IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社東京精密の特許一覧

<>
  • 特開-ツルアー成形方法 図1
  • 特開-ツルアー成形方法 図2
  • 特開-ツルアー成形方法 図3
  • 特開-ツルアー成形方法 図4
  • 特開-ツルアー成形方法 図5
  • 特開-ツルアー成形方法 図6
  • 特開-ツルアー成形方法 図7
  • 特開-ツルアー成形方法 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024001517
(43)【公開日】2024-01-10
(54)【発明の名称】ツルアー成形方法
(51)【国際特許分類】
   B24B 9/00 20060101AFI20231227BHJP
   B24B 19/08 20060101ALI20231227BHJP
   B24B 53/00 20060101ALI20231227BHJP
   B24B 53/07 20060101ALI20231227BHJP
【FI】
B24B9/00 601G
B24B19/08 A
B24B53/00 J
B24B53/07
【審査請求】未請求
【請求項の数】11
【出願形態】OL
(21)【出願番号】P 2022100214
(22)【出願日】2022-06-22
(71)【出願人】
【識別番号】000151494
【氏名又は名称】株式会社東京精密
(74)【代理人】
【識別番号】100163533
【弁理士】
【氏名又は名称】金山 義信
(74)【代理人】
【識別番号】100199842
【弁理士】
【氏名又は名称】坂井 祥平
(72)【発明者】
【氏名】岸下 真一
(72)【発明者】
【氏名】石井 優輝
【テーマコード(参考)】
3C047
3C049
【Fターム(参考)】
3C047AA15
3C047CC11
3C049AA03
3C049AA12
3C049AA14
3C049AA16
3C049AA19
3C049AB01
3C049CA01
3C049CA02
3C049CB01
(57)【要約】
【課題】 ツルアーの作成にかかる時間と費用の節減と品質の均一化を図ると共に、ツルーイングの転写率、加工性、ツルアーに形成される溝の精度を向上し、特に、ツルアーのエッジ形状の精度をより一層向上させるツルアー形成方法の提供。
【解決手段】 ウェーハの面取り部を研削する砥石の溝を円盤状のツルアーによって形成するツルーイングにおけるツルアー成形方法であって、上記ツルアーを成形するマスター砥石によって、上記ツルアーの直径、及び、粗形状を整える工程Aと、上記ツルアーのエッジを目標の形状に成形する工程Bと、を含み、上記工程A、及び、上記工程Bは、上記マスター砥石が有する、形状の異なる複数のマスター溝のそれぞれを用いて行われるか、又は、上記工程A、及び、上記工程Bは、上記マスター砥石が有する、少なくとも1つのマスター溝における形状の異なる部分のそれぞれを用いて行われる、ツルアー成形方法。
【選択図】図4
【特許請求の範囲】
【請求項1】
ウェーハの面取り部を研削する砥石の溝を円盤状のツルアーによって形成するツルーイングにおけるツルアー成形方法であって、
前記ツルアーを成形するマスター砥石によって、前記ツルアーの直径、及び、粗形状を整える工程Aと、
前記ツルアーのエッジを目標の形状に成形する工程Bと、を含み、
前記工程A、及び、前記工程Bは、前記マスター砥石が有する、形状の異なる複数のマスター溝のそれぞれを用いて行われるか、又は、
前記工程A、及び、前記工程Bは、前記マスター砥石が有する、少なくとも1つのマスター溝における形状の異なる部分のそれぞれを用いて行われる、ツルアー成形方法。
【請求項2】
前記工程A、及び、前記工程Bは、
前記マスター砥石が有する形状の異なる前記マスター溝である、第1溝、及び、第2溝を用いて行われる、請求項1に記載のツルアー成形方法。
【請求項3】
請求項2に記載のツルアー成形方法であって、
前記ツルアーが前記第1溝で加工された後に、前記第2溝の先端を用いてエッジ加工処理を行うことを特徴とするツルアー成形方法。
【請求項4】
請求項2に記載のツルアー成形方法であって、
前記第2溝の先端は前記第1溝の先端と比べてR状部の半径が大きくなっていることを特徴とするツルアー成形方法。
【請求項5】
請求項2から4のいずれか1項に記載のツルアー成形方法であって、
前記マスター溝で前記ツルアーの面取り加工をする際、前記ツルアーを引く方向へ加工が行われることを特徴とするツルアー成形方法。
