(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024150478
(43)【公開日】2024-10-23
(54)【発明の名称】距離に基づく組織状態の決定
(51)【国際特許分類】
G01N 33/48 20060101AFI20241016BHJP
G01N 33/483 20060101ALI20241016BHJP
【FI】
G01N33/48 M
G01N33/483 C
【審査請求】有
【請求項の数】1
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2024106349
(22)【出願日】2024-07-01
(62)【分割の表示】P 2021519743の分割
【原出願日】2019-10-23
(31)【優先権主張番号】18202125.3
(32)【優先日】2018-10-23
(33)【優先権主張国・地域又は機関】EP
(71)【出願人】
【識別番号】514099673
【氏名又は名称】エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林弁理士法人
(72)【発明者】
【氏名】ゲール, ファビアン
(72)【発明者】
【氏名】アンダーション, カリン エミリア
(72)【発明者】
【氏名】メヒ, フランツィスカ
(72)【発明者】
【氏名】コルスキー, コンスタンティ
(72)【発明者】
【氏名】シュミッヒ, ファビアン
(57)【要約】 (修正有)
【課題】細胞分布の空間的側面にも対処する方法で正確な定量的データを提供する既知のアプローチの能力は限定され、複数の研究室によって実施される空間的関連性を検討するために使用される方法の主観性及び多様性は、組織病理学的結果を比較する能力を妨げる。
【解決手段】組織サンプルの生物医学的状態を決定するための画像分析法に関して組織サンプルのデジタル画像を受信すること、A型細胞及びB型細胞の数及び位置を同定すること、観測相対分布を得ること、参照A型細胞と参照B型細胞との間の期待距離の参照相対分布を得ること、参照相対分布と観測相対分布の差として近接スコアを計算すること、近接スコアとA型細胞の密度及び/又はB型細胞の密度とを含む組み合わせスコアを計算すること、組織サンプルの生物医学的状態を決定するために組み合わせスコアを使用すること及び/又は組み合わせスコアを出力すること。
【選択図】
図9
【特許請求の範囲】
【請求項1】
組織サンプルの生物医学的状態を決定するための画像分析法であって、画像分析システム(100)により実装され、以下:
- 組織サンプルのデジタル画像(118)を受信すること(202);
- 受信した画像の領域中で観測されたA型細胞(504)及びB型細胞(506)の数及び位置を同定するために、受信した画像を分析すること(204)であって、A型とB型が異なる細胞型である、受信した画像を分析すること;
- 観測相対分布(708、706)を得るために、領域中のA型及びB型細胞の位置を分析すること(206)であって、観測相対分布が領域中のA型細胞とB型細胞との間の観測距離を示す、A型及びB型細胞の位置を分析すること;
- 参照相対分布(710、714)を得ること(208)であって、参照相対分布が参照A型細胞と参照B型細胞との間の期待距離を示す、参照相対分布を得ること;
- 参照相対分布と観測相対分布の差として近接スコア(718、720)を計算すること(210);
- 組み合わせスコア(912)を計算すること(212)であって、組み合わせスコアが、近接スコアを含み、かつA型細胞の密度及び/又はB型細胞の密度を含む、組み合わせスコアを計算すること;
- 組織サンプルの生物医学的状態を決定するために組み合わせスコアを使用すること(214)及び/又はユーザが組織サンプルの生物医学的状態を決定するのを可能にするために組み合わせスコアをユーザに出力すること(216)
を含む、方法。
【請求項2】
観測相対分布を得ることが、以下:
- 画像領域中で観測された、同定されたA型細胞のそれぞれについて:
a)前記A型細胞を、半径0を有する円の中心として選択すること;
b)増加したサイクルを生成するために一工程により半径を増加させること;
c)工程b)で生成されたサイクルに含有されるB型細胞の数を決定すること;
d)記憶媒体に工程b)で決定されたB型細胞の数に関連した円の現在の半径を記憶させ、終了基準に達するまで工程b)、c)及びd)を繰り返すこと;
e)A型細胞の選択されていない一つを選択し、すべてのA型細胞が選択されるまで前記新たに選択されたA型細胞を使用してa)を継続すること;
- 観測されたB型細胞の関連する半径及び数を観測相対分布として提供すること
を含む、請求項1に記載の画像分析法。
【請求項3】
観測相対分布が、
として、又は
の導関数として計算され、
が、以下:
[ - 式中、
は二変量リプレーのK(t)関数であり、
- ここで、iは「観測A型細胞」のオブジェクト型の発生であり;
- ここで、jは「観測B型細胞」のオブジェクト型の発生であり;
- 式中、
は、観測B型細胞の密度(画像領域当たりの数)であり;
- 式中、
は、画像領域内で同定された観測A型細胞の総数であり;
- 式中、
は、画像領域内で同定された観測B型細胞の総数であり;
- 式中、
は、観測A型細胞である細胞であり;
- 式中、rは、観測A型細胞の中心に位置する段階的に増加した半径であり;
- tは、u、r、及び
に対する関数であり、画像領域中の観測A型細胞uの周囲の半径rの円における観測B型細胞の数をカウントし;
- 式中、
は、「観測A型細胞であるuのすべてにわたる」を意味し;
- 式中、Eは、すべてのuにわたって得られたtの期待値である。]
に従って計算される、請求項1又は2に記載の画像分析法。
【請求項4】
参照相対分布を得ること(208)が、以下:
- 領域中のシミュレーションされた参照A型細胞の分布をコンピュータによりシミュレーションすることであって、シミュレーションされた参照A型細胞の数が画像領域中で観測されたA型細胞の同定された数と同一である、領域中のシミュレーションされた参照A型細胞の分布をコンピュータによりシミュレーションすること;
- 領域中のシミュレーションされた参照B型細胞の分布をコンピュータによりシミュレーションすることであって、シミュレーションされた参照B型細胞の数が画像領域中で観測されたB型細胞の同定された数と同一である、領域中のシミュレーションされた参照B型細胞の分布をコンピュータによりシミュレーションすること;
- 参照A型及び参照B型細胞のコンピュータによりシミュレーションされた分布の関数として参照相対分布を計算することであって、参照相対分布が領域中のシミュレーションされた参照A型細胞とシミュレーションされた参照B型細胞との間の距離を示す、参照相対分布を計算すること
を含む、請求項1から3のいずれか一項に記載の方法。
【請求項5】
シミュレーションされた参照A型細胞の分布がポアソン分布であり、シミュレーションされた参照B型細胞の分布がポアソン分布である、請求項4に記載の画像分析法。
【請求項6】
参照相対分布を参照A型及び参照B型細胞のコンピュータによりシミュレーションされた分布の関数として計算することが、以下:
- ランダムに分布したシミュレーションされた参照A型細胞のそれぞれについて:
a)前記シミュレーションされた参照A型細胞を、半径0を有する円の中心として選択すること;
b)増加したサイクルを生成するために一工程により半径を増加させること;
c)工程b)で生成されたサイクルに含有されるシミュレーションされた参照B型細胞の数を決定すること;
d)記憶媒体に工程b)で決定された、シミュレーションされた参照B型細胞の数に関連した円の現在の半径を記憶させ、終了基準に達するまで工程b)、c)及びd)を繰り返すこと;及び
e)シミュレーションされた参照A型細胞の選択されていない一つを選択し、すべてのシミュレーションされた参照A型細胞が選択されるまで前記新たに選択されたシミュレーションされた参照A型細胞を使用してa)を継続すること
- シミュレーションされた参照B型細胞の関連する半径及び数を参照相対分布として提供すること
を含む、請求項4又は5に記載の画像分析法。
【請求項7】
参照相対分布が、
として、又は
の導関数として計算され、
が、以下:
[ - 式中、
は二変量リプレーのK(t)関数であり、
- ここで、iは「シミュレーションされた参照A型細胞」のオブジェクト型の発生であり;
- ここで、jは「シミュレーションされた参照B型細胞」のオブジェクト型の発生であり;
- 式中、
は、シミュレーションされた参照B型細胞の密度(画像領域当たりの数)であり;
- 式中、
は、画像領域内のシミュレーションされた参照A型細胞の総数であり;
- 式中、
は、画像領域内のシミュレーションされた参照B型細胞の総数であり;
- 式中、
は、シミュレーションされた参照A型細胞である細胞であり;
- 式中、rは、シミュレーションされた参照A型細胞の中心に位置する段階的に増加した半径であり;
- tは、u、r、及び
に対する関数であり、画像領域中のシミュレーションされた参照A型細胞uの周囲の半径rの円におけるシミュレーションされた参照B型細胞の数をカウントし;
- 式中、
は、「シミュレーションされた参照A型細胞であるuのすべてにわたる」を意味し;
- 式中、Eは、すべてのuにわたって得られたtの期待値である。]
に従って計算される、請求項4から6のいずれか一項に記載の画像分析法。
【請求項8】
以下:
- 請求項4から7のいずれか一項に従って、複数の初期参照相対分布を計算すること;
- 複数の初期参照相対分布から平均参照相対分布を計算すること;及び
- 平均参照相対分布を参照相対分布として使用すること
をさらに含む、請求項1から7のいずれか一項に記載の画像分析法。
【請求項9】
参照相対分布を得ること(208)が、以下:
- 一又は複数のさらなる組織サンプルのそれぞれのさらなるデジタル画像を受信することであって、それぞれのさらなる組織サンプルが既知の生物医学的状態の組織に由来する、一又は複数のさらなる組織サンプルのそれぞれのさらなるデジタル画像を受信すること;
- 受信したさらなる画像の領域中で観測された観測参照A型細胞及び観測参照B型細胞の数及び位置を同定するために、それぞれの受信したさらなる画像を分析すること;
- さらなる観測相対分布を得るために、それぞれのさらなる画像の領域中の観測参照A型及び観測参照B型細胞の位置を分析することであって、さらなる観測相対分布が、さらなるデジタル画像の領域中で観測された観測参照A型細胞と観測参照B型細胞との間の観測距離を示す、観測参照A型及び観測参照B型細胞の位置を分析すること;及び
- 観測参照相対分布を参照相対分布として使用すること
を含む、請求項1から3のいずれか一項に記載の方法。
【請求項10】
参照相対分布と観測相対分布の差として近接スコアを計算すること(210)が、以下:
- B型細胞の所定の最小数を表す所定の数を提供すること;
- 観測相対分布内で、観測半径ro-最小を同定することであって、観測半径ro-最小が、観測A型細胞のそれぞれの周りに描かれた場合に、観測B型細胞の所定の数を平均して含む円を規定する半径である、観測相対分布内で、観測半径ro-最小を同定すること;
- 参照相対分布内で参照半径rr-最小を同定することであって、参照半径rr-最小が、参照A型細胞のそれぞれの周りに描かれた場合に、参照相対分布を提供するために参照B型細胞の所定の数を平均して含む円を規定する半径である、参照相対分布内で参照半径rr-最小を同定すること;
- 近接スコアを、観測半径ro-最小及び参照半径rr-最小の関数として計算することであって、関数が、特に、観測半径と参照半径との間の差である、近接スコアを、観測半径ro-最小及び参照半径rr-最小の関数として計算すること
を含む、請求項1から9のいずれか一項に記載の画像分析法。
【請求項11】
以下:
- 第1の次元が半径r(Ro)を表し、第2の次元が前記半径に関連する観測B型細胞の数を表す2Dプロットにおいて、観測相対分布を観測分布曲線としてグラフで表し;及び画像分析システムのディスプレイデバイスで2Dプロットを表示すること;並びに/又は、
- 第1の次元が半径r(Rs)を表し、第2の次元が前記半径に関連する参照B型細胞の数を表す2Dプロットにおいて、参照相対分布を参照分布曲線としてグラフで表し;及び画像分析システムのディスプレイデバイスで2Dプロットを表示すること
をさらに含む、請求項1から10のいずれか一項に記載の画像分析法。
【請求項12】
A型細胞が腫瘍細胞であり、B型細胞が免疫細胞である、請求項1から11のいずれか一項に記載の画像分析法。
【請求項13】
組織サンプルが腫瘍組織サンプルであり、組織サンプルの生物医学的状態の決定が、免疫細胞を含む受信したデジタル画像の領域に示される腫瘍組織の浸潤状態を決定することを含む、請求項1から12のいずれか一項に記載の画像分析。
【請求項14】
以下:
- 2Dプロットの第1の次元が近接スコアを表し、2Dプロットの第2の次元がB型細胞又はA型細胞の密度を表すスコア2Dプロット内のシンボルとして組み合わせスコアをグラフで表し;組織サンプルの生物医学的状態を人間が決定することを可能にするために画像分析システムのディスプレイに2Dスコアプロットを出力すること(214);及び/又は
- 組織サンプルの生物医学的状態の決定を、所定の生物医学的状態の限定されたセット内又は生物医学的状態の所定の連続スペクトル内の組織サンプルの生物医学的状態を自動的に同定することによる画像分析システムによって実施し、同定された生物医学的状態を決定された生物医学的状態として出力すること
をさらに含む、請求項1から13のいずれか一項に記載の画像分析。
【請求項15】
以下:
- 複数の異なる患者のそれぞれから組織サンプルのデジタル画像を受信すること;
- 請求項1から14のいずれか一項に従ってそれぞれの受信した画像を使用して患者のそれぞれについて組み合わせスコアを計算すること;
- それぞれの、生物医学的状態に特異的なシンボルによって、各患者の生物医学的状態を2Dスコアプロット上にグラフで表すことであって、プロットにおける各患者のシンボルの位置が患者について計算されたB型細胞密度と近接スコアとに依拠する、それぞれの、生物医学的状態に特異的なシンボルによって、各患者の生物医学的状態を2Dスコアプロット上にグラフで表すこと
をさらに含む、請求項14に記載の画像分析法。
【請求項16】
同定された生物医学的状態が、以下:
- 「炎症」とは、免疫細胞の細胞密度が著しく増加した免疫学的組織状態を示し、腫瘍のすべての区画において免疫細胞が腫瘍組織に大量に浸潤していることを示す;
- 「排除」とは、免疫細胞が組織サンプルに存在するが、腫瘍細胞との密接な接触が妨げられており、それにより、免疫細胞が浸潤縁及び/又は腫瘍内間質に集中しているが、腫瘍細胞から分離されている、免疫学的組織状態を示す;
