化(多分、滑り面の発生に関連する)の結果として生じる可能性がある。
【0069】
ビームスプリッタ130、レンズ素子114、116、118のうちの1つ、チャンバ窓134、またはDUVリソグラフィ装置100の他の光学素子の応力誘起複屈折は、透過放射108の偏光特性を乱すことがある。特に、放射108の2つの偏光成分の異なる屈折は、異なる偏向、したがって、偏光成分の分裂をもたらすように、当該の光学素子114、116、118、130、134の表面において生じることがある。加えて、それぞれの光学素子130、114、116、118、134を通過する際に、位相差が、透過放射の偏光成分間に生じることがある。その結果は、ぼやけた像であり、それは、DUVリソグラフィ装置100の達成可能な解像度を限定する。
【0070】
図2は、例として、DUVリソグラフィ装置100の光学素子200を示す。光学素子200は、例えば、光パルスストレッチャ128のビームスプリッタ130である。しかしながら、他の例では、それは、DUVリソグラフィ装置100の別の光学素子(例えば、114、116、118、134)であり得る。光学素子200は、結晶基板202を有する。結晶基板202は、例えば、CaF
2結晶を含む。既製の状態(ready-produced state)で、光学素子200は、さらに、コーティングなどを有し、それは、コーティングが結晶基板202を製造するためのプロセス、特に結晶基板202を処理するためのプロセスに関係するので、図に示されず、以下でさらには説明されない。
【0071】
結晶基板202は端面206を有し、端面206は表面208を有し、入射放射204に面する。コーティング(図示せず)が端面206に施されている状態では、結晶基板202の表面208は、図(例えば
図2)の表現に反して、見えないことに留意されたい。
【0072】
結晶基板202の表面208は、例えば、結晶基板202の結晶格子300の[111]結晶面302(
図5)によって形成することができる。代替として、結晶基板202の表面208はまた、例えば、結晶基板202の結晶格子300の[100]結晶面304、[010]結晶面306、または[001]結晶面308によって形成されてもよい。他の例では、結晶基板202の表面208はまた、結晶基板202の結晶格子300の任意の他の面によって形成されてもよい。
【0073】
図5~
図8において、立方晶系結晶300、例えばCaF
2単結晶のこれらの結晶面302、304、306、308が識別される。結晶面302、304、306、308の命名法は、結晶学において慣例であるミラー指数a、b、cに基づく結晶格子の結晶面の命名法に対応する。
図5~
図8において、結晶面302は[abc]=[111]によって示され、結晶面304は[abc]=[100]によって示され、結晶面306は[abc]=[010]によって示され、結晶面308は[abc]=[001]によって示される。
【0074】
図2に示されるような光学素子200に入射する放射204は、例えば、伝搬方向210を有する直線偏光DUV放射(
図1の放射108と同様)である。放射204の電界のベクトルは、参照符号Eによってラベル付けされている。
図2に示される放射204は、特に垂直に偏光されている。放射204の偏光面212は、電界ベクトルEと伝搬方向210とによって形成される。他の例では、放射204は、例えば、水平偏光とすることもできる。以下でより詳細に説明するように、中心軸214を中心とした光学素子200の適切な回転によって、すなわち、光学素子200の回転角α(方位角α)の適切な調節によって、光学素子200を通過する際の放射204の偏光特性の乱れを最小にすることが可能である。
【0075】
図3は、
図2の光学素子200を上面図で示す。
図3で分かるように、入射放射204の伝搬方向210は、表面208に対して角度βだけ傾斜している。角度βは、例えば、45°である。光学素子200を経由して透過された放射は、参照番号204’によって識別される。光学素子200がビームスプリッタである場合、放射204の反射成分も存在するが、明瞭にするために図には示されていない。
【0076】
図4は、結晶基板202の表面208を見た正面図で
図2の光学素子を示す(さらに、ここで、1つまたは複数のコーティングが結晶基板202の表面208に施されている状態では、表面208は、図の表現に反して、もはや見えないことが指摘される)。
