IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 栗田工業株式会社の特許一覧

特開2024-17788監視システム、学習装置、監視方法、学習方法およびプログラム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024017788
(43)【公開日】2024-02-08
(54)【発明の名称】監視システム、学習装置、監視方法、学習方法およびプログラム
(51)【国際特許分類】
   C02F 1/00 20230101AFI20240201BHJP
   G06T 7/00 20170101ALI20240201BHJP
【FI】
C02F1/00 V
G06T7/00 350C
【審査請求】有
【請求項の数】20
【出願形態】OL
(21)【出願番号】P 2022120673
(22)【出願日】2022-07-28
(71)【出願人】
【識別番号】000001063
【氏名又は名称】栗田工業株式会社
(74)【代理人】
【識別番号】100161207
【弁理士】
【氏名又は名称】西澤 和純
(74)【代理人】
【識別番号】100161506
【弁理士】
【氏名又は名称】川渕 健一
(74)【代理人】
【識別番号】100178847
【弁理士】
【氏名又は名称】服部 映美
(72)【発明者】
【氏名】原田 要
(72)【発明者】
【氏名】栗原 信一
【テーマコード(参考)】
5L096
【Fターム(参考)】
5L096AA06
5L096BA02
5L096CA04
5L096DA02
5L096HA09
5L096HA11
5L096KA04
5L096KA15
(57)【要約】
【課題】排水を固液分離するための固液分離槽の槽内状態を監視できる監視システム、学習装置、監視方法、学習方法およびプログラムを提供すること。
【解決手段】監視システムは、排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定する判定部と、診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定部が判定した前記固液分離槽の内部の状態を特定する情報を出力する出力部とを有する。
【選択図】図1
【特許請求の範囲】
【請求項1】
排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定する判定部と、
診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定部が判定した前記固液分離槽の内部の状態を特定する情報を出力する出力部と
を有する監視システム。
【請求項2】
排水を固液分離するための固液分離槽の内部を表した画像である監視画像と前記固液分離槽の内部の前記監視画像に基づく診断結果とに基づいて、監視画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部を表した監視画像から固液分離槽の内部の状態を判定する判定部と、
診断の対象である前記固液分離槽の前記監視画像と前記第1学習モデルとを用いて前記判定部が判定した前記固液分離槽の内部の状態を特定する情報を出力する出力部と
を有し、
前記監視画像は、測定不良時の画像であるエラー画像を含まない、
監視システム。
【請求項3】
前記上澄水画像は、測定不良時の画像であるエラー画像を含まない、
請求項1に記載の監視システム。
【請求項4】
前記上澄水画像と前記上澄水画像に基づく診断結果となる原因を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果となる原因を特定する情報との関係を学習した第2学習モデルを用いて、診断の対象である前記固液分離槽の前記上澄水画像から固液分離槽の内部の前記状態となる原因を特定する情報を判定する原因判定部を有し、
前記出力部は、診断の対象である前記固液分離槽の前記上澄水画像と前記第2学習モデルとを用いて前記原因判定部が判定した固液分離槽の内部の前記状態となる原因を特定する情報をさらに出力する、請求項1に記載の監視システム。
【請求項5】
前記上澄水画像と前記上澄水画像に基づく診断結果への対処方法を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果への対処方法を特定する情報との関係を学習した第3学習モデルを用いて、診断の対象である前記固液分離槽の前記上澄水画像から固液分離槽の内部の前記状態への対処方法を特定する情報を判定する対処方法判定部を有し、
前記出力部は、診断の対象である前記固液分離槽の前記上澄水画像と前記第3学習モデルとを用いて前記対処方法判定部が判定した固液分離槽の内部の前記状態への対処方法を特定する情報をさらに出力する、請求項1に記載の監視システム。
【請求項6】
前記上澄水画像と前記上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を学習した第4学習モデルを用いて、診断の対象である前記固液分離槽の前記上澄水画像から固液分離槽の内部の前記状態の変化の予兆を検出する変化予兆導出部を備え、
前記出力部は、診断の対象である前記固液分離槽の前記上澄水画像と前記第4学習モデルとを用いて前記変化予兆導出部が検出した固液分離槽の内部の前記状態の変化の予兆を特定する情報をさらに出力する、請求項1に記載の監視システム。
【請求項7】
前記診断結果は、上澄水画像に含まれる固形物の堆積状態と固形物の浮遊状態とのいずれか一方又は両方に基づいて生成される、請求項1に記載の監視システム。
【請求項8】
前記判定部は、診断の対象である固液分離槽の内部を表した前記上澄水画像から固液分離槽の内部の状態が、正常と不調と異常とのいずれであるかを判定する、請求項1に記載の監視システム。
【請求項9】
前記判定部が、固液分離槽の内部の前記状態が不調と異常とのいずれかと判定した場合に固液分離槽の内部の前記状態が不調と異常とのいずれかの状態であることを通知する通知部
をさらに有する、請求項1に記載の監視システム。
【請求項10】
排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記固液分離槽の内部の状態の前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成する学習部
を有する学習装置。
【請求項11】
排水を固液分離するための固液分離槽の内部を表した画像である監視画像と前記固液分離槽の内部の状態の前記監視画像に基づく診断結果とに基づいて、監視画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成する学習部
を有し、
前記監視画像は、測定不良時の画像であるエラー画像を含まない、
学習装置。
【請求項12】
前記上澄水画像は、測定不良時の画像であるエラー画像を含まない、
請求項10に記載の学習装置。
【請求項13】
前記学習部は、前記上澄水画像と前記上澄水画像に基づく診断結果となる原因を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果となる原因を特定する情報との関係を表す第2学習モデルを学習によって生成する、
請求項10に記載の学習装置。
【請求項14】
前記学習部は、前記上澄水画像と前記上澄水画像に基づく診断結果への対処方法を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果への対処方法を特定する情報との関係を表した第3学習モデルを学習によって生成する、
請求項10に記載の学習装置。
【請求項15】
前記学習部は、前記上澄水画像と前記上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を表した第4学習モデルを生成する、請求項10に記載の学習装置。
【請求項16】
前記診断結果は、上澄水画像に含まれる固形物の堆積状態と固形物の浮遊状態とのいずれか一方又は両方に基づいて生成される、請求項10に記載の学習装置。
【請求項17】
排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定するステップと、
診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定するステップで判定した前記固液分離槽の内部の状態を特定する情報を出力するステップと
を有する、監視システムが実行する監視方法。
【請求項18】
排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成するステップ
を有する、学習装置が実行する学習方法。
【請求項19】
監視システムのコンピュータに、
排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定するステップと、
診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定するステップで判定した前記固液分離槽の内部の状態を特定する情報を出力するステップと
を実行させる、プログラム。
【請求項20】
学習装置のコンピュータに、
排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記固液分離槽の内部の前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成するステップ
を実行させる、プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、監視システム、学習装置、監視方法、学習方法およびプログラムに関する。
【背景技術】
【0002】
排水処理において曝気槽と沈殿槽とを持つ好気性生物処理(活性汚泥)は成熟した処理形態であり、設備としてはエンジニアリング的にほぼ完成されている。しかしながら、生産物や生産工程、生産量の変更に伴い排水が変化し、想定水質、水量を元に設備設計した時とは流入条件(基質、濃度、流量)が異なってきていることが多い。また、多品種製造への移行から変動が多く、大きくなるケースも増え、プラントの維持管理がより複雑に、難しくなってきている。加えて、水質環境基準の見直しに対応してこれまで以上に処理の安定化が要求される中、一方では処理コストの削減、すなわち電力費や廃棄物費、薬品使用量の削減が求められるようになってきている。このため、処理の状態を正確にかつ迅速に掴み、状態に合わせて適切に調整するような高度な管理が必要とされるが、このような計測監視は容易でない。
【0003】
処理の状態を監視する技術に関して、液面から垂直に超音波パルスを放射して、その反射パルスを受信した結果に基づいて、液中の浮遊混濁物から形成される界面の位置(界面深度)を測定する技術が知られている(例えば、特許文献1参照)。
また、固液分離槽などの槽内の状態を監視する技術が知られている(例えば、特許文献2参照)。この技術は、超音波または光を送出し、懸濁物堆積層を含む水中を伝播した超音波または光を受信するセンサによる受信信号をデジタル信号に変換するA/D変換器と、デジタル信号に基づいて、槽内の界面の位置を算出する算出部と、デジタル信号を画素データに変換するグラフィック変換部と、画素データおよび界面位置データを格納するメモリと、該メモリに格納されている画素データを表示する表示部とを備える。
また、複数の時間幅の画像情報の切り替え表示を迅速にかつ安定的に行うことができる界面レベル計が知られている(例えば、特許文献3参照)。この界面レベル計は、超音波センサと、超音波センサによる受信信号をデジタル信号に変換するA/D変換器と、デジタル信号に基づいて、懸濁物堆積層と上澄水との界面の位置を算出する算出部と、デジタル信号を所定の色階調に対応する画素データに変換するグラフィック変換部と、複数の画素データを含む画素列データの取得及び格納をそれぞれ異なる時間間隔で行う記憶領域を有するメモリと、記憶領域のいずれか1つに格納されている複数の画素列データを色階調に基づいて表示する表示領域、及び算出部により算出された前記界面の位置を表示する表示領域を有する表示部とを備える。
【0004】
また、沈殿状態を計測する技術が知られている(例えば、特許文献4参照)。この技術は、沈殿池の水面から垂直下方に超音波を発信及び受信する超音波送受信手段と、超音波送受信手段で得られる反射受信波を処理する波形処理手段とを含む。波形処理手段で反射受信波の強度変化に基づいて水面下に浮遊する物質量、及び/または、沈殿物の濃度分布を計測する。
また、汚泥堆積層内の層同士の界面を検出する技術が知られている(例えば、特許文献5参照)。この技術は、固液分離槽内の液中において、超音波または光を送出すると共に、汚泥堆積層を含む水中を伝播した超音波または光を受信するセンサを用い、該センサからの信号に基づいて、汚泥堆積層と上澄水との界面の位置を検出すると共に、該汚泥堆積層内の最上層を占める自由沈降層とその下側の凝集沈降層との界面を検出する。この技術は、該汚泥堆積層内の最上部において槽の深さ方向におけるセンサの受信信号強度分布が一定である帯域を自由沈降層とし、該自由沈降層の受信信号強度よりも受信信号強度分布が大きくなり始める位置を自由沈降層と凝集沈降層との界面とする。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平3-274484号公報
【特許文献2】特開2011-047761号公報
【特許文献3】特開2011-13084号公報
【特許文献4】特開平4-264235号公報
【特許文献5】特開2011-47760号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
前述した技術では、処理の状態を監視することによって得られる画像(以下「監視画像」という)は、人により解釈されていた。人は、監視画像を解釈することによって、現状の処理の状態を診断していた。また、処理の状態を診断した結果の原因について、人が経験に基づいて、診断していた。さらに、対処方法についても、人が判断していた。監視画像を解釈するには、経験が必要であり、解釈する人によって解釈結果に違いが生じる場合がある。
本発明は上記事情に鑑みてなされたものであり、排水を固液分離するための固液分離槽の槽内状態を監視できる監視システム、学習装置、監視方法、学習方法およびプログラムを提供することを目的とする。
【課題を解決するための手段】
【0007】
(1)本発明の一態様は、排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定する判定部と、診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定部が判定した前記固液分離槽の内部の状態を特定する情報を出力する出力部とを有する監視システムである。
(2)本発明の一態様は、排水を固液分離するための固液分離槽の内部を表した画像である監視画像と前記固液分離槽の内部の前記監視画像に基づく診断結果とに基づいて、監視画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部を表した監視画像から固液分離槽の内部の状態を判定する判定部と、診断の対象である前記固液分離槽の前記監視画像と前記第1学習モデルとを用いて前記判定部が判定した前記固液分離槽の内部の状態を特定する情報を出力する出力部とを有し、前記監視画像は、測定不良時の画像であるエラー画像を含まない、監視システムである。
(3)本発明の一態様は、上記(1)に記載の監視システムにおいて、前記上澄水画像は、測定不良時の画像であるエラー画像を含まない。
(4)本発明の一態様は、上記(1)に記載の監視システムにおいて、前記上澄水画像と前記上澄水画像に基づく診断結果となる原因を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果となる原因を特定する情報との関係を学習した第2学習モデルを用いて、診断の対象である前記固液分離槽の前記上澄水画像から固液分離槽の内部の前記状態となる原因を特定する情報を判定する原因判定部を有し、前記出力部は、診断の対象である前記固液分離槽の前記上澄水画像と前記第2学習モデルとを用いて前記原因判定部が判定した固液分離槽の内部の前記状態となる原因を特定する情報をさらに出力する。
(5)本発明の一態様は、上記(1)に記載の監視システムにおいて、前記上澄水画像と前記上澄水画像に基づく診断結果への対処方法を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果への対処方法を特定する情報との関係を学習した第3学習モデルを用いて、診断の対象である前記固液分離槽の前記上澄水画像から固液分離槽の内部の前記状態への対処方法を特定する情報を判定する対処方法判定部を有し、前記出力部は、診断の対象である前記固液分離槽の前記上澄水画像と前記第3学習モデルとを用いて前記対処方法判定部が判定した固液分離槽の内部の前記状態への対処方法を特定する情報をさらに出力する。
(6)本発明の一態様は、上記(1)に記載の監視システムにおいて、前記上澄水画像と前記上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を学習した第4学習モデルを用いて、診断の対象である前記固液分離槽の前記上澄水画像から固液分離槽の内部の前記状態の変化の予兆を検出する変化予兆導出部を備え、前記出力部は、診断の対象である前記固液分離槽の前記上澄水画像と前記第4学習モデルとを用いて前記変化予兆導出部が検出した固液分離槽の内部の前記状態の変化の予兆を特定する情報をさらに出力する。
(7)本発明の一態様は、上記(1)に記載の監視システムにおいて、前記診断結果は、上澄水画像に含まれる固形物の堆積状態と固形物の浮遊状態とのいずれか一方又は両方に基づいて生成される。
(8)本発明の一態様は、上記(1)に記載の監視システムにおいて、前記判定部は、診断の対象である固液分離槽の内部を表した前記上澄水画像から固液分離槽の内部の状態が、正常と不調と異常とのいずれであるかを判定する。
(9)本発明の一態様は、上記(1)に記載の監視システムにおいて、前記判定部が、固液分離槽の内部の前記状態が不調と異常とのいずれかと判定した場合に固液分離槽の内部の前記状態が不調と異常とのいずれかの状態であることを通知する通知部をさらに有する。
【0008】
(10)本発明の一態様は、排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記固液分離槽の内部の状態の前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成する学習部を有する学習装置である。
(11)本発明の一態様は、排水を固液分離するための固液分離槽の内部を表した画像である監視画像と前記固液分離槽の内部の状態の前記監視画像に基づく診断結果とに基づいて、監視画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成する学習部を有し、前記監視画像は、測定不良時の画像であるエラー画像を含まない、学習装置である。
(12)本発明の一態様は、上記(10)に記載の学習装置において、前記上澄水画像は、測定不良時の画像であるエラー画像を含まない。
(13)本発明の一態様は、上記(10)に記載の学習装置において、前記学習部は、前記上澄水画像と前記上澄水画像に基づく診断結果となる原因を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果となる原因を特定する情報との関係を表す第2学習モデルを学習によって生成する。
(14)本発明の一態様は、上記(10)に記載の学習装置において、前記学習部は、前記上澄水画像と前記上澄水画像に基づく診断結果への対処方法を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果への対処方法を特定する情報との関係を表した第3学習モデルを学習によって生成する。
(15)本発明の一態様は、上記(10)に記載の学習装置において、前記学習部は、前記上澄水画像と前記上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を表した第4学習モデルを生成する。
(16)本発明の一態様は、上記(10)に記載の学習装置において、前記診断結果は、上澄水画像に含まれる固形物の堆積状態と固形物の浮遊状態とのいずれか一方又は両方に基づいて生成される。
【0009】
(17)本発明の一態様は、排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定するステップと、診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定するステップで判定した前記固液分離槽の内部の状態を特定する情報を出力するステップと
を有す、監視システムが実行する監視方法である。
【0010】
(18)本発明の一態様は、排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成するステップを有する、学習装置が実行する学習方法である。
【0011】
(19)本発明の一態様は、監視システムのコンピュータに、排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定するステップと、診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定するステップで判定した前記固液分離槽の内部の状態を特定する情報を出力するステップとを実行させる、プログラムである。
【0012】
(20)本発明の一態様は、学習装置のコンピュータに、排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記固液分離槽の内部の前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成するステップを実行させる、プログラムである。
【発明の効果】