- 「枯渇」とは、腫瘍組織領域中の免疫細胞がゼロ又はゼロに近い細胞密度を有する免疫学的組織状態を示す
を含む群から選択される、請求項1から15のいずれか一項に記載の画像分析法。
【請求項17】
以下:
- 組織サンプルが腫瘍浸潤タイプの「炎症」と分類される場合、ユーザインタフェースを介して、チェックポイント阻害剤、例えば抗PD-L1/PD-1、CTL4として作用する薬物を処方するための治療勧告を出力すること;
- 組織サンプルが腫瘍浸潤タイプの「排除」と分類される場合、ユーザインタフェースを介して、腫瘍細胞に近い免疫細胞を引き付けるよう適合された薬物を処方するための治療勧告を出力すること;
- 組織サンプルが腫瘍浸潤状態の「枯渇」と分類される場合、ユーザインタフェースを介して、免疫系を一般的に高めるよう適合された薬物、例えばIL-2を処方するための治療勧告を出力すること
をさらに含む、請求項1から16のいずれか一項に記載の画像分析法。
【請求項18】
参照A型細胞の密度が画像領域中で観測されたA型細胞の密度と同一であり、参照B型細胞の密度が画像領域中で観測されたB型細胞の密度と同一である、請求項1から17のいずれか一項に記載の画像分析法。
【請求項19】
特定の種類のがんを治療するための薬物の有効性を決定する方法であって、
- 複数の第1のデジタル画像を受信することであって、前記生物が薬物で治療される前に、各第1の画像が、特定の種類のがんを有する個々の生物の組織サンプルを示す、複数の第1のデジタル画像を受信すること;
- 第1のデジタル画像のそれぞれの画像領域から、前述の請求項のいずれか一項に従って第1の組み合わせスコアを計算することであって、生物医学的状態が、腫瘍の免疫細胞浸潤状態であり、A型細胞が腫瘍細胞であり、B型細胞ががん細胞である、第1の組み合わせスコアを計算すること;
- 複数の第2のデジタル画像を受信することであって、前記生物が薬物で治療される前に、各第2の画像が、特定の種類のがんを有する個々の生物の組織サンプルを示す、複数の第2のデジタル画像を受信すること;
- 第2のデジタル画像のそれぞれの画像領域から、前述の請求項のいずれか一項に従って第2の組み合わせスコアを計算することであって、生物医学的状態が腫瘍浸潤状態であり、A型細胞が腫瘍細胞であり、B型細胞ががん細胞である、第2の組み合わせスコアを計算すること;
- 表示デバイス上に2Dスコアプロットを表示することであって、各第1の組み合わせスコアが2Dスコアプロット中の第1のシンボルによって表され、各第2の組み合わせスコアが2Dスコアプロット中の第2のシンボルによって表され、プロット中の第1及び第2のシンボルの位置が個々の画像の画像領域中で観測された免疫細胞密度及び個々の画像の画像領域について計算された近接スコアに依拠し、同じ生物を表す第1及び第2のシンボルが、x及び/又はy座標における任意のシフトを可視化するために、第1のシンボルのいずれか一つからその個々に結合した第2のシンボルへ、2Dスコアプロットにおいて視覚的に結合される、表示デバイス上に2Dスコアプロットを表示すること
を含む、方法。
【請求項20】
プロセッサにより実行された場合に、プロセッサに請求項1から19のいずれか一項に記載の画像分析法を実施させるコンピュータ解釈可能命令を含む、記憶媒体。
【請求項21】
組織サンプルの生物医学的状態を決定するための画像分析システム(100)であって、プロセッサに以下:
- 組織サンプルのデジタル画像(118)を受信すること(202);
- 受信した画像の領域中で観測されたA型細胞(604)及びB型細胞の数及び位置を同定するために受信した画像を分析すること(204)であって、A型とB型が異なる細胞型である、受信した画像を分析すること;
- 観測相対分布を得るために領域中のA型及びB型細胞の位置を分析すること(206)であって、観測相対分布が領域中のA型細胞とB型細胞との間の観測距離を示す、A型及びB型細胞の位置を分析すること;
- 参照相対分布を得ること(208)であって、参照相対分布が参照A型細胞と参照B型細胞との間の期待距離を示す、参照相対分布を得ること;
- 参照相対分布と観測相対分布の差として近接スコアを計算すること(210);
- 組み合わせスコアを計算すること(212)であって、組み合わせスコアが、近接スコアを含み、A型細胞の密度及び/又はB型細胞の密度を含む、組み合わせスコアを計算すること;
- 組織サンプルの生物医学的状態を決定するために組み合わせスコアを使用すること(214)及び/又はユーザが組織サンプルの生物医学的状態を決定するのを可能にするために組み合わせスコアをユーザに出力すること(216)
を含む方法を実施するための命令を実行させるよう構成された、プロセッサ及びコンピュータ解釈可能命令を含む、システム。
【請求項22】
組織サンプルの生物医学的状態を決定するためのデータ処理システムであって、システムが空間DBMS及びアプリケーションプログラムを含み、
空間DBMSが、以下:
- 観測空間データであって、組織サンプルのデジタル画像(118)の領域中で観測されたA型細胞(604)及びB型細胞の位置を含み、A型とB型が異なる細胞型である、観測空間データ;
- 参照空間データであって、参照A型細胞及び参照B型細胞の位置を含む、参照空間データ;
を含み、
アプリケーションプログラムが以下:
- 観測相対分布を得るために観測空間データを分析することであって、観測相対分布が領域中のA型細胞とB型細胞との間の観測距離を示し、ここで、アプリケーションプログラムが観測距離を計算するために空間DBMSにより提供された空間演算を使用するよう構成されている、観測相対分布を得るために観測空間データを分析すること;
- 参照相対分布を得るために参照空間データを分析することであって、参照相対分布が領域中の同定された数の参照A型細胞と参照B型細胞との間の期待距離を示し、ここで、アプリケーションプログラムが期待距離を計算するために空間DBMSにより提供された空間演算を使用するよう構成されている、参照相対分布を得るために参照空間データを分析すること;
- 参照相対分布と観測相対分布の差として近接スコアを計算すること(210);
- 組み合わせスコアを計算すること(212)であって、組み合わせスコアが、近接スコアを含み、A型細胞の密度及び/又はB型細胞の密度を含む、組み合わせスコアを計算すること;
- 組織サンプルの生物医学的状態を決定するために組み合わせスコアを使用すること(214)及び/又はユーザが組織サンプルの生物医学的状態を決定するのを可能にするために組み合わせスコアをユーザに出力すること(216)
を行うよう構成されている
データ処理システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像分析の分野、より具体的には組織サンプルの生物医学的状態の画像に基づく分類に関する。
【背景技術】
【0002】
今日、組織サンプルの生物医学的特徴を自動的に決定するために複数の異なる画像分析法が使用されている。例えば、画像分析は、細胞を自動的に同定するため、デジタル病理画像を背景領域及び組織領域にセグメント化するため、並びに生物医学的状態、例えば特定の疾患を自動的に同定及び/又は定量化するために使用される。
【0003】
例えば白血病、乳がん、結腸がん、及び他の種類のがんの診断におけるバイオマーカー、例えば腫瘍マーカーの検出がその例である。これは、特定の種類の細胞、例えば腫瘍細胞又は他の種類の細胞で特異的に発現又は過剰発現されるタンパク質に対する抗体で細胞を標識することを含む。適切な抗体を選択することにより、異なる種類の細胞を正確に決定することができる。
【0004】
免疫表現型検査は、基礎科学研究及び研究室診断の目的で一般的に使用される手法である。これは、一又は複数のタンパク質の発現レベルに基づいて細胞の「表現型」を特定するために、特定の標的分子に対して特異的に向けられた抗体を使用する。組織内の一又は複数の細胞の細胞表現型は、組織の生物医学的状態、例えば組織が健康な組織であるか、原発腫瘍組織であるか、又は転移組織であるかに関する洞察を得るために使用することもできる。
【0005】
デジタル病理学画像の分析に現在使用されている多くの画像分析アルゴリズムに関連する一般的な問題は、特定のタンパク質の発現レベルは単独で特定の細胞型の細胞の正しい同定を可能にし得るが、組織の生物医学的状態を正確に、再現性よく、かつ自動的に決定するには不十分な場合があることである。
【0006】
Steele KEらは、「Measuring multiple parameters of CD8+ tumor-infiltrating lymphocytes in human cancers by image analysis」(J Immunother Cancer. 2018 Mar 6;6(1):20. doi:10.1186/s40425-018-0326-x)で、CD8+腫瘍浸潤リンパ球(TIL)の数と位置に基づいて、がんに対する免疫応答を特徴づけている。免疫応答強度は、予後、薬力学的、及び予測の可能性が高いパラメータであると考えられている。
【0007】
しかしながら、細胞分布の空間的側面にも対処する方法で正確な定量的データを提供する既知のアプローチの能力は限られたままである。さらに、複数の研究室によって実施される空間的関連性を検討するために使用される方法の主観性及び多様性は、組織病理学的結果を比較する能力を妨げる。
【発明の概要】
【0008】
本発明の目的は、独立請求項に明記される組織サンプルの生物医学的状態の決定のための改善された方法及び画像分析システムを提供することである。本発明の実施態様は、従属項に記載される。本発明の実施態様は、それらが相互に排他的でない場合、互いに自由に組み合わせることができる。
【0009】
一態様では、本発明は、組織サンプルの生物医学的状態を決定するための画像分析法に関する。この方法は、画像分析システムで実装される。この方法は、
- 組織サンプルのデジタル画像を受信すること;
- 受信した画像の領域中で観測されたA型細胞及びB型細胞の数及び位置を同定するために受信した画像を分析することであって、A型及びB型が異なる細胞型である、受信した画像を分析すること;
- 観測相対分布を得るために領域中のA型及びB型細胞の位置を分析することであって、観測相対分布が領域中のA型細胞とB型細胞との間の観測距離を示す、A型及びB型細胞の位置を分析すること;
- 参照相対分布を得ることであって、参照相対分布が参照A型細胞と参照B型細胞との間の予想距離を示す、参照相対分布を得ること;
- 参照相対分布と観測相対分布の差として近接スコアを計算すること;
- 組み合わせスコアを計算することであって、組み合わせスコアが、近接スコアを含み、A型細胞の密度及び/又はB型細胞の密度を含む、組み合わせスコアを計算すること;
- 組織サンプルの生物医学的状態を決定するために組み合わせスコアを使用すること及び/又はユーザが組織サンプルの生物医学的状態を決定するのを可能にするために組み合わせスコアをユーザに出力すること
を含む。
【0010】
前記特徴は有利であり得るが、これは、最先端の方法とは対照的に、異なる細胞型の空間分布が病理学者によって主観的に決定されないためである。むしろ、観測相対分布は、参照相対分布と、すなわち、領域中、参照A型細胞と参照B型細胞との間の期待距離を表す分布と、比較される。期待距離は、例えば、A型細胞及び/又はB型細胞が特定の所定の数学的分布、例えばポアソン分布に従って分布されていると想定して期待距離であり得る。あるいは、期待分布は、既知の生物医学的状態を有する一又は複数の他の組織サンプルにおけるA型及びB型細胞の分析に基づいて実験的に決定され得る。参照相対分布を規定することにより及び参照相対分布と観測相対分布の差として近接スコアを計算することにより、組織サンプル中の二つの異なる細胞型の相対空間位置の再現性のある測定値が提供される。近接スコアは、A型及びB型細胞の期待相対分布/距離に対するA型及びB型細胞の観測相対分布/距離の偏差の再現性のある定量的な測定値を提供し得る。
【0011】
近接スコアは、観測相対分布と参照相対分布との間の「デルタ」を表すと考えられ得る。近接スコアは、観測相対分布及び参照相対分布に表されるA型細胞-B型細胞の距離の空間的な差を統合する。好ましくは、近接スコアは、複数のA型及びB型細胞から得られた距離情報を統合する単一の数値データの値である。例えば、「デルタ」は、
図7に示される半径の差又は
図8に示される領域の差として計算することができる。
【0012】
さらなる有益な態様では、近接スコアは高度に集約されたデータ値であり得るが、これは、近接スコア値が複数の観測及び期待A型細胞及びB型細胞の距離を処理することにより得られた単一のデータ値であり得るためである。それゆえ、数百、場合によっては数千の細胞の空間分布にコードされた情報を検討できるようになり、その情報を特定の組織の生物医学的状態を再現性よく決定するのに使用することができる。細胞の空間位置にコードされた情報は複雑であり、それらの解釈も複雑である。観測及び期待A細胞-B細胞の距離に応じて計算された単一のスコア値を提供することにより、多くの生物医学的情報をコードするパラメータ値が提供され、それゆえ、組織又は組織領域の生物医学的状態の決定などのさまざまな予測タスクのための高い予測関連性を有し得る。
【0013】
さらなる有益な態様では、近接スコアは、最終的な、組み合わせスコアを提供するために、追加情報、すなわち画像領域中のA型及び/又はB型細胞の密度と組み合わされる。組み合わせスコアは、それらがどちらも「相対的」情報(すなわち、期待A細胞-B細胞の距離からの観測A細胞-B細胞の距離の偏差)と、「絶対的」情報、すなわち調査された画像領域中のA型又はB型細胞の密度との両方であるため、有利であり得る。絶対的情報と相対的情報の組み合わせは有益であり得るが、これは、この組み合わせが、近接スコアのみに基づき又は細胞型の一つの密度のみに基づき同定することができない組織サンプルの生物医学的状態における差も解決することを可能にし得るためである。例えば、同じ近接スコアを有するがB型細胞又はA型細胞の絶対的密度における差に基づいて区別することができる、複数の異なる生物学的組織状態が存在し得る。追加で、又は代替的に、B型細胞(又はA型細胞)の同じ密度を有するが近接スコアにおける差に基づいて区別することができる、複数の異なる生物医学的組織状態が存在し得る。
【0014】