【請求項6】
請求項3に記載のツルアー成形方法であって、
前記ツルアーの移動距離を小さくして角部の形状、半径、丸味を加工するコーナR加工が前記第2溝の先端を利用して行われることを特徴とするツルアー成形方法。
【請求項7】
請求項6に記載のツルアー成形方法であって、
上面の前記コーナR加工(上面)が終了した後に下面の前記コーナR加工(下面)を行うことを特徴とするツルアー成形方法。
【請求項8】
請求項7に記載のツルアー成形方法であって、
移動開始点(進入点、進入速度)、加工速度、逃げ位置、逃げ速度、前記ツルアーの回転速度、加工開始点、加工終了点のパラメータは、前記コーナR加工(上面)と前記コーナR加工(下面)との二通りの数値をとって行われることを特徴とするツルアー成形方法。
【請求項9】
請求項8に記載のツルアー成形方法であって、
各加工はそれぞれ独立して、トラバース動作として振幅、前記加工速度、スパークアウト時間、往復回数が設定されることを特徴とするツルアー成形方法。
【請求項10】
前記工程A、及び、前記工程Bは、
前記マスター砥石が有する、少なくとも1つのマスター溝における形状の異なる部分のそれぞれを用いて行われ、
前記工程Bは、前記マスター溝の先端部を用いて行われる、請求項1に記載のツルアー成形方法。
【請求項11】
前記工程Aは、前記マスター溝の底部を用いて行われる、請求項10に記載のツルアー成形方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シリコン、サファイア、化合物、ガラス等の様々な素材、特に半導体ウェーハ、ガラスパネル等の板状被加工材の端面における高精度な面取り装置のツルーイングに関し、板状被加工材を面取り研削する砥石の加工溝を形成するツルーイングにおけるツルアー成形方法に関する。
【背景技術】
【0002】
従来、半導体ウェーハ等の板状被加工材の面取り研削を行うために、板状被加工材の外周部に砥石を押し当てて加工を行っている。通常、砥石の外周部は、板状被加工材の目標形状に対応した形状及び寸法の溝が形成される。そして、板状被加工材の外周部の研削は、溝内に板状被加工材の外周部を挿入して溝の内周面によって行われる。溝の形状及び寸法は、面取り加工を繰り返すことによって溝の内周面が摩耗又は破損して形状及び寸法が変化して加工精度が低下する。
【0003】
長期間に渡って面取り加工を行う場合、砥石は交換又は整形し直す必要が生じる。そのため、砥石はツルーイング砥石(ツルアー)を用いて加工される、つまりツルーイングが行われる。ツルーイング砥石は、ツルーイングにおいて板状被加工材の目標形状に対応した総形溝を有するマスター砥石の溝の内周面に当接させて研削することにより作製される。そして、実際のワークの面取り加工に用いるための砥石は、ツルーイング砥石の外周部が当接されることにより、マスター砥石と同様な総形溝が形成され、形状及び寸法が成形される。ツルーイング砥石は面取り用の砥石(例えばレジンボンド砥石)よりも硬い材料(例えばGC砥石)とされ、マスター砥石はツルーイング砥石よりも硬い材料(例えばメタルボンド砥石)とされる。
【0004】
板状物の面取り装置に用いられる面取り砥石の溝形状を、容易に、所望の形状に、ツルーイングするために、マスター砥石の溝形状をツルーイング砥石の外周に転写し、このツルーイング砥石の外周形状を面取り砥石に転写して、面取り砥石に溝を形成することが知られ、例えば特許文献1に記載されている。
【0005】
また、通常の研削ではレジン砥石の回転軸に対してウェーハの主面が垂直となる状態で面取り部を研削するが、この場合、面取り部には円周方向の研削痕が発生し易い。そこで、ウェーハに対して例えばレジンボンド砥石を傾けてウェーハの面取り部を研削する、いわゆるヘリカル研削を行うことが知られている。
【0006】
ヘリカル研削を行う場合、レジン砥石に対し、縁部を上下対称形状に形成したツルアーを用いて溝の形成あるいは修正(ツルーイング)を行うと、レジン砥石に傾斜がついているため、ツルアーにねじれが生じるため、レジン砥石の溝が上下に非対称の形状に加工されてしまう。そのため、ウェーハの面取り部を研削する砥石の溝の幅より厚さが小さくされたツルアーで溝の予定位置における上部あるいは下部を加工し、その後、ツルアーを砥石に対して相対的に厚さ方向に下降あるいは上昇させて加工してツルーイングの転写率、加工性を向上すると共に、ツルアーによって形成される溝の精度を向上することが特許文献2に記載されている。
【0007】