【0013】
本発明によれば、排水を固液分離するための固液分離槽の槽内状態を監視できる監視システム、学習装置、監視方法、学習方法およびプログラムを提供できるという効果がある。
【図面の簡単な説明】
【0014】
図1】本発明の実施形態に係る監視システムの構成例を示す図である。
図2】超音波センサの一例を示す図である。
図3】本実施形態に係る監視システムのデータ処理装置の一例を示す図である。
図4】本実施形態に係る監視システムの動作の一例を示す図である。
図5】監視画像の一例を示す図である。
図6】教師データの一例を示す図である。
図7】本実施形態に係る監視システムの動作の例1を示す図である。
図8】本実施形態に係る監視システムの動作の例2を示す図である。
図9】本実施形態に係る監視システムの動作の例3を示す図である。
図10】本実施形態に係るデータ処理装置の他の例を示す図である。
図11】本発明の実施形態の変形例1に係る監視システムの構成例を示す図である。
図12】教師データの一例を示す図である。
図13】実施形態の変形例1に係る監視システムの動作の例1を示す図である。
図14】実施形態の変形例1に係る監視システムの動作の例2を示す図である。
図15】本発明の実施形態の変形例2に係る監視システムの構成例を示す図である。
図16】教師データの一例を示す図である。
図17】実施形態の変形例2に係る監視システムの動作の例1を示す図である。
図18】実施形態の変形例2に係る監視システムの動作の例2を示す図である。
図19】本発明の実施形態の変形例3に係る監視システムの構成例を示す図である。
図20】実施形態の変形例3に係る監視システムの動作の例1を示す図である。
図21】実施形態の変形例3に係る監視システムの動作の例2を示す図である。
図22】本発明の実施形態の変形例4に係る監視システムの構成例を示す図である。
図23】本実施形態の変形例4に係る監視システムの監視装置の一例を示す図である。
図24】実施形態の変形例4に係る監視システムの動作の例1を示す図である。
図25】実施形態の変形例4に係る監視システムの動作の例2を示す図である。
図26】エラー画像の一例である。
図27】他の実施形態に係る監視システムの動作の例1を示す図である。
図28】他の実施形態に係る監視システムの動作の例2を示す図である。
図29】本実施形態に係る監視システムの動作の例3を示す図である。
【発明を実施するための形態】
【0015】
本実施形態の監視システム、監視方法およびプログラムを、図面を参照しつつ説明する。以下で説明する実施形態は一例に過ぎず、本発明が適用される実施形態は、以下の実施形態に限られない。
なお、実施形態を説明するための全図において、同一の機能を有するものは同一符号を用い、繰り返しの説明は省略する。
また、本願でいう「XXに基づいて」とは、「少なくともXXに基づく」ことを意味し、XXに加えて別の要素に基づく場合も含む。また、「XXに基づいて」とは、XXを直接に用いる場合に限定されず、XXに対して演算や加工が行われたものに基づく場合も含む。「XX」は、任意の要素(例えば、任意の情報)である。
【0016】
[実施形態]
(監視システム)
図1は、本発明の実施形態に係る監視システムの構成例を示す図である。本実施形態に係る監視システム100は、沈殿槽、濃縮槽などの固液分離槽の汚泥堆積状態を診断する。本実施形態では、固液分離槽を備える設備の一例として、下水処理設備10について説明を続ける。
(下水処理設備10)
下水処理設備10の一例は、前沈殿槽11と、濃縮槽12と、貯留槽13と、脱水機14と、コンテナ15と、曝気槽16と、後沈殿槽17と、ポンプ18と、設備制御装置19とを備える。
前沈殿槽11は、流路P1によって曝気槽16と接続されている。前沈殿槽11には、原水が導入される。前沈殿槽11は、導入された原水から初沈汚泥(引抜汚泥)を沈降分離する。沈降分離後の被処理水は、流路P1を経由して曝気槽16に導入される。
曝気槽16は、流路P2によって後沈殿槽17と接続されている。曝気槽16は、前沈殿槽11から導入された被処理水に対して、散気管からの空気曝気により好気性処理を行う。曝気槽16において好気性処理された被処理水は、流路P2を経由して後沈殿槽17に導入される。
【0017】
後沈殿槽17は、流路P3によってポンプ18と接続されている。ポンプ18は、流路P4と接続されている。流路P4は流路P5と流路P6とに分岐されている。流路P5は濃縮槽12と接続され、流路P6は曝気槽16と接続されている。後沈殿槽17は、曝気槽16から導入された被処理水を沈降汚泥(引抜汚泥)と上澄水とに分離する。後沈殿槽17の上澄水は、放流水として下水処理設備10の外に放流される。また、後沈殿槽17に沈殿した汚泥の一部は、余剰汚泥としてポンプ18と流路P4と流路P5とを経由して濃縮槽12へ導入される。後沈殿槽17に沈殿した汚泥の残りは、返送汚泥として、流路P4と配管P6とを経由して曝気槽16へ返送される。ポンプ18が設備制御装置19によって制御されることによって、後沈殿槽17に沈殿した汚泥のうち、所定の量の汚泥が流路P4に導入される。
また、前沈殿槽11は、流路P7によって濃縮槽12と接続されている。濃縮槽12には、前沈殿槽11から流路P7を経由して引抜汚泥が導入される。濃縮槽12は流路P8によって前沈殿槽11と接続され、流路P9によって貯留槽13と接続される。
【0018】
濃縮槽12では、投入された汚泥は重力によって上澄水と濃縮汚泥とに分離される。上澄水は、流路P8を介して前沈殿槽11に返送される。濃縮汚泥は、濃縮槽12の底部から抜き出され、流路P9を介して貯留槽13に導入される。
貯留槽13は、流路P10によって脱水機14と接続されている。貯留槽13は、濃縮槽12から導入された濃縮汚泥を一時的に貯める。濃縮槽12に貯められた濃縮汚泥は、脱水機14に導入される。脱水機14は、コンベヤP11によってコンテナ15と接続されている。脱水機14は、貯留槽13から導入された濃縮汚泥を脱水処理する。脱水処理することによって生じた脱水ケーキは、コンベヤP11を経由してコンテナ15へ導入される。コンテナ15は、脱水機14によって導入された脱水ケーキを収容し、収容した脱水ケーキを搬出する。
【0019】
(監視システム100)
監視システム100は、超音波センサ20と、データ処理装置30と、ゲートウェイ装置31と、情報処理装置40と、端末装置45と、監視装置50とを備える。
ゲートウェイ装置31と、情報処理装置40と、端末装置45と、監視装置50とは、ネットワークNWを介して接続される。ネットワークNWは、無線または有線による通信網である。このネットワークNWには、インターネットやイントラネットなどが含まれる。具体的には、ネットワークNWは、WAN(Wide Area Network)、LAN(Local Area Network)などによって構成される情報通信ネットワークである。このWANには、例えば、携帯電話網、PHS(Personal Handy-phone System)網、PSTN(Public Switched Telephone Network;公衆交換電話網)、専用通信回線網、およびVPN(Virtual Private Network)などが含まれる。
【0020】
超音波センサ20は、超音波発信回路から、パルス電圧を超音波振動子に与えて水中に超音波を発信する。本実施形態では、一例として、超音波センサ20が、後沈殿槽17に設置され、後沈殿槽の内部に超音波を発信する場合について説明を続ける。ここで、電圧[V]から音圧[dB]に転換される。振動子が微小に震えることによって、超音波を生じる。振動子の一例は、セラミック素子である。水中で”何か”に反射して返ってきた反射波を振動子が受けると起電することによって起電力が生じ、超音波受信回路が電圧を検出する。
図2は、超音波センサの一例を示す図である。図2に示すように、超音波センサ20は送信用の振動子2である発振(発信)部21と受信用の振動子である受信部22とを備える。図2には、一例として、超音波センサ20が、発振部21と受信部22との二個の振動子を備える場合について説明する。しかし、送信用の振動子と受信用の振動子とを一つの振動子で実現してもよい。
超音波センサ20は、汚泥等の懸濁物堆積層23とその懸濁物堆積層23の上澄水24とを貯留する後沈殿槽17(以下、処理槽25ともいう)の所定の高さ27に機構(図示なし)によって取り付けられている。超音波センサ20を計測する処理槽25に設置することによって、深さは不変となるため、深さを変更することはない。例えば深さが5mの槽であるとき、200ドットを5mに振り分けて画像データベースを作成することができる。この場合、1画素当たり2.5cmとなり、表示分解能は2.5cmとなる。例えば、計測設定時に深さを入力する設定項目があり、この設定値に基づき深さ方向データの間引きが行なわれてもよい。ある部分を拡大できるように、全データを収納していて、指示に応じて間引き表示させたり、部分的に拡大して表示(全表示)させたりしてもよい。 発振部21は、信号生成回路(図示なし)により生成された電気信号を超音波振動子に与え、処理槽25の下面に向かって送信する。
【0021】
発振部21によって送信された超音波は、懸濁物堆積層23とその上澄水24との界面26や、界面26下の懸濁物や処理槽25の底部等によって反射される。反射波は、反射した物体の位置(距離、深さ)に比例した時間差(到達時間)を生じながら、次々に返ってくる。反射波の強さは、その物体の性状(≒密度)に関係し、その情報は音圧(dB)で表される。反射波は受信部22によって受信される。受信部22では、音圧が振動子を振動させ、その強さに応じた電圧が起電する。ここで、音圧[dB]から電圧[V]に転換される。受信部22は受信信号をデータ処理装置30へ出力する。データ処理装置30は、受信部22が出力した受信信号を受信し、受信した受信信号を画像データへ変換する。
【0022】
図3は、本実施形態に係る監視システムのデータ処理装置の一例を示す図である。図3に示される例では、送信用の振動子と受信用の振動子とが一つの振動子で実現されている場合について説明する。
データ処理装置30は、超音波発信受信回路32と、データ変換回路33と、データ演算部34と、画像データ格納部35とを備える。
超音波発信受信回路32は、超音波を送信するための電気信号を生成し、生成した電気信号を超音波センサ20へ出力する。超音波発信受信回路32は、超音波センサ20が出力した電気信号を受信する。超音波発信受信回路32は、受信した電気信号をデータ変換回路33へ出力する。
データ変換回路33は、超音波発信受信回路32が出力した電気信号を取得する。データ変換回路33は、取得した電気信号を増幅する。データ変換回路33は、増幅した電気信号をマスキング処理する。データ変換回路33は、増幅した電気信号をマスキング処理した結果に基づいて、信号強度をデジタル処理化することによってデジタル信号へ変換する。例えば、データ変換回路33は、電気信号を信号強度に基づいて例えば256諧調に変換する。データ変換回路33は、デジタル信号をデータ演算部34へ出力する。
【0023】
データ演算部34は、データ変換回路33が出力したデジタル信号を取得する。また、データ演算部34は、超音波センサ20に設置された熱電対(図示なし)から温度データを取得する。データ演算部34は、取得した温度データを使用して水中を進行する音速の補正演算を行う。また、データ演算部34は、取得したデジタル信号に基づいて、信号の位置(=距離)を時間の関数で表す。また、データ演算部34は、取得したデジタル信号に基づいて、超音波センサ20が超音波を送信してからの時間経過に伴う反射強度(信号強度)の変化を演算する。データ演算部34は、信号の位置(=距離)を時間の関数で表した結果と超音波を送信してからの時間経過に伴う反射強度(信号強度)の変化を演算した結果とに基づいて、信号強度と位置情報とを関連付ける。データ演算部34は、信号強度と位置情報とを関連付けて一時的に格納(ストック)する。
データ演算部34は、懸濁物堆積層23と上澄水24との界面26の位置(深さ)を算出する。例えば、データ演算部34は、超音波センサ20が超音波を送信してからの超音波の反射強度の時間経過に基づいて、反射強度が所定の閾値を超えて急激に大きくなったタイミングまでの経過時間を導出する。データ演算部34は、導出した時間経過に基づいて、界面26までの距離(界面26の位置)を算出する。データ演算部34は、界面レベルの数値のデジタルデータを画像データ格納部35へ出力する。
【0024】
データ演算部34は、ストックしていた信号強度と位置情報とを関連付けた情報と、界面レベルの数値のデジタルデータとを画像データ格納部35へ出力する。ここで、データ演算部34は、界面レベルの判定ができなかった場合には、判定エラーを示す情報を画像データ格納部35へ出力してもよい。データ演算部34は、信号強度と位置情報とを関連付けた情報と、界面レベルの数値のデジタルデータとの各々と温度データとを関連付けた情報とを画像データ格納部35へ出力してもよい。
図4は、本実施形態に係る監視システムの動作の一例を示す図である。図4は、データ演算部34から画像データ格納部35へ出力されるデータの一例を示す。データ演算部34から画像データ格納部35へ出力されるデータの一例は瞬時値で表されている。図4は、データ演算部34から画像データ格納部35へ出力される瞬時値を二次元化して表示したものである。
データ処理装置30では、データ演算部34は、デジタル信号を、ゲートウェイ装置31を経由して監視装置50へ送信する。図1に戻り説明を続ける。
【0025】
(監視装置50)
監視装置50は、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。監視装置50は、通信装置51と、記録装置52と、情報処理部53と、各構成要素を図1に示されているように電気的に接続するためのアドレスバスやデータバス等のバスラインBLとを備える。
通信装置51は、通信モジュールによって実現される。通信装置51は、ネットワークNWを経由して、データ処理装置30、情報処理装置40などの他の装置と通信を行う。通信装置51は、データ処理装置30が送信したデジタル信号を受信する。例えば、通信装置51は、所定の時間間隔毎に過去所定時間の間に計測されたデータを受信する。
具体的には、通信装置51は、1時間に一回、過去1時間分のデータを受信する。また、通信装置51は、端末装置45が送信した監視画像を要求するための監視画像要求を受信する。ここで、監視画像は、固液分離槽に超音波が送信されてからの時間経過に伴う反射強度(受信強度)の変化を示す画像である。通信装置51は、受信した監視画像要求に対して、情報処理部53が出力した監視画像応答を端末装置45へ送信する。通信装置51は、送信した監視画像応答に対して、端末装置45が送信した診断結果通知を受信する。診断結果通知には、監視画像を示す情報と、固液分離槽の内部の状態の診断結果を示す情報が含まれる。
また、通信装置51は、情報処理装置40が送信した槽内状態情報要求を受信する。通信装置51は、情報処理部53が出力した槽内状態情報応答を情報処理装置40へ送信する。通信装置51は、情報処理部53が出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40へ送信する。
【0026】
記録装置52は、例えば、RAM、ROM、HDD、フラッシュメモリ、又はこれらのうち複数が組み合わされたハイブリッド型記憶装置などにより実現される。記録装置52には、監視装置50により実行されるプログラム(監視アプリ)が記憶される。また、記録装置52には、情報処理部53が出力する画素データが記憶される。
記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の内部(槽内)の診断結果とを関連付けた診断結果の教師データと、診断結果の教師データに基づいて、上澄水画像と固液分離槽の内部の状態との関係を機械学習することによって得られた診断結果の学習モデルとが記憶される。ここで、監視画像及び監視画像に含まれる上澄水画像について説明する。
図5は、監視画像の一例を示す。データ処理装置30は、超音波センサ20から水中下方(=底面方向)へ超音波を発信し、超音波が進行する範囲内に存在している物体に当たり返ってきた反射波を受信し、受信した反射波をデジタル信号へ変換する。
情報処理部53は、データ処理装置30が送信したデジタル信号を取得する。情報処理部53は、取得したデジタル信号に基づいて、反射波の強度を色調に変換し、反射波が返ってくるまでの時間を距離に変換して位置情報として与え、色調と距離とを合わせて縦方向にセンサからの距離(=水深)、かつ横方向に経時的(=時系列)に連続プロットする。この連続プロットしたものが監視画像である。図5に示されるように、監視画像には、固液分離槽の底面から固液分離槽底面、レーキ、汚泥堆積層、汚泥界面、上澄水に該当する像が見られる。上澄水画像は、監視画像に含まれる上澄水の画像である。図2を用いて説明すると、監視画像は超音波センサ20による懸濁物堆積層23と上澄水24の測定結果であるのに対し、上澄水画像は超音波センサ20による上澄水24のみの測定結果である。
図6は、教師データの一例を示す図である。図6は、診断結果の教師データを示す。診断結果の教師データは、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果とを関連付けたデータである。本実施形態では、一例として、複数の上澄水画像の各々に対して、診断結果として「正常」と「異常」と「不調」とのいずれかが関連付けられる。図6の説明においては、便宜上監視画像により説明する。図6において、(1)は、上澄水が十分な深さがあるため、正常であると診断される。(2)は、上澄水の深さが浅いため、異常であると診断される。(3)は、上澄水に堆積汚泥の舞い上がりが見られるため、不調であると診断される。図1に戻り説明を続ける。
【0027】
情報処理部53は、例えば、グラフィック化部54と、現状判定部55と、学習部56として機能する。
グラフィック化部54は、通信装置51が受信したデジタル信号を取得する。グラフィック化部54は、取得したデジタル信号の値を画素データに変換する。グラフィック化部54は、デジタル信号の変換後の画素データを記録装置52に記憶させる。
グラフィック化部54は、通信装置51が受信した上澄水画像要求を取得する。グラフィック化部54は、取得した上澄水画像要求に基づいて、記録装置52に記憶した画素データを取得する。グラフィック化部54は、取得した画素データに基づいて、監視画像に含まれる上澄水の画像を作成する。グラフィック化部54は、作成した上澄水画像を示す情報を含み、情報処理装置40を宛先とする上澄水画像応答を作成する。グラフィック化部54は、作成した上澄水画像応答を通信装置51へ出力する。
グラフィック化部54は、例えば監視画像から上澄水と汚泥堆積層の界面である汚泥界面を検出し、汚泥界面から縦方向上方(水深が浅くなる方向)の画素データを上澄水画像として作成する。汚泥界面は、データ演算部34により算出される界面26である。グラフィック化部54は、データ演算部34により算出される界面26の位置を汚泥界面としてもよい。グラフィック化部54は、通信装置51が受信した槽内状態情報要求を取得する。グラフィック化部54は、取得した槽内状態情報要求に基づいて、記録装置52に記憶した画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。グラフィック化部54は、作成した上澄水画像を示す情報を含み、情報処理装置40を宛先とする槽内状態情報応答を作成する。グラフィック化部54は、作成した槽内状態情報応答を通信装置51へ出力する。
【0028】
現状判定部55は、記録装置52に記憶された画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。現状判定部55は、記録装置52に記憶された診断結果の学習モデルを取得する。現状判定部55は、取得した診断結果の学習モデルに基づいて、作成した上澄水画像の固液分離槽の内部の状態を判定する。現状判定部55は、固液分離槽の内部の状態の判定結果が不調又は異常である場合には、固液分離槽の内部の状態の判定結果を示す情報を含む、情報処理装置40を宛先とする状態通知情報を作成する。現状判定部55は、作成した状態通知情報を通信装置51へ出力する。通信装置51は、現状判定部55が出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40へ送信する。
現状判定部55は、上澄水画像を作成する場合に、計測したデータをそのまま使用してもよいし、間引きすることによって限られた表示幅に長時間の間に計測されたデータを含めてもよい。限られた表示幅に長時間の間に計測されたデータを含めることによって、より長い時間の変化を監視できる。仮に、静止画であるならば、任意の適当な間隔で画素データをピックアップして切替表示させることができるが、本実施形態では常に計測を行なって新しいデータが追加されていくため、任意の適当な間隔で画素データをピックアップして切替表示させた場合にはデータ処理に遅延や阻害をきたすおそれがあり、画像表示のために計測が不安定となっては本末転倒となる。そこで、本実施形態では、予めプリセットされた表示時間幅がいくつか用意され、複数の表示時間幅の各々に対応する時間幅用のデータ格納領域が作成される。本実施形態では、新規データを追加する間隔(インターバル)が指定され、複数のインターバルの各々に対応する画像データベース(データ格納領域(番地))が作成される。
【0029】
監視装置50に対して、表示を切り替える操作が行われるとともに、表示時間幅が選択される。現状判定部55は、選択された時間表示幅に対応したデータベースからデータを取得し、取得したデータを使用して上澄水画像を作成する。仮に、時間表示幅を切り替え操作が行われた場合には、選択された時間表示幅に対応したデータベースからデータを取得し、取得したデータを使用して上澄水画像を作成する。このように構成することによって、データが格納されるデータベースのデータを加工することなく、上澄水画像を作成するタイムラグもなく、スムーズな切り替えができる。