本発明の実施態様は、特定の生物医学的状態、例えば特定の腫瘍タイプ及びステージが、細胞の観測分布を期待分布(例えば、ポアソン分布などのランダム分布)から除くという仮説を特定することを可能に得、近接スコアを計算することによりこの仮説を容易に調査することを可能にする。近接スコアがゼロ又はゼロに近い場合、基本的に、観測相対分布と期待参照相対分布の差はなく、仮説は受け入れられ得る。例えば、仮説は、組織サンプルが特定の種類及びステージの腫瘍から採られた腫瘍組織サンプルである場合、腫瘍のミクロ環境は腫瘍細胞(A型細胞)及び免疫細胞(B型細胞)の観測相対分布をランダム参照分布から除く、ということであり得る。
【0015】
したがって、組み合わせスコアは、高い予測力を有し、組織中のA型及びB型細胞の相対分布に関連する空間情報を再現性よく特徴づけることを可能にし得る、高度に集約されたパラメータを提供し得る。近接スコア及び組み合わせスコアは、それらが任意の二つの異なる細胞型の相対分布を特徴づけるのに使用することができ、それゆえ、多くの異なる生物学的問題に関連する生物医学的状態を自動的に決定するのに使用することができるという、さらなる利点を有し得る。したがって、高度に再現性のある、非主観的だが汎用的なスコア値が提供され、このスコア値は、組織サンプルの生物医学的状態を自動的に、再現性よく、かつ正確に決定するのに使用することができる。
【0016】
本発明の実施態様は、複数の実験室によって実施されたIHCバイオマーカー分析の結果が比較されるときに矛盾を回避することを可能にし、実験室間のより良い調和を可能にし得る。
【0017】
さらに、組み合わせスコアは、生物医学的な組織状態を決定するための手法に基づく最先端の画像分析よりも、より複雑な病理組織学的情報を獲得することができると観測された。
【0018】
実施態様によれば、画像領域においてより高い細胞密度を有する二つの細胞型の一方の細胞はA型細胞と呼ばれ、他方の細胞型の細胞はB型細胞と呼ばれる。
【0019】
好ましい実施態様によれば、A型細胞とB型細胞との間の距離は、A型細胞から出発して測定され、組み合わせスコアを計算するのに使用される密度は、画像領域中のB型細胞の密度である。
【0020】
実施態様によれば、参照A型細胞の密度は、画像領域中の観測A型細胞の密度と同一であるか又は類似している。例えば、参照A型細胞は、A型細胞が観測されたのと同じ画像領域でシミュレーションすることができ、これにより、シミュレーションされた参照A型細胞の数は、画像領域中の観測A型細胞の数と同一であるか類似している(例えば+/-10%)。さらに、参照B型細胞の密度は、画像領域中の観測B型細胞の密度と同一であるか又は類似している。例えば、参照B型細胞は、B型細胞が観測されたのと同じ画像領域でシミュレーションすることができ、これにより、シミュレーションされた参照B型細胞の数は、画像領域中の観測B型細胞の数と同一であるか類似している(例えば+/-10%)。
【0021】
あるいは、参照A型細胞及び参照B型細胞は、参照組織サンプルで観測された細胞である。参照組織サンプルは、参照組織サンプル中にA型細胞及びB型細胞の数及び密度が、受信した画像に示される組織サンプル中のA型細胞及びB型細胞の密度に類似していると期待することができるように選択される。これは、観測相対分布と参照相対分布における差が細胞密度よりも他の要因により生じることを確かにし得る。
【0022】
実施態様によれば、観測相対分布を得ることは、画像領域中で観測された、同定されたA型細胞(例えば腫瘍細胞)のそれぞれについて、
a)前記A型細胞を半径0を有する円の中心として選択すること;
b)増加したサイクルを生成するために一工程により半径を増加させること;
c)工程b)で生成されたサイクルに含有されるB型細胞の数を決定すること;
d)記憶媒体に工程b)で決定されたB型細胞の数に関連した円の現在の半径を記憶させ、終了基準に達するまで工程b)、c)及びd)を繰り返すこと;及び
e)A型細胞の選択されていない一つを選択し、すべてのA型細胞が選択されるまで前記新たに選択されたA型細胞を使用してa)を継続すること。
【0023】
同定されたA型細胞及び半径のそれぞれについて得られた、観測B型細胞の関連する半径及び数は、観測相対分布として記憶される。
【0024】
例えば、終了基準は、最大半径、最大工程数、最大実行時間の到達、又は最大繰り返し数であり得る。半径の段階的な増加は、比較的低い計算労力で広範囲の細胞-細胞距離をカバーすることを可能にし得るため、前記特徴は有利であり得る。例えば、工程は、半径が各工程において1~100μm、例えば10μmのサイズで増加されるように選択され得る。半径は、例えば、所定の最大半径、例えば約500μm、又は約200μmに達するまで、増加され得る。サイズを選択し、従って工程数及び細胞計数操作を選択することにより、A型及びB型細胞の観測相対空間分布を反映する離散データセットを得ることができる。
【0025】
実施態様によれば、観測相対分布は、画像領域中で観測A型細胞及びB型細胞の二変量リプリーのK(t)関数に基づいて計算される。
【0026】
例えば、リプリーのK関数は、Encyclopedia of Environmetrics (ISBN 0471 899976)Edited by Abdel H. El-Shaarawi and Walter W. Piegorsch, John Wiley & Sons, Ltd, Chichester, 2002のVolume 3, pp 1796-1803でPhilip M. Dixonにより説明された。リプリーのK(t)関数の複数のタイプの点への一般化(多変量空間点過程)は、
による式(11)で前記文献に記載されている。
【0027】
リプリーのK(t)関数が二次元空間における二つ以上の点パターンの相対空間分布の記録及びモデル化を可能にするため、この一般化は有利であり得る。これは比較的高速で、いくつかの計算ツール、例えば「R」のような数学ソフトウェアの不可欠な部分である。
【0028】
実施態様によれば、観測相対分布は
に従って、
として計算され:
- 式中、
は二変量リプリーのK(t)関数であり、
- ここで、iは「観測A型細胞」のオブジェクト型の発生であり;
- ここで、jは「観測B型細胞」のオブジェクト型の発生であり;
- 式中、
は、観測B型細胞の密度(画像領域当たりの数)であり;
- 式中、
は、画像領域内で同定された、観測A型細胞の総数であり;
- 式中、
は、画像領域内で同定された、観測B型細胞の総数であり;
- 式中、
は、観測A型細胞である細胞(「現在調査されている細胞」とも考えられる)であり;
- 式中、rは、観測A型細胞の中心に位置する段階的に増加した半径であり;
- ここで、tは、u、r、及び
に対する関数であり、画像領域中の観測A型細胞uの周囲の半径rの円における観測B型細胞の数をカウントし;
- 式中、
は、「観測A型細胞であるuのすべてにわたる」を意味し;
- 式中、Eは、すべてのuにわたって得られたtの期待値である。
【0029】
概して、すべてのuにわたって得られたtの「期待値」Eは、変数(この場合はt)の期待値を記載する。例えば、期待値Eは、平均、例えばすべてのuにわたって得られたtのすべてのあり得る値の確立加重平均として計算することができる。直感的には、Eは「平均的な結果」のようなものである。例えば、すべてのuにわたって得られたtのEは、すべてのuにわたって得られた平均tとして計算できる。
【0030】
本明細書で使用される「平均」は、数のリストの代表として取られる単一の数である。「平均」は、例えば、算術平均、すなわち、数の合計を平均されている数で割ったものであり得る。あるいは、平均は中央値又は最頻値であり得る。平均は、一連の数値の中心傾向の尺度である。
【0031】
実施態様によれば、観測相対分布は、画像領域中で観測されたA型細胞及びB型細胞の二変量リプリーのK(t)関数の導関数に基づいて計算される。
【0032】
一例によれば、導関数二変量リプリーのK(t)関数は、二変量リプリーのK(t)機能の線形又は非線形変換である。特に、導関数二変量リプリーのK(t)関数は、二変量リプリーのK(t)機能の線形変換であり得る。線形変換は、例えば、
に従って、
に対する
の平方根であり得る。
【0033】
は、「L関数」又は「ベサグのL関数」とも呼ばれる。線形変換は、プロセスがポアソンのとき、推定値Kの分散をほぼ安定させ、ベンチマーク値
を
に変換する。
【0034】
実施態様によれば、参照相対分布は、画像領域中のシミュレーションされたA型細胞及びシミュレーションされたB型細胞の二変量リプリーのK(t)関数に基づいて計算される。
【0035】
実施態様によれば、参照相対分布を得ることは以下:
- シミュレーションされた参照A型細胞の分布をコンピュータによりコンピュータによりシミュレーションすることであって、シミュレーションされた参照A型細胞の密度が画像領域中で観測されたA型細胞の密度と同一である、シミュレーションされた参照A型細胞の分布をコンピュータによりシミュレーションすること;
- シミュレーションされた参照B型細胞の分布をコンピュータによりシミュレーションすることであって、シミュレーションされた参照B型細胞の密度が画像領域中で観測されたB型細胞の密度と同一である、シミュレーションされた参照B型細胞の分布をコンピュータによりシミュレーションすること;
- シミュレーションされた参照A型及びシミュレーションされた参照B型細胞のコンピュータによりシミュレーションされた分布の関数として参照相対分布を計算することであって、参照相対分布が領域中のシミュレーションされた参照A型細胞とシミュレーションされた参照B型細胞との間の距離を示す、参照相対分布を計算すること
を含む。
【0036】
画像領域中のシミュレーションされた参照A型細胞及びシミュレーションされた参照B型細胞の計算生成(所定の、期待分布に基づくA及びB型細胞並びにそれらの分布の「シミュレーション」)は、追加の(典型的には希少な)組織が参照として必要とされない、並びに、シミュレーションされた参照A型及び参照B型細胞の数が十分に大きい場合、参照A型及び参照B型細胞の分布が期待される分布を正確に表すことが保証される、という利点を有し得る。したがって、シミュレーションされた参照A型及び参照B型細胞の期待(例えばポアソン)分布を含む「実質上の」組織画像領域のシミュレーションは、計算上安価であり、実験的な参照ベース及び個々の参照画像を提供するために一又は複数の参照組織サンプルの入手及び染色を必要としない。さらに、参照A型及びB型細胞のシミュレーションは、非常にフレキシブルであり、シミュレーションされた分布を任意に修正することを可能にする。これは、生物医学的仮説を「微調整」することを可能にする場合があり、ポアソン分布に従わない複雑な二変量共分布パターンを正確に確定することを可能にする場合がある。例えば、複雑な共分布パターンは、参照A型細胞の周囲の厳密に二つの同心の「ベルト」に参照B型近傍細胞を有する、高分率の参照A型細胞に相当する可能性がある。そのような複雑なパターンは自然にはほとんど観察されないかもしれない。しかし、シミュレーションにより、実際の組織サンプルにおいてそれらの「理想的な」形態ではほとんど観察されないかもしれないが、それにもかかわらず、組織サンプル中の細胞の空間分布に関連する生物学的仮説を立てて確認するのに役立つ場合がある「イディオタイプ」複合分布を生成することが可能になる。
【0037】
実施態様によれば、参照相対分布は、参照A型及び参照B型細胞のシミュレーションされた分布に由来し、これにより、シミュレーションされた参照A型細胞分布及び/又はシミュレーションされた参照B型細胞分布は、例えば、ポアソン分布であり得る。
【0038】
好ましい実施態様によれば、シミュレーションされた参照A型細胞の分布はポアソン分布であり、シミュレーションされた参照B型細胞の分布はポアソン分布である。
【0039】
ポアソン分布は、これらの事象が既知の一定の割合で、最後の事象からの時間とは無関係に発生する場合に、固定された時間又は空間の間隔で発生する特定の数の事象の確率を表す離散確率分布である。ポアソン分布は、他の特定の間隔、例えば、距離、領域又は体積の事象の数にも使用することができる。任意の特定のタイプの事象の発生が将来の事象の時間の発生確率に影響を及ぼさない場合、すなわち、観測事象がたがいに無関係に起こる場合、合理的な想定は、1日に発生する事象の数はポアソン分布に従うということである。したがって、画像領域中のシミュレーションされたA型細胞のポアソン分布されたセット及び画像領域中のシミュレーションされたB型細胞のポアソン分布されたセットを生成することにより、及びシミュレーションされた参照A型及び参照B型細胞の参照相対分布を決定することにより、A型細胞の分布は参照B型細胞の分布とは完全に無関係であり、逆の場合も同じであるという仮説は、現在調査中の組織サンプルに関してシミュレーションされ試験され得る。
【0040】
実施態様によれば、領域中のシミュレーションされた参照A型細胞の密度は、画像の領域中の観測A型細胞の密度と同一であるか又は高度に類似している。ここで、用語「高度に類似」とは、画像領域中のシミュレーションされた参照A型細胞の数が、画像の領域中の観測A型細胞の数と+/-10%同一であることを意味する。領域中のシミュレーションされた参照B型細胞の数は、画像の領域中の観測B型細胞の数と同一であるか又は非常に類似している。
【0041】
これは有利であり得るが、それは画像領域中のシミュレーションされた参照A型及びB型細胞の総数及び密度は観測細胞のそれぞれの数及び密度と同一であるか又は高度に類似していることが確実になるためである。したがって、参照相対分布からの観測相対分布の任意の偏差は、シミュレーションされた細胞の数又は密度における任意の偏差に起因するものではなく、二つの細胞型の細胞の相対空間分布における差によりのみ起因する。したがって、参照相対分布はシミュレーションされた参照A型及びB型細胞に基づく場合があるが、このシミュレーションは、画像領域中に示された組織サンプルで観測A型及びB型細胞の密度に厳密に拘束される。これは、期待された、シミュレーションされた分布と比較して、組織サンプル中の二つの細胞型の細胞の相対空間分布における任意の偏差を正確に決定することができる、組織サンプルに特異的なシミュレーションを実施することを可能にし得る。シミュレーションに基づく参照分布からの空間分布における差は、参照相対分布を実験的に作成するために参照組織サンプルを使用するときに関連する場合がある任意の他の分布要因によって影響されない。
【0042】
実施態様によれば、参照相対分布を参照A型及び参照B型細胞のコンピュータによりシミュレーションされた分布の関数として計算することは:
ランダムに分布するシミュレーションされた参照A型細胞(例えば腫瘍細胞)のそれぞれについて、以下の工程:
a)前記シミュレーションされた参照A型細胞を、半径0を有する円の中心として選択すること;
b)増加したサイクルを生成するために一工程により半径を増加させること;
c)工程b)で生成されたサイクルに含有されるシミュレーションされた参照B型細胞(例えば免疫細胞)の数を決定すること;