また、面取り加工を容易に効率良くかつ高精度に行い、ワーク及び砥石を支持、駆動する機構が簡単であって、しかも砥石の整形を容易にするため、砥石外周部の凸状研削部分とワークとの接触部分が砥石の円弧状部分の曲率半径に基づいて算出された移動条件に従って、砥石をワークに対して相対的に移動させることが特許文献3に記載されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2005-153085号公報
【特許文献2】特開2018-167331号公報
【特許文献3】特開2021-181151号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
上記従来技術において、特許文献1に記載の方法は、ツルアーをツルアー成形用砥石であるマスター砥石の溝にそのまま切り込むことにより、その溝形状をツルアーのエッジに転写するので、マスター砥石の溝一つにつき、対応できる形状は1種類のみである。従って、ツルアーの形状を変更することが困難であり、面取り装置の加工条件、例えば、研削砥石の回転軸の設定が変化した場合等に対応することができなかった。
【0010】
特許文献2、3に記載の方法は、ツルアーの形状を変更することが可能となるが、所望の加工形状に近づけるために微細な補正を行うこと、及びツルアーのエッジ形状の精度をより向上させるには充分ではなかった。
【0011】
本発明の目的は、上記従来技術の課題を解決し、ツルアーの作成にかかる時間と費用の節減と品質の均一化を図ると共に、ツルーイングの転写率、加工性、ツルアーに形成される溝の精度を向上し、特に、ツルアーのエッジ形状の精度をより一層向上させ、その形状の転写対象である外周精研用砥石の溝形状の寸法精度のみならず、溝の角度、端部の角に丸味がつかないようにして、最終的な面取り形状の精度を向上することにある。
【課題を解決するための手段】
【0012】
上記目的を達成するための、本発明の構成は以下のとおりである。
【0013】
[1] ウェーハの面取り部を研削する砥石の溝を円盤状のツルアーによって形成するツルーイングにおけるツルアー成形方法であって、上記ツルアーを成形するマスター砥石によって、上記ツルアーの直径、及び、粗形状を整える工程Aと、上記ツルアーのエッジを目標の形状に成形する工程Bと、を含み、上記工程A、及び、上記工程Bは、上記マスター砥石が有する、形状の異なる複数のマスター溝のそれぞれを用いて行われるか、又は、上記工程A、及び、上記工程Bは、上記マスター砥石が有する、少なくとも1つのマスター溝における形状の異なる部分のそれぞれを用いて行われる、ツルアー成形方法。
[2] 上記工程A、及び、上記工程Bは、上記マスター砥石が有する、形状の異なる上記マスター溝である、第1溝、及び、第2溝を用いて行われる、[1]に記載のツルアー成形方法。
[3] [2]に記載のツルアー成形方法であって、上記ツルアーが上記第1溝で加工された後に、上記第2溝の先端を用いてエッジ加工処理を行うことを特徴とするツルアー成形方法。
[4] [2]に記載のツルアー成形方法であって、上記第2溝の先端は上記第1溝の先端と比べてR状部の半径が大きくなっていることを特徴とするツルアー成形方法。
[5] [2]から[4]のいずれかに記載のツルアー成形方法であって、上記マスター溝で上記ツルアーの面取り加工をする際、上記ツルアーを引く方向へ加工が行われることを特徴とするツルアー成形方法。
[6] [3]に記載のツルアー成形方法であって、上記ツルアーの移動距離を小さくして角部の形状、半径、丸味を加工するコーナR加工が上記第2溝の先端を利用して行われることを特徴とするツルアー成形方法。
[7] [6]に記載のツルアー成形方法であって、上面の上記コーナR加工(上面)が終了した後に下面の上記コーナR加工(下面)を行うことを特徴とするツルアー成形方法。
[8] [7]に記載のツルアー成形方法であって、移動開始点(進入点、進入速度)、加工速度、逃げ位置、逃げ速度、上記ツルアーの回転速度、加工開始点、加工終了点のパラメータは、上記コーナR加工(上面)と上記コーナR加工(下面)との二通りの数値をとって行われることを特徴とするツルアー成形方法。
[9] [8]に記載のツルアー成形方法であって、各加工はそれぞれ独立して、トラバース動作として振幅、上記加工速度、スパークアウト時間、往復回数が設定されることを特徴とするツルアー成形方法。
[10] 上記工程A、及び、上記工程Bは、上記マスター砥石が有する、少なくとも1つのマスター溝における形状の異なる部分のそれぞれを用いて行われ、上記工程Bは、上記マスター溝の先端部を用いて行われる、[1]に記載のツルアー成形方法。