学習部56は、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる上澄水画像を示す情報とその上澄水画像による固液分離槽の内部(槽内)の状態の診断結果とを関連付けた診断結果の教師データを記録装置52に記憶させる。学習部56は、記録装置52に記憶された診断結果の教師データを取得する。学習部56は、取得した診断結果の教師データに基づいて、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果とを機械学習(教師あり学習)することによって、上澄水画像と固液分離槽の内部の状態とを関係付けた診断結果の学習モデルを生成する。例えば、学習部56は、畳み込みニューラルネットワーク(CNN: Convolutional neural network)を使用して、上澄水画像を認識する。診断結果の学習モデルによって、上澄水画像を示す情報に基づいて、上澄水画像が、固液分離槽の内部の状態として、正常と、不調と、異常とのいずれかに分類される。学習部56は、生成した診断結果の学習モデルを記録装置52に記憶させる。
情報処理部53の全部または一部は、例えば、CPU(Central Processing Unit)などのプロセッサが記録装置52に格納された監視アプリなどのプログラムを実行することにより実現される機能部(以下、ソフトウェア機能部と称する)である。なお、情報処理部53の全部または一部は、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)、またはFPGA(Field-Programmable Gate Array)などのハードウェアにより実現されてもよく、ソフトウェア機能部とハードウェアとの組み合わせによって実現されてもよい。
【0030】
(情報処理装置40)
情報処理装置40は、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。情報処理装置40の一例は、下水処理設備10を遠隔から監視する監視センタに設置される。
情報処理装置40は、監視装置50が送信した状態情報通知を受信した場合に、受信した状態情報通知に含まれる固液分離槽の判定結果を表示する。
また、情報処理装置40は、オペレータが固液分離槽内の状態の情報を取得する操作に基づいて、槽内の状態を要求する情報を含む、監視装置50を宛先とする槽内状態情報要求を作成する。情報処理装置40は、作成した槽内状態情報要求を通信装置51へ送信する。
情報処理装置40は、槽内状態情報要求に対して監視装置50が送信した槽内状態情報応答を受信する。情報処理装置40は、受信した槽内状態情報応答に含まれる上澄水画像を取得する。情報処理装置40は、取得した上澄水画像を表示する。
【0031】
(端末装置45)
端末装置45は、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。端末装置45の一例は、下水処理設備10を監視する監視センタに設置される。
ユーザーは、固液分離槽の内部の状態を診断する場合に、端末装置45を操作することによって、上澄水画像を要求する情報を含む、監視装置50を宛先とする上澄水画像要求を作成させる。端末装置45は、ユーザーの操作に基づいて、上澄水画像要求を作成する。端末装置45は、作成した上澄水画像要求を監視装置50へ送信する。
端末装置45は、監視装置50へ送信した上澄水画像要求に対して監視装置50が送信した上澄水画像応答を受信する。端末装置45は、上澄水画像応答に含まれる監視画像を表示する。ユーザーは、端末装置45が表示した上澄水画像を参照し、上澄水画像に含まれる固液分離槽の内部の状態を診断する。
ユーザーは、端末装置45を操作することによって、上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果を含む、監視装置50を宛先とする診断結果通知を作成させる。端末装置45は、ユーザーの操作に基づいて、診断結果通知を作成する。端末装置45は、作成した診断結果通知を監視装置50へ送信する。
【0032】
(監視システムの動作)
図7は、本実施形態に係る監視システムの動作の例1を示す図である。図7を参照して、監視装置50が、端末装置45が送信した診断結果通知に含まれる固液分離槽の内部の状態の診断結果を蓄積し、蓄積した固液分離槽の内部の状態の診断結果に基づいて、機械学習を行い、診断結果の学習モデルを生成する処理について説明する。
(ステップS1-1)
データ処理装置30において、超音波発信受信回路32は超音波を送信するための電気信号を生成し、生成した電気信号を超音波センサ20へ出力する。
(ステップS2-1)
データ処理装置30において、超音波発信受信回路32は超音波センサ20が出力した電気信号を受信する。
(ステップS3-1)
データ処理装置30において、超音波発信受信回路32は、受信した電気信号をデータ変換回路33へ出力する。データ変換回路33は、超音波発信受信回路32が出力した電気信号を取得する。データ変換回路33は、取得した電気信号を増幅する。データ変換回路33は、増幅した電気信号をマスキング処理する。データ変換回路33は、増幅した電気信号をマスキング処理した結果に基づいて、信号強度をデジタル処理化することによってデジタル信号へ変換する。データ演算部34は、データ変換回路33からデジタル信号を取得し、取得したデジタル信号について、位置(距離)情報に関わる温度補正演算、界面レベルの判定演算を行う。
(ステップS4-1)
データ処理装置30において、データ演算部34は、位置(距離)情報に関わる温度補正演算、界面レベルの判定演算を行ったデジタル信号を、ゲートウェイ装置31を経由して監視装置50へ送信する。
(ステップS5-1)
監視装置50において、通信装置51は、データ処理装置30が送信したデジタル信号を受信する。グラフィック化部54は、通信装置51が受信したデジタル信号を取得する。グラフィック化部54は、取得したデジタル信号の値を画素データに変換する。
(ステップS6-1)
監視装置50において、グラフィック化部54は、デジタル信号に変換後の画素データを記録装置52に記憶させる。
(ステップS7-1)
端末装置45は、上澄水画像要求を作成する。
【0033】
(ステップS8-1)
端末装置45は、作成した上澄水画像要求を監視装置50へ送信する。
(ステップS9-1)
監視装置50において、通信装置51は、端末装置45が送信した上澄水画像要求を受信する。グラフィック化部54は、通信装置51が受信した上澄水画像要求を取得する。グラフィック化部54は、取得した上澄水画像要求に基づいて、記録装置52に記憶した画素データを取得する。グラフィック化部54は、取得した画素データに基づいて、上澄水画像を作成する。グラフィック化部54は、作成した上澄水画像を示す情報を含む、端末装置45を宛先とする上澄水画像応答を作成する。
(ステップS10-1)
監視装置50において、グラフィック化部54は、作成した上澄水画像応答を通信装置51へ出力する。通信装置51は、グラフィック化部54が出力した上澄水画像応答を取得し、取得した上澄水画像応答を端末装置45へ送信する。
(ステップS11-1)
端末装置45は、監視装置50が送信した上澄水画像応答を受信する。端末装置45は、受信した上澄水画像応答に含まれる上澄水画像を示す情報を画像処理することによって上澄水画像を表示する。端末装置45は、上澄水画像を示す情報と、上澄水画像を診断した結果とを含む診断結果通知を作成する。
(ステップS12-1)
端末装置45は、作成した診断結果通知を監視装置50へ送信する。
(ステップS13-1)
監視装置50において、通信装置51は、端末装置45が送信した診断結果通知を受信する。学習部56は、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる上澄水画像を示す情報とその上澄水画像による固液分離槽の内部(槽内)の状態の診断結果とを関連付けた診断結果の教師データを記録装置52に記憶させる。
(ステップS14-1)
監視装置50において、学習部56は、記録装置52に記憶された診断結果の教師データを取得する。学習部56は、取得した診断結果の教師データに基づいて、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果とを機械学習することによって、上澄水画像と固液分離槽の内部の状態とを関係付けた診断結果の学習モデルを生成する。
(ステップS15-1)
監視装置50において、学習部56は、生成した診断結果の学習モデルを記録装置52に記憶させる。
【0034】
なお、診断結果通知は、上澄水画像ではなく監視画像に基づいて診断された結果であってもよい。つまり、ステップS7-1において端末装置45が監視画像要求を作成し、ステップS8-1において端末装置45が作成した監視画像要求を監視装置50へ送信し、ステップS9-1において監視装置50が監視画像を作成し、ステップS10-1において監視装置50が監視画像応答を端末装置45へ送信してもよい。
【0035】
図8は、本実施形態に係る監視システムの動作の例2を示す図である。図8を参照して、監視装置50が、データ処理装置30が送信したデジタル信号を取得し、取得したデジタル信号に基づいて、上澄水画像を作成する。監視装置50が、作成した上澄水画像に基づいて、固液分離槽の内部の状態を判定する処理について説明する。
ステップS1-2からS6-2は、図7のステップS1-1からS6-1を適用できるため、ここでの説明は省略する。
(ステップS7-2)
監視装置50において、現状判定部55は、記録装置52に記憶された画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。
(ステップS8-2)
監視装置50において、現状判定部55は、記録装置52に記憶された診断結果の学習モデルを取得する。
(ステップS9-2)
監視装置50において、現状判定部55は、取得した診断結果の学習モデルに基づいて、作成した上澄水画像の固液分離槽の内部の状態を判定する。
(ステップS10-2)
監視装置50において、現状判定部55は、固液分離槽の内部の状態の判定結果が不調又は異常であるか否かを判定する。現状判定部55は、固液分離槽の内部の状態の判定結果が不調と異常とのいずれでもない、つまり正常と判定した場合には終了する。
(ステップS11-2)
監視装置50において、現状判定部55は、固液分離槽の内部の状態の判定結果が不調又は異常であると判定した場合には、固液分離槽の内部の状態の判定結果を示す情報を含む、情報処理装置40を宛先とする状態通知情報を作成する。
(ステップS12-2)
監視装置50において、現状判定部55は、作成した状態通知情報を通信装置51へ出力する。通信装置51は、現状判定部55が出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40へ送信する。
【0036】
なお、ステップS7-2において監視装置50は上澄水画像を作成するが一例に過ぎない。例えば、監視装置50が画素データに基づいて監視画像を作成し、その後のステップにおいて汚泥界面より深い部分を無視するなどにより、上澄水画像に着目していればよい。
【0037】
図9は、本実施形態に係る監視システムの動作の例3を示す図である。図9を参照して、監視装置50が、情報処理装置40が送信した槽内状態情報要求に基づいて、上澄水画像を示す情報を送信する処理について説明する。
ステップS1-3からS6-3は、図7のステップS1-1からS6-1を適用できるため、ここでの説明は省略する。
(ステップS7-3)
情報処理装置40は、ユーザーの操作に基づいて、槽内状態情報要求を作成する。
(ステップS8-3)
情報処理装置40は、作成した槽内状態情報要求を監視装置50へ送信する。
(ステップS9-3)
監視装置50において、通信装置51は、情報処理装置40が送信した槽内状態情報要求を受信する。グラフィック化部54は、通信装置51が受信した槽内状態情報要求を取得する。グラフィック化部54は、取得した槽内状態情報要求に基づいて、記録装置52に記憶した画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。
(ステップS10-3)
監視装置50において、グラフィック化部54は、作成した上澄水画像を示す情報を含む、情報処理装置40を宛先とする槽内状態情報応答を作成する。
(ステップS11-3)
監視装置50において、グラフィック化部54は、作成した槽内状態情報応答を通信装置51へ出力する。通信装置51は、グラフィック化部54が出力した槽内状態情報応答を取得し、取得した槽内状態情報応答を情報処理装置40へ送信する。
ステップS11-3の後、情報処理装置40は、監視装置50が送信した槽内状態情報応答を受信し、受信した槽内状態情報応答に含まれる上澄水画像を示す情報を取得する。情報処理装置40は、取得した上澄水画像を示す情報を画像処理することによって、上澄水画像を表示する。このように構成することによって、情報処理装置40のユーザーは、固液分離槽の内部の状態を確認できる。
なお、監視装置50は、上澄水画像ではなく監視画像を作成してもよいし、槽内状態情報応答は監視画像を示す情報を含んでもよく、情報処理装置40は、取得した監視画像を示す情報を画像処理することによって、監視画像を表示してもよい。
【0038】
前述した実施形態では、一例として、後沈殿槽17に超音波センサ20が設置され、後沈殿槽17の内部の状態が判定される場合について説明したが、この例に限られない。例えば、前沈殿槽11に超音波センサ20が設置され、前沈殿槽11の内部の状態が判定されてもよいし、濃縮槽12に超音波センサ20が設置され、濃縮槽12の内部の状態が判定されてもよい。つまり、後沈殿槽17と前沈殿槽11と濃縮槽12との少なくとも一つに超音波センサ20が設置され、内部の状態が判定される。
前述した実施形態では、1つの下水処理設備10に監視システム100が接続されている場合について説明したが、この例に限られない。例えば、複数の下水処理設備10に監視システム100が接続されてもよいし、1つの下水処理設備10に複数の監視システム100が接続されてもよい。仮に、複数の下水処理設備10に監視システム100が接続された場合には、Aという設備で経験のない非定常状態が生じた場合に、Bという設備でその非定常状態が生じた経験があれば、“異常”として判断し、出力される可能性が高い。つまり、監視装置50は、より多くの学習が可能となるため、判定に使用できる事例数を増加させることができる。このため、異常又は不調と判断できる非定常状態を増加させることができる。
前述した実施形態では、監視装置50が機械学習を行う場合について説明したが、この例に限られない。例えば、機械学習を行う装置を監視装置50とは別の装置で実現してもよい。この場合、学習装置は、排水を固液分離するための固液分離槽の内部を表した画像である上澄水画像と固液分離槽の内部の上澄水画像に基づく診断結果とを監視装置50から取得する。学習装置は、取得した上澄水画像と固液分離槽の内部の状態の上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を表す診断結果の学習モデルを機械学習(教師あり機械学習)によって生成する学習部を有する。
前述した実施形態では、上澄水画像に基づいて固液分離槽の内部の状態の判定結果が正常と異常と不調とのいずれかであるかを判定する場合について説明したが、この例に限られない。例えば、上澄水画像に基づいて固液分離槽の内部の状態の判定結果が正常と異常とのいずれかであるかを判定してもよいし、上澄水画像に基づいて固液分離槽の内部の状態の判定結果が四種類以上に分類されてもよい。
【0039】
前述した実施形態において、現状判定部55は、作成した上澄水画像を過去の正常な状態の上澄水画像と比較した結果、変化があると判定される場合に、記録装置52に記憶されている診断結果の学習モデルを使用して、固液分離槽の内部の状態を判定してもよい。
前述した実施形態において、データ処理装置30に、表示切替操作部36と、画像データ表示部37とを備えるようにしてもよい。
図10は、本実施形態に係るデータ処理装置の他の例を示す図である。表示切替操作部36の一例は、表示切替ボタンによって構成される。画像データ表示部37の一例は、ディスプレイである。画像データ表示部37に、計測したデータをそのまま表示させてもよいし、計測したデータを間引くことによって限られた表示幅に長時間のデータを表示させてもよい。限られた表示幅に長時間のデータを表示させることによって、長時間の時間変化を監視することができる。
仮に、画像データ表示部37に静止画を表示させる場合には、任意の適当な間隔で画素データをピックアップして切替表示させることができるが、本実施形態のように常に計測を行なって新しいデータが追加されていく場合には、画素データをピックアップして切替表示させる場合にはデータ処理に遅延や阻害が生じるおそれがあり、画像表示のために計測が不安定となっては本末転倒となる。
このため、本実施形態では、予めプリセットした表示時間幅をいくつか用意し、複数の表示時間幅の各々に対応する時間幅用のデータ格納領域を作成し、新規データを追加する間隔(インターバル)を指定して、複数の表示時間幅の各々に対応する画像データベースを作成する。仮に、画像データ表示部37が縦方向(=深さ方向)に200画素、横方向(=時系列)に240画素で構成されるとしたときに1秒ごとにデータを格納した場合には横方向に4分間の表示データとなり、10秒ごとに格納した場合には横方向に40分間の表示データとなる。新規データの追加と同時に、最も古いデータを1つ消去するようにすることによって、限られたデータ領域で運用できる。また、表示幅に必要な240データ以上のデータをストックする領域を設け、スクロール表示させることによってあたかも過去からの変化を動画のようにして観察することもできる。本実施形態では、この2つのデータ格納と表示とが可能である。
【0040】
前述した実施形態において、外部端末から、データ処理装置30の画像データ格納部35にアクセスして画像データ格納部35に格納されているデータを取り出すようにしてもよい。
前述した実施形態において、外部端末からデータ処理装置30のデータ演算部34にアクセスしてもよい。この場合に、外部端末からの指令でデータ演算部34に格納されているデータを取り出して外部端末へ出力させてもよい。このように構成することによって、外部端末にデータ演算部34が出力したデータを表示させることができるため、オンラインでモニタリングが可能となる。
また、この場合に、外部端末の指令により、データ演算部34から最新データを外部端末へ出力させてもよい。データを出力するインターバルは、外部端末で設定可能である。このように構成することによって、外部端末にデータを逐次表示させることができるため、リモート型のライブで画像監視ができる。具体的には、外部端末にインストールされる専用ソフトでデータ演算部34に付与された固有の認識番号(=パスワード)のチェックを逐次データ演算部と外部端末との間で行う。外部端末とデータ演算部との間で、1対1の通信ができるため、信号分配器等の設置による盗聴的なデータ抜き取りを防止できる。
【0041】
前述した実施形態において、データ処理装置30のデータ演算部34に外部端末へデータを送信する設定を行うようにしてもよい。データ演算部34は、データを送信する設定に基づいて外部端末へデータを送信するようにしてもよい。このように構成することによって、外部端末を下水処理設備10の遠隔監視に用いることができる。
前述した実施形態において、データ処理装置30のデータ演算部34に外部のデータサーバー又は記録媒体へデータを出力する設定を行うようにしてもよい。データ演算部34は設定に基づいて、外部のデータサーバー又は記録媒体へデータを出力する。外部のデータサーバーは、データ演算部34が出力したデータに基づいてデータベースを作成する。外部のデータサーバーは、作成したデータベースに基づいて、画像を表示させてもよいし、データを加工してもよい。
前述した実施形態において、データ処理装置30のデータ演算部34が外部端末へデータを送信する場合に、例えばRS232C規格の方式に従って送信してもよい。また、データ処理装置30のデータ演算部34が外部端末へデータを送信する場合に外部端子との間で、そのまま伝送してもよいし、信号変換器を設けて、RS422、RS485規格やUSB(Universal Serial Bus)、LAN、光ファイバーの伝送プロトコルに変換して送信してもよい。また、外部端末から、サーバーへ定期的又は不定期にデータを送信してもよい。この場合、外部端末(小型PCなど)へ、中央監視装置からデータ要求し、外部端末にデータを出力させてもよい。
この場合、外部端末に前述した監視装置50の機能を持たせてもよい。外部端末は、データ演算部34が出力したデータを取得し、取得したデータに基づいて、上澄水画像による固液分離槽の内部の状態を判定し、その判定結果をサーバーへ出力してもよい。また、サーバーに前述した監視装置の現状判定部55の機能を持たせてもよい。外部端末は、データ演算部34が出力したデータを取得し、取得したデータをサーバーへ送信する。サーバーは、外部装置が送信したデータを取得し、取得したデータに基づいて、上澄水画像による固液分離槽の内部の状態を判定する。
【0042】
本実施形態に係る監視システム100によれば、監視装置50は、排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と固液分離槽の内部の上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した診断結果の学習モデルとしての第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定する現状判定部55としての判定部と、診断の対象である固液分離槽の上澄水画像と第1学習モデルとを用いて判定部が判定した固液分離槽の内部の状態を特定する情報を出力する出力部とを有する。