d)記憶媒体に工程b)で決定された、シミュレーションされた参照B型細胞の数に関連した円の現在の半径を記憶させ、終了基準に達するまで工程b)、c)及びd)を繰り返すこと;及び
e)シミュレーションされた参照A型細胞の選択されていない一つを選択し、すべてのシミュレーションされた参照A型細胞が選択されるまで前記新たに選択されたシミュレーションされた参照A型細胞を使用してa)を継続すること
が実施される
ことを含む。
【0043】
この方法は、シミュレーションされた参照B型細胞の関連する半径及び数を参照相対分布として提供することをさらに含む。
【0044】
それぞれの参照A型細胞の周囲の円を段階的に増加させる中での参照B型細胞数のこの段階的な計算の利点は、観測相対分布の計算中に記憶されたB型細胞の半径及び数の類似の決定について既に記載された利点を有し得る。
【0045】
実施態様によれば、参照相対分布は
に従って、
として計算され:
- 式中、
は二変量リプレーのK(t)関数であり、
- ここで、iは「シミュレーションされた参照A型細胞」のオブジェクト型の発生であり;
- ここで、jは「シミュレーションされた参照B型細胞」のオブジェクト型の発生であり;
- 式中、
は、シミュレーションされた参照B型細胞の密度(画像領域当たりの数)であり;
- 式中、
は、画像領域内のシミュレーションされた参照A型細胞の総数であり;
- 式中、
は、画像領域内のシミュレーションされた参照B型細胞の総数であり;
- 式中、
は、シミュレーションされた参照A型細胞である細胞であり;
- 式中、rは、シミュレーションされた参照A型細胞の中心に位置する段階的に増加した半径であり;
- ここで、tは、u、r、及び
に対する関数であり、画像領域中のシミュレーションされた参照A型細胞uの周囲の半径rの円におけるシミュレーションされた参照B型細胞の数をカウントし;
- 式中、
は、「シミュレーションされた参照A型細胞であるuのすべてにわたる」を意味し;
- 式中、Eは、すべてのuにわたって期待されたtの値である。
【0046】
上に規定されるように、すべてのuにわたって得られたtの「期待値」Eは、変数(この場合はt)の期待値を記載する。例えば、期待値Eは、平均、例えばすべてのuにわたって得られたtのすべてのあり得る値の確立加重平均として計算することができる。例えば、すべてのuにわたって得られたtのEは、すべてのuにわたって得られた平均tとして計算できる。
【0047】
実施態様によれば、参照相対分布は、シミュレーションされたA型細胞及びシミュレーションされたB型細胞の二変量リプリーのK(t)関数の導関数に基づいて計算される。一例によれば、導関数二変量リプリーのK(t)関数は、二変量リプリーのK(t)機能の線形又は非線形変換である。特に、導関数二変量リプリーのK(t)関数は、二変量リプリーのK(t)機能の線形変換であり得る。線形変換は、例えば、
に従って、
に対する
の平方根として計算される「L関数」又は「ベサグのL関数」であり得る。
【0048】
実施態様によれば、参照相対分布及び/又は観測相対分布は、
に従って、Philip M. Dixonの上に言及された文献の式(12)に記載されるリプリーのK(t)関数のバージョンとして計算される。式中、
は、研究領域内にある半径d
ik,jlを有するプロセスIのk番目の位置を中心とする円の円周の分数である。
【0049】
実施態様によれば、参照相対分布を得ることは、本明細書に記載される実施態様及び実施例のいずれか一つに従って複数の初期参照相対分布を計算することを含む。そして、この方法は、複数の初期参照相対分布から、及び平均参照相対分布を参照相対分布として使用して、平均参照相対分布を計算することを含む。
【0050】
好ましくは、近接スコアは、平均参照相対分布と観測相対分布との間の差(「デルタ」)として計算される。これには、平均参照相対分布及び観測相対分布に関連するパラメータ値間の差が含まれる。例えば、この差は、
図7に示される二つの分布にそれぞれ関連する半径の差、又は
図8に示される領域の差である可能性がある。
【0051】
例えば、nが好ましくは10より大きく、より好ましくは30より大きい、例えば39の、数n初期参照相対分布が計算され得る。そして、「平均相対分布」は、個々の半径を有する円によって規定されるA型細胞の空間的近傍でB型細胞をカウントする(又はその逆)ために使用される複数の半径のそれぞれについて、個々の半径の円で観測B型細胞の平均数を計算することによって計算される。たとえば、n=5であり、四つの調査する半径が10μm、30μm、60μm及び100μmである場合、第1の平均B型細胞数は個々のn初期相対分布から得られる5つの値から半径10μmについて計算され、第2の平均B型細胞数は個々のn初期相対分布から得られた5つの値から半径30μmについて計算され、平均B型細胞数が調査する半径ごとに計算されるまで続くことになる。
【0052】
いくつかの実施態様によれば、半径のそれぞれ(又は、相対分布を計算するのに使用されるA型細胞の空間近傍を規定する、複数の他の所定の距離のそれぞれ)について、平均参照B型細胞数(又は、参照B型細胞の空間近傍にあるA型細胞の数を調査する場合は参照A型細胞数)が計算されるだけでなく、初期参照相対分布のいずれか一つにおいて、及び調査した複数の半径/距離のいずれか一つについて、最小及び最大の参照B型細胞数も計算される。平均参照相対分布は近接スコアを計算するのに使用され、最小/最大細胞数は信頼帯を計算するのに使用される。ここで、最小/最大値は信頼帯の境界を表し、信頼帯の幅はプロットにおける「有意領域」を示す。観測相対分布が信頼帯内にある場合、観測相対分布は、参照相対分布と同一であるか又は少なくともそれと有意に異ならないと考えられる。
【0053】
例えば、n=39の初期参照相対分布は、それぞれ、A型及びB型のポアソン分布された参照細胞のシミュレーションに基づいて計算することができる。これにより、シミュレーションされた参照A型細胞の密度は、組織サンプルの画像領域中で観測された「実際の」A型細胞の密度と同一であり、ここで、シミュレーションされた参照B型細胞の細胞密度は、画像領域中で観測された「実際の」B型細胞の密度と同一である。シミュレーションは、A型及びB型細胞の所与の密度について39回実施され、観測相対分布1/(39+1)=0.025=アルファ/2と組み合わせた「p値」が得られる。ここで、アルファは所定の有意レベルである。次に、2Dプロットが作成されます。ここで、1次元は細胞距離を表し、1次元は細胞数を表す。次に、39回の初期参照分布を平均することによって得られた平均参照相対分布を2Dプロットに示す。さらに、「信頼帯」をプロットする。ここで、信頼帯の下側の境界は、39の初期参照相対分布すべてにおいて特定の距離(例えば半径)で観測された最小細胞数として計算され、信頼帯の上側の境界は、39の初期参照相対分布すべてにおいて特定の距離(例えば半径)で観測された最大細胞数として計算される。したがって、特定の細胞型の細胞(例えばA型細胞)の周囲の各距離/半径rについて、39のシミュレーションすべてに由来する個々の他の細胞型(例えばB型細胞)の最小、最大及び平均の観測細胞数がプロットされる。さらに、観測相対分布は2Dプロットにプロットされる。これが有益であり得るのは、それにより、ユーザが、観測相対分布が平均参照相対分布を囲む信頼帯の内側にあるか又は外側にあるかを直感的に評価することができるためである。観測参照相対分布が信頼帯の外側にあるとき、観測参照相対分布はアルファの所定の有意レベルで平均参照相対分布とは異なり、ここで、アルファは、例えば、.05(0.025両側)であり得る。
【0054】
上記の2Dプロットは、「有意性プロット」とも呼ばれることがある。有意性プロットの例は
図7に示す。有意性プロットは、画像領域内の各腫瘍細胞及びその最も近い免疫細胞の周りに描かれた円の半径を表す第1の次元と、前記円内に位置する免疫細胞の数を表す第2の次元とを含み得る。免疫細胞の数は、免疫細胞及び腫瘍細胞の密度によって正規化される。このプロットは参照相対分布の周囲の信頼帯を含む場合があり、信頼帯は、プロットされた参照相対分布によって各半径値について観測された免疫細胞の数の信頼区間を示す。好ましい実施態様によれば、信頼帯は39のシミュレーションに由来する95%の信頼帯を表す(特定の種類の生物医学的状態の決定タスクについてのこれらの39のシミュレーションは95%の信頼度に相当することを示すことが可能である)。観測相対分布はまた、有意性プロットにもプロットされる。観測相対分布は、観測腫瘍細胞の周りのそれぞれの円に生じることが観測され、同定された免疫細胞の数を視覚的に示す曲線をグラフで表すことができ、前記数は免疫細胞及び腫瘍細胞の密度によって正規化される。
【0055】
他の実施態様によれば、参照相対分布は、特定の細胞分布をシミュレーションすることによって得られるものではなく、既知の生物医学的状態の一又は複数の他の組織サンプル及び前記サンプルの個々のデジタル病理学画像から実験的に得られる。
【0056】
他の実施態様によれば、参照相対分布を得ることは以下:
- 一又は複数のさらなる組織サンプルのそれぞれについてさらなるデジタル画像を受信することであって、それぞれのさらなる組織サンプルが既知の生物医学的状態の組織に由来する、さらなるデジタル画像を受信すること;さらなるデジタル画像は「参照画像」とも呼ばれることがあり、さらなる組織サンプルは「参照サンプル」とも呼ばれることがある;
- 受信したさらなる画像の領域中の観測参照A型細胞及び観測参照B型細胞の数及び位置を同定するために、それぞれの受信したさらなる画像を分析すること;
- 観測参照相対分布を得るために、それぞれのさらなる画像の領域中の観測参照A型及び観測参照B型細胞の位置を分析することであって、観測参照相対分布が、さらなる受信した画像の領域中で観測された参照A型細胞と参照B型細胞との間の観測距離を示す、観測参照A型及び観測参照B型細胞の位置を分析すること;及び
- 観測参照相対分布を参照相対分布として使用すること
を含む。
【0057】
したがって、上記の実施態様に記載される参照相対分布の生成は、コンピュータによるシミュレーションに基づくものではなく、既知の生物医学的状態を有する一又は複数の他の組織サンプル中の参照A型及び参照B型細胞の相対空間分布の評価に基づく。これは、適切なシミュレーションソフトウェアが利用可能でない場合、又は、既知の生物医学的状態を表す特定の相対分布を生成するための数学関数がまだ規定されておらず、ソフトウェアに実装されていない場合に、有利であり得る。例えば、生物医学的状態、例えば、特定の腫瘍組織のがんの種類及びステージ又は免疫細胞浸潤レベルが、一又は複数の病理学者によって明確に同定された場合、コンピュータによるシミュレーションを実施するよりも、参照相対分布を提供するために、そのようなさらなる組織サンプルに暗示的に含有される実験的情報を使用することがより簡便であり得る。例えば、既知の生物医学的状態を有する組織サンプル中の二つの異なる細胞型の相対空間分布がポアソン分布に従わない場合、類似する相対分布を有する組織サンプルも実験的に決定された参照相対分布が由来する一又は複数の他の組織サンプルの生物医学的状態を有するという「仮説」を表す参照相対分布を得るために、二つの細胞型の細胞の相対分布を単に決定することがより容易であり得る。
【0058】
実験的に決定された参照相対分布は、例えば、観測相対分布が画像分析法を使用して得られる組織サンプルと同じ「現在調査中の」生物の組織サンプルから得ることができる。例えば、「他の組織サンプル」は、観測相対分布が得られるデジタル画像に示される組織サンプルに隣接する組織サンプルであり得る。あるいは、他の組織サンプルは、「現在調査中の」生物とは別の生物に由来する可能性があり、他の生物は、好ましくは、「現在調査中の」生物と同種であるか又は密接に関連する種に由来する。他の生物の生物医学的状態が知られていることが単に必要とされる。これは、前記他の生物から得られる参照相対分布が特定の既知の生物医学的状態を表すことを確実にするためである。
【0059】
参照相対分布は同じ既知の生物医学的状態を有する複数の他のサンプル組織のそれぞれから実験的に決定されることも可能である。次に、実験的に決定された初期参照相対分布のそれぞれの平均を計算することにより、平均参照相対分布が得られる。いくつかの実施態様によれば、平均参照相対分布を得ることは曲線適合を実施することを含む。
【0060】
参照相対分布又は初期参照相対分布は、観測相対分布が得られたのと同じやり方の画像分析を介して一又は複数の他の組織サンプルから得ることができる。
【0061】
一実施態様によれば、病理学者は、参照組織サンプルの生物医学的状態を患者の前記参照組織サンプルの画像に手動でアノテーション付けすることができる。参照相対分布は、参照組織サンプルの画像の画像分析に基づいて得られる。参照組織サンプルに隣接する複数の組織サンプルは、患者から得られる。複数の隣接する他の組織サンプルのそれぞれから、観測相対分布を計算するために自動的に分析される個別のデジタル画像が取得され得る。隣接する組織サンプルのそれぞれの観測相対分布を参照組織サンプルの参照相対分布と比較することにより、参照サンプルを含む複数の組織サンプルが由来した患者の組織が、A型及びB型細胞の均一又は不均一な空間関係及び分布を示すかを決定することができる。
【0062】
実施態様によれば、参照相対分布と観測相対分布の差として近接スコアを計算することは、以下:
- B型細胞の所定の最小数(例えば「1」)を表す所定の数を提供すること;
- 観測相対分布内で、観測半径ro-最小を同定することであって、観測半径ro-最小が、観測A型細胞のそれぞれの周りに描かれた場合に、観測B型細胞の所定の数を平均して含む円を規定する半径である、観測相対分布内で、観測半径ro-最小を同定すること;
- 参照相対分布内で、参照半径rr-最小を同定することであって、参照半径rr-最小が、参照相対分布を提供するために、シミュレーションされたか又はさらなる組織サンプルのさらなるデジタル画像で観測されたA型細胞のそれぞれの周りに描かれた場合に、参照相対分布を提供するために、シミュレーションされたか又はさらなる組織サンプルのさらなるデジタル画像で観測B型細胞の所定の数を平均して含む円を規定する半径である、参照相対分布で、参照半径rr-最小を同定すること;
- 近接スコアを、観測半径ro-最小及び参照半径rr-最小の関数として計算すること。好ましくは、関数は、観測半径と参照半径との間の差である。
を含む。
【0063】
例えば、B型細胞の所定の最小数を表す所定の数は、0より大きい任意の数であり得る。好ましくは、所定の最小数は1である。
【0064】