[11] 上記工程Aは、上記マスター溝の底部を用いて行われる、[10]に記載のツルアー成形方法。
【発明の効果】
【0014】
本発明によれば、ツルアーの作成にかかる時間と費用の節減と品質の均一化が図られ、ツルーイングの転写率、加工性、ツルアーに形成される溝の精度が向上し、特に、ツルアーのエッジ形状の精度がより一層向上し、その形状の転写対象である外周精研用砥石の溝形状の寸法精度のみならず、溝の角度、端部の角に丸味がつかないようにして、最終的な面取り形状の精度を向上することができる。
【図面の簡単な説明】
【0015】
図1】本発明の一実施形態に係る面取り装置の主要部を示す正面図である。
図2】一実施形態におけるツルーイング加工を示した側面図である。
図3】一実施形態における凹形状溝とされた研削砥石55でウェーハWを加工する際の側面図である。
図4】一実施形態におけるツルアー41の成形方法を示す側面図である。
図5】一実施形態における第2溝62で高精度な加工を示す側面図である。
図6】一実施形態によるツルアー41の成形加工処理の手順を示すフローチャートである。
図7】一実施形態による図6におけるエッジ加工処理の手順を示すフローチャートである。
図8】本発明の一実施形態(第2実施形態)における、ツルアー41の成形加工処理の手順を示す説明図である。
【発明を実施するための形態】
【0016】
(第1実施形態)
以下、本発明の実施形態(第1実施形態)について図面を参照して詳細に説明する。図1は本発明の一実施形態に係るウェーハ面取り装置の主要部を示す正面図である。ウェーハ面取り装置10は、ウェーハ送りユニット20、砥石回転ユニット50、図示しないウェーハ供給/収納部、ウェーハ洗浄/乾燥部、ウェーハ搬送手段、及びウェーハ面取り装置各部の動作を制御するコントローラ等から構成されている。
【0017】
ウェーハ送りユニット20は、本体ベース11上に載置されたX軸ベース21、2本のX軸ガイドレール22、4個のX軸リニアガイド23、ボールスクリュー及びステッピングモータから成るX軸駆動機構25によって図のX方向に移動されるXテーブル24を有している。
【0018】
Xテーブル24は、2本のY軸ガイドレール26、4個のY軸リニアガイド27、図示しないボールスクリュー及びステッピングモータから成るY軸駆動機構によって図のY方向に移動されるYテーブル28が組み込まれている。
【0019】
Yテーブル28には、2本のZ軸ガイドレール29と図示しない4個のZ軸リニアガイドによって案内され、ボールスクリュー及びステッピングモータから成るZ軸駆動機構30によって図のZ方向に移動されるZテーブル31が組み込まれている。
【0020】
Zテーブル31は、θ軸モータ32、θスピンドル33が組み込まれ、θスピンドル33にはウェーハW(板状の被加工材)を吸着載置するウェーハテーブル34が取り付けられている。ウェーハテーブル34はウェーハテーブル回転軸心CWを中心として図のθ方向に回転される。
【0021】
ウェーハ送りユニット20によって、ウェーハW及びツルアー41は図のθ方向に回転されると共に、X、Y、及びZ方向に移動される。
【0022】
砥石回転ユニット50は、外周粗研削砥石52が取り付けられ、図示しない外周砥石モータによって軸心を中心に回転駆動される外周砥石スピンドル51、上方に配置されたターンテーブル53に取り付けられた外周精研スピンドル54及び外周精研モータ56を有している。
【0023】
外周精研スピンドル54にはウェーハWの外周を仕上げ研削する面取り用砥石である研削砥石55が取り付けられる。外周精研スピンドル54は、ウェーハWの回転軸に対して回転軸が3~15°、望ましくは6~10°傾斜させた状態でウェーハWの外周面取りの仕上げ加工を行う。これにより、ヘリカル研削が行われ、ウェーハWの面取り部には斜め方向に弱い研削痕が発生するものの、通常研削に比べ面取り部の表面粗さが改善される効果が得られる。
【0024】
ウェーハ加工プロセスは、スライス→面取り→ラップ→エッチング→ドナーキラー→精面取りの順で行われ、工程間には汚れを取り除くため、各種洗浄が用いられる。シリコン等は固くてもろく、ウェーハの端面がスライシング時の鋭利なままでは、続く処理工程での搬送や位置合わせなどの取り扱い時に容易に割れたり欠けたりして、断片がウェーハ表面を傷つけたり汚染したりする。これを防ぐため、面取り工程は切り出されたウェーハの端面をダイヤモンドでコートされた面取り砥石で面取りされる。
【0025】