このように構成することによって、監視装置50は、上澄水画像と固液分離槽の内部の診断結果との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定できるため、固液分離槽の槽内状態を監視できる。第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定できることによって、人が経験に基づいて固液分離槽の内部を診断する場合と比較して、人の経験は不要であり、診断結果のバラツキも低減できる。また、人が経験に基づいて固液分離槽の内部を診断する場合には、主に上澄水を見て診断していることから、監視装置50は、固液分離槽の上澄水と汚泥堆積層を含む画像から固液分離槽の内部の状態を診断するよりも、人が行う診断に近い診断を行うことができる。
仮に現場完結型のシステム構成とした場合には槽の寸法や特性が変わらないので、過去と現在との比較が単純に行なえるので、定常時と非定常状態または異常発生の区別を容易にできる。外部から(オンライン/オフラインのどちらでもよい)事例集、最新事例等を取得し、取得した事例集、最新事例等をアップデートさせることによって、異常が検出されたとき、その異常がどんな状態であるかの判別およびその対処策の提示を、過去に発生した経験がなくかつ学習履歴がない場合でも出力させることができる。異常が発生した場合にアクセス可能なデータベースを参照できるようにすることによって、その状態が何であるか推定でき、対処策の入手を可能にできる。また、現場(設備)では起こり得ない判断をするミスを低減できる。このため、エラー判定のリスクを低くでき、また判定に要する時間も短くできる。データハッキング、システムへの攻撃のリスクを低くできる。
【0043】
さらに、監視画像に基づく診断結果は、監視画像に含まれる固形物の堆積状態と固形物の浮遊状態とのいずれか一方又は両方に基づいて生成される。このように構成することによって、監視装置50は、上澄水画像とその上澄水画像が含まれる監視画像に含まれる固形物の堆積状態と固形物の浮遊状態とのいずれか一方又は両方に基づいて生成される診断結果の関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定できる。
さらに、判定部は、診断の対象である固液分離槽の内部を表した上澄水画像から固液分離槽の内部の状態が、正常と不調と異常とのいずれであるかを判定する。このように構成することによって、監視装置50は、上澄水画像と固液分離槽の内部の上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の診断結果との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部を表した上澄水画像から固液分離槽の内部の状態が、正常と不調と異常とのいずれであるかを判定できる。
さらに、判定部が、固液分離槽の内部の状態が不調と異常とのいずれかと判定した場合に固液分離槽の内部の状態が不調と異常とのいずれかの状態であることを通知する通知部をさらに有する。このように構成することによって、固液分離槽の内部の状態が不調と異常とのいずれかと判定した場合に固液分離槽の内部の状態が不調と異常とのいずれかの状態であることを通知できるため、ユーザーに固液分離槽の内部の状態に対応が必要なことを知らせることができる。
【0044】
[実施形態の変形例1]
(監視システム)
図11は、本発明の実施形態の変形例1に係る監視システムの構成例を示す図である。実施形態の変形例1に係る監視システム100aは、沈殿槽、濃縮槽などの固液分離槽の汚泥堆積状態を診断する。実施形態の変形例1では、実施形態と同様に、固液分離槽を備える設備の一例として、下水処理設備10を適用する。
【0045】
(監視システム100a)
監視システム100aは、超音波センサ20と、データ処理装置30と、ゲートウェイ装置31と、情報処理装置40aと、端末装置45aと、監視装置50aとを備える。 ゲートウェイ装置31と、情報処理装置40aと、端末装置45aと、監視装置50aとは、ネットワークNWを介して接続される。
データ処理装置30では、データ演算部34は、デジタル信号を、ゲートウェイ装置31を経由して監視装置50aへ送信する。
(監視装置50a)
監視装置50aは、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。監視装置50aは、通信装置51と、記録装置52と、情報処理部53aと、各構成要素を図11に示されているように電気的に接続するためのアドレスバスやデータバス等のバスラインBLとを備える。
記録装置52には、監視装置50aにより実行されるプログラム(監視アプリ)が記憶される。また、記録装置52には、情報処理部53aが出力する画素データが記憶される。
記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の内部の状態の診断結果とを関連付けた診断結果の教師データと、診断結果の教師データに基づいて、上澄水画像と固液分離槽の内部の状態との関係を機械学習することによって得られた診断結果の学習モデルとが記憶される。
記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関連付けた原因の教師データと、原因の教師データに基づいて、上澄水画像と固液分離槽の内部の状態となる原因を特定する情報との関係を機械学習することによって得られた原因の学習モデルとが記憶される。
【0046】
図12は、教師データの一例を示す図である。図12には、診断結果の教師データと原因の教師データとを示す。診断結果の教師データは、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果とを関連付けたデータである。原因の教師データは、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関連付けたデータである。図12の説明においては、便宜上監視画像により説明する。
実施形態の変形例1では、一例として、実施形態と同様に複数の上澄水画像の各々に対して、診断結果として「正常」と「異常」と「不調」とのいずれかが関連付けられる。さらに、複数の上澄水画像の各々に対して、診断結果に基づいて、診断結果となる原因の推定結果が関連付けられる。
図12において、(1)は、上澄水が十分な深さがあるため、正常であると診断される。正常と診断された場合には、診断結果となる原因の推定結果は記憶されない。
(2)は、上澄水の深さが浅いため、異常であると診断される。この場合、診断結果となる原因の推定結果の一例として、バルキングが記憶される。バルキングとは、汚泥の沈降性が悪化し、上澄水を得にくくなる現象をいう。 (3)は、上澄水に堆積汚泥の舞い上がりが見られるため、不調であると診断される。この場合、診断結果となる原因の推定結果の一例として、汚泥投入速度が速いこと、汚泥投入量が多いこと、汚泥界面が高いことが記憶される。図11に戻り説明を続ける。
【0047】
情報処理部53aは、例えば、グラフィック化部54と、現状判定部55aと、学習部56aと、原因判定部57として機能する。
現状判定部55aは、記録装置52に記憶された画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。現状判定部55aは、記録装置52に記憶された診断結果の学習モデルを取得する。現状判定部55aは、取得した診断結果の学習モデルに基づいて、作成した上澄水画像の固液分離槽の内部の状態を判定する。
学習部56aは、学習部56の機能に加えて以下の機能を有する。学習部56aは、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる上澄水画像を示す情報と診断結果となる原因の推定結果とを関連付けた原因の教師データを記録装置52に記憶させる。学習部56aは、記録装置52に記憶された原因の教師データを取得する。学習部56aは、取得した原因の教師データに基づいて、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果となる原因の推定結果とを機械学習(教師あり学習)することによって、上澄水画像と固液分離槽の内部の状態となる原因を特定する情報とを関係付けた原因の学習モデルを生成する。例えば、学習部56aは、畳み込みニューラルネットワークを使用して、上澄水画像を認識する。原因の学習モデルによって、上澄水画像を示す情報に基づいて、上澄水画像が、固液分離槽の内部の状態となる原因を特定する情報のいずれかに分類される。学習部56aは、生成した原因の学習モデルを記録装置52に記憶させる。
【0048】
原因判定部57は、現状判定部55aから上澄水画像を示す情報と固液分離槽の内部の状態の判定結果とを取得する。原因判定部57は、取得した固液分離槽の内部の状態の判定結果が不調又は異常である場合には、記録装置52に記憶された原因の学習モデルを取得する。原因判定部57は、取得した原因の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態となる原因を特定する情報を判定する。原因判定部57は、上澄水画像を示す情報と固液分離槽の内部の状態を示す情報と固液分離槽の内部の状態となる原因を特定する情報の判定結果を示す情報と含む、情報処理装置40aを宛先とする状態通知情報を作成する。原因判定部57は、作成した状態通知情報を通信装置51へ出力する。通信装置51は、原因判定部57が出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40aへ送信する。
情報処理部53aの全部または一部は、例えば、CPUなどのプロセッサが記録装置52に格納された監視アプリなどのプログラムを実行することにより実現される機能部(以下、ソフトウェア機能部と称する)である。なお、情報処理部53aの全部または一部は、LSI、ASIC、またはFPGAなどのハードウェアにより実現されてもよく、ソフトウェア機能部とハードウェアとの組み合わせによって実現されてもよい。
情報処理装置40aは、情報処理装置40を適用できる。
【0049】
(端末装置45a)
端末装置45aは、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。端末装置45aの一例は、下水処理設備10を監視する監視センタに設置される。
ユーザーは、固液分離槽の内部の状態を診断する場合に、端末装置45aを操作することによって、上澄水画像を要求する情報を含む、監視装置50aを宛先とする上澄水画像要求を作成させる。端末装置45aは、ユーザーの操作に基づいて、上澄水画像要求を作成する。端末装置45aは、作成した上澄水画像要求を監視装置50aへ送信する。
端末装置45aは、監視装置50aへ送信した上澄水画像要求に対して監視装置50aが送信した上澄水画像応答を受信する。端末装置45aは、上澄水画像応答に含まれる上澄水画像を表示する。ユーザーは、端末装置45aが表示した上澄水画像を参照し、上澄水画像に含まれる固液分離槽の内部の状態を診断し、さらに固液分離槽の内部の状態となる原因を推定する。ユーザーは、端末装置45aを操作することによって、上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報とを含む、監視装置50aを宛先とする診断結果通知を作成させる。端末装置45aは、ユーザーの操作に基づいて、診断結果通知を作成する。端末装置45aは、作成した診断結果通知を監視装置50aへ送信する。
【0050】
(監視システムの動作)
図13は、実施形態の変形例1に係る監視システムの動作の例1を示す図である。図13を参照して、監視装置50aが、端末装置45aが送信した診断結果通知に含まれる固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報とを蓄積し、蓄積した固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報とに基づいて機械学習を行い、診断結果の学習モデルと原因の学習モデルとを生成する処理について説明する。
ステップS1-4からS10-4は、図7のステップS1-1からS10-1を適用できるため、ここでの説明は省略する。
(ステップS11-4)
端末装置45aは、監視装置50aが送信した上澄水画像応答を受信する。端末装置45aは、受信した上澄水画像応答に含まれる上澄水画像を示す情報を画像処理することによって上澄水画像を表示する。端末装置45aは、固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報とを含む、監視装置50aを宛先とする診断結果通知を作成する。
(ステップS12-4)
端末装置45aは、作成した診断結果通知を監視装置50aへ送信する。
【0051】
(ステップS13-4)
監視装置50aにおいて、通信装置51は、端末装置45aが送信した診断結果通知を受信する。学習部56aは、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報とを取得する。
学習部56aは、取得した上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果とを関連付けた診断結果の教師データを記録装置52に記憶させる。学習部56aは、取得した上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関連付けた原因の教師データを記録装置52に記憶させる。
(ステップS14-4)
監視装置50aにおいて、学習部56aは、記録装置52に記憶された診断結果の教師データを取得する。学習部56aは、取得した診断結果の教師データに基づいて、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果とを機械学習することによって、上澄水画像と固液分離槽の内部の状態とを関係付けた診断結果の学習モデルを生成する。
学習部56aは、記録装置52に記憶された原因の教師データを取得する。学習部56aは、取得した原因の教師データに基づいて、上澄水画像と固液分離槽の内部の状態の診断結果となる原因を特定する情報とを機械学習することによって、上澄水画像と固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関係付けた原因の学習モデルを生成する。
(ステップS15-4)
監視装置50aにおいて、学習部56aは、生成した診断結果の学習モデルを記録装置52に記憶させる。学習部56aは、生成した原因の学習モデルを記録装置52に記憶させる。
【0052】
なお、診断結果通知は、上澄水画像ではなく監視画像に基づいて診断された結果であってもよい。つまり、ステップS7-4において端末装置45aが監視画像要求を作成し、ステップS8-4において端末装置45aが作成した監視画像要求を監視装置50aへ送信し、ステップS9-4において監視装置50aが監視画像を作成し、ステップS10-4において監視装置50aが監視画像応答を端末装置45aへ送信してもよい。
【0053】
図14は、実施形態の変形例1に係る監視システムの動作の例2を示す図である。図14を参照して、監視装置50aは、データ処理装置30が送信したデジタル信号を取得し、取得したデジタル信号に基づいて、上澄水画像を作成する。監視装置50aは、作成した上澄水画像に基づいて、固液分離槽の内部の状態を判定する処理について説明する。
ステップS1-5からS6-5は、図7のステップS1-1からS6-1を適用できるため、ここでの説明は省略する。
(ステップS7-5)
監視装置50aにおいて、現状判定部55aは、記録装置52に記憶された画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。
(ステップS8-5)
監視装置50aにおいて、現状判定部55aは、記録装置52に記憶された診断結果の学習モデルを取得する。
(ステップS9-5)
監視装置50aにおいて、現状判定部55aは、取得した診断結果の学習モデルに基づいて、作成した上澄水画像の固液分離槽の内部の状態を判定する。
(ステップS10-5)
監視装置50aにおいて、原因判定部57は、現状判定部55aから固液分離槽の内部の状態の判定結果を取得する。原因判定部57は、取得した固液分離槽の内部の状態の判定結果が不調又は異常であるかを判定する。原因判定部57が、取得した固液分離槽の内部の状態の判定結果が不調と異常とのいずれでもないと判定した場合には終了する。
【0054】
(ステップS11-5)
監視装置50aにおいて、原因判定部57は、取得した固液分離槽の内部の状態の判定結果が不調又は異常であると判定した場合に、記録装置52に記憶された原因の学習モデルを取得する。
(ステップS12-5)
監視装置50aにおいて、原因判定部57は、取得した原因の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態となる原因を特定する情報を判定する。
(ステップS13-5)
監視装置50aにおいて、原因判定部57は、上澄水画像を示す情報と固液分離槽の内部の状態の判定結果を示す情報と固液分離槽の内部の状態となる原因の判定結果を示す情報と含む、情報処理装置40aを宛先とする状態通知情報を作成する。
(ステップS14-5)
監視装置50aにおいて、原因判定部57は、作成した状態通知情報を通信装置51へ出力する。通信装置51は、原因判定部57が出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40aへ送信する。
なお、ステップS7-5において監視装置50は上澄水画像を作成するが一例に過ぎない。例えば、監視装置50が画素データに基づいて監視画像を作成し、その後のステップにおいて汚泥界面より深い部分を無視するなどにより、上澄水画像に着目していればよい。
監視装置50aが、情報処理装置40aが送信した槽内状態情報要求に基づいて、上澄水画像を示す情報を送信する処理については、図9を適用できるため、説明を省略する。
【0055】
前述した実施形態の変形例1では、1つの下水処理設備10に監視システム100aが接続されている場合について説明したが、この例に限られない。例えば、複数の下水処理設備10に監視システム100aが接続されてもよいし、1つの下水処理設備10に複数の監視システム100aが接続されてもよい。仮に、複数の下水処理設備10に監視システム100aが接続された場合には、Aという設備で経験のない非定常状態が生じた場合に、Bという設備でその非定常状態が生じた経験があれば、“異常”として判断し、その異常の原因を特定する情報が判定され、出力される可能性が高い。つまり、監視装置50aは、より多くの学習が可能となるため、判定に使用できる事例数を増加させることができる。このため、異常又は不調と判断できる非定常状態を増加させることができる。
前述した実施形態の変形例1では、監視装置50aが機械学習を行う場合について説明したが、この例に限られない。例えば、機械学習を行う装置を監視装置50aとは別の装置で実現してもよい。この場合、学習装置は、実施形態で説明した学習装置において、学習装置は、上澄水画像と上澄水画像に基づく診断結果となる原因を特定する情報を監視装置50aから取得する。学習装置の学習部は、上澄水画像と上澄水画像に基づく診断結果となる原因を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の状態となる原因を特定する情報との関係を表す第2学習モデルを機械学習(教師あり機械学習)によって生成する。
前述した実施形態の変形例1では、上澄水画像に基づいて固液分離槽の内部の状態の判定結果が正常と異常と不調とのいずれかであるかを判定され、さらに、固液分離槽の内部の状態の判定結果が異常と不調とのいずれかであるかに基づいて、バルキング、汚泥投入速度が速いこと、汚泥投入量が多いこと、汚泥界面が高いことが記憶される場合について説明したがこの例に限られない。例えば、固液分離槽の内部の状態の判定結果が異常と不調とのいずれかであるかに基づいて、一又は複数の原因に分類されてもよい。
【0056】
実施形態の変形例1に係る監視システム100aによれば、監視装置50aは、実施形態に係る監視装置50において、上澄水画像と上澄水画像に基づく診断結果となる原因を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果となる原因を特定する情報との関係を学習した原因の学習モデルとしての第2学習モデルを用いて、診断の対象である固液分離槽の上澄水画像から固液分離槽の内部の状態となる原因を特定する情報を判定する原因判定部57を備える。出力部は、診断の対象である固液分離槽の上澄水画像と第2学習モデルとを用いて原因判定部が判定した固液分離槽の内部の状態となる原因を特定する情報をさらに出力する。
このように構成することによって、監視装置50aは、上澄水画像と固液分離槽の内部の診断結果となる原因を特定する情報との関係を学習した第2学習モデルを用いて、診断の対象である固液分離槽の上澄水画像から固液分離槽の内部の状態となる原因を特定する情報を判定できるため、固液分離槽の内部の状態となる原因を監視できる。第2学習モデルを用いて、診断の対象である固液分離槽の内部を表した上澄水画像から固液分離槽の内部の状態となる原因を判定できることによって、人が経験に基づいて固液分離槽の内部の状態の原因を診断する場合と比較して、人の経験は不要であり、診断結果のバラツキも低減できる。
【0057】
[実施形態の変形例2]
(監視システム)
図15は、本発明の実施形態の変形例2に係る監視システムの構成例を示す図である。実施形態の変形例2に係る監視システム100bは、沈殿槽、濃縮槽などの固液分離槽の汚泥堆積状態を診断する。実施形態の変形例2では、実施形態と同様に、固液分離槽を備える設備の一例として、下水処理設備10を適用する。
【0058】
(監視システム100b)