前記特徴は有利であり得るが、これは、観測相対分布に及び参照相対分布に含有される情報の複雑さが、いくつかの最初の工程で二つの特定の距離測定値、つまり二つの特定の半径に減少され、さらなる工程で近接スコア値に減少されるためである。最も単純な場合、近接スコアは二つの半径の差として計算される。しかしながら、近接スコアの計算はまた、より複雑である場合があり、例えば、追加の正規化工程、誤差補正を実行するための工程、二つの半径の差に誤差補正係数を乗算するための工程などを含む。近接スコアは数値であり得る。
【0065】
代替的な実施態様によれば、参照相対分布と観測相対分布の差として近接スコアを計算することは、以下:
- 第1の距離閾値(t1)を規定すること;例えば、第1の距離閾値は、10μmと20μmの間、例えば15μmの値を有し得る;
- 第2の距離閾値(t2)を規定すること;例えば、第2の距離閾値は、30μmと40μmの間、例えば35μmの値を有し得る;
- プロットに参照相対分布及び観測相対分布をそれぞれ曲線の形態でプロットすることであって、プロットの第1の次元が観測及び参照相対分布を決定するのに使用される半径rを表し、プロットの第2の次元がrよりもA型細胞に近いB型細胞の数を表す(又はその逆)、プロットに参照相対分布及び観測相対分布をそれぞれ曲線の形態でプロットすること;
- プロットに第1の領域を同定することであって、第1の領域が、第1及び第2の閾値、ゼロの第2の次元値に対応するベースライン、及び第1の閾値と第2の閾値との間の観測相対分布の曲線線分により規定される、プロットに第1の領域を同定すること;
- プロットに第2の領域を同定することであって、第2の領域が、第1及び第2の閾値、ゼロの第2の次元値に対応するベースライン、及び第1の閾値と第2の閾値との間の参照相対分布の曲線線分により規定される、プロットに第2の領域を同定すること;
- 近接スコアを第1の領域及び第2の領域の関数として計算することであって、関数が、特に、第1の領域と第2の領域との間の差である、近接スコアを第1の領域及び第2の領域の関数として計算すること
を含む。
【0066】
いくつかの実施態様では、近接スコアは所定のスケールレンジ内で正規化される。これは、現在調査中の組織サンプルについて得られた近接スコアを、所定の近接スコアスケールにマッピングすること可能にし得る。スコア値を有するスケールは、例えば画像分析システムの表示を介して、ユーザに表示することができ、現在調査中の組織サンプル中のどのくらいのA型及びB型細胞の相対分布がA型及びB型細胞の参照相対分布に由来し、それにより、参照相対分布がランダム分布又は他のタイプの期待相対分布を表すのかをユーザが迅速にかつ直感的に評価することを可能にし得る。
【0067】
所定の最小B型細胞数がそれぞれ観察される半径の差は、A型及びB型細胞の期待された、例えばランダムな、相対分布からの観測分布の偏差を示す。
【0068】
いくつかの実施態様によれば、観測相対分布のリプリーのKには、画像領域中で観測されたB型細胞の細胞密度が乗じられる。さらに、参照相対分布のリプリーのKには、シミュレーションされたか又は参照組織サンプルの画像で同じサイズの画像領域中で観測されたB型細胞の細胞密度が乗じられて、A型細胞の近傍にあるB型細胞の参照細胞数が得られる。その後、観測B型細胞数と参照B型細胞数の差が計算される。
【0069】
いくつかの実施態様によれば、この方法は、観測相対分布を2Dプロット中で観測分布の曲線としてグラフで表し、その第1の次元は半径r(Ro)を表し、その第2の次元は前記半径に関連する観測B型細胞の数を表す。2Dプロットは、画像分析システムの表示デバイスに表示される。
【0070】
追加で、又は代替的に、この方法は、参照相対分布を2Dプロット中で参照分布の曲線としてグラフで表し、その第1の次元は半径r(Rs)を表し、その第2の次元は前記半径に関連するシミュレーションされたB型細胞の数を表す。
【0071】
好ましくは、観測分布の曲線及び参照分布の曲線は同じ2Dプロット中にプロットされ、これにより、ユーザによる二つの治療法の比較が容易になる。
【0072】
その後、観測分布の曲線及び/又は参照分布の曲線を含む2Dプロットは、画像分析システムの表示デバイスに表示される。好ましくは、信頼帯も複数のシミュレーションされたか又は実験的に得られた初期参照相対分布の最小及び最大値から計算され、信頼帯はまた、信頼帯が参照分布の曲線を囲むように2Dプロット中にプロットされる。
【0073】
これは有利であり得るが、それは、2Dプロットが、統計知識が限られているユーザでも、観測相対分布が所与の参照相対分布と大幅に異なるかどうかを直感的かつ迅速に評価することを可能にするためである。
【0074】
実施態様によれば、A型細胞は腫瘍細胞であり、かつ/又はB型細胞は免疫細胞である。好ましくは、相対分布は、腫瘍細胞のそれぞれの空間近傍で、前記空間近傍で観測されたか又はシミュレーションされた免疫細胞の数をカウントすることにより得られる。この手法は、十分な数の「カウント結果」が得られることを確実にし得るため、腫瘍細胞が免疫細胞よりも大きい密度を有するほとんどの腫瘍タイプについて好ましい場合がある。「カウント結果」の数は、腫瘍細胞の数に対応し、免疫細胞が組織において非常に稀である場合は「ゼロ」であることが多い。
【0075】
他の実施態様によれば、B型細胞は腫瘍細胞であり、かつ/又はA型細胞は免疫細胞である。好ましくは、相対分布は、免疫細胞のそれぞれの空間近傍で、前記空間近傍で観測されたか又はシミュレーションされた腫瘍細胞の数をカウントすることにより得られる。この手法は、免疫細胞が腫瘍細胞よりも大きな密度を有する、又は他の理由で、それぞれの近傍にある他の細胞型の細胞の数を決定するためのより良い出発点であるいくつかの腫瘍タイプに好ましい場合がある。
【0076】
実施態様によれば、組織サンプルは腫瘍組織サンプルであり、組織サンプルの生物医学的状態の決定は、免疫細胞を含む受信したデジタル画像の領域に示される腫瘍組織の浸潤状態を決定することを含む。
【0077】
これは有利であり得るが、それは、浸潤状態の決定が、腫瘍を特徴づけるため及び適切な治療オプションを選択するための重要な予後パラメータであるためである。免疫細胞及び腫瘍細胞の密度は単独では、例えば、「除外された」浸潤パターンを示す腫瘍組織と「浸潤した」浸潤パターンを示す腫瘍組織を区別するのに十分ではない。同様に、腫瘍細胞及び免疫細胞の空間近接は単独では、例えば、「排除」浸潤パターンを示す腫瘍組織と「枯渇」浸潤パターンを示す腫瘍組織を区別するのに十分ではない。しかしながら、密度及び空間近接情報を含む組み合わせスコアは、「浸潤」、「排除」及び「枯渇」のような多くの異なる浸潤状態の区別を可能にする。したがって、本明細書に記載の組み合わせスコアの計算は、腫瘍組織の免疫細胞浸潤状態を決定するという面において特に有用である。免疫療法前の免疫セットポイント値は、真に個別化された治療を達成するために非常に役立つ場合がある。組み合わせスコアは、異なる作用機序の薬物に対する感受性を予測するため、及び所与の免疫療法への応答を評価し、治療の継続、別の作用機序を有する別の薬物へのシフトごとの追加の薬物の必要性についての決定支援を提供するために、腫瘍患者のより良い特徴付けを可能にし得る。
【0078】
近接値は、連続スケールの特定のポイントで表すことができる数値であり得る。これにより、現在使用されている手作業で定義された分類よりも粒度と感度が向上する。これは非常に有益であり得る。それは、大部分の場合、「浸潤」、「枯渇」又は「排除」のような特定の、極端な状態に明確に割り当てることはできず、むしろ中程度の炎症状態に属し、わずかに炎症した腫瘍とわずかに排除された腫瘍との間の差は、明確な、再現性のある、非主観的なやり方で同定及び特徴づけすることが非常に困難である場合があるためである。
【0079】
例えば、腫瘍細胞は、一又は複数の腫瘍マーカーに特異的な染料(例えば、サイトケラチン、BRAC1などを選択的に染色する染料)で組織サンプルを染色することにより、及び腫瘍細胞として前記バイオマーカーを発現する細胞を同定するのに画像分析法を適用することにより、組織サンプルのデジタル画像中で同定することができる。場合によっては、組織は免疫細胞に特異的な染料で染色することができ、画像分析法は、腫瘍マーカー又は増殖マーカーを発現する非免疫細胞が腫瘍細胞として選択的に同定されるように実施される。例えば、バイオマーカーKI67を発現し、リンパ球バイオマーカー CD8(又はCD3)を発現しない細胞が腫瘍細胞として同定される。
【0080】
ある場合では、すべての腫瘍細胞がKi67を発現しているわけではないことが観測された。しかしながら、Ki67+細胞は、腫瘍細胞の代表的なサンプルを提供し、正確な結果を提供することが観測された。
【0081】
実施態様によれば、免疫細胞は、免疫細胞において選択的に発現されるバイオマーカーを発現する細胞として同定される。例えば、細胞傷害性T細胞は、CD8A+細胞として同定することができる。
【0082】
いくつかの実施態様によれば、細胞が同定される受信したデジタル画像中の領域は、「腫瘍領域」として手作業で又は自動的にアノテーション付けされたサブ領域を含む。この場合、好ましくは、Ki67のような増殖バイオマーカー及び/又はさらにこの「腫瘍領域」内にある腫瘍マーカーを発現する細胞のみが、「腫瘍細胞」として同定される。また、さらにこの「腫瘍領域」内にある免疫細胞特異的バイオマーカーを発現する細胞のみが、「腫瘍細胞」として同定される。これにより、腫瘍領域外の組織の生物医学的特定性は腫瘍細胞及び免疫細胞の空間相対分布が期待相対分布と同一であるか否かの分析結果に影響を及ぼさないことが、確実になり得る。
【0083】
いくつかの実施態様によれば、方法は、組み合わせスコアを2Dスコアプロット内のシンボルとしてグラフで表すことをさらに含む。2Dスコアプロットの第1の次元は近接スコアを表し、2Dスコアプロットの第2の次元はB型細胞の密度又はA型細胞の密度を表す。好ましくは、B型細胞の密度がプロットされ、B型細胞は免疫細胞であり、A型細胞は腫瘍細胞である。2Dスコアプロットは、人間が組織サンプルの生物医学的状態を決定できるようにするための画像分析システムのディスプレイ上に出力される。追加で、又は代替的に、組織サンプルの生物医学的状態の決定は、所定の生物医学的状態の限定されたセット内又は生物医学的状態の所定の連続スペクトル内の組織サンプルの生物医学的状態を自動的に同定することによる画像分析システムによって実施される。その後、同定された生物医学的状態は、決定された生物医学的状態として出力、例えば表示される。
【0084】
好ましくは、2Dスコアプロットの一次元によって表される密度は、低い方の密度を有する二つのタイプの細胞のうちの一方、例えばB型細胞、の観測密度である。好ましくは、B型細胞は、二つの細胞型のうちの一方であり、その数は各A型細胞の近傍でカウントされる。
【0085】
組織の決定された生物医学的状態は、生物医学的状態の連続スペクトル中で同定され得るか又は連続スペクトルにマッピングされ得る。追加で、又は代替的に、生物医学的状態は、所定の個別の生物医学的組織状態の限定されたセットのうちの一つであり得る。
【0086】
いくつかの実施態様によれば、腫瘍サンプルの免疫細胞浸潤状態の決定は、腫瘍を異なる所定の浸潤状態、例えば、「枯渇」、「排除」又は「炎症」に分けることを含む。たとえは、組み合わせスコア値の閾値は複数の組織サンプルの実験的データから得られ、組み合わせスコアの得られた閾値は、画像領域中に示される組織サンプルを所定の浸潤状態の一つに分類するのに使用することができる。
【0087】
他の実施態様によれば、浸潤状態の決定は、腫瘍における浸潤のグレードを表す所定の連続スペクトルで組織サンプルの浸潤状態を同定することを含む。スペクトルの両極端は、免疫細胞が完全に欠如しているのに対して、高度に炎症した腫瘍を表す。この場合、所定の限定された浸潤状態のセットのうちの一つは同定されず、最も極端な浸潤状態の間のスペクトル上に示された画像領域中の腫瘍をマッピングすることを可能にする連続スコアが提供される。
【0088】
免疫細胞による腫瘍の浸潤は、腫瘍細胞表面上のMHCに関連して提示された変異腫瘍抗原の提示によって引き起こされる。腫瘍抗原は、非自己として認識され、主にナチュラルキラー細胞及び細胞傷害性T細胞により除去される。除去は、腫瘍によって変更又は妨害される可能性のある複雑なシグナル伝達経路に依存している。腫瘍の増殖と免疫系が腫瘍細胞を死滅させようとする試みとの間のこのバランスは、除去-平衡-エスケープ機構として説明された。免疫療法における現在の発展には、バランスの腫瘍細胞除去側に有利に腫瘍免疫ミクロ環境を変えることにより、多くのがん患者の悲惨な予後を変える大きな可能性がある。
【0089】
この分野では、腫瘍の免疫表現型を測定して、除去-平衡-エスケープのバランスの状態を説明するための多くの提案があったが、コンセンサスは得られていない。克服すべき主なハードルは、除去とエスケープの間の連続体の理論が組織学的腫瘍サンプルで提示される生物学的に意味のある情報にどのように変換できるかについてのより深い理解の欠如によって特徴付けられる。手作業のスコア付けシステムは、スペクトルを分割する必要のあるクラスの数を提案し、一般に、これらのカテゴリの閾値又は客観的な定義を見つける方法については合意がない。本発明の実施態様は、これらの障害を克服することを可能にし、腫瘍浸潤免疫細胞の存在及び分布の両方に基づく腫瘍の浸潤状態の自動的で、較正された、個別の測定を提供することを可能にする。したがって、本発明の実施態様は、免疫系のバランスが腫瘍エスケープの排除に重点を置いている場合、及び免疫系が全体的に活性化又は沈黙している場合などの生物学的傾向についての情報を獲得することを可能にする。
【0090】
実施態様によれば、画像分析法は、複数の異なる患者のそれぞれからの組織サンプルのデジタル画像を受信すること;前述の請求項のいずれか一項に従って個々の受信した画像を使用して患者のそれぞれの組み合わせスコアを計算すること;及び、2Dスコアプロット上に、個々の生物医学的状態に特異的なシンボルによって、各患者の生物医学的状態をグラフで表すことであって、プロット中の各患者のシンボルの位置が、B型細胞の密度及び患者について計算された近接スコアに依拠する、各患者の生物医学的状態をグラフで表すこと;を含む。
【0091】
これは有利であり得る。それは、プロット中の点のx及びy座標に基づき、組織サンプルの生物医学的状態、例えば免疫細胞浸潤状態を迅速かつ直感的に決定することを可能にするプロットがユーザに提供されるためである。ここで、点は組織サンプルを表し、プロットのx及びy座標は近接スコア及び組織サンプル中の観測された免疫B型細胞の密度を表す。
【0092】