研削砥石55は、例えば、Fe、Cr、Cu等の金属粉等を主成分とし、ダイヤモンド砥粒を混ぜて成形したものが用いられる。その材質は、例えば、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、ポリスチレン樹脂又はポリエチレン樹脂等を主成分とし、ダイヤモンド砥粒や立方晶窒化ホウ素砥粒を混ぜて成形したものが望ましい。
【0026】
また、研削砥石55は、直径50mmのダイヤモンド砥粒のレジンボンド砥石で、粒度#3000が用いられる。外周精研スピンドル54は、エアーベアリングを用いたビルトインモータ駆動のスピンドルで、回転速度35000rpmで回転される。
【0027】
図2は、ツルーイング加工を示した側面図であり、研削砥石55は、面取り用加工溝がツルアー41によって形成される。円盤状のツルアー41は、ウェーハテーブル34の下部にウェーハテーブル回転軸心と同芯で取付けられ、ウェーハテーブル34で回転される。ツルアー41の外周部は予めマスター砥石(図3参照)でツルアー41の外周に面取り加工が行われる。つまり、研削砥石55は、外周部にマスター溝(図3参照)の断面形状が転写されたツルアー41を用いて、研削砥石55に面取り用加工溝が形成される。
【0028】
ツルアー41の材質は、例えば炭化珪素からなる砥粒を、必要に応じて充填剤等も加えてフェノール樹脂で結合し、これを円盤状のツルアー41に成形したものが望ましい。また、ツルアー41は、加工されるウェーハWと同等以下の外径であり、同厚の円盤状GC(Green silicon carbide)砥石、又はWA(White fused alumina)砥石でも良く、砥石の粒度は#320程度が良い。
【0029】
図3は、凹形状溝とされた研削砥石55でウェーハWを加工する際の側面図を示している。直線部の加工は、特許文献3の記載のような凸型砥石で行うと、点接触で加工することになるので、砥石に偏摩耗が生じたり、加工軌跡が条痕として残り、表面粗さが悪くなったり、加工時間が長くなったりする。また、凸型砥石による点接触の加工では、加工時間が長くなり、加工応力が逃げるので、目標形状を成形しにくい。
【0030】
一方で、図3(a)のように、凹形状溝(凹型砥石)で粗形状を形成すると、上斜面と下斜面との応力が相殺されて加工応力の逃げが少なくなり、直線部の加工であっても形状が不整形となりにくくなる。
また、凹形状溝での加工は、直線部も線接触となるため、加工時間が短く、条痕が残らず、表面粗さが良くなり、加工負荷が低減され、砥石寿命が飛躍的に向上する。
【0031】
図3(b)は、研削砥石55において、直径・粗形状の加工に寄与しない矢印Aで示す先端(矢印A;図中、直線で示されているが、曲線(面)を有していてもよい)を利用して、任意の仕上がり形状に加工することを示している。これによれば、角部の形状、半径、丸味等をより精度よく加工することができる。このとき、矢印Bで示すようにウェーハWを引く方がウェーハWと研削砥石55との接触面積が広くなるため加工負荷が低減され、砥石寿命が長くなる。また、加工前の形状と目標形状の差が大きいと尖端での研削量が増え研削砥石55の摩耗が大きくなるので、予め研削砥石55の溝形状を目標形状に近づけておくことが好ましい。
【0032】
図4(a)は、ツルアー41の成形方法を示す側面図である。ツルアー41を成形するマスター砥石60は、マスター溝として複数の溝(第1溝61、第2溝62)を有している。第1溝61は、ツルアー41の直径及び粗形状を整える(直径・粗形状の調整の)ためのものである。第1溝61は総形溝であってもよく、また、第1溝61による直径・粗形状の調整は、第1溝61の溝形状をツルアー41に転写することであってもよい。
一方、第2溝62は、ツルアー41のエッジを目標の形状(任意かつ所望の断面形状)に調整するためのものである。第2溝62は、先端(開口部)に、半径がより大きなR状部を有する。すなわち、第1溝61と、第2溝62とは互いに形状が異なっている。この第2溝のR状部を使用することで、単に、溝形状を転写したのでは得られない、任意の断面形状を有するツルアー41が得られる。
【0033】
図4(b)は、第2溝62の拡大図である。第2溝62は、マスター砥石60の厚み方向(Z方向)に略平行な直線部81と、直線部81の端部から延びる、上下の斜面部82と、斜面部82の端部から開口部へと延びる曲線を有する上下のR状部83とを有している。
なお、図4(b)の第2溝62は、直線部81と、斜面部82と、R状部83とを有しているが、上記に制限されず、第2溝62は、直線部81と、R状部83とを有していればよい。