監視システム100bは、超音波センサ20と、データ処理装置30と、ゲートウェイ装置31と、情報処理装置40bと、端末装置45bと、監視装置50bとを備える。 ゲートウェイ装置31と、情報処理装置40bと、端末装置45bと、監視装置50bとは、ネットワークNWを介して接続される。
データ処理装置30では、データ演算部34は、デジタル信号を、ゲートウェイ装置31を経由して監視装置50bへ送信する。
【0059】
(監視装置50b)
監視装置50bは、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。監視装置50bは、通信装置51と、記録装置52と、情報処理部53bと、各構成要素を図15に示されているように電気的に接続するためのアドレスバスやデータバス等のバスラインBLとを備える。
記録装置52には、監視装置50bにより実行されるプログラム(監視アプリ)が記憶される。また、記録装置52には、情報処理部53bが出力する画素データが記憶される。
記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の内部の診断結果とを関連付けた診断結果の教師データと、診断結果の教師データに基づいて、上澄水画像と固液分離槽の内部の状態との関係を機械学習することによって得られた診断結果の学習モデルとが記憶される。
記録装置52には、監視画像を示す情報とその上澄水画像による固液分離槽の内部の診断結果となる原因を特定する情報とを関連付けた原因の教師データと、原因の教師データに基づいて、上澄水画像と固液分離槽の内部の状態となる原因を特定する情報との関係を機械学習することによって得られた原因の学習モデルとが記憶される。
記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の診断結果への対処方法を特定する情報とを関連付けた対処方法の教師データと、対処方法の教師データに基づいて、上澄水画像と固液分離槽の内部の状態への対処方法を特定する情報との関係を機械学習することによって得られた対処方法の学習モデルとが記憶される。
【0060】
図16は、教師データの一例を示す図である。図16には、診断結果の教師データと原因の教師データと対処方法の教師データとを示す。診断結果の教師データは、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果とを関連付けたデータである。原因の教師データは、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関連付けたデータである。対処方法の教師データは、上澄水画像とその上澄水画像による固液分離槽の内部の状態への対処方法を特定する情報とを関連付けたデータである。図16の説明においては、便宜上監視画像により説明する。
実施形態の変形例2では、一例として、実施形態と同様に複数の監視画像の各々に対して、診断結果として「正常」と「異常」と「不調」とのいずれかが関連付けられる。さらに、複数の監視画像の各々に対して、診断結果に基づいて、診断結果となる原因の推定結果が関連付けられる。さらに、複数の監視画像の各々に対して、診断結果に基づいて、診断結果への対処方法を特定する情報が関連付けられる。
図16において、(1)は、上澄水が十分な深さがあるため、正常であると診断される。正常と診断された場合には、診断結果となる原因の推定結果と対処方法とは記憶されない。
(2)は、上澄水の深さが浅いため、異常であると診断される。この場合、診断結果となる原因の推定結果として、バルキングが記憶される。さらに、診断結果となる原因の推定結果への対処方法として、汚泥引抜の促進と、汚泥沈降剤等の投入とが記憶される。
(3)は、上澄水に堆積汚泥の舞い上がりが見られるため、不調であると診断される。この場合、診断結果となる原因の推定結果の一例として、汚泥投入速度が速いこと、汚泥投入量が多いこと、汚泥界面が高いことが記憶される。さらに、診断結果となる原因の推定結果への対処方法の一例として、投入速度の低下と、投入量の削減と、汚泥引抜の促進とが記憶される。図15に戻り説明を続ける。
【0061】
情報処理部53bは、例えば、グラフィック化部54と、現状判定部55aと、学習部56bと、原因判定部57bと、対処方法判定部58として機能する。
学習部56bは、学習部56aの機能に加えて以下の機能を有する。学習部56bは、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる上澄水画像を示す情報と診断結果への対処方法を特定する情報とを関連付けた対処方法の教師データを記録装置52に記憶させる。
学習部56bは、記録装置52に記憶された対処方法の教師データを取得する。学習部56bは、取得した対処方法の教師データに基づいて、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果への対処方法を特定する情報とを機械学習(教師あり学習)することによって、上澄水画像と固液分離槽の内部の状態への対処方法とを関係付けた対処方法の学習モデルを生成する。例えば、学習部56bは、畳み込みニューラルネットワークを使用して、上澄水画像を認識する。対処方法の学習モデルによって、上澄水画像を示す情報に基づいて、上澄水画像が、固液分離槽の内部の状態への対処方法を特定する情報のいずれかに分類される。学習部56bは、生成した対処方法の学習モデルを記録装置52に記憶させる。
【0062】
原因判定部57bは、現状判定部55aから上澄水画像を示す情報と固液分離槽の内部の状態の判定結果とを取得する。原因判定部57bは、取得した固液分離槽の内部の状態の判定結果が不調又は異常である場合には、記録装置52に記憶された原因の学習モデルを取得する。原因判定部57bは、取得した原因の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態となる原因を判定する。
対処方法判定部58は、現状判定部55aから上澄水画像を示す情報と固液分離槽の内部の状態の判定結果とを取得する。対処方法判定部58は、取得した固液分離槽の内部の状態の判定結果が不調又は異常である場合には、記録装置52に記憶された対処方法の学習モデルを取得する。対処方法判定部58は、取得した対処方法の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態への対処方法を判定する。
対処方法判定部58は、原因判定部57bから上澄水画像の固液分離槽の内部の状態となる原因を特定する情報を取得する。対処方法判定部58は、上澄水画像を示す情報と固液分離槽の内部の状態となる原因を特定する情報と固液分離槽の内部の状態への対処方法を特定する情報と含む、情報処理装置40bを宛先とする状態通知情報を作成する。対処方法判定部58は、作成した状態通知情報を通信装置51へ出力する。
通信装置51は、原因判定部57bが出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40bへ送信する。
情報処理部53bの全部または一部は、例えば、CPUなどのプロセッサが記録装置52に格納された監視アプリなどのプログラムを実行することにより実現される機能部(以下、ソフトウェア機能部と称する)である。なお、情報処理部53bの全部または一部は、LSI、ASIC、またはFPGAなどのハードウェアにより実現されてもよく、ソフトウェア機能部とハードウェアとの組み合わせによって実現されてもよい。
情報処理装置40bは、情報処理装置40を適用できる。
【0063】
(端末装置45b)
端末装置45bは、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。端末装置45bの一例は、下水処理設備10を監視する監視センタに設置される。
ユーザーは、固液分離槽の内部の状態を診断する場合に、端末装置45bを操作することによって、上澄水画像を要求する情報を含む、監視装置50bを宛先とする上澄水画像要求を作成させる。端末装置45bは、ユーザーの操作に基づいて、上澄水画像要求を作成する。端末装置45bは、作成した上澄水画像要求を監視装置50bへ送信する。
端末装置45bは、監視装置50bへ送信した上澄水画像要求に対して監視装置50bが送信した上澄水画像応答を受信する。端末装置45bは、上澄水画像応答に含まれる上澄水画像を表示する。ユーザーは、端末装置45bが表示した上澄水画像を参照し、上澄水画像に含まれる固液分離槽の内部の状態を診断し、さらに固液分離槽の内部の状態となる原因を推定する。ユーザーは、端末装置45bを操作することによって、上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報とその診断結果への対処方法を特定する情報を含む、監視装置50bを宛先とする診断結果通知を作成させる。端末装置45bは、ユーザーの操作に基づいて、診断結果通知を作成する。端末装置45bは、作成した診断結果通知を監視装置50bへ送信する。
【0064】
(監視システムの動作)
図17は、実施形態の変形例2に係る監視システムの動作の例1を示す図である。図17を参照して、監視装置50bが、端末装置45bが送信した診断結果通知に含まれる固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、診断結果への対処方法を特定する情報とを蓄積する処理について説明する。監視装置50bが、蓄積した固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、診断結果への対処方法を特定する情報とに基づいて機械学習を行い、診断結果の学習モデルと原因の学習モデルと対処方法の学習モデルとを生成する処理について説明する。 ステップS1-6からS10-6は、図7のステップS1-1からS10-1を適用できるため、ここでの説明は省略する。
(ステップS11-6)
端末装置45bは、監視装置50bが送信した上澄水画像応答を受信する。端末装置45bは、受信した上澄水画像応答に含まれる上澄水画像を示す情報を画像処理することによって上澄水画像を表示する。端末装置45bは、固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、その診断結果への対処方法を特定する情報とを含む、監視装置50bを宛先とする診断結果通知を作成する。
(ステップS12-6)
端末装置45bは、作成した診断結果通知を監視装置50bへ送信する。
【0065】
(ステップS13-6)
監視装置50bにおいて、通信装置51は、端末装置45bが送信した診断結果通知を受信する。学習部56bは、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果と、その診断結果への対処方法を特定する情報とを取得する。
学習部56bは、取得した上澄水画像を示す情報と固液分離槽の内部の状態の診断結果とを関連付けた診断結果の教師データと、上澄水画像を示す情報と固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関連付けた原因の教師データと、上澄水画像を示す情報と診断結果への対処方法を特定する情報とを関連付けた対処方法の教師データとを記録装置52に記憶させる。
(ステップS14-6)
監視装置50bにおいて、学習部56bは、記録装置52に記憶された診断結果の教師データを取得する。学習部56bは、取得した診断結果の教師データに基づいて、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果とを機械学習することによって、上澄水画像と固液分離槽の内部の状態とを関係付けた診断結果の学習モデルを生成する。
学習部56bは、記録装置52に記憶された原因の教師データを取得する。学習部56bは、取得した原因の教師データに基づいて、上澄水画像と固液分離槽の内部の状態の診断結果となる原因を特定する情報とを機械学習することによって、上澄水画像と固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関係付けた原因の学習モデルを生成する。
学習部56bは、記録装置52に記憶された対処方法の教師データを取得する。学習部56bは、取得した対処方法の教師データに基づいて、上澄水画像と固液分離槽の内部の状態への対処方法を特定する情報とを機械学習することによって、上澄水画像と固液分離槽の内部の状態への対処方法を特定する情報とを関係付けた対処方法の学習モデルを生成する。
(ステップS15-6)
監視装置50bにおいて、学習部56bは、生成した診断結果の学習モデルと原因の学習モデルと対処方法の学習モデルとを記録装置52に記憶させる。
なお、診断結果通知は、上澄水画像ではなく監視画像に基づいて診断された結果であってもよい。つまり、ステップS7-6において端末装置45bが監視画像要求を作成し、ステップS8-1において端末装置45bが作成した監視画像要求を監視装置50bへ送信し、ステップS9-1において監視装置50bが監視画像を作成し、ステップS10-1において監視装置50bが監視画像応答を端末装置45bへ送信してもよい。
【0066】
図18は、実施形態の変形例2に係る監視システムの動作の例2を示す図である。図18を参照して、監視装置50bが、データ処理装置30が送信したデジタル信号を取得し、取得したデジタル信号に基づいて、上澄水画像を作成する。監視装置50bが、作成した上澄水画像に基づいて、固液分離槽の内部の状態を判定する処理について説明する。
ステップS1-7からS6-7は、図7のステップS1-1からS6-1を適用できるため、ここでの説明は省略する。
(ステップS7-7)
監視装置50bにおいて、現状判定部55aは、記録装置52に記憶された画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。
(ステップS8-7)
監視装置50bにおいて、現状判定部55aは、記録装置52に記憶された診断結果の学習モデルを取得する。
(ステップS9-7)
監視装置50bにおいて、現状判定部55aは、取得した診断結果の学習モデルに基づいて、作成した上澄水画像の固液分離槽の内部の状態を判定する。
(ステップS10-7)
監視装置50bにおいて、原因判定部57bは、現状判定部55aから固液分離槽の内部の状態の判定結果を取得する。原因判定部57bは、取得した固液分離槽の内部の状態の判定結果が不調又は異常であるかを判定する。原因判定部57bが、取得した固液分離槽の内部の状態の判定結果が不調と異常とのいずれでもないと判定した場合には終了する。
【0067】
(ステップS11-7)
監視装置50bにおいて、原因判定部57bは、取得した固液分離槽の内部の状態の判定結果が不調又は異常であると判定した場合に、記録装置52に記憶された原因の学習モデルを取得する。
(ステップS12-7)
監視装置50bにおいて、原因判定部57bは、取得した原因の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態となる原因を判定する。
(ステップS13-7)
監視装置50bにおいて、対処方法判定部58は、現状判定部55aから上澄水画像を示す情報と画像固液分離槽の内部の状態の判定結果を取得する。対処方法判定部58は、取得した固液分離槽の内部の状態の判定結果が不調又は異常である場合には、記録装置52に記憶された対処方法の学習モデルを取得する。
(ステップS14-7)
監視装置50bにおいて、対処方法判定部58は、取得した対処方法の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態への対処方法を判定する。
(ステップS15-7)
監視装置50bにおいて、対処方法判定部58は、原因判定部57bから上澄水画像の固液分離槽の内部の状態となる原因を特定する情報を取得する。対処方法判定部58は、上澄水画像を示す情報と固液分離槽の内部の状態となる原因を特定する情報と固液分離槽の内部の状態への対処方法を特定する情報と含む、情報処理装置40bを宛先とする状態通知情報を作成する。
(ステップS16-7)
監視装置50bにおいて、対処方法判定部58は、作成した状態通知情報を通信装置51へ出力する。通信装置51は、対処方法判定部58が出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40bへ送信する。
なお、ステップS7-7において監視装置50は上澄水画像を作成するが一例に過ぎない。例えば、監視装置50が画素データに基づいて監視画像を作成し、その後のステップにおいて汚泥界面より深い部分を無視するなどにより、上澄水画像に着目していればよい。
監視装置50bが、情報処理装置40bが送信した槽内状態情報要求に基づいて、上澄水画像を示す情報を送信する処理については、図9を適用できるため、説明を省略する。
【0068】
前述した実施形態の変形例2では、1つの下水処理設備10に監視システム100bが接続されている場合について説明したが、この例に限られない。例えば、複数の下水処理設備10に監視システム100bが接続されてもよいし、1つの下水処理設備10に複数の監視システム100bが接続されてもよい。仮に、複数の下水処理設備10に監視システム100bが接続された場合には、Aという設備で経験のない非定常状態が生じた場合に、Bという設備でその非定常状態が生じた経験があれば、“異常”として判断し、その異常の原因を特定する情報と、対処方法を特定する情報とが判定され、出力される可能性が高い。つまり、監視装置50bは、より多くの学習が可能となるため、判定に使用できる事例数を増加させることができる。このため、異常又は不調と判断できる非定常状態を増加させることができる。
前述した実施形態の変形例2では、監視装置50bが機械学習を行う場合について説明したが、この例に限られない。例えば、機械学習を行う装置を監視装置50bとは別の装置で実現してもよい。この場合、学習装置は、実施形態の変形例1で説明した学習装置において、学習装置は、上澄水画像と上澄水画像に基づく診断結果への対処方法を特定する情報と監視装置50bからを取得する。学習装置の学習部は、上澄水画像と上澄水画像に基づく診断結果への対処方法を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果への対処方法を特定する情報との関係を表した第3学習モデルを機械学習(教師あり機械学習)によって生成する。
実施形態の変形例2において、情報処理装置40bは、状態通知に含まれる対処方法を下水処理設備10のオペレータに通知してもよいし、対処方法を設備制御装置19に実行させるための制御情報を作成し、作成した制御情報を設備制御装置19へ送信してもよい。
前述した実施形態の変形例2では、上澄水画像に基づいて固液分離槽の内部の状態の判定結果が正常と異常と不調とのいずれかであるかを判定され、さらに、固液分離槽の内部の状態の判定結果が異常と不調とのいずれかであるかに基づいて、汚泥引抜の促進と、汚泥沈降剤等の投入と、投入速度の低下と、投入量の削減と、汚泥引抜の促進とが記憶される場合について説明したがこの例に限られない。例えば、固液分離槽の内部の状態の判定結果が異常と不調とのいずれかであるかに基づいて、一又は複数の対処方法に分類されてもよい。
前述した実施形態の変形例2では、実施形態の変形例1に固液分離槽の上澄水画像から固液分離槽の内部の状態への対処方法を特定する情報を判定する処理をさらに有する場合にいて説明したが、この例に限られない。例えば、実施形態に固液分離槽の上澄水画像から固液分離槽の内部の状態への対処方法を特定する情報を判定する処理をさらに有るようにしてもよい。
【0069】
実施形態の変形例2に係る監視システム100bによれば、監視装置50bは、実施形態に係る監視装置50aにおいて、上澄水画像と上澄水画像に基づく診断結果への対処方法を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果への対処方法を特定する情報との関係を学習した対処方法の学習モデルとしての第3学習モデルを用いて、診断の対象である固液分離槽の上澄水画像から固液分離槽の内部の状態への対処方法を特定する情報を判定する対処方法判定部58を備える。出力部は、診断の対象である固液分離槽の上澄水画像と第3学習モデルとを用いて対処方法判定部58が判定した固液分離槽の内部の状態への対処方法を特定する情報をさらに出力する。
このように構成することによって、監視装置50bは、上澄水画像と固液分離槽の内部の診断結果への対処方法を特定する情報との関係を学習した第3学習モデルを用いて、診断の対象である固液分離槽の上澄水画像から固液分離槽の内部の状態への対処方法を特定する情報を判定できるため、固液分離槽の内部の状態への対処方法を監視できる。第3学習モデルを用いて、診断の対象である固液分離槽の上澄水画像から固液分離槽の内部の状態への対処方法を判定できることによって、人が経験に基づいて固液分離槽の内部の状態への対処方法を診断する場合と比較して、人の経験は不要であり、診断結果のバラツキも低減できる。
【0070】
[実施形態の変形例3]
(監視システム)
図19は、本発明の実施形態の変形例3に係る監視システムの構成例を示す図である。実施形態の変形例3に係る監視システム100cは、沈殿槽、濃縮槽などの固液分離槽の汚泥堆積状態を診断することに加えて、変化の予兆を検出する。実施形態の変形例3では、実施形態と同様に、固液分離槽を備える設備の一例として、下水処理設備10を適用する。
【0071】
(監視システム100c)
監視システム100cは、超音波センサ20と、データ処理装置30と、ゲートウェイ装置31と、情報処理装置40cと、端末装置45cと、監視装置50cとを備える。 ゲートウェイ装置31と、情報処理装置40cと、端末装置45cと、監視装置50cとは、ネットワークNWを介して接続される。
データ処理装置30では、データ演算部34は、デジタル信号を、ゲートウェイ装置31を経由して監視装置50cへ送信する。
【0072】
(監視装置50c)
監視装置50cは、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。監視装置50cは、通信装置51と、記録装置52と、情報処理部53cと、各構成要素を図19に示されているように電気的に接続するためのアドレスバスやデータバス等のバスラインBLとを備える。