腫瘍中の免疫浸潤は、体内の異物に対する宿主の応答である。これは、腫瘍細胞に提示される腫瘍抗原(変異タンパク質)の存在により引き起こされる。免疫系が抑制されている場合又は腫瘍が腫瘍抗原の発現を下方制御している場合、腫瘍は免疫細胞を欠いている可能性がある。実際には、免疫浸潤の量は、浸潤なしから重度に浸潤しているのスペクトルとして見られる。
【0093】
実施態様によれば、同定された生物医学的状態は、以下:
-「炎症」、ここで「炎症」とは、免疫細胞が、腫瘍のすべての区画において免疫細胞が腫瘍組織に大量に浸潤していることを示している有意に増加した細胞密度を有する免疫学的組織状態を指し、ここで、画像領域中の観測免疫細胞密度が高く、近接スコアが高いほど、組織サンプルが「炎症している」と分類される可能性が高い。
-「排除」、ここで「排除」とは、免疫細胞が組織サンプルに存在するが、腫瘍細胞に密接することが妨げられ、それにより、免疫細胞が浸潤縁及び/又は腫瘍内間質に集中しているが、腫瘍細胞から分離されている免疫学的組織状態を指し、ここで、画像領域中の観測免疫細胞密度が高く、近接スコアが低いほど、組織サンプルが「排除されている」と分類される可能性が高い。
-「枯渇」、ここで「枯渇」とは、免疫細胞が腫瘍性組織領域においてゼロ又はゼロに近い細胞密度を有する免疫学的組織状態を指し、ここで、画像領域中の観測免疫細胞密度が低いほど、組織サンプルが近接スコアの高さとは無関係に「枯渇している」と分類される可能性が高い。
を含む群から選択される。
【0094】
出願人は、多くの腫瘍が上記の極端なカテゴリのいずれにも完全には適合しない画像を表示することを観察した。したがって、組み合わせスコア値の計算は、それが二つの連続する数値スコア値の組み合わせ(近接スコア、細胞密度)であるため有利であり、そのため、二つの重要な特徴に基づく組織の生物医学的状態の正確な予測/決定を提供することを可能にする。密度は、生物が免疫応答を誘発できるかどうかを示す。近接スコアは、腫瘍が免疫原性であり免疫細胞を引き付けるように適応しているかどうかを示す。そうでない場合、腫瘍は免疫細胞を回避する手段を開発した可能性がある(例えば、免疫細胞を休眠させるか、又は調節免疫サブセットの刺激になるHLA-上方制御又はサイトカイン産生)。
【0095】
実施態様によれば、組織サンプルの生物医学的状態が浸潤状態の「炎症」と決定される場合、画像分析法は、ユーザインタフェースを介して、チェックポイント阻害剤、例えば抗PD-L1/PD-1、CTL4として作用する薬物を処方するための治療勧告を出力することを含む。
【0096】
追加で、又は代替的に、組織サンプルの生物医学的状態が浸潤状態の「排除」と決定される場合、画像分析法は、ユーザインタフェースを介して、腫瘍細胞に近い免疫細胞を引き付けるよう適合された薬物を処方するための治療勧告を出力することを含む。例えば、この薬物は、腫瘍細胞に対する二重特性抗体である可能性がある。この二重特異性抗体の例は、T細胞上のCD3に一本の腕を、腫瘍細胞上のCEAに二本の腕を同時に結合するCEA-TCBであり、それによりT細胞をがん細胞に近接させる。これは、T細胞の活性化と、その後の腫瘍細胞の死滅をもたらす。「排除された」浸潤状態の場合に推奨される適切な薬物の別の例は、HLA-Gをブロックするか又はMHC Iを上方制御する薬物のような、腫瘍エスケープ機序を破壊する薬物である可能性がある。
【0097】
追加で、又は代替的に、組織サンプルの生物医学的状態が浸潤状態の「枯渇」と決定される場合、画像分析法は、ユーザインタフェースを介して、免疫系を一般的に高めるよう適合された薬物、IL-2を処方するための治療勧告を出力することを含む。
【0098】
実施態様によれば、画像領域内の腫瘍細胞及び免疫細胞の形状は、空間データベースにおいて点の形態で記憶される。シミュレーションされた及び測定された距離は、空間DBMSにより提供される空間データベース操作、特にWITHIN_DISTANCE()及びDISTANCE()操作を使用して同定される。これは有利であり得るが、それは、相対分布が大幅に促進され得るためである。これは、所望の幅の信頼帯を提供するために多くの当参照相対分布がシミュレーションされる必要がある場合に、特に参照され得る。例えば、Oracle Spatial DBMSのSDO_GEOM機能性が使用され得る。
【0099】
他の実施態様によれば、スコアはRを使用してDBの外側で計算される。
【0100】
実施態様によれば、期待分布は、領域中A型細胞及びB型細胞のポアソン分布の想定に基づき期待された参照A型細胞と参照B型細胞との間の距離を示す。好ましくは、この想定は、さらに、観測A型細胞及び参照A型細胞の同一密度と、観測B型細胞及び参照B型細胞の同一の密度とに基づく。
【0101】
さらなる態様では、本発明は、特定の種類のがんを治療するための薬物の有効性を決定する方法に関する。この方法は、
- 複数の第1のデジタル画像を受信することであって、前記生物が薬物で治療される前に、各第1の画像が、特定の種類のがんを有する個々の生物の組織サンプルを示す、複数の第1のデジタル画像を受信すること;
- 第1のデジタル画像のそれぞれの画像領域から、前述の請求項のいずれか一項に従って第1の組み合わせスコアを計算することであって、生物医学的状態が、腫瘍の免疫細胞浸潤状態であり、A型細胞が腫瘍細胞であり、B型細胞ががん細胞である、第1の組み合わせスコアを計算すること;
- 複数の第2のデジタル画像を受信することであって、前記生物が薬物で治療される前に、各第2の画像が、特定の種類のがんを有する個々の生物の組織サンプルを示す、複数の第2のデジタル画像を受信すること;
- 第2のデジタル画像のそれぞれの画像領域から、前述の請求項のいずれか一つの第2の組み合わせスコアを計算することであって、生物医学的状態が浸潤状態であり、A型細胞が腫瘍細胞であり、B型細胞ががん細胞である、第2の組み合わせスコアを計算すること;
- 表示デバイス上に2Dスコアプロットを表示することであって、各第1の組み合わせスコアが2Dスコアプロット中の第1のシンボルによって表され、各第2の組み合わせスコアが2Dスコアプロット中の第2のシンボルによって表されており、プロット中の第1及び第2のシンボルの位置が個々の画像の画像領域中で観測された免疫細胞密度及び個々の画像の画像領域について計算された近接スコアに依拠し、同じ生物を表す第1及び第2のシンボルが、x及び/又はy座標における任意のシフトを可視化するために、第1のシンボルのいずれか一つからその個々に結合した第2のシンボルへ、2Dプロットスコアにおいて視覚的に結合される、表示デバイス上に2Dスコアプロットを表示すること
を含む。
【0102】
これは有利であり得るが、それは、上記の手法が複数の異なる患者について試験された特定の薬物の有効性を視覚的に表すことを可能にし、それにより免疫細胞及び腫瘍細胞の空間分布上での薬物の効果が視覚化されるためである。すでに、1人の患者の細胞の相対空間分布の修正を視覚的に表すことは、困難である。ここでは、腫瘍及び免疫細胞の相対分布の修正に関して、複数の患者の特定の薬物への応答が視覚化され、それにより、医療専門家は、薬物が効果を有したかどうかを簡単に評価し、どのタイプの生物医学的状態(例えば腫瘍浸潤状態)が薬物によって促進又は抑制されたかを評価することができる。視覚的結合は、例えば、同じ患者に由来する記号(例えば、円、三角形など)を線で接続することによって実行され得る。
【0103】
さらなる態様では、本発明は、プロセッサにより実行された場合に、プロセッサに本明細書に記載の実施態様及び実施例のいずれか一つによる画像分析法を実施させるコンピュータ解釈可能命令を含む、記憶媒体に関する。
【0104】
さらなる態様では、本発明は、組織サンプルの生物医学的状態を決定するための画像分析システムに関する。このシステムは、プロセッサに以下:
- 組織サンプルのデジタル画像を受信すること;
- 受信した画像の領域中で観測されたA型細胞及びB型細胞の数及び位置を同定するために受信した画像を分析することであって、A型及びB型が異なる細胞型である、受信した画像を分析すること;
- 観測相対分布を得るために領域中のA型及びB型細胞の位置を分析することであって、観測相対分布が領域中のA型細胞とB型細胞との間の観測距離を示す、A型及びB型細胞の位置を分析すること;
- 参照相対分布を得ることであって、参照相対分布が参照A型細胞と参照B型細胞との間の期待距離を示す、参照相対分布を得ること;
- 参照相対分布と観測相対分布の差として近接スコアを計算すること;
- 組み合わせスコアを計算することであって、組み合わせスコアが、近接スコアを含み、A型細胞の密度及び/又はB型細胞の密度を含む、組み合わせスコアを計算すること;
- 組織サンプルの生物医学的状態を決定するために組み合わせスコアを使用すること及び/又はユーザが組織サンプルの生物医学的状態を決定するのを可能にするために組み合わせスコアをユーザに出力すること
を含む方法を実施するための命令を実行させるよう構成された、プロセッサ及びコンピュータ解釈可能命令を含む。
【0105】
本明細書で使用される「相対分布」は、二つの種類のオブジェクト間の空間分散を説明する関数である。好ましい実施態様によれば、「相対分布」は、第1の種類のオブジェクトから第2の種類のオブジェクトの距離をキャプチャする関数である。好ましい実施態様によれば、「相対分布」は、回転及び反射に対して不変な方法で空間分散を定量化する。空間分散の複数の簡潔な測定値は、例えば、オブジェクトの座標の共分散行列を使用して、定義することができる。共分散行列のトレース、行列式、及び最大固有値を、空間分散の測定値として使用することができる。共分散行列に基づかない空間分散の測定値の例は、最近傍間の平均距離である。空間分散のさらなる好ましい測定値は、リプリーのK関数である。
【0106】
本明細書で使用される「参照相対分布」は、二つの種類のオブジェクト間(例えば、参照A型細胞及び参照B型細胞)の空間分散の程度をキャプチャし、参照として使用される相対分布である。「参照」とは、一種の「標準」又は「ベースライン」であり、それに対して、別の情報、例えば二つのオブジェクト型の別の相対分布を比較することができる。参照相対分布は、オブジェクトの期待分布に基づく、例えば、ポアソン分布に基づく計算シミュレーションにより得ることができるか、又は、一又は複数の参照サンプルで観測されたオブジェクトの相対分布から実験的に得ることができる。参照相対分布は「ベースライン」を表し得る。これは、現在調査中の組織サンプル中の異なる細胞型の相対分布を、既知の生物医学的状態を有する一又は複数の参照組織サンプル中の同じ細胞型の相対分布と比較することを可能にする。観測相対分布の参照相対分布との比較は、組織サンプル中の細胞の相対分布が、シミュレーションされたか又は実験的に決定された参照相対分布における前記細胞型の相対布から有意に偏位するかを決定することを可能にし得る。
【0107】
本明細書で使用される「観測相対分布」は、現在分析中のデジタル画像で示される組織サンプル内、二つの種類のオブジェクト間(例えば二つの細胞型)の空間分散の程度をキャプチャする相対分布である。
【0108】
本明細書で使用される「近接スコア」は、観測相対分布及び参照相対分布の関数として計算されたスコア値である。好ましくは、近接スコアは、観測相対分布及び参照相対分布にコードされた一又は複数の距離又は距離測定値の間の差を計算することにより、計算される。本発明の実施態様によれば、スコア値は数値データ値である。本発明の実施態様によれば、スコア値は、参照分布と観測分布の間の差(デルタ)として計算される。例えば、スコア値は、二つの距離r1、r2の差として計算することができ、ここで、r1は、観測相対分布に従って平均して特定の数のB型細胞が観測されるA型細胞からの距離であり得、r2は、参照相対分布に従って平均して特定の数の(シミュレーションされたか又は実験的に決定された)B型細胞が観測される(シミュレーションされたか又は実験的に決定された)A型細胞からの距離であり得る。あるいは、その差は、二つの領域の差であり得る。一の領域は、二つの所定の距離閾値、「0回の観測発生」のベースライン、及び二つの距離閾値間の参照相対分布曲線の区間により規定され、第2の領域は、二つの所定の距離閾値、ベースライン、及び二つの距離閾値間の観測相対分布曲線の区間により規定される。
【0109】
本明細書で使用される「腫瘍-免疫表現型検査」又は「空間免疫浸潤表現型検査」は、腫瘍を異なるグループに分ける、又はそれらを腫瘍の炎症のグレードに基づいて連続又は離散スペクトル上にマッピングする方法である。スペクトルの両極端は、免疫細胞が完全に欠如している腫瘍組織に対して、高度に炎症した腫瘍を表す。
【0110】
本明細書で使用される「リプリーのK」は、参照相対分布及び/又は観測相対分布を生成するのに使用することができる空間記述統計である。より具体的には、それは、二種類のオブジェクト間の空間分散の測定値である。リプリーのK関数は、Encyclopedia of Environmetrics (ISBN 0471 899976)Edited by Abdel H. El-Shaarawi and Walter W. Piegorsch, John Wiley & Sons, Ltd, Chichester, 2002のVolume 3, pp 1796-1803でPhilip M. Dixonにより説明された。リプリーのK(t)関数(「K関数」又は「リプリーのK」とも称される)は、A型細胞とB型細胞との間の距離の期待値の数学的表現である。
【0111】
本明細書で使用される「生物医学的状態」は、生物学及び/又は医学の文脈において既知の、又は予測的若しくは治療的使用の組織の任意の疾患、代謝、ゲノム、プロテオーム、関連又は形態学的状態である。例えば、組織の「生物医学的状態」は、腫瘍組織の免疫細胞による浸潤の程度に関連する可能性があり、腫瘍組織又は若く、成長中の生物の組織の分化の程度に関連する可能性がある。
【0112】
以下の本発明の実施態様では、例としてのみ、図面を参照してより詳細に説明する。
【図面の簡単な説明】
【0113】
【
図2】組織サンプルの生物医学的状態を決定するための画像分析法のフロー図である。
【
図3】免疫細胞の異なる浸潤度を有する三つの腫瘍組織サンプルの画像及び個々の細胞分布の概略図を示す。
【
図4】
図3の三つの組織サンプルの免疫細胞及び腫瘍細胞密度をそれぞれ示す。
【
図5】空間細胞近傍を規定するため及び異なる細胞型の細胞の相対分布を計算するための半径の使用を示す。
【
図6】「浸潤した」及び「排除された」浸潤状態を示す画像から得られた観測相対分布を示す。
【
図7】観測相対分布、参照相対分布、信頼帯、及び近接スコアとして使用される「デルタ」をそれぞれ含む二つの2Dプロットを示す。
【
図8】近接スコアとして使用される「デルタ」を決定するための2Dプロットの代替的な、領域に基づく分析を示す。
【
図9】「排除された」又は「浸潤した」免疫細胞浸潤状態を有する二つの腫瘍組織サンプルの蛍光画像を示す。