また、図中、直線部81、及び、斜面部82は、(断面形状で)直線として記載されているが、上記に制限されず、曲線を有していてもよい(曲面を有していてもよい)。
【0034】
マスター砥石60は、例えば、回転速度8000rpmで回転される。この状態でZテーブル31は、Z軸駆動機構30によって移動され、ツルアー41の高さがマスター砥石60のそれぞれの溝に一致する高さに位置決めされる。
【0035】
次いでYテーブル28はマスター砥石60に向かって移動される。Yテーブル28のY方向の移動によって、ツルアー41の外周部はマスター砥石60のマスター溝内に切り込まれ、ウェーハテーブル34がθ軸モータ32によってゆっくりと1回転する。そして、ツルアー41の外周部は面取りされ、ツルアー41の外周部にマスター溝の形状が転写さる。次に、ツルアー41はマスター砥石60から離れる方向に移動され、マスター溝の断面形状からツルアー41の外周部の断面形状への転写が終了する。
【0036】
マスター溝からツルアー41への転写方法、つまりツルアー41の成形加工処理は、第1溝61で上記のようにツルアー41の外周部を第1溝61に矢印Dのように切り込み、ツルアー41の直径加工処理及び粗形状を整える。次に、第2溝62のR状部83を主に用いて高精度、かつ、任意の断面形状への調整を含む、エッジ加工処理を行う。
【0037】
図5は、第2溝62による高精度な加工処理を示す側面図、図6は、ツルアー41の成形加工処理の手順を示すフローチャート、図7図6におけるエッジ加工処理(図6におけるステップ4)の詳細な手順を示すフローチャートである。
図6に沿ったツルアー41の成形方法の概略手順は、(1)諸条件の入力(ステップ1)、(2)入力された諸条件に基づく面取り装置による加工条件(加工開始点・加工終了点)の算出、(3)ツルアー41の成形加工処理として主に直径加工処理(ステップ3)、(4)エッジ加工処理(ステップ4)となる。
【0038】
(ステップ1、2)
入力される諸条件は、パラメータとして直径、面取り角度、先端形状(端面の直線長さm、面幅n、コーナRの大きさ)、移動開始点(進入点、進入速度)、面取り加工速度、コーナRの加工速度、逃げ位置、逃げ速度、ツルアー41の回転速度、マスター砥石60の回転数などである。
【0039】
本面取り装置を用いた面取り方法は、後述するステップ3における、マスター溝の形状の転写に加えて、ステップ4におけるマスター溝(第2溝)のR状部を用いた任意形状への調整を含む。
そのため、本工程において入力される条件の一例としては、任意、かつ、所望の断面形状のデータであってよい。
上記所望の断面形状は、総形溝であってもよい第1溝61による研削後の断面形状より小さいことが好ましく、第1溝61、及び、第2溝62の溝形状によらず、任意の形状とすることができる。
なお、面取り装置により算出される加工条件は、主に加工開始点、加工終了点である。
【0040】
(ステップ3:工程A)
ステップ3は、ツルアーの直径及び粗形状を整える工程である(工程A)。本ステップは、第1溝61を用いて行われる。本ステップにおいて、マスター砥石60は、例えば回転速度8000rpmで回転される。加工は、ツルアー41の高さがマスター砥石60のマスター溝(第1溝61)に一致する高さに位置決めされて開始される。ツルアー41は、矢印Dのようにマスター砥石60に向かって移動され、ツルアー41の外周部がマスター砥石60のマスター溝(第1溝61)内に切り込まれ、主にツルアー41の外周部の端面が面取りされる。直径加工処理は、パラメータとしてコーナR加工(上面)とコーナR加工(下面)との二通りが加工条件となり、一形態として、先にコーナR加工(上面)を行い、次にコーナR加工(下面)を行う。
【0041】
上述のとおり、本方法では、凹形状溝を用いて直径・粗形状の調整を行うため、マスター砥石とツルアーとが点接触となりにくく、加工応力が逃げにくく、結果として、効率よく研削加工が行える。
【0042】
(ステップ4:詳細には、ステップ401~407:工程B)
ステップ4は、ツルアーのエッジを目標の形状に成形する工程である(工程B)。本ステップの加工は、第1溝61とは異なる(断面)形状を有する第2溝62を用いて行われる。「第1溝61とは異なる形状を有する第2溝62」とは、一形態として、第2溝62が、先端部(開口部に近い部分)に、R状部を有することを意味し、工程Aで使用した部分と形状が異なっていれば、上記外の形態であってもよい。