記録装置52には、監視装置50cにより実行されるプログラム(監視アプリ)が記憶される。また、記録装置52には、情報処理部53cが出力する画素データが記憶される。
記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の内部の状態の診断結果とを関連付けた診断結果の教師データと、診断結果の教師データに基づいて、上澄水画像と固液分離槽の内部の状態との関係を機械学習することによって得られた診断結果の学習モデルとが記憶される。
記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関連付けた原因の教師データと、原因の教師データに基づいて、上澄水画像と固液分離槽の内部の状態となる原因を特定する情報との関係を機械学習することによって得られた原因の学習モデルとが記憶される。
記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の内部の状態の診断結果への対処方法を特定する情報とを関連付けた対処方法の教師データと、対処方法の教師データに基づいて、上澄水画像と固液分離槽の内部の状態への対処方法を特定する情報との関係を機械学習することによって得られた対処方法の学習モデルとが記憶される。
記録装置52には、上澄水画像を示す情報とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを関連付けた変化の教師データと、変化の教師データに基づいて、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を機械学習することによって得られた変化の学習モデルとが記憶される。
【0073】
情報処理部53cは、例えば、グラフィック化部54と、現状判定部55aと、学習部56cと、原因判定部57bと、対処方法判定部58cと、変化予兆導出部59として機能する。
学習部56cは、学習部56bの機能に加えて以下の機能を有する。学習部56cは、記録装置52に記憶された変化の教師データを取得する。学習部56cは、取得した変化の教師データに基づいて、上澄水画像とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを機械学習(教師あり学習)することによって、上澄水画像とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを関係付けた変化の学習モデルを生成する。例えば、学習部56cは、畳み込みニューラルネットワークを使用して、上澄水画像を認識する。変化の学習モデルによって、上澄水画像を示す情報に基づいて、上澄水画像が、その上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報のいずれかに分類される。学習部56cは、生成した変化の学習モデルを記録装置52に記憶させる。
対処方法判定部58cは、現状判定部55aから上澄水画像を示す情報と画像固液分離槽の内部の状態の判定結果を取得する。対処方法判定部58cは、取得した固液分離槽の内部の状態の判定結果が不調又は異常である場合には、記録装置52に記憶された対処方法の学習モデルを取得する。対処方法判定部58cは、取得した対処方法の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態への対処方法を判定する。
変化予兆導出部59は、現状判定部55aから上澄水画像を示す情報を取得する。変化予兆導出部59は、記録装置52に記憶された変化の学習モデルを取得する。変化予兆導出部59は、取得した変化の学習モデルに基づいて、取得した上澄水画像の固液分離槽の変化の予兆を導出する。
情報処理部53cの全部または一部は、例えば、CPUなどのプロセッサが記録装置52に格納された監視アプリなどのプログラムを実行することにより実現される機能部(以下、ソフトウェア機能部と称する)である。なお、情報処理部53cの全部または一部は、LSI、ASIC、またはFPGAなどのハードウェアにより実現されてもよく、ソフトウェア機能部とハードウェアとの組み合わせによって実現されてもよい。
情報処理装置40cは、情報処理装置40を適用できる。
【0074】
(端末装置45c)
端末装置45cは、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。端末装置45cの一例は、下水処理設備10を監視する監視センタに設置される。
ユーザーは、固液分離槽の内部の状態を診断する場合に、端末装置45cを操作することによって、上澄水画像を要求する情報を含む、監視装置50cを宛先とする上澄水画像要求を作成させる。端末装置45cは、ユーザーの操作に基づいて、上澄水画像要求を作成する。端末装置45cは、作成した上澄水画像要求を監視装置50cへ送信する。
端末装置45cは、監視装置50cへ送信した上澄水画像要求に対して監視装置50cが送信した上澄水画像応答を受信する。端末装置45cは、上澄水画像応答に含まれる上澄水画像を表示する。ユーザーは、端末装置45cが表示した上澄水画像を参照し、上澄水画像に含まれる固液分離槽の内部の状態を診断し、さらに固液分離槽の内部の状態となる原因を推定し、固液分離槽の内部の状態への対処方法を特定し、その上澄水画像が得られた後の固液分離槽の内部の状態を推測し、その変化を特定する。
ユーザーは、端末装置45cを操作することによって、上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、固液分離槽の内部の状態への対処方法を特定する情報と、その上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを含む、監視装置50cを宛先とする診断結果通知を作成させる。端末装置45cは、ユーザーの操作に基づいて、診断結果通知を作成する。端末装置45cは、作成した診断結果通知を監視装置50cへ送信する。
【0075】
(監視システムの動作)
図20は、実施形態の変形例3に係る監視システムの動作の例1を示す図である。図20を参照して、監視装置50cが、端末装置45cが送信した診断結果通知に含まれる上澄水画像を示す情報と固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、診断結果への対処方法を特定する情報と、その上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを蓄積し、蓄積した上澄水画像を示す情報と固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、診断結果への対処方法を特定する情報と、その監視画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とに基づいて機械学習を行い、診断結果の学習モデルと原因の学習モデルと対処方法の学習モデルと変化の学習モデルとを生成する処理について説明する。
ステップS1-8からS10-8は、図7のステップS1-1からS10-1を適用できるため、ここでの説明は省略する。
(ステップS11-8)
端末装置45cは、監視装置50cが送信した上澄水画像応答を受信する。端末装置45cは、受信した上澄水画像応答に含まれる上澄水画像を示す情報を画像処理することによって上澄水画像を表示する。端末装置45cは、上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、その診断結果への対処方法を特定する情報と、その上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを含む、監視装置50cを宛先とする診断結果通知を作成する。
【0076】
(ステップS12-8)
端末装置45cは、作成した診断結果通知を監視装置50cへ送信する。
(ステップS13-8)
監視装置50cにおいて、通信装置51は、端末装置45cが送信した診断結果通知を受信する。学習部56cは、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果と、その診断結果への対処方法を特定する情報とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを取得する。
学習部56cは、取得した上澄水画像を示す情報と固液分離槽の内部の状態の診断結果とを関連付けた診断結果の教師データと、上澄水画像を示す情報と固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関連付けた原因の教師データと、上澄水画像を示す情報と診断結果への対処方法を特定する情報とを関連付けた対処方法の教師データと、上澄水画像を示す情報とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを関連付けた変化の教師データとを記録装置52に記憶させる。
(ステップS14-8)
監視装置50cにおいて、学習部56cは、記録装置52に記憶された診断結果の教師データを取得する。学習部56cは、取得した診断結果の教師データに基づいて、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果とを機械学習することによって、上澄水画像と固液分離槽の内部の状態とを関係付けた診断結果の学習モデルを生成する。
学習部56cは、記録装置52に記憶された原因の教師データを取得する。学習部56cは、取得した原因の教師データに基づいて、上澄水画像と固液分離槽の内部の状態の診断結果となる原因を特定する情報とを機械学習することによって、上澄水画像と固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関係付けた原因の学習モデルを生成する。
学習部56cは、記録装置52に記憶された対処方法の教師データを取得する。学習部56cは、取得した対処方法の教師データに基づいて、上澄水画像と固液分離槽の内部の状態への対処方法を特定する情報とを機械学習することによって、上澄水画像と固液分離槽の内部の状態への対処方法を特定する情報とを関係付けた対処方法の学習モデルを生成する。
学習部56cは、記録装置52に記憶された変化の教師データを取得する。学習部56cは、取得した変化の教師データに基づいて、上澄水画像とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを機械学習することによって、上澄水画像とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを関係付けた変化の学習モデルを生成する。
【0077】
(ステップS15-8)
監視装置50cにおいて、学習部56cは、生成した診断結果の学習モデルと原因の学習モデルと対処方法の学習モデルと変化の学習モデルとを記録装置52に記憶させる。
【0078】
なお、診断結果通知は、上澄水画像ではなく監視画像に基づいて診断された結果であってもよい。つまり、ステップS7-8において端末装置45cが監視画像要求を作成し、ステップS8-8において端末装置45cが作成した監視画像要求を監視装置50cへ送信し、ステップS9-8において監視装置50cが監視画像を作成し、ステップS10-8において監視装置50cが監視画像応答を端末装置45cへ送信してもよい。
【0079】
図21は、実施形態の変形例3に係る監視システムの動作の例2を示す図である。図21を参照して、監視装置50cが、データ処理装置30が送信したデジタル信号を取得し、取得したデジタル信号に基づいて、上澄水画像を作成する。監視装置50cが、作成した上澄水画像に基づいて、固液分離槽の内部の状態を判定する処理について説明する。
ステップS1-9からS6-9は、図7のステップS1-1からS6-1を適用できるため、ここでの説明は省略する。
(ステップS7-9)
監視装置50cにおいて、現状判定部55aは、記録装置52に記憶された画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。
(ステップS8-9)
監視装置50cにおいて、現状判定部55aは、記録装置52に記憶された診断結果の学習モデルを取得する。
(ステップS9-9)
監視装置50cにおいて、現状判定部55aは、取得した診断結果の学習モデルに基づいて、作成した上澄水画像の固液分離槽の内部の状態を判定する。
(ステップS10-9)
監視装置50cにおいて、原因判定部57bは、現状判定部55aから固液分離槽の内部の状態の判定結果を取得する。原因判定部57bは、取得した固液分離槽の内部の状態の判定結果が不調又は異常であるかを判定する。原因判定部57bが、取得した固液分離槽の内部の状態の判定結果が不調と異常とのいずれでもないと判定した場合にはステップS15-9へ移行する。
(ステップS11-9)
監視装置50cにおいて、原因判定部57bは、取得した固液分離槽の内部の状態の判定結果が不調又は異常であると判定した場合に、記録装置52に記憶された原因の学習モデルを取得する。
(ステップS12-9)
監視装置50cにおいて、原因判定部57bは、取得した原因の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態となる原因を判定する。
(ステップS13-9)
監視装置50cにおいて、対処方法判定部58cは、現状判定部55aから上澄水画像を示す情報と画像固液分離槽の内部の状態の判定結果を取得する。対処方法判定部58cは、取得した固液分離槽の内部の状態の判定結果が不調又は異常である場合には、記録装置52に記憶された対処方法の学習モデルを取得する。
【0080】
(ステップS14-9)
監視装置50cにおいて、対処方法判定部58cは、取得した対処方法の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態への対処方法を判定する。
(ステップS15-9)
監視装置50cにおいて、変化予兆導出部59は、記録装置52に記憶された変化の学習モデルを取得する。監視装置50cにおいて、変化予兆導出部59は、取得した変化の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態の変化の予兆を検出する。
(ステップS16-9)
監視装置50cにおいて、変化予兆導出部59は、現状判定部55aから上澄水画像を示す情報と画像固液分離槽の内部の状態の判定結果を取得する。変化予兆導出部59は、原因判定部57bから上澄水画像の固液分離槽の内部の状態となる原因を特定する情報を取得する。変化予兆導出部59は、上澄水画像を示す情報と画像固液分離槽の内部の状態の判定結果と固液分離槽の内部の状態となる原因を特定する情報と固液分離槽の内部の状態への対処方法を特定する情報と固液分離槽の内部の状態の変化の予兆の検出結果と含む、情報処理装置40cを宛先とする状態通知情報を作成する。
(ステップS17-9)
監視装置50cにおいて、変化予兆導出部59は、作成した状態通知情報を通信装置51へ出力する。通信装置51は、対処方法判定部58cが出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40cへ送信する。
なお、ステップS7-9において監視装置50は上澄水画像を作成するが一例に過ぎない。例えば、監視装置50が画素データに基づいて監視画像を作成し、その後のステップにおいて汚泥界面より深い部分を無視するなどにより、上澄水画像に着目していればよい。
監視装置50cが、情報処理装置40cが送信した槽内状態情報要求に基づいて、上澄水画像を示す情報を送信する処理については、図9を適用できるため、説明を省略する。
【0081】
前述した実施形態の変形例3では、1つの下水処理設備10に監視システム100cが接続されている場合について説明したが、この例に限られない。例えば、複数の下水処理設備10に監視システム100cが接続されてもよいし、1つの下水処理設備10に複数の監視システム100cが接続されてもよい。仮に、複数の下水処理設備10に監視システム100cが接続された場合には、Aという設備で経験のない非定常状態が生じた場合に、Bという設備でその非定常状態が生じた経験があれば、“異常”として判断し、その異常の原因を特定する情報と、対処方法を特定する情報と、その上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とが判定され、出力される可能性が高い。つまり、監視装置50cは、より多くの学習が可能となるため、判定に使用できる事例数を増加させることができる。このため、異常又は不調と判断できる非定常状態を増加させることができる。
前述した実施形態の変形例3では、監視装置50cが機械学習を行う場合について説明したが、この例に限られない。例えば、機械学習を行う装置を監視装置50cとは別の装置で実現してもよい。この場合、学習装置は、実施形態の変形例2で説明した学習装置において、学習装置は、上澄水画像と上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを監視装置50cからを取得する。学習装置の学習部は、上澄水画像と上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を表した第4学習モデルを機械学習(教師あり機械学習)によって生成する。
実施形態の変形例3において、情報処理装置40cは、状態通知に含まれる固液分離槽の内部の状態の変化を特定する情報を下水処理設備10のオペレータに通知してもよい。
【0082】
実施形態の変形例3に係る監視システム100cによれば、監視装置50cは、実施形態に係る監視装置50bにおいて、上澄水画像と上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を学習した変化の学習モデルとしての第4学習モデルを用いて、診断の対象である固液分離槽の上澄水画像から固液分離槽の内部の状態の変化の予兆を検出する変化予兆導出部59を備える。出力部は、診断の対象である固液分離槽の上澄水画像と第4学習モデルとを用いて変化予兆導出部が検出した固液分離槽の内部の状態の変化の予兆を特定する情報をさらに出力する。
このように構成することによって、監視装置50cは、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を学習した第4学習モデルを用いて、診断の対象である固液分離槽の上澄水画像から固液分離槽の内部の状態の変化の予兆を検出できるため、固液分離槽の内部の状態の変化を監視できる。第4学習モデルを用いて、診断の対象である固液分離槽の上澄水画像から固液分離槽の内部の状態の変化の予兆を検出できることによって、人が経験に基づいて固液分離槽の内部の状態の変化の予兆を検出する場合と比較して、人の経験は不要であり、診断結果のバラツキも低減できる。
【0083】
[実施形態の変形例4]
(監視システム)
図22は、本発明の実施形態の変形例4に係る監視システムの構成例を示す図である。実施形態の変形例4に係る監視システム100dは、実施形態の変形例3において、監視装置50dを、ネットワークNWを介さずにデータ処理装置30dとゲートウェイ装置31との間に接続したものである。実施形態の変形例4に係る監視システム100dは、沈殿槽、濃縮槽などの固液分離槽の汚泥堆積状態を診断し、変化の予兆を検出する。実施形態の変形例4では、実施形態と同様に、固液分離槽を備える設備の一例として、下水処理設備10を適用する。図22においては下水処理設備10については省略されている。
【0084】
(監視システム100d)
監視システム100dは、超音波センサ20と、データ処理装置30dと、監視装置50dと、ゲートウェイ装置31と、情報処理装置40dと、端末装置45dとを備える。 ゲートウェイ装置31と、情報処理装置40dと、端末装置45dとは、ネットワークNWを介して接続される。
データ処理装置30dでは、データ演算部34は、デジタル信号を、監視装置50dへ送信する。
【0085】
(監視装置50d)
図23は、本実施形態の変形例4に係る監視システムの監視装置の一例を示す図である。監視装置50dは、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。監視装置50dは、通信装置51と、記録装置52と、情報処理部53dと、各構成要素を図23に示されているように電気的に接続するためのアドレスバスやデータバス等のバスラインBLとを備える。
記録装置52には、監視装置50dにより実行されるプログラム(監視アプリ)が記憶される。また、記録装置52には、情報処理部53dが出力する画素データが記憶される。
記録装置52には、監視画像を示す情報とその上澄水画像による固液分離槽の内部の状態の診断結果とを関連付けた診断結果の教師データと、診断結果の教師データに基づいて、上澄水画像と固液分離槽の内部の状態との関係を機械学習することによって得られた診断結果の学習モデルとが記憶される。
記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関連付けた原因の教師データと、原因の教師データに基づいて、上澄水画像と固液分離槽の内部の状態となる原因を特定する情報との関係を機械学習することによって得られた原因の学習モデルとが記憶される。
記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の内部の状態の診断結果への対処方法を特定する情報とを関連付けた対処方法の教師データと、対処方法の教師データに基づいて、上澄水画像と固液分離槽の内部の状態への対処方法を特定する情報との関係を機械学習することによって得られた対処方法の学習モデルとが記憶される。