図4は、再度、角度αの調節のための中心軸214を中心とした光学素子200の回転を示す。この角度αの調節は、「クロッキング」とも呼ばれる。さらに、0°、90°、180°、270°、および360°の角度αの値が
図4に示されている。
【0077】
図9~
図13を参照してリソグラフィ装置用の光学素子を製造する方法を説明する。例えば、
図2~
図4に示された光学素子200は、
図1に示されたDUVリソグラフィ装置100のために製造される。特に、この方法は、応力誘起複屈折に関して好ましい光学システム(例えば、
図1のビーム整形・照明システム102または投影システム104)における光学素子200の取り付け方位を突き止める。
【0078】
プロセスの第1のステップS1において、光学素子200の結晶基板202の表面208が研磨される。ステップS1における研磨は、特に、表面208の高さプロファイル216(
図3における拡大された詳細を参照)が作り出されるように行われ、それによって、結晶基板202に存在し、応力誘起複屈折を示すおよび/または引き起こす構造が、高さプロファイル216を有する表層構造として表面208に見えるようになる。
【0079】
この目的のために、表面208は、例えば、表面208が螺旋パターン218で処理される(
図10)、いわゆる、ラウンド法(R-ファイ法)を使用する磁気レオロジー研磨方法によって処理される。表面208は、ピックアップが螺旋パターンでレコードの端から端まで動くフォノグラフィックレコードと同様のやり方で掃引されることと述べることもできる。
【0080】
磁気レオロジー研磨用の装置220(
図9)は、例えば、内部に磁石224を有するツールヘッドとしての回転ホイール222を有する。ノズル(図示せず)によって、磁気レオロジー流体226が、回転ホイール222に連続的に適用される。磁気レオロジー流体226は、特に、磁気粒子、研磨媒体、および水を含む。磁石224によって生成された磁界は、流体226の粘度を変更する。例えば、流体226中の鉄粒子は、整列するようになり、ホイール222に付着する剛性構造を形成し、水および研磨粒子は、固化した薄い研磨層としてホイール222の表面に濃縮されるようになる。磁気レオロジー研磨用の装置220は、結晶基板202を保持し、中心軸214を中心として回転させる(矢印228)ためのホルダ(図示せず)をさらに含む。加えて、磁気レオロジー研磨用の装置220は、光学素子200の半径方向230にホイール222を移動させるためのデバイス(図示せず)をさらに有する。
【0081】
中心軸214を中心として移動の方向228(
図9)に光学素子200を回転させ、同時に、中心軸214によって定められる表面208の中心232に向かって半径方向に研磨ツール222を移動させることによって、表面208が研磨される。これは、研磨ヘッド222による表面208の螺旋掃引(
図10の螺旋パターン218)をもたらす。特に、表面208は、表面208の外側領域234(
図10)から螺旋状に中心232に向かう研磨のやり方で処理される。
【0082】
本出願人は、実験において、説明したラウンド法による研磨が、応力誘起複屈折を示す高さプロファイル216(
図3)をもつ表面構造を作り出すように、表面208の材料を除去することを確立した。言い換えれば、説明した研磨は、応力誘起複屈折に関連する結晶基板202に存在する構造を、表面208の固有の高さプロファイル216として精巧に作る。結果として、これが意味するところは、本発明による研磨によって作り出された高さプロファイル216は、光学素子200が光学システムで使用されるときの応力誘起複屈折に対応するということである。その結果、高さプロファイル216を評価することによって、光学素子200の好ましいおよび/または最適な取り付け方位(特に、最適な方位角α)を突き止めることが可能である。
【0083】
この方法の第2のステップS2において、ステップS1で作り出された結晶基板202の表面208の高さプロファイル216が検出される。
【0084】
図11は、例として、ステップS1での研磨の後の表面208の検出された表面適合像400を示す。表面適合像400は、例えば、干渉測定によって検出される。
図11の表面適合像400では、ステップS1での研磨の後の表面208の高さプロファイル216(
図3)が、グレースケールで示されている。したがって、