フローに戻り、具体的には、まず、第1溝61で直径及び粗形状が加工された後に、図5(a)で示す第2溝62の高さに一致する移動開始点にツルアー41を移動させて行われる(ステップ401)。
【0043】
面取り装置は、先に入力された諸条件(所望の断面形状等のデータ)に基づき、加工条件のパラメータを設定する(ステップ402)。次に、ツルアー41は、進入点へ所定の進入速度で移動する(ステップ403)。ツルアー41は、回転を開始し(ステップ404)、所定の面取り角度で、図5(b)太線で示した部分を面取り加工する(ステップ405)。この時、第2溝62は凹形状溝であるので、線接触の加工となるため、加工時間が短く、条痕が残らず、表面粗さが良くなり、加工負荷が低減される。また、面取り加工は図5(c)の矢印Bで示すようにツルアー41を引く方向へ加工を行い、加工負荷を低減することが望ましい。
【0044】
面取り加工の後は、ツルアー41の移動距離(すなわち、加工送り量)を小さくして、より細部の、具体的には、角部の形状、半径、丸味等を加工するコーナR加工が行われる(ステップ406)。コーナR加工(上面)は、第2溝62の直径加工に寄与しない矢印Aで示すR状部が付いた先端を利用して行われる。第2溝62の先端は、第1溝61の先端と比べてR状部の半径が大きくなっている。従って、ツルアー41角部の形状、半径、丸味等の加工はより精度が良く、かつ条痕が残らず、表面粗さが良くなる。
【0045】
なお、コーナR加工(上面)が終了した後は、コーナR加工(下面)を行うのでステップ401で対応する移動開始点に移動し、ステップ401からステップ405を同様に繰り返し行う。また、移動開始点(進入点、進入速度)、逃げ位置、加工速度、逃げ速度、ツルアー41の回転速度、加工開始点、加工終了点等のパラメータは、コーナR加工(上面)とコーナR加工(下面)との二通りの数値をとって行われる。
【0046】
各加工は、表面粗さ向上のためにそれぞれ独立して、トラバース動作として振幅、加工速度、スパークアウト時間、往復回数を設定することが好ましい。なお、スパークアウトは、研削作業の最後に切込みを与えず研削を続ける作業を意味しており、加工は微小量ずつ進行する。
【0047】
なお、ツルーイングは、研削能力の低下に伴い、所定の外周面幅、外周角度、外周形状を満たさなくなったとき、ツルアー41を用いて適宜、研削砥石55の溝修正(ツルーイング)を行う。このとき、本発明によりツルーイングを行えば、1回あたりのツルーイングに対して加工できるウェーハの枚数が増えるほか、レジン砥石であっても寿命が延びて1つのレジン砥石で加工できるウェーハの枚数が増える。従って、半導体ウェーハの製造におけるコストの低減にもつながる。
【0048】
本実施形態によれば、研削砥石55を他種の形状へ変更する場合であっても別のツルアー成形用砥石(溝)を使用する必要がない。従って、本実施形態は、研削砥石55の精度向上ばかりでなく、砥石の付け替え作業や砥石の新規作製を不要とすることができ、砥石を新しく作製する場合に比べ、その費用の節減に加えて、砥石メーカへの発注から砥石の納品までの期間を短縮できる。
【0049】
(第2実施形態)
以下、第2溝62を用いて、直径・粗形状の加工、及び、任意形状への調整(エッジ処理)を行う第2実施形態について説明する。なお、使用するウェーハ面取り装置等は、第1実施形態と同様の為、説明を省略する。以下では、第1実施形態と異なる部分を中心に説明する。
【0050】
図8は、第2溝62を用いて行う、本実施形態におけるツルアー41の成形加工処理の手順を表す説明図である。
まず、図8(a)は、ツルアー41の加工前の状態を表している。以下の工程で、まず、このツルアー41の直径・粗形状を、断面形状84となるよう調整する。
【0051】
なお、図面は模式的なものであり、ツルアー41の加工前後の形状の差を明確に説明するために、形状は誇張して表示されている。
また、図8では、加工対象(研削対象)をツルアー41としているが、本方法は、ツルアー41に限らず、ウェーハ等の研削にも適用可能である。
【0052】
図8(b)は、ツルアー41の直径・粗形状を、断面形状84となるよう調整するために、ツルアーを回転するマスター砥石60に切り込む様子を表している(工程A)。このとき、ツルアー41の端部は、マスター砥石の第2溝62の底部である直線部81、及び、斜面部82に接触して、研削される。言い換えれば、本実施形態において、工程Aは、第2溝の底部である直線部81、及び、斜面部82を用いて実施される。