記録装置52には、上澄水画像を示す情報とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを関連付けた変化の教師データと、変化の教師データに基づいて、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を機械学習することによって得られた変化の学習モデルとが記憶される。
【0086】
情報処理部53dは、例えば、グラフィック化部54dと、現状判定部55dと、学習部56dと、原因判定部57dと、対処方法判定部58dと、変化予兆導出部59dとして機能する。
グラフィック化部54dは、通信装置51が受信したデジタル信号を取得する。グラフィック化部54dは、取得したデジタル信号の値を画素データに変換する。グラフィック化部54dは、デジタル信号の変換後の画素データを記録装置52に記憶させる。
グラフィック化部54dは、通信装置51が受信した上澄水画像要求を取得する。グラフィック化部54dは、取得した上澄水画像要求に基づいて、記録装置52に記憶した画素データを取得する。グラフィック化部54dは、取得した画素データに基づいて、上澄水画像を作成する。グラフィック化部54dは、作成した上澄水画像を示す情報を含む、情報処理装置40dを宛先とする上澄水画像応答を作成する。グラフィック化部54dは、作成した上澄水画像応答を通信装置51へ出力する。
グラフィック化部54dは、通信装置51が受信した槽内状態情報要求を取得する。グラフィック化部54dは、取得した槽内状態情報要求に基づいて、記録装置52に記憶した画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。グラフィック化部54dは、作成した上澄水画像を示す情報を含む、情報処理装置40dを宛先とする槽内状態情報応答を作成する。グラフィック化部54dは、作成した槽内状態情報応答を通信装置51へ出力する。
【0087】
現状判定部55dは、記録装置52に記憶された画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。現状判定部55dは、記録装置52に記憶された診断結果の学習モデルを取得する。現状判定部55dは、取得した診断結果の学習モデルに基づいて、作成した上澄水画像の固液分離槽の内部の状態を判定する。現状判定部55dは、固液分離槽の内部の状態の判定結果が不調又は異常である場合には、固液分離槽の内部の状態の判定結果を示す情報を含む、情報処理装置40dを宛先とする状態通知情報を作成する。現状判定部55dは、作成した状態通知情報を通信装置51へ出力する。通信装置51は、現状判定部55dが出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40dへ送信する。
現状判定部55dは、上澄水画像を作成する場合に、計測したデータをそのまま使用してもよいし、間引きすることによって限られた表示幅に長時間の間に計測されたデータを含めてもよい。限られた表示幅に長時間の間に計測されたデータを含めることによって、より長い時間の変化を監視できる。仮に、静止画であるならば、任意の適当な間隔で画素データをピックアップして切替表示させることができるが、本実施形態の変形例4では常に計測を行なって新しいデータが追加されていくため、任意の適当な間隔で画素データをピックアップして切替表示させた場合にはデータ処理に遅延や阻害をきたすおそれがあり、画像表示のために計測が不安定となっては本末転倒となる。そこで、本実施形態の変形例4では、予めプリセットされた表示時間幅がいくつか用意され、複数の表示時間幅の各々に対応する時間幅用のデータ格納領域が作成される。本実施形態では、新規データを追加する間隔(インターバル)が指定され、複数のインターバルの各々に対応する画像データベース(データ格納領域(番地))が作成される。
【0088】
監視装置50dに対して、表示を切り替える操作が行われるとともに、表示時間幅が選択される。現状判定部55dは、選択された時間表示幅に対応したデータベースからデータを取得し、取得したデータを使用して上澄水画像を作成する。仮に、時間表示幅を切り替え操作が行われた場合には、選択された時間表示幅に対応したデータベースからデータを取得し、取得したデータを使用して上澄水画像を作成する。このように構成することによって、データが格納されるデータベースのデータを加工することなく、上澄水画像を作成するタイムラグもなく、スムーズな切り替えができる。
学習部56dは、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる上澄水画像を示す情報とその上澄水画像による固液分離槽の内部(槽内)の状態の診断結果とを関連付けた診断結果の教師データを記録装置52に記憶させる。学習部56dは、記録装置52に記憶された診断結果の教師データを取得する。学習部56dは、取得した診断結果の教師データに基づいて、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果とを機械学習(教師あり学習)することによって、上澄水画像と固液分離槽の内部の状態とを関係付けた診断結果の学習モデルを生成する。例えば、学習部56dは、畳み込みニューラルネットワークを使用して、上澄水画像を認識する。診断結果の学習モデルによって、上澄水画像を示す情報に基づいて、上澄水画像が、固液分離槽の内部の状態として、正常と、不調と、異常とのいずれかに分類される。学習部56dは、生成した診断結果の学習モデルを記録装置52に記憶させる。
学習部56dは、記録装置52に記憶された対処方法の教師データを取得する。学習部56dは、取得した対処方法の教師データに基づいて、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果への対処方法を特定する情報とを機械学習(教師あり学習)することによって、上澄水画像と固液分離槽の内部の状態への対処方法とを関係付けた対処方法の学習モデルを生成する。例えば、学習部56dは、畳み込みニューラルネットワークを使用して、上澄水画像を認識する。対処方法の学習モデルによって、上澄水画像を示す情報に基づいて、上澄水画像が、固液分離槽の内部の状態への対処方法を特定する情報のいずれかに分類される。学習部56dは、生成した対処方法の学習モデルを記録装置52に記憶させる。
【0089】
学習部56dは、記録装置52に記憶された変化の教師データを取得する。学習部56dは、取得した変化の教師データに基づいて、上澄水画像とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを機械学習(教師あり学習)することによって、上澄水画像とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを関係付けた変化の学習モデルを生成する。例えば、学習部56dは、畳み込みニューラルネットワークを使用して、上澄水画像を認識する。変化の学習モデルによって、上澄水画像を示す情報に基づいて、上澄水画像が、その上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報のいずれかに分類される。学習部56dは、生成した変化の学習モデルを記録装置52に記憶させる。
【0090】
原因判定部57dは、現状判定部55dから上澄水画像を示す情報と固液分離槽の内部の状態の判定結果とを取得する。原因判定部57dは、取得した固液分離槽の内部の状態の判定結果が不調又は異常である場合には、記録装置52に記憶された原因の学習モデルを取得する。原因判定部57dは、取得した原因の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態となる原因を特定する情報を判定する。原因判定部57dは、上澄水画像を示す情報と固液分離槽の内部の状態を示す情報と固液分離槽の内部の状態となる原因を特定する情報の判定結果を示す情報と含む、情報処理装置40dを宛先とする状態通知情報を作成する。原因判定部57dは、作成した状態通知情報を通信装置51へ出力する。通信装置51は、原因判定部57dが出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40dへ送信する。
【0091】
対処方法判定部58dは、現状判定部55dから上澄水画像を示す情報と固液分離槽の内部の状態の判定結果とを取得する。対処方法判定部58dは、取得した固液分離槽の内部の状態の判定結果が不調又は異常である場合には、記録装置52に記憶された対処方法の学習モデルを取得する。対処方法判定部58dは、取得した対処方法の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態への対処方法を判定する。
対処方法判定部58dは、原因判定部57dから上澄水画像の固液分離槽の内部の状態となる原因を特定する情報を取得する。対処方法判定部58dは、上澄水画像を示す情報と固液分離槽の内部の状態となる原因を特定する情報と固液分離槽の内部の状態への対処方法を特定する情報と含む、情報処理装置40dを宛先とする状態通知情報を作成する。対処方法判定部58dは、作成した状態通知情報を通信装置51へ出力する。
【0092】
変化予兆導出部59dは、現状判定部55dから上澄水画像を示す情報を取得する。変化予兆導出部59dは、記録装置52に記憶された変化の学習モデルを取得する。変化予兆導出部59dは、取得した変化の学習モデルに基づいて、取得した上澄水画像の固液分離槽の変化の予兆を導出する。
情報処理部53dの全部または一部は、例えば、CPUなどのプロセッサが記録装置52に格納された監視アプリなどのプログラムを実行することにより実現される機能部(以下、ソフトウェア機能部と称する)である。なお、情報処理部53cの全部または一部は、LSI、ASIC、またはFPGAなどのハードウェアにより実現されてもよく、ソフトウェア機能部とハードウェアとの組み合わせによって実現されてもよい。
情報処理装置40dは、情報処理装置40を適用できる。
【0093】
(端末装置45d)
端末装置45dは、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。端末装置45dの一例は、下水処理設備10を監視する監視センタに設置される。
ユーザーは、固液分離槽の内部の状態を診断する場合に、端末装置45dを操作することによって、上澄水画像を要求する情報を含む、監視装置50dを宛先とする上澄水画像要求を作成させる。端末装置45dは、ユーザーの操作に基づいて、上澄水画像要求を作成する。端末装置45dは、作成した上澄水画像要求を監視装置50dへ送信する。
端末装置45dは、監視装置50dへ送信した上澄水画像要求に対して監視装置50dが送信した上澄水画像応答を受信する。端末装置45dは、上澄水画像応答に含まれる上澄水画像を表示する。ユーザーは、端末装置45dが表示した上澄水画像を参照し、上澄水画像に含まれる固液分離槽の内部の状態を診断し、さらに固液分離槽の内部の状態となる原因を推定し、固液分離槽の内部の状態への対処方法を特定し、その上澄水画像が得られた後の固液分離槽の内部の状態を推測し、その変化を特定する。
ユーザーは、端末装置45dを操作することによって、上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、固液分離槽の内部の状態への対処方法を特定する情報と、その上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを含む、監視装置50dを宛先とする診断結果通知を作成させる。端末装置45dは、ユーザーの操作に基づいて、診断結果通知を作成する。端末装置45dは、作成した診断結果通知を監視装置50dへ送信する。
【0094】
(監視システムの動作)
図24は、実施形態の変形例4に係る監視システムの動作の例1を示す図である。図24を参照して、監視装置50dが、端末装置45dが送信した診断結果通知に含まれる上澄水画像を示す情報と固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、診断結果への対処方法を特定する情報と、その上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを蓄積し、蓄積した上澄水画像を示す情報と固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、診断結果への対処方法を特定する情報と、その上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とに基づいて機械学習を行い、診断結果の学習モデルと原因の学習モデルと対処方法の学習モデルと変化の学習モデルとを生成する処理について説明する。
ステップS1-10からS10-10は、図7のステップS1-1からS10-1を適用でき、ステップS11-10からS15-10は、図20のステップS11-8からS15-8を適用できるため、ここでの説明は省略する。
【0095】
図25は、実施形態の変形例4に係る監視システムの動作の例2を示す図である。図25を参照して、監視装置50dが、データ処理装置30dが送信したデジタル信号を取得し、取得したデジタル信号に基づいて、上澄水画像を作成する。監視装置50dが、作成した上澄水画像に基づいて、固液分離槽の内部の状態を判定する処理について説明する。
ステップS1-11からS6-11は、図7のステップS1-1からS6-1を適用でき、ステップS7-11からS17-11は、図21のステップS7-9からS17-9を適用できるため、ここでの説明は省略する。
監視装置50dが、情報処理装置40dが送信した槽内状態情報要求に基づいて、上澄水画像を示す情報を送信する処理については、図9を適用できるため、説明を省略する。
【0096】
前述した実施形態の変形例4では、実施形態の変形例3において、監視装置50dを、ネットワークNWを介さずにデータ処理装置30dとゲートウェイ装置31との間に接続した場合について接続したがこの例に限られない。例えば、実施形態において、監視装置50を、ネットワークNWを介さずにデータ処理装置30とゲートウェイ装置31との間に接続した場合にも適用できる。実施形態の変形例1において、監視装置50aを、ネットワークNWを介さずにデータ処理装置30とゲートウェイ装置31との間に接続した場合にも適用できる。実施形態の変形例2において、監視装置50bを、ネットワークNWを介さずにデータ処理装置30とゲートウェイ装置31との間に接続した場合にも適用できる。
【0097】
実施形態の変形例4に係る監視システム100dによれば、監視装置50dを、ネットワークNWを介さずにデータ処理装置30とゲートウェイ装置31との間に接続することによって、監視装置50dを下水処理設備10が設置されている現場に設置できる。このため、監視装置50dを、ネットワークNWを介して下水処理設備10が設置されている現場から離れた位置に設置した場合と比較して、データ処理装置30dのデータをリアルタイムに監視できる。
監視装置50dによる判定、導出をリアルタイムに行うことができるため、判定、導出に要する時間を短縮できる。判定、導出に要する時間を短縮できるため、異常、不調と判定された場合の状態通知を即座に行うことができる。
監視装置50dを下水処理設備10が設置されている現場に設置できるため、監視装置50dを、ネットワークNWを介して下水処理設備10が設置されている現場から離れた位置に設置した場合と比較して、データハッキング、システムへの攻撃リスクを低減できる。
監視装置50dを下水処理設備10が設置されている現場に設置できるため、監視装置50dを、ネットワークNWを介して下水処理設備10が設置されている現場から離れた位置に設置した場合と比較して、その現場(設備)特有な状況の判定、原因判定、対処方法判定、予兆の導出が容易である。
監視センタに設置された情報処理装置40dは、ネットワークNW、ゲートウェイ装置31を通じて、現場に設置された監視装置50dの記録装置52に記録された情報(プログラム、監視アプリ、学習モデル、画像データ、AI解析結果)を遠隔からアップデートすることができる。
現場の設置された監視装置50dの記録装置52に記録された情報(主に画素データ、AI解析結果)は、ゲートウェイ装置31、ネットワークNWを通じて遠隔に設置された情報処理装置40dにアップデートすることができる。
【0098】
以下、他の実施形態に係る監視システムについて説明する。他の実施形態に係る監視システムは、図1に示す監視システムと同様の構成であるが、以下の点で異なる。
【0099】
記録装置52には、監視画像を示す情報とその監視画像による固液分離槽の内部(槽内)の診断結果とを関連付けた診断結果の教師データと、診断結果の教師データに基づいて、監視画像と固液分離槽の内部の状態との関係を機械学習することによって得られた診断結果の学習モデルとが記憶される。
診断結果の教師データは、監視画像とその監視画像による固液分離槽の内部の状態の診断結果とを関連付けたデータである。本実施形態では、一例として、複数の監視画像の各々に対して、診断結果として「正常」と「異常」と「不調」とのいずれかが関連付けられる。図6を用いて説明すると、(1)は、上澄水と汚泥堆積層とが分離しており、固液分離が良好な状態であるため、正常であると診断される。(2)は、汚泥の沈降性が悪化し、汚泥が浮上している状態であるため、異常であると診断される。(3)は、堆積汚泥の舞い上がりが見られるため、不調であると診断される。
【0100】
グラフィック化部54は、通信装置51が受信した監視画像要求を取得する。グラフィック化部54は、取得した監視画像要求に基づいて、記録装置52に記憶した画素データを取得する。グラフィック化部54は、取得した画素データに基づいて、監視画像を作成する。グラフィック化部54は、作成した監視画像を示す情報を含み、情報処理装置40を宛先とする監視画像応答を作成する。
グラフィック化部54は、作成した監視画像がエラー画像であるか否かを判定する。グラフィック化部54は、エラー画像でないと判定した監視画像を含む監視画像応答を通信装置51へ出力する。
図26はエラー画像の一例である。エラー画像は、超音波センサ20が故障する又は汚泥に埋まるなどの原因により処理槽25を測定できていないときに作成される監視画像である。エラー画像は信号強度が縦方向にも横方向にも弱い画像である。グラフィック化部54は、例えば信号強度が一定時間所定の深さから所定の大きさ以下であるとき、当該監視画像をエラー画像であると判定する。
【0101】
グラフィック化部54は、取得した槽内状態情報要求に基づいて、記録装置52に記憶した画素データを取得し、取得した画素データに基づいて、監視画像を作成する。グラフィック化部54は、作成した監視画像を示す情報を含み、情報処理装置40を宛先とする槽内状態情報応答を作成する。
【0102】
現状判定部55は、記録装置52に記憶された画素データを取得し、取得した画素データに基づいて、監視画像を作成する。現状判定部55は、作成した監視画像がエラー画像であるか否かを判定する。判定方法はグラフィック化部54による判定方法と同じである。現状判定部55は、エラー画像でないと判定した場合に、取得した診断結果の学習モデルに基づいて、作成した監視画像の固液分離槽の内部の状態を判定する。
【0103】
学習部56は、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる監視画像を示す情報とその監視画像による固液分離槽の内部(槽内)の状態の診断結果とを関連付けた診断結果の教師データを記録装置52に記憶させる。学習部56は、取得した診断結果の教師データに基づいて、監視画像とその監視画像による固液分離槽の内部の状態の診断結果とを機械学習(教師あり学習)することによって、監視画像と固液分離槽の内部の状態とを関係付けた診断結果の学習モデルを生成する。例えば、学習部56は、畳み込みニューラルネットワーク(CNN: Convolutional neural network)を使用して、監視画像を認識する。診断結果の学習モデルによって、監視画像を示す情報に基づいて、監視画像が、固液分離槽の内部の状態として、正常と、不調と、異常とのいずれかに分類される。
【0104】
情報処理装置40は、受信した槽内状態情報応答に含まれる監視画像を取得する。情報処理装置40は、取得した監視画像を表示する。
ユーザーは、固液分離槽の内部の状態を診断する場合に、端末装置45を操作することによって、監視画像を要求する情報を含む、監視装置50を宛先とする監視画像要求を作成させる。端末装置45は、ユーザーの操作に基づいて、監視画像要求を作成する。端末装置45は、作成した監視画像要求を監視装置50へ送信する。
端末装置45は、監視装置50へ送信した監視画像要求に対して監視装置50が送信した監視画像応答を受信する。端末装置45は、監視画像応答に含まれる監視画像を表示する。ユーザーは、端末装置45が表示した監視画像を参照し、監視画像に含まれる固液分離槽の内部の状態を診断する。
ユーザーは、端末装置45を操作することによって、監視画像を示す情報と、固液分離槽の内部の状態の診断結果を含む、監視装置50を宛先とする診断結果通知を作成させる。
【0105】
つまり、他の実施形態に監視システムは、上澄水画像ではなく監視画像を用いる。また、監視画像がエラー画像であるか否かを判定する。なお、監視システムにおいて監視画像がエラー画像であるか否かを判定した後に監視画像から上澄水画像を作成してもよい。つまり、エラー画像であるか否かの判定は上記説明した実施形態及びその変形例に組み込むことが可能である。
【0106】
(監視システムの動作)
図27は、他の実施形態に係る監視システムの動作の例1を示す図である。図27を参照して、監視装置50が、端末装置45が送信した診断結果通知に含まれる固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報とを蓄積し、蓄積した固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報とに基づいて機械学習を行い、診断結果の学習モデルと原因の学習モデルとを生成する処理について説明する。
【0107】