図11における表面適合像400のグレーの濃淡は、異なる高さ値に対応する。表面適合像400は、例えば干渉測定によって突き止められているので、
図11に示されたグレーの濃淡はまた、干渉測定で検出された強度を構成することができ、それは、その結果として、高さプロファイル216の高さ値に対応する。
【0085】
表面適合像400によって検出された高さプロファイル216は、例えば(例えば、CaF
2結晶基板では)方位角δの関数として、δ1、δ2、δ3、δ4、δ5、およびδ6の平均角度値δにおいて6つの極小値402、404、406、408、410、および412(すなわち、高さHまたは強度Iの最小値)を有する。
図11では、明瞭にするために、δ2、δ4,およびδ6の平均角度δにおける3つの主要な最小値404、408、および412のみが識別される。
図12は、すべての6つの最小値402、404、406、408、410、および412を示す。CaF
2以外の材料、例えばBaF2またはLuAGで製作された結晶基板202では、表面適合像400によって検出される高さプロファイル216はまた、異なる材料固有の特性を有することもあることが指摘される。
【0086】
図11の表面適合像400に見ることができる3つの凹部414は、ホルダ(図示せず)によってもたらされたことに留意されたい。しかしながら、表面適合像400を記録するために、ホルダは取り外され、したがって、凹部414は評価にとって重要ではない。
【0087】
プロセスの第3のステップS3において、突き止められた高さプロファイル216を使用して、すなわち、例えば、
図11に示された表面適合像400を使用して、光学システム102、104における光学素子200の好ましい取り付け方位が突き止められる。特に、偏光放射204(
図2)の入射に対する応力誘起複屈折が最小である光学素子200の取り付け方位が突き止められる。取り付け方位は、中心軸214を中心とした光学素子200の回転(方位角回転)に関連する方位である。
【0088】
特に、偏光放射204の入射に対する応力誘起複屈折が最小である中心軸214を中心とした回転に関する光学素子200の回転角α(
図2)が突き止められる。ここで、例えば、さらに、偏光放射204の入射に対する応力誘起複屈折が最小(例えば、極小)である回転角αの多数の値を突き止めることが可能である。加えて、回転角αはまた、入射偏光放射204の偏光面212(
図2)に対して突き止めることができる。
【0089】
図12に示されるように、光学素子200の取り付け方位は、表面208、すなわち、例えば表面適合像400の検出された高さプロファイル216の高さ値Hまたは対応する強度値の角度分布416を突き止めることによって突き止められる。この目的のために、高さ値Hまたは強度値Iは、検出された表面適合像400の所定の角度範囲Δδ(例えば、
図11の円セグメント418)において積分または平均化される。
図11における角度範囲Δδおよび対応する円セグメント418は、説明のために、過度に大きいサイズで示されていることに留意されたい。加えて、積分値および/または平均値(例えば、高さ値Hまたは強度値I)が、360°の全円の角度範囲全体にわたって角度分布416としてプロットされる。したがって、
図12は、角度分布416におけるδ1、δ2、δ3、δ4、δ5、およびδ6での6つの最小値を示す。
【0090】
加えて、
図12は、[111]方位CaF
2結晶の固有の複屈折を示す文献から適合されたグラフ420を示す。本出願人が、このように、実証することができているように、特に6つの最小値402、404、406、408、410、および412の位置に関する高度の一致が、複屈折を記述するグラフ420と、検出された高さプロファイル216を用いて、すなわち表面適合像400から突き止められた角度分布416との間で明らかである。したがって、本出願人は、応力誘起複屈折に関して好ましい光学素子の取り付け方位を突き止める代替方法を提示することができる。特に、応力誘起複屈折に関して好ましい取り付け方位、すなわち、応力誘起複屈折に関して好ましい回転角αが、追加のテストセットアップおよび追加のテスト方法なしに、高さプロファイル216の表面適合像400から最小値402~412の角度δ1~δ6(特に、主要な最小値404、408、412のδ2、δ4、δ6)のうちの1つまたは複数として直接突き止められ得る。特に、最適な取り付け角度αに関する情報がまた、大きい余分な困難がなく得られるように、いずれにしても必要とされる表面208の研磨(ステップS1)および高さプロファイル216(表面適合像400)の検出のプロセスステップを変更することが可能である。