直線部81、及び、斜面部82は、すでに説明した第1溝61のような凹型溝と同様の機能を有し、応力を逃がさないようにしながら、主に、線接触の状態で、ツルアー41の直径・粗形状の調整を行うことができる。
【0053】
粗形状の調整を終え、断面形状が84の状態となったツルアー41について、次に、R状部83によって、エッジ処理が行われる(工程B)。この工程Bは、第2溝62において、工程Aの加工に用いられたのとは異なる部分であって、形状の異なる部分を用いて実施される。具体的には、第2溝62の先端部(開口方向の先端部)のR状部83を用いて実施される。
【0054】
工程Aにおいて用いられた直線部81、及び、斜面部82は、すでに説明した通り、凹型溝としての機能を有し、ツルアー41と線接触して応力を逃がさずに粗形状をより効率的に整えられる。言い換えれば、溝形状をツルアー41に簡単に転写できる。
【0055】
一方、工程Bにおいて用いられるR状部83は、直線部81、及び、斜面部82が、直線状に構成されているのと比較して、溝の内側に向かって凸形状となっており、形状が異なる。ここに、ツルアー41を接触させると、その位置、接触のさせ方に応じて任意の形状に加工できる。
【0056】
工程の説明に戻り、直径・粗形状の調整が終わると、ツルアー41は、第2溝62のZ(-)方向のR状部83に沿うようにして、直線部81、及び、斜面部82から離れながら(使用する位置を変えるために)、Z(-)方向に移動する。図8(b)の矢印がツルアー41の移動方向を表している。
【0057】
R状部83に沿うように移動しながら、ツルアー41のエッジ処理が行われる。図8(c)(d)は、R状部83によるエッジ処理の様子を表している。この工程では、すでに説明した図6のステップ1において受け付けた所望の断面形状のデータに基づき、R状部83に沿うようにツルアー41を(必要に応じて往復)移動させながら、エッジ形状等が調整される。
典型的には、R状部83は、直径・粗形状の調整(工程A)の際には、ツルアー41と接していないことが好ましい。R状部83は、曲面形状を有しているため、ツルアー41の当て方、すなわち、ツルアー41のY、Z軸方向の移動のさせ方によって、その断面形状を任意に調整しやすい(工程B)。
【0058】
次に、同様にして、図8(e)、図8(f)のように、ツルアー41を第2溝62の上側(Z(+))側のR状部83に沿うように移動させながら、ツルアー41の(主に)上端側の形状を調整する。
なお、本実施形態では、ツルアー41の下側を先に処理しているが、すでに説明したとおり、ツルアー41の上側を先に処理してもよい。
【0059】
図8(g)は、エッジ処理終了後のツルアー41を表している。このように調整されるツルアー41の調整後の断面形状85は、直線部81、及び、斜面部82によって直径・粗形状が調整された後の84とは、異なる形状となってよい。言い換えれば、本方法によれば、第2溝62を用いて、直径・粗形状を調整し、更に、任意の断面形状となるよう、加工できる。
【0060】
従来、マスター砥石を用いたツルアーの成形においては、マスター溝の形状をツルアーに転写する都合で、個々のマスター溝の形状が、個々のツルアーの断面形状に対応していた。そのため、複数のツルアーを、それぞれ異なる断面形状に調整しようとする場合、マスター砥石を複数用意して交換して形状を転写する、又は、複数のマスター溝を有するマスター砥石を使用して、それぞれ別のマスター溝の形状を転写する等の方法が採用されてきた。
【0061】
しかし、本方法によれば、マスター砥石、又は、複数のマスター溝を使用しなくても、開口部にR状部を有するマスター溝を用いて、ツルアーの断面形状を任意に調整できる。
【符号の説明】
【0062】
10…ウェーハ面取り装置
11…本体ベース
20…ウェーハ送りユニット
21…X軸ベース
22…X軸ガイドレール
23…X軸リニアガイド
24…Xテーブル
25…X軸駆動機構
26…Y軸ガイドレール
27…Y軸リニアガイド
28…Yテーブル
29…Z軸ガイドレール
30…Z軸駆動機構
31…Zテーブル
32…θ軸モータ
33…θスピンドル
34…ウェーハテーブル
41…ツルアー
50…砥石回転ユニット
51…外周砥石スピンドル
52…外周粗研削砥石
53…ターンテーブル
54…外周精研スピンドル
55…研削砥石
56…外周精研モータ
60…マスター砥石
61…第1溝
62…第2溝
81…直線部
82…斜面部
83…R状部
84…断面形状
85…断面形状
CW…ウェーハテーブル回転軸心
GC…円盤状
W…ウェーハ
n…面幅

図1
図2
図3
図4
図5
図6
図7
図8