【
図10】組み合わせスコアのクラスターを含む2Dスコアプロットを示す。各組み合わせスコアは複数の異なる組織サンプルの代表的な一つを表す。
【
図11】複数の患者から得られた組み合わせスコア値を表す点を含む対数2Dスコアプロットを示す。
【
図12】治療前及び後に複数の患者から得られた組み合わせスコア値を表す一対ごとに接続された点を含む対数2Dスコアプロットを示す。
【
図13】複数の患者から得られた組み合わせスコアの三つのクラスターを含む対数2Dスコアプロットを示す。
【
図14】複数の患者から得られた組み合わせスコアの五つのクラスターを含む対数2Dスコアプロットを示す。
【発明を実施するための形態】
【0114】
図1は、本発明の実施態様による画像分析システム100のブロック図である。このシステムは、一又は複数のプロセッサ104、メインメモリ106、及び不揮発性記憶媒体108を備える。記憶媒体は、異なる細胞型の細胞の自動検出(モジュール110)、細胞-細胞距離の測定(モジュール112)、所与の密度の細胞分布のシミュレーション(モジュール116)、さまざまなスコア及び曲線のプロット(モジュール122)、近接スコア及び組み合わせスコアの計算(モジュール120)、及び組み合わせスコアに基づく組織サンプルの生物医学的状態の自動検出又は予測(モジュール114)といった、一又は複数のデータ処理タスクを実施するよう構成された一又は複数のアプリケーションプログラム又はモジュール110、114、112、116 、120、122を含む。さまざまなモジュールは、一又は複数のアプリケーションプログラムで任意に組み合わせることができる。例えば、モジュールによって提供される機能は、単一のアプリケーションプログラムに組み合わせることができる。あるいは、いくつかの機能は別個のアプリケーションプログラムによって実施することができる。例えば、所与の分布のシミュレーションは、Rなどの数学プログラムによって実施することができ、距離の計算は空間DBMSとの相互作用により又はその中で実施することができ、特定の細胞型の細胞の同定はデジタル病理画像分析ソフトウェアによって実装することができる。
【0115】
記憶媒体108、例えば電磁ハードディスクドライブは、それぞれ組織サンプルを示す一又は複数のデジタル病理画像118を含み得る。例えば、デジタル画像118は、モノクロ画像又はマルチチャネル画像であり得る。例えば、画像118はRGB画像であり得る。画像118は、明視野顕微鏡画像又は蛍光画像であり得る。典型的には、画像は、異なる色を有する一又は複数のバイオマーカーに特異的な染料で染色された組織サンプルから蛍光顕微鏡法により得られたマルチチャネル画像である。
【0116】
細胞型検出モジュールは、腫瘍細胞及び免疫細胞を自動的に検出するよう、及び空間データベース中の自動的に検出された細胞の位置及び型を記憶するよう構成され得る。細胞及びそれぞれの細胞型の同定は、細胞を表すピクセルブロブを同定するために、連結成分分析及びエッジ検出ルーチンを実施し得る。色又は他の画像の特徴でコードされた情報は、細胞型を同定するのに使用することができる。デジタル画像118にコードされた色情報は、典型的には、特定のバイオマーカー又は特定のバイオマーカーのセットを示す。例えば、サイトケラチンの特定のセットは、蛍光色素又は着色色素に結合する適切な抗体で染色され得る。複数のモノクロ画像118は、カラーデコンボリューションアルゴリズムを適用することにより、特定の組織サンプルのマルチスペクトル蛍光画像から得ることができる。
【0117】
例えば、免疫細胞特異的マーカーを発現しない、特異的腫瘍マーカー又は増殖マーカーを発現する細胞は、腫瘍細胞と考えられ得る。CD8Aなどの免疫細胞特異的マーカーを発現する細胞は、免疫細胞と同定され得る。
【0118】
別の例によれば、Ventana Medical Systems社の一次抗体Anti-Pan Keratin「AE1/AE3/PCK26」を使用して、低分化型悪性腫瘍を染色することができる。抗Panケラチン抗体のセット「AE1/AE3/PCK26」は、単純及び複雑な上皮細胞の細胞質に位置する抗原に特異的に結合する。これは、Woodcock-Mitchellらによって報告されたヒト表皮ケラチンに見られるエピトープに対して産生されたマウスモノクローナル抗体カクテルである。この抗体カクテルは、酸性サブファミリーの56.5kD、50kD、50’kD、48kD及び40kDサイトケラチン並びに塩基性サブファミリーの65-67kD、64kD、59kD、58kD、56kD及び52kDサイトケラチンと反応する。
【0119】
実施態様によれば、一又は複数のデジタル画像118は、カラーデコンボリューションアルゴリズムにより生成されるか、又はカメラ若しくは他の画像取得デバイスによりそれらを取得した後に記憶媒体に直接記憶される。画像分析システムは、場合によっては、画像取得デバイス、例えばカメラ(図示せず)を含むことができる。
【0120】
さらに、システム100は、ディスプレイ102、例えばLCDディスプレイに結合されるか又はそれを備える。このシステムは、さまざまな患者の組織サンプルのデジタル画像118を表示するため、密度、相対分布及び組み合わせスコア値を含むさまざまなプロットを表示するため、及び/又は特定の組織サンプルから得られた組み合わせスコアにより自動的に同定された生物医学的な組織状態のクラスター分析の結果を表示するために、ディスプレイ102を使用する。
【0121】
図2は、組織サンプルの生物医学的状態を決定するための画像分析法のフロー図である。この方法は、腫瘍細胞及び免疫細胞を異なる細胞型の例として使用して、及び腫瘍組織サンプルの免疫細胞浸潤状態を自動的に決定される生物医学的組織状態として使用して、以下で説明される。該方法は、空間情報を用いた画像分析を使用して、免疫療法に対する潜在的な応答に関して患者を自動的に層別化することを可能にし得る。しかしながら、これは、特定の組織の生物医学的状態を迅速、自動的、かつ正確に決定するために、生物学及び医学の文脈において、二つの異なる細胞型の相対分布から本明細書に記載される組み合わせスコアの計算をどのように使用できるかの一例に過ぎない。期待参照分布からの二つの細胞型の分布における差は、多くの他の疾患又は生理学的状態の決定及び下位分類に、及び/又は適切な治療様式又は薬物の同定に使用され得る。
【0122】
該方法は、
図1に示される画像分析システム100で実装され、また例えばそれにより実施され得る。第1の工程202では、画像分析システム100は組織サンプルのデジタル画像を受信する。例えば、デジタル画像は、画像取得デバイス、例えばマイクロスコープから直接受信することができるか、ネットワーク、例えばインターネットを介して受信することができるか、又は不揮発性記憶媒体108から読み取ることができる。
【0123】
次に工程204では、画像分析システムは、受信した画像の領域中で観測されたA型細胞(例えば腫瘍細胞)及びB型細胞(例えば免疫細胞)の数及び位置を同定するために、受信した画像を分析する。画像分析は、カラーデコンボリューション、画像分割、ブロブ検出、連結成分分析、特徴抽出、将来のクラスターリング等といったさまざまな画像処理及び分析技術の適用を含み得る。
【0124】
次に工程206では、画像分析システムは、観測相対分布を得るために、領域のA型及びB型細胞の位置を分析する。観測相対分布は、領域中のA型細胞とB型細胞との間の観測距離を示す。さらに、画像分析システムは、画像領域中の観測腫瘍細胞及び免疫細胞の密度をそれぞれ決定する。
【0125】
次に工程208では、画像分析システムは参照相対分布を得る。参照相対分布は、例えば、腫瘍細胞及び免疫細胞の期待分布をそれぞれ生成するために複数のシミュレーションを実施し、異なる種類のシミュレーションされた細胞間の距離を決定することにより、得ることができる。期待分布は、特に、ランダム分布、例えば、画像領域中で観測されたのと同じ密度の腫瘍細胞及び免疫細胞を想定しているポアソン分布であり得る。
【0126】
次に工程210では、参照相対分布と観測相対分布の差として近接スコアが計算される。本明細書で使用される表現「参照相対分布と観測相対分布の差を計算する」とは、近接スコアが観測及び相対分布の関数として計算され、ここで、この関数は、観測相対分布にコードされた一又は複数の「観測」距離と、参照相対分布にコードされた一又は複数の「参照」距離との間の差を計算する少なくとも一つの操作を含む。
【0127】
次に工程212では、画像分析システムは、「組み合わせスコア」を得るために、近接スコアと受信したデジタル画像118で測定された免疫細胞の密度とを組み合わせる。
【0128】
次に工程214では、画像分析システムは、組織サンプルの生物医学的状態、例えば特定の浸潤状態を自動的に決定するために組み合わせスコアを使用する。追加で、又は代替的に、画像分析システムは、工程216で、組織サンプルについて得られた組み合わせスコアを画像分析システムのディスプレイ102上でユーザに表示する。それにより、ユーザは、組織の現在の生物医学的状態を視覚的に浄化することができ、疾患の進行及び適切な治療の選択肢に関して、それに応じた結論を出すことができる。例えば、組織サンプルの組み合わせスコアは、
図9、10~13に示すように2-Dスコアプロットにおけるデータポイントとして表すことができる。
【0129】
好ましい実施態様によれば、観測相対分布及び参照相対分布はリプリーのK関数を使用して計算される。
【0130】
代替的な実施態様によれば、より簡潔な手法も使用することができる。例えば、画像分析システム100は、組織サンプルのデジタル画像118を受信すること202ができる。画像分析システムは、受信した画像を分析し204、画像中又は画像の特定のサブ領域中のCD8+ 免疫細胞及びKi-67+ 腫瘍細胞を同定する。例えば、サブ領域は、所定のサイズの画像タイルであってもよく、又は自動的に検出された腫瘍組織領域であってもよい。同定された腫瘍細胞のそれぞれについて、画像分析システムは、その腫瘍細胞からその最近の免疫細胞の距離を決定する206。すべての腫瘍細胞からそれらの個々の最近の免疫細胞の距離が決定された後、距離の全体は、組織中の腫瘍細胞及び免疫細胞の「観測相対的分布」に対応し、それを表し得る。次の工程では、画像中又は腫瘍組織領域中の腫瘍細胞及び免疫細胞の同定された密度が決定され、シミュレーションされた腫瘍細胞及びシミュレーションされた免疫細胞のポアソン分布をそれぞれシミュレーションするのに使用される。それにより、シミュレーションされた腫瘍細胞及びシミュレーションされた免疫細胞の密度は、組織中の腫瘍細胞及び免疫細胞の観測密度と同一である。その後、すべてのシミュレーションされた腫瘍細胞からそれらの個々の最近のシミュレーションされた免疫細胞の距離が決定され208、「参照相対分布」として表される。その後、近接スコアが決定された距離の関数として計算される210。例えば、平均ですべての腫瘍細胞がその近隣に一つの免疫細胞を含む距離は、観測相対分布と参照相対分布の両方について決定することができ、これらの二つの差は近接スコアとして使用することができる。その後、画像分析システムは、近接スコア及び画像118で観察された免疫細胞密度を含む組み合わせスコアを提供し212、組織の生物医学的状態(例えば浸潤状態)を自動的に決定するため及び/又はユーザが組織サンプルの現在の生物医学的状態を視覚的に評価できるようにするよう、画像分析システムのディスプレイ102上に、例えば
図9、10~13に示される2-Dスコアプロット上の組み合わせスコアを表示する216ために、組み合わせスコアを使用する214。
【0131】
図3は、免疫細胞の異なる浸潤度を有する三つの腫瘍組織サンプルの画像及び個々の細胞分布の概略図を示す。
【0132】
画像302は、「浸潤」状態を有する腫瘍組織のデジタル病理画像を示す。つまり腫瘍組織には免疫細胞が密に浸潤している。「浸潤した」腫瘍組織中の免疫細胞の相対空間分布(三角形)及び腫瘍細胞の相対空間分布(点)を、以下の概略
図308に示す。
【0133】
画像304は、「排除された」状態を有する腫瘍組織のデジタル病理画像を示す。つまり、腫瘍は、免疫細胞が腫瘍細胞へ移動するのを防ぐ一種の「境界」を作成した。「排除された」腫瘍組織中の免疫細胞の相対空間分布及び腫瘍細胞の相対空間分布を、以下の概略
図310に示す。
【0134】
画像306は、「枯渇」/「所望の」状態を有する腫瘍組織のデジタル病理画像を示す。つまり腫瘍組織は基本的に免疫細胞を含まない。「枯渇した」腫瘍組織中の免疫細胞の相対空間分布及び腫瘍細胞の相対空間分布を、以下の概略
図312に示す。
【0135】
示されている3つの画像及び分布は、上記の3つの異なる生物医学的状態の明確な典型である。しかしながら、ほとんどの場合、組織サンプルは二つの異なる状態の間のどこかにある。結果として、現在利用可能な方法では、三つのカテゴリの一つにはっきりと分類されない組織サンプルの生物医学的状態を決定する、信頼性が高く、客観的で再現性のある方法を提供することは可能ではない。
【0136】
図4は、
図3の三つの組織サンプルの免疫細胞及び腫瘍細胞密度をそれぞれ示す。さらに、
図4は、それぞれの状態の免疫細胞密度(CD8A+)及び腫瘍細胞密度(Ki-67+)を示すプロット402、404、406を含む。この図は、免疫細胞密度は、「枯渇」した組織を他の二つの組織タイプと区別するための重要な予後パラメータであるが、「排除された」組織サンプルと「浸潤した」組織サンプルとを区別するには不十分であることを示す。
【0137】
図5は、空間細胞近傍を規定するため及び異なる細胞型の細胞の相対分布を計算するための半径の使用を示す。画像は、小さな円で示される6つの腫瘍細胞504と小さな三角形で示される複数の免疫細胞とを示す。画像中の免疫細胞と腫瘍細胞との間の観測相対分布を得るために、それぞれの同定された腫瘍細胞を半径rを有する円の中心として使用する。半径rは円近傍を規定する。腫瘍細胞の周りの円の半径を段階的に増加させることにより、及びそれぞれ作成された円に含有される免疫細胞の数をカウントすることにより、腫瘍細胞の周囲の免疫細胞の数の累積的な測定値を得ることができる。工程数とそれぞれの半径は、計算リソースの消費と精度の間の妥協点として自由に選択できる。例えば、各工程は、半径を1μm、又は5μm、又は10μm等増加させてもよい。それぞれの半径と、半径によって規定される円近傍でカウントされる免疫細胞の数との関連は、さまざまな異なる数学式及び分布によって表すことができる。好ましくは、半径を段階ごとに増加させることによって得られる免疫細胞及び腫瘍細胞の相対空間分布を説明するのにリプリーのK関数が使用される。
【0138】
図6は、「浸潤した」及び「排除された」浸潤状態を示す画像から得られた観測相対分布を示す。
図6の上部は、