図12における主要な最小値404、408、412の各々の角度δ2、δ4、δ6は、光学素子200の「クロッキング」のための好ましい取り付け角度α(
図2)と見なすことができる。
【0091】
この方法の第4のステップS4において、突き止められた好ましい設置方位、例えば、角度δ2、δ4、δ6のうちの1つが、光学素子200にマーキングされる。これにより、突き止められた好ましい取り付け方位が、例えば顧客によって光学素子200自体で読み取られることが可能になり、および/または測定デバイス、例えば市販の干渉計によって確認されることが可能になる。
【0092】
ステップS4において、特に、マーキング424(
図2および
図3)が、ステップS3で突き止められた好ましい回転角δ2、δ4、δ6のうちの1つまたは複数について光学素子200に行われる。図示の例では、マーキング424は、光学素子200の外面422に塗料で描かれている(例えば、マーカーペンで)。他の例では、マーキング424はまた、光学素子200に刻印されてもよく、および/または表面208の縁部領域に製作されてもよい。
【0093】
この方法のオプションの第5のステップS5において、表面208が、再度研磨される。このさらなる研磨のステップは、ステップS1で作り出された表面208の高さプロファイル216を除去する働きをする。これは、突き止められた取り付け方位を示す、付けられたマーキング424(
図2)を除去しない。ステップS5を使用することにより、表面208のより少ない粗さを達成することが可能になる。同時に、応力誘起複屈折を最小にするように光学素子200を光学システム(例えば、
図1の102、104)に取り付けるべき方位角αをユーザに示すマーキング424が保存される。
【0094】
本発明が例示的な実施形態を参照して説明されたが、それは、様々なやり方で変更可能である。
【符号の説明】
【0095】
100 DUVリソグラフィ装置
102 ビーム整形・照明システム
104 投影システム
106 光源
108 放射
110 フォトマスク
112 ウェハ
114 レンズ素子
116 レンズ素子
118 レンズ素子
120 ミラー
122 ミラー
124 光軸
126 媒体
128 光パルスエクステンダ
130 ビームスプリッタ
132 ホルダ
134 チャンバ窓
200 光学素子
202 結晶基板
204、204’ 放射
206 端面
208 表面
210 伝搬方向
212 偏光面
214 中心軸
216 高さプロファイル
218 螺旋パターン
220 装置
222 ホイール
224 磁石
226 流体
228 回転方向
230 方向
232 中心
234 領域
300 結晶
302 結晶面
304 結晶面
306 結晶面
308 結晶面
310 結晶軸
312 結晶軸
314 結晶軸
316 結晶軸
400 表面適合像
402 最小値
404 最小値
406 最小値
408 最小値
410 最小値
412 最小値
414 切欠き
416 角度分布
418 円セグメント
420 グラフ
422 外側面
424 マーキング
α 角度
β 角度
δ 角度
δ1 角度
δ2 角度
δ3 角度
δ4 角度
δ5 角度
δ6 角度
a ミラー指数
b ミラー指数
c ミラー指数
E 電界のベクトル
H 高さ値
I 強度値
S1~S5 方法のステップ
X 方向
Y 方向
Z 方向
【手続補正書】
【提出日】2023-10-12
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
リソグラフィ装置(100)用の光学素子(200)を製造する方法であって、
a)前記光学素子(200)の結晶基板(202)の表面(208)の高さプロファイル(216)を検出するステップ(S2)と、
b)検出された前記高さプロファイル(216)を使用して、偏光放射(204)の入射に対する応力誘起複屈折に関連して前記リソグラフィ装置(100)の光学システム(102、104)の前記光学素子(200)の取り付け方位(δ2、δ4、δ6)を突き止めるステップ(S3)であって、前記取り付け方位(δ2、δ4、δ6)は、前記表面(208)を通り抜ける前記光学素子(200)の中心軸(214)を中心とした前記光学素子(200)の回転に関する方位を有する、突き止めるステップ(S3)と