(ステップS1-12)
データ処理装置30において、超音波発信受信回路32は超音波を送信するための電気信号を生成し、生成した電気信号を超音波センサ20へ出力する。
(ステップS2-12)
データ処理装置30において、超音波発信受信回路32は超音波センサ20が出力した電気信号を受信する。
(ステップS3-12)
データ処理装置30において、超音波発信受信回路32は、受信した電気信号をデータ変換回路33へ出力する。データ変換回路33は、超音波発信受信回路32が出力した電気信号を取得する。データ変換回路33は、取得した電気信号を増幅する。データ変換回路33は、増幅した電気信号をマスキング処理する。データ変換回路33は、増幅した電気信号をマスキング処理した結果に基づいて、信号強度をデジタル処理化することによってデジタル信号へ変換する。データ演算部34は、データ変換回路33からデジタル信号を取得し、取得したデジタル信号について、位置(距離)情報に関わる温度補正演算、界面レベルの判定演算を行う。
(ステップS4-12)
データ処理装置30において、データ演算部34は、位置(距離)情報に関わる温度補正演算、界面レベルの判定演算を行ったデジタル信号を、ゲートウェイ装置31を経由して監視装置50へ送信する。
(ステップS5-12)
監視装置50において、通信装置51は、データ処理装置30が送信したデジタル信号を受信する。グラフィック化部54は、通信装置51が受信したデジタル信号を取得する。グラフィック化部54は、取得したデジタル信号の値を画素データに変換する。
(ステップS6-12)
監視装置50において、グラフィック化部54は、デジタル信号に変換後の画素データを記録装置52に記憶させる。
(ステップS7-12)
端末装置45は、監視画像要求を作成する。
【0108】
(ステップS8-12)
端末装置45は、作成した監視画像要求を監視装置50へ送信する。
(ステップS9-12)
監視装置50において、通信装置51は、端末装置45が送信した監視画像要求を受信する。グラフィック化部54は、通信装置51が受信した監視画像要求を取得する。グラフィック化部54は、取得した監視画像要求に基づいて、記録装置52に記憶した画素データを取得する。グラフィック化部54は、取得した画素データに基づいて、監視画像を作成する。グラフィック化部54は、作成した監視画像を示す情報を含む。端末装置45を宛先とする監視画像応答を作成する。
(ステップS9a―12)
グラフィック化部54は、作成した監視画像がエラー画像であるか否かを判定する。
(ステップS9b―12)
グラフィック化部54は、作成した監視画像がエラー画像である場合に動作を終了する。これにより、教師データにエラー画像が含まれないようにすることができる。グラフィック化部54は、作成した監視画像がエラー画像である場合に端末装置45に監視画像がエラー画像であることを通知してもよい。
(ステップS10-12)
監視装置50において、グラフィック化部54は、作成した監視画像がエラー画像でない場合に、作成した監視画像応答を通信装置51へ出力する。通信装置51は、グラフィック化部54が出力した監視画像応答を取得し、取得した監視画像応答を端末装置45へ送信する。
(ステップS11-12)
端末装置45は、監視装置50が送信した監視画像応答を受信する。端末装置45は、受信した監視画像応答に含まれる監視画像を示す情報を画像処理することによって監視画像を表示する。端末装置45は、監視画像を示す情報と、監視画像を診断した結果とを含む診断結果通知を作成する。
(ステップS12-12)
端末装置45は、作成した診断結果通知を監視装置50へ送信する。
(ステップS13-12)
監視装置50において、通信装置51は、端末装置45が送信した診断結果通知を受信する。学習部56は、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる監視画像を示す情報とその監視画像による固液分離槽の内部(槽内)の状態の診断結果とを関連付けた診断結果の教師データを記録装置52に記憶させる。
(ステップS14-12)
監視装置50において、学習部56は、記録装置52に記憶された診断結果の教師データを取得する。学習部56は、取得した診断結果の教師データに基づいて、監視画像とその監視画像による固液分離槽の内部の状態の診断結果とを機械学習することによって、監視画像と固液分離槽の内部の状態とを関係付けた診断結果の学習モデルを生成する。
(ステップS15-12)
監視装置50において、学習部56は、生成した診断結果の学習モデルを記録装置52に記憶させる。
【0109】
図28は、他の実施形態に係る監視システムの動作の例2を示す図である。図28を参照して、監視装置50が、データ処理装置30が送信したデジタル信号を取得し、取得したデジタル信号に基づいて、監視画像を作成する。監視装置50が、作成した監視画像に基づいて、固液分離槽の内部の状態を判定する処理について説明する。
ステップS1-13からS6-13は、図27のステップS1-12からS6-12を適用できるため、ここでの説明は省略する。
(ステップS7-13)
監視装置50において、現状判定部55は、記録装置52に記憶された画素データを取得し、取得した画素データに基づいて、監視画像を作成する。
(ステップS8-13)
監視装置50において、現状判定部55は、記録装置52に記憶された診断結果の学習モデルを取得する。
(ステップS8a―13)
現状判定部55は、作成した監視画像がエラー画像であるか否かを判定する。
(ステップS9b―12)
現状判定部55は、作成した監視画像がエラー画像である場合に動作を終了する。現状判定部55は、作成した監視画像がエラー画像である場合に情報処理装置40に監視画像がエラー画像である状態通知を通信装置51を介して出力してもよい。
(ステップS9-13)
監視装置50において、現状判定部55は、取得した診断結果の学習モデルに基づいて、作成した監視画像の固液分離槽の内部の状態を判定する。
(ステップS10-13)
監視装置50において、現状判定部55は、固液分離槽の内部の状態の判定結果が不調又は異常であるか否かを判定する。現状判定部55は、固液分離槽の内部の状態の判定結果が不調と異常とのいずれでもない、つまり正常と判定した場合には終了する。
(ステップS11-13)
監視装置50において、現状判定部55は、固液分離槽の内部の状態の判定結果が不調又は異常であると判定した場合には、固液分離槽の内部の状態の判定結果を示す情報を含む、情報処理装置40を宛先とする状態通知情報を作成する。
(ステップS12-13)
監視装置50において、現状判定部55は、作成した状態通知情報を通信装置51へ出力する。通信装置51は、現状判定部55が出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40へ送信する。
【0110】
図29は、本実施形態に係る監視システムの動作の例3を示す図である。図9を参照して、監視装置50が、情報処理装置40が送信した槽内状態情報要求に基づいて、監視画像を示す情報を送信する処理について説明する。
ステップS1-14からS6-14は、図7のステップS1-12からS6-12を適用できるため、ここでの説明は省略する。
(ステップS7-14)
情報処理装置40は、ユーザーの操作に基づいて、槽内状態情報要求を作成する。
(ステップS8-14)
情報処理装置40は、作成した槽内状態情報要求を監視装置50へ送信する。
(ステップS9-14)
監視装置50において、通信装置51は、情報処理装置40が送信した槽内状態情報要求を受信する。グラフィック化部54は、通信装置51が受信した槽内状態情報要求を取得する。グラフィック化部54は、取得した槽内状態情報要求に基づいて、記録装置52に記憶した画素データを取得し、取得した画素データに基づいて、監視画像を作成する。
(ステップS9a―14)
グラフィック化部54は、作成した監視画像がエラー画像であるか否かを判定する。
(ステップS9b―14)
グラフィック化部54は、作成した監視画像がエラー画像である場合に動作を終了する。グラフィック化部54は、作成した監視画像がエラー画像である場合に情報処理装置40に監視画像がエラー画像である情報を含む槽内状態情報応答を通信装置51を介して出力してもよい。
(ステップS10-14)
監視装置50において、グラフィック化部54は、作成した監視画像を示す情報を含む。情報処理装置40を宛先とする槽内状態情報応答を作成する。
(ステップS11-3)
監視装置50において、グラフィック化部54は、作成した槽内状態情報応答を通信装置51へ出力する。通信装置51は、グラフィック化部54が出力した槽内状態情報応答を取得し、取得した槽内状態情報応答を情報処理装置40へ送信する。
ステップS11-3の後、情報処理装置40は、監視装置50が送信した槽内状態情報応答を受信し、受信した槽内状態情報応答に含まれる監視画像を示す情報を取得する。情報処理装置40は、取得した監視画像を示す情報を画像処理することによって、監視画像を表示する。このように構成することによって、情報処理装置40のユーザーは、固液分離槽の内部の状態を確認できる。
【0111】
監視装置50は、エラー画像である監視画像を学習モデルの作成に使用しない。また、監視装置50は、エラー画像に対しては学習モデルを用いた判定を行わない。これにより、エラー画像が正常であると学習モデルにより誤って診断されることを防ぐことができる。また、監視画像から上澄水画像を作成する場合には、監視画像がエラー画像であるとき、エラー画像において信号強度が小さい部分が上澄水画像として作成され、学習モデルの作成や学習モデルを用いた判定に使用され、誤った診断につながる可能性がある。そのため、エラー画像を取り除くことでエラー画像から上澄水の測定結果に基づかない偽の上澄水画像が作成されるのを防ぐことができる。
【0112】
以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
例えば、上述した各装置の機能を実現するためのコンピュータプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行するようにしてもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものであってもよい。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、DVD(Digital Versatile Disc)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
【0113】
さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。 また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
【符号の説明】
【0114】
10…下水処理設備、11…前沈殿槽、12…濃縮槽、13…貯留槽、14…脱水機、15…コンテナ、16…曝気槽、17…後沈殿槽、18…ポンプ、19…設備制御装置、20…超音波センサ、21発振部、22…受信部、23…懸濁物堆積層、24…上澄水、25…処理槽、26…界面、27…高さ、30、30d…データ処理装置、31…ゲートウェイ装置、32…超音波発信受信回路、33…データ変換回路、34…データ演算部、35…画像データ格納部、36…表示切替操作部、37…画像データ表示部、40、40a、40b、40c、40d…情報処理装置、45、45a、45b、45c、45d…端末装置、50、50a、50b、50c、50d…監視装置、51…通信装置、52…記録装置、53、53a、53b、53c…情報処理部、54、54d…グラフィック化部、55、55a、55d…現状判定部、56、56a、56b、56c、56d…学習部、57、57b、57d…原因判定部、58、58c、58d…対処方法判定部、59、59d…変化予兆導出部、100、100a、100b、100c、100d…監視システム
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
【手続補正書】
【提出日】2023-10-26
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
排水を固液分離するための固液分離槽の内部の上澄水と汚泥堆積層の界面である汚泥界面から水深が浅くなる方向の画素データであり、前記上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定する判定部と、
診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定部が判定した前記固液分離槽の内部の状態を特定する情報を出力する出力部と
を有する監視システム。
【請求項2】
排水を固液分離するための固液分離槽の内部を表した画像である監視画像と前記固液分離槽の内部の前記監視画像に基づく診断結果とに基づいて、監視画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部を表した監視画像から固液分離槽の内部の状態を判定する判定部と、
診断の対象である前記固液分離槽の前記監視画像と前記第1学習モデルとを用いて前記判定部が判定した前記固液分離槽の内部の状態を特定する情報を出力する出力部と
を有し、
前記監視画像は、測定不良時の画像であるエラー画像を含まない、
監視システム。
【請求項3】
排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定する判定部と、
診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定部が判定した前記固液分離槽の内部の状態を特定する情報を出力する出力部と
を有し、
前記上澄水画像は、測定不良時の画像であるエラー画像を含まない、
監視システム
【請求項4】
排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定する判定部と、
診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定部が判定した前記固液分離槽の内部の状態を特定する情報を出力する出力部と
前記上澄水画像と前記上澄水画像に基づく診断結果となる原因を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果となる原因を特定する情報との関係を学習した第2学習モデルを用いて、診断の対象である前記固液分離槽の前記上澄水画像から固液分離槽の内部の前記状態となる原因を特定する情報を判定する原因判定部を有し、
前記出力部は、診断の対象である前記固液分離槽の前記上澄水画像と前記第2学習モデルとを用いて前記原因判定部が判定した固液分離槽の内部の前記状態となる原因を特定する情報をさらに出力する、
監視システム
【請求項5】
前記上澄水画像と前記上澄水画像に基づく診断結果への対処方法を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果への対処方法を特定する情報との関係を学習した第3学習モデルを用いて、診断の対象である前記固液分離槽の前記上澄水画像から固液分離槽の内部の前記状態への対処方法を特定する情報を判定する対処方法判定部を有し、
前記出力部は、診断の対象である前記固液分離槽の前記上澄水画像と前記第3学習モデルとを用いて前記対処方法判定部が判定した固液分離槽の内部の前記状態への対処方法を特定する情報をさらに出力する、請求項1に記載の監視システム。
【請求項6】
前記上澄水画像と前記上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を学習した第4学習モデルを用いて、診断の対象である前記固液分離槽の前記上澄水画像から固液分離槽の内部の前記状態の変化の予兆を検出する変化予兆導出部を備え、
前記出力部は、診断の対象である前記固液分離槽の前記上澄水画像と前記第4学習モデルとを用いて前記変化予兆導出部が検出した固液分離槽の内部の前記状態の変化の予兆を特定する情報をさらに出力する、請求項1に記載の監視システム。
【請求項7】
前記診断結果は、上澄水画像に含まれる固形物の堆積状態と固形物の浮遊状態とのいずれか一方又は両方に基づいて生成される、請求項1に記載の監視システム。
【請求項8】
排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定する判定部と、
診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定部が判定した前記固液分離槽の内部の状態を特定する情報を出力する出力部と
を有し、
前記判定部は、診断の対象である固液分離槽の内部を表した前記上澄水画像から固液分離槽の内部の状態が、正常と不調と異常とのいずれであるかを判定する、
監視システム
【請求項9】
排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定する判定部と、
診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定部が判定した前記固液分離槽の内部の状態を特定する情報を出力する出力部と
を有し、
前記判定部が、固液分離槽の内部の前記状態が不調と異常とのいずれかと判定した場合に固液分離槽の内部の前記状態が不調と異常とのいずれかの状態であることを通知する通知部
をさらに有する、監視システム
【請求項10】
排水を固液分離するための固液分離槽の内部の上澄水と汚泥堆積層の界面である汚泥界面から水深が浅くなる方向の画素データであり、前記上澄水を表した画像である上澄水画像と前記固液分離槽の内部の状態の前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成する学習部
を有する学習装置。
【請求項11】
排水を固液分離するための固液分離槽の内部を表した画像である監視画像と前記固液分離槽の内部の状態の前記監視画像に基づく診断結果とに基づいて、監視画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成する学習部
を有し、
前記監視画像は、測定不良時の画像であるエラー画像を含まない、
学習装置。
【請求項12】
排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記固液分離槽の内部の状態の前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成する学習部と、を有し、
前記上澄水画像は、測定不良時の画像であるエラー画像を含まない、
学習装置
【請求項13】
排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記固液分離槽の内部の状態の前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成する学習部と、を有し、
前記学習部は、前記上澄水画像と前記上澄水画像に基づく診断結果となる原因を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果となる原因を特定する情報との関係を表す第2学習モデルを学習によって生成する、
学習装置
【請求項14】
前記学習部は、前記上澄水画像と前記上澄水画像に基づく診断結果への対処方法を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果への対処方法を特定する情報との関係を表した第3学習モデルを学習によって生成する、
請求項10に記載の学習装置。
【請求項15】
前記学習部は、前記上澄水画像と前記上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を表した第4学習モデルを生成する、請求項10に記載の学習装置。
【請求項16】
前記診断結果は、上澄水画像に含まれる固形物の堆積状態と固形物の浮遊状態とのいずれか一方又は両方に基づいて生成される、請求項10に記載の学習装置。
【請求項17】
排水を固液分離するための固液分離槽の内部の上澄水と汚泥堆積層の界面である汚泥界面から水深が浅くなる方向の画素データであり、前記上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定するステップと、
診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定するステップで判定した前記固液分離槽の内部の状態を特定する情報を出力するステップと
を有する、監視システムが実行する監視方法。
【請求項18】
排水を固液分離するための固液分離槽の内部の上澄水と汚泥堆積層の界面である汚泥界面から水深が浅くなる方向の画素データであり、前記上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成するステップ
を有する、学習装置が実行する学習方法。
【請求項19】
監視システムのコンピュータに、
排水を固液分離するための固液分離槽の内部の上澄水と汚泥堆積層の界面である汚泥界面から水深が浅くなる方向の画素データであり、前記上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定するステップと、
診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定するステップで判定した前記固液分離槽の内部の状態を特定する情報を出力するステップと
を実行させる、プログラム。
【請求項20】
学習装置のコンピュータに、
排水を固液分離するための固液分離槽の内部の上澄水と汚泥堆積層の界面である汚泥界面から水深が浅くなる方向の画素データであり、前記上澄水を表した画像である上澄水画像と前記固液分離槽の内部の前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成するステップ
を実行させる、プログラム。