図3で既に示され、説明された免疫細胞及び腫瘍細胞の空間分布のスキームを示す。
図6の下部は、リプリーのK関数の結果K(r)を表すy軸と、(段階ごとに増加された)半径を表すx軸とをそれぞれ有するプロット602、604、606を示す。示されている例では、半径は1μm増加する。したがって、一つのデータポイントがx軸のマイクロメートル毎に得られる。プロット中の曲線は、プロット中の得られたデータポイントの曲線適合によって得られる。浸潤したケースで見られるように、リプリーのK関数によって得られた結果は、半径rの増加と正の相関がある。しかしながら、「排除された」ケースでは、rの増加に伴うK(r)の増加はほとんどない。「枯渇した」ケースでは、rの増加に伴うわずかなK(r)の増加がある。したがって、相対空間分布は、排除された状態と枯渇した状態を区別するのに必ずしも十分ではない場合があるが、排除又は枯渇状態と浸潤状態を明確に区別することができる。したがって、相対空間分布における差をコードする近接スコアと密度情報との組み合わせは、複雑な状態が連続する組織の現在の生物医学的状態を明確に同定することを可能にし得る。
【0139】
図7Aは、y軸が円半径rによって規定される腫瘍細胞の周りの円近傍で観測される免疫細胞の数を表し、x軸が半径rを表す、2Dプロット702を示す。
【0140】
第1のプロット702は、「浸潤」状態を有する組織サンプル中の異なる半径の腫瘍細胞の周りの半径rの円内の免疫細胞の観測平均数を示す。曲線706は、観測相対分布を表し、プロット702中のそれぞれのデータポイントの曲線適合によって得られた。
【0141】
第2のプロット704は、「排除された」状態を有する組織サンプル中の異なる半径の腫瘍細胞の周りの半径rの円内の免疫細胞の観測平均数を示す。曲線708は、観測相対分布を表し、プロット704中のそれぞれのデータポイントの曲線適合によって得られた。
【0142】
図7Bは、追加情報が補足された2Dプロット702、704を示す。
【0143】
プロット702には平均参照相対分布714が補足された。平均参照相対分布は、複数(例えば40)の初期参照相対分布を生成することによって得られた。各初期相対分布は、観測腫瘍細胞と同じ細胞密度を有するシミュレーションされた腫瘍細胞のポアソン分布をシミュレーションすることにより、観測免疫細胞と同じ細胞密度を有するシミュレーションされた免疫細胞のポアソン分布をシミュレーションすることにより、及び免疫細胞及び腫瘍細胞の相対空間分布についての情報を提供する距離測定値(例えば、半径rを使用して腫瘍細胞の円近傍で得られた免疫細胞数)を決定することにより、計算される。調査された半径のそれぞれについて(r=1μm、2μm、…、98μm、99μm、100μm)、及び40回のシミュレーションのそれぞれについて、腫瘍細胞の周りの半径rの円における免疫細胞の平均数が決定される。その後、調査された半径のそれぞれについて、腫瘍細胞の周りの半径rの円における免疫細胞の最小数、平均数、及び最大数が決定される。平均数は、曲線適合に基づく曲線714を生成するためにデータポイントとしてプロットされる。曲線714は、シミュレーションに基づく参照相対分布を表す。最小数は、前記データポイントの曲線適合により信頼帯716の下縁を生成するためにそれぞれのrのデータポイントとしてプロットされる。最大数は、前記データポイントの曲線適合により信頼帯716の上縁を生成するためにそれぞれのrのデータポイントとしてプロットされる。信頼帯716は、任意の観測相対分布が参照相対分布714とは有意に異ならないと想定される領域を表す。
【0144】
「デルタ=19」は、腫瘍細胞環境における免疫細胞の平均数が「1」である参照相対分布714中の第1の点RPを同定することにより、円形腫瘍細胞環境における免疫細胞の平均数が「1」である観測相対分布706中の第2の点OPを同定することにより、及び第1の点と第2の点のx値(半径)を減算することにより得られた近接スコアである。結果として生じる差(「半径のデルタ」又は「距離のデルタ」)は、組織サンプルの近接スコアとして使用される。ユーザは、第2の点OPが信頼帯716の外側にあるという事実から、観測相対分布706が予測/参照相対分布714とは著しく異なることを容易に推測することができる。
【0145】
プロット704には平均参照相対分布710が補足された。平均参照相対分布は、複数(例えば40)の初期参照相対分布を生成することによって得られた。各初期相対分布は、プロット702について上に記載されるようにプロット704に表される組織の観測腫瘍細胞と同じ細胞密度を有するシミュレーションされた腫瘍細胞のポアソン分布をシミュレーションすることにより計算される。曲線710は、シミュレーションに基づく参照相対分布を表す。最小数は、前記データポイントの曲線適合により信頼帯712の下縁を生成するためにそれぞれのrのデータポイントとしてプロットされる。最大数は、前記データポイントの曲線適合により信頼帯712の上縁を生成するためにそれぞれのrのデータポイントとしてプロットされる。信頼帯712は、任意の観測相対分布が参照相対分布710とは有意に異ならないと想定される領域を表す。
【0146】
「デルタ=32」は、腫瘍細胞環境における免疫細胞の平均数が「1」である参照相対分布710中の第1の点RPを同定することにより、円形腫瘍細胞環境における免疫細胞の平均数が「1」である観測相対分布708中の第2の点OPを同定することにより、及び第1の点と第2の点のx値(半径)を減算することにより得られた近接スコアである。結果として生じる差(「半径のデルタ」)は、組織サンプルの近接スコアとして使用される。ユーザは、第2の点OPが信頼帯714の外側にあるという事実から、観測相対分布708が予測/参照相対分布710とは著しく異なることを容易に推測することができる。
【0147】
図8は、
図7Bに示されるプロット702の修正バージョンであるプロット750を示す。プロット750は、近接スコアとして使用される、代替的な、領域に基づく「デルタ」を自動的に又は手作業で決定するのに使用することができる。
【0148】
プロット750は、平均参照相対分布714及び観測相対分布706を示す。さらに、プロット750は、例えば10-20μm、この例では15μmの値を有する第1の所定の距離閾値t1と、例えば30-40μm、この例では35μmの値を有する第2の所定の距離閾値t2とを示す。二つの閾値t1、t2はそれぞれ補助線に対応する。
【0149】
t1及びt2に対応する二本の補助線、「CD8# T細胞の数<r=0」のベースライン、及び観測相対分布曲線706は、「///」の網掛けでグラフで表されている第1の領域を規定する。例えば、垂線754は、第2の距離閾値t2によって規定される第1の領域の境界である。
【0150】
t1及びt2に対応する二本の補助線、「CD8# T細胞の数<r=0」のベースライン、及び平均参照相対分布曲線714は、「\\\」の網掛けによってグラフで表されている第2の領域を規定する。例えば、垂線752は、第2の距離閾値t2によって規定される第2の領域の境界である。
【0151】
第1の領域と第2の領域が重なる領域は「XXX」の網掛けで示される。
【0152】
ここで、「デルタ値」は、第1の領域と第2の領域のサイズの差又は比として計算することができる。この「デルタ値」(「領域サイズのデルタ」とも呼ばれる)は、組織サンプルの近接スコアとして使用される。ユーザは、曲線714の周囲のグレーの信頼帯のはるか外側にある曲線706の曲線区間の位置から、観測相対分布706が参照相対分布714とは著しく異なることを容易に推測することができる。
【0153】
図9は、「排除」された浸潤状態を有する腫瘍組織サンプルの蛍光画像804及び「浸潤した」浸潤状態を有する腫瘍組織サンプルの蛍光画像806を示す。臨床試験からの腫瘍サンプルをホルマリン固定し、2.5μmの厚さの切片に切り取り、CD8及びKi-67の二重発色アッセイで染色した。染色されたスライドはスキャンされ、デジタル病理フォームにインポートされ、病理学者が手動でアノテーション付けして、腫瘍領域、正常組織領域、及び壊死領域を特定した。アーチファクトのある領域は排除した。画像には、CD8-Ki-67二重陽性細胞、CD8陰性Ki-67陰性T細胞、及びKi-67陽性かつCD8陰性腫瘍細胞を自動的に検出するように適合されたソフトウェアロジックを用いて、自動化されたスライド全体の画像分析を施した。結果をデータベースに入力する前に、病理学者によって検出の正確性がチェックされた。腫瘍のアノテーション付けの領域で検出されたオブジェクトのみが、さらなる分析に使用された。CD8+ T細胞、CD8+/Ki-67+細胞、CD8+/Ki-67-細胞及びCD8-/Ki-67+ 腫瘍細胞の密度が計算された。このタイプの蛍光画像は、次の図に示すように、患者を層別化するために使用することができる。
【0154】
図10は、三つのグループに分けられる80の組み合わせスコアを含む2Dスコアプロットを示す。それぞれの組み合わせスコアは、組織サンプルが採取された80人の異なる患者の代表的な一つを表す。
【0155】
2-Dスコアプロット902のX軸は、免疫細胞(CD8A+細胞)の密度の対数を表す。y軸は近接スコアを表す。クラスター906は、免疫細胞が「浸潤した」腫瘍組織を表す。クラスター908は、「枯渇した」浸潤状態を有すると決定された腫瘍組織を表す。クラスター910は、「排除された」浸潤状態を有すると決定された腫瘍組織を表す。2-Dスコアプロットから推測できるように、免疫細胞の密度は、浸潤した組織サンプルと枯渇した組織サンプルを区別するための重要なパラメータである。しかしながら、「浸潤した」組織サンプルと「排除された」組織サンプルを区別するには、密度のみでは十分ではない場合がある。ただし、近接スコアを表すさらなる次元(y軸)は、「排除された」腫瘍サンプルと「浸潤した」腫瘍サンプルを区別する。
【0156】
太線904は、免疫細胞の密度と近接スコアとの組み合わせが、密度情報のみよりも生物学的な組織状態の区別の改善を可能にし得ることを示す。
【0157】
図11は、複数の患者から得られた組み合わせスコア値を表す点を含む対数2Dスコアプロットを示す。概して、免疫細胞の密度の増加は免疫細胞及び腫瘍細胞のエンゲージメントの増加と相関があることを推測することができる。しかしながら、異なる患者間、さらには同じ患者の異なる組織サンプル間でも大きな差がある。これらの差は、組織の現在の生物医学的状態を決定すること及び適切な治療オプションを同定することに使用される場合がある。
【0158】
図12は、治療前及び後に複数の患者から得られた組み合わせスコア値を表す一対ごとに接続された点を含む対数2Dスコアプロットを示す。各矢印によって接続された二つのデータポイントは、患者が薬物で治療される前に患者から得た組織サンプルの組み合わせスコアと、患者が薬物で治療された数日又は数週後に同じ患者から得た別のサンプルの組み合わせスコアとを表す。例えば、薬物は免疫系を高める薬物であり得る。薬物は、患者の免疫療法中に適用される薬物であり得る。
【0159】
プロットから、特定の薬物での患者の治療に応答して、ほぼすべての患者において免疫細胞及び腫瘍細胞のエンゲージメントは有意に増加したことを推測することができる(ほとんどの矢印は、プロットで上方向を指している)。さらに、免疫細胞の密度は、薬物の適用に応答してほぼすべての患者において増加した(ほとんどの矢印は左から右を指している)。しかしながら、数人の患者は、反応を示さなかったか、又は免疫細胞数及び/若しくは免疫細胞-腫瘍のエンゲージメントの減少さえ示した。
【0160】
したがって、一人又は多くの患者から組み合わせスコアを経時的に繰り返し得ることにより、疾患の進行又は他の生理学的状態における傾向を検出することが可能になる。多くの場合、生物学によって生じるメカニズムは、異なる細胞型の分布における相対的な変化として組織に反映される。出願人は、免疫細胞の密度に加えて、腫瘍細胞と免疫細胞との間の分布の相対的な変化が、腫瘍の排除-平衡-エスケープのバランスについての患者の位置点に関する意義のある情報、並びにより排除又はよりエスケープに向けた経時的なプロセスの方向に関する指標を提供することを観測した。
【0161】
図13は、複数の患者から得られた組み合わせスコア値を含む対数2Dスコアプロットを示す。患者は、プロットにおけるそれぞれの組み合わせスコア値の位置に基づいて三つのクラスターにグループ化される。したがって、組み合わせスコアは、特定の患者の腫瘍の浸潤状態を、腫瘍の異なる浸潤状態を表す連続スケールにマッピングすることを可能にする。サンプル及び患者は三つの異なるクラスターにグループ化することができるが、
図14に示すように、より詳細な分類も可能である。クラスター972は「浸潤」状態を表し、クラスター974は「排除」状態を表し、クラスター976は「枯渇」状態を表す。
【0162】
図14は、複数の患者から得られた組み合わせスコアの五つのクラスターを含む対数2Dスコアプロットを示す。
図13のそれぞれのクラスターによって表される三つの異なる生物医学的状態に加えて、
図14は、さらに、「限界まで炎症した」及び「中程度に炎症した」状態の組み合わせスコアクラスターを含む。
【手続補正書】
【提出日】2024-07-17
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
組織サンプルの生物医学的状態を決定するための画像分析法であって、画像分析システム(100)により実装され、以下:
- 組織サンプルのデジタル画像(118)を受信すること(202);
- 受信した画像の領域中で観測されたA型細胞(504)及びB型細胞(506)の数及び位置を同定するために、受信した画像を分析すること(204)であって、A型とB型が異なる細胞型である、受信した画像を分析すること;
- 観測相対分布(708、706)を得るために、領域中のA型及びB型細胞の位置を分析すること(206)であって、観測相対分布が領域中のA型細胞とB型細胞との間の観測距離を示す、A型及びB型細胞の位置を分析すること;
- 参照相対分布(710、714)を得ること(208)であって、参照相対分布が参照A型細胞と参照B型細胞との間の期待距離を示す、参照相対分布を得ること;
- 参照相対分布と観測相対分布の差として近接スコア(718、720)を計算すること(210);
- 組み合わせスコア(912)を計算すること(212)であって、組み合わせスコアが、近接スコアを含み、かつA型細胞の密度及び/又はB型細胞の密度を含む、組み合わせスコアを計算すること;
- 組織サンプルの生物医学的状態を決定するために組み合わせスコアを使用すること(214)及び/又はユーザが組織サンプルの生物医学的状態を決定するのを可能にするために組み合わせスコアをユーザに出力すること(216)
を含む、方法。
【外国語明細書】