を含む、方法。
【請求項2】
前記方法は、ステップa)に先行する以下のステップ、すなわち、
前記表面(208)の前記高さプロファイル(216)を作り出すために前記結晶基板(202)の前記表面(208)を磨くステップ(S1)
を含む、請求項1に記載の方法。
【請求項3】
前記磨くステップ(S1)は、前記表面(208)の磁気レオロジー研磨を含む、請求項2に記載の方法。
【請求項4】
前記表面(208)を磨くステップ(S1)は、螺旋状に前記表面(208)を横切って掃引することによって行われ、前記螺旋掃引は、前記表面(208)の外側領域(234)から、前記中心軸(214)によって定められる前記表面(208)の中心(232)を中心とした螺旋(218)状に、前記中心(232)に向かって進む、請求項2または3に記載の方法。
【請求項5】
前記表面(208)は、前記中心軸(214)を中心として前記光学素子(200)を回転させ、同時に、前記中心軸(214)によって定められる前記表面(208)の中心(232)に向かって半径方向に研磨ツール(222)を移動させることによって研磨される(S1)、請求項2または3に記載の方法。
【請求項6】
前記方法は、ステップb)の後に以下のステップ、すなわち、
突き止められた前記取り付け方位(δ2、δ4、δ6)を前記光学素子(200)にマーキングするステップ(S4)
を含む、請求項1~3のいずれかに記載の方法。
【請求項7】
前記方法は、突き止められた前記取り付け方位(δ2、δ4、δ6)を前記光学素子(200)にマーキングするステップ(S4)の後に、前記表面(208)の前記高さプロファイル(216)を除去するために、突き止められた前記取り付け方位(δ2、δ4、δ6)を前記光学素子(200)において識別するマーキング(424)が保存されるように前記表面(208)を磨くステップ(S5)を含む、請求項6に記載の方法。
【請求項8】
前記結晶基板(202)は、立方対称性を有する結晶(300)、単結晶、フッ化物結晶、フッ化カルシウム、フッ化マグネシウム、フッ化バリウム、および/またはルテチウムアルミニウムガーネットを含む、請求項1~3のいずれかに記載の方法。
【請求項9】
前記結晶基板(202)の前記表面(208)は、前記結晶基板(202)の[111]結晶面(302)によって形成される、請求項1~3のいずれかに記載の方法。
【請求項10】
前記結晶基板(202)の前記表面(208)は、前記結晶基板(202)の[100]結晶面(304)、[010]結晶面(306)、または[001]結晶面(308)によって形成される、請求項1~3のいずれかに記載の方法。
【請求項11】
前記光学素子(200)は、前記リソグラフィ装置(100)の透過光学素子(130、114、116、118)、部分透過光学素子(130)、ビームスプリッタ(130)、光パルスエクステンダ(128)のビームスプリッタ(130)、レンズ素子(114、116、118)、および/またはチャンバ窓(134)を含む、請求項1~3のいずれかに記載の方法。
【請求項12】
前記光学素子(200)の前記取り付け方位(δ2、δ4、δ6)を突き止めるステップ(S3)は、前記中心軸を中心とした前記光学素子の回転に関する他の回転角と比較して前記偏光放射(204)の入射に対する応力誘起複屈折がより少ないおよび/または最小である、前記中心軸(214)を中心とした前記光学素子(200)の回転に関する前記光学素子(200)の回転角(α)を突き止める、請求項1~3のいずれかに記載の方法。
【請求項13】
前記光学素子(200)の前記取り付け方位(δ2、δ4、δ6)を突き止めるステップ(S3)は、前記入射偏光放射(204)の偏光面(212)に対する前記光学素子(200)の回転角(α)を突き止める、請求項1~3のいずれかに記載の方法。
【請求項14】
前記光学素子(200)の前記取り付け方位(δ2、δ4、δ6)を突き止めるステップ(S3)は、前記表面(208)の前記突き止められた高さプロファイル(216)の高さ値(H)の角度分布(416)を突き止め、前記角度分布(416)の角度(δ)が、前記中心軸(214)を中心とした前記光学素子(200)の回転に関する前記光学素子(200)のそれぞれの回転角(α)に対応する、請求項1~3のいずれかに記載の方法。
【外国語明細書】