(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024180542
(43)【公開日】2024-12-26
(54)【発明の名称】内視鏡装置
(51)【国際特許分類】
A61B 1/06 20060101AFI20241219BHJP
A61B 1/00 20060101ALI20241219BHJP
【FI】
A61B1/06 612
A61B1/00 513
【審査請求】有
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2024178797
(22)【出願日】2024-10-11
(62)【分割の表示】P 2023083903の分割
【原出願日】2009-07-06
(71)【出願人】
【識別番号】306037311
【氏名又は名称】富士フイルム株式会社
(74)【代理人】
【識別番号】110002505
【氏名又は名称】弁理士法人航栄事務所
(72)【発明者】
【氏名】水由 明
(72)【発明者】
【氏名】齋藤 孝明
(57)【要約】
【課題】白色光や特殊光による生体組織の観察時に、生体組織の所望の組織情報を、診断に適したより明瞭な状態で取得する。
【解決手段】半導体発光素子を発光源とする第1の光源51と、第1の光源51とは異なる発光波長の半導体発光素子を発光源とする第2の光源53と、第1の光源51、第2の光源53の少なくとも一方からの出射光により励起発光する波長変換部材57と、第1の光源51からの出射光と第2の光源53からの出射光との光量比を変更する光量比変更手段55と、を備えることで、第1の光源51からの出射光と第2の光源53からの出射光を任意に発生させて、生体組織の吸収特性および散乱特性に応じた診断に適した照明光を提供できる。これにより、生体組織の所望の組織情報が、より明瞭な状態で取得可能となる。
【選択図】
図2
【特許請求の範囲】
【請求項1】
複数の光源の出射光を用いて照明光を得る内視鏡用照明装置であって、
半導体発光素子を発光源とする第1の光源と、
前記第1の光源とは異なる発光波長の半導体発光素子を発光源とする第2の光源と、
前記第1、第2の光源の少なくとも一方からの出射光により励起発光する波長変換部材と、
前記第1の光源からの出射光と前記第2の光源からの出射光との光量比を変更する光量比変更手段と、
を備えた内視鏡用照明装置。
【請求項2】
請求項1記載の内視鏡用照明装置であって、
前記第1の光源と前記第2の光源のうち、少なくとも一方の半導体発光素子の発光波長が400nm乃至470nmの範囲に含まれる内視鏡用照明装置。
【請求項3】
請求項1または請求項2記載の内視鏡用照明装置であって、
前記波長変換部材は、該波長変換部材が励起光により発光する発光光と、前記第1、第2の光源の少なくとも一方からの出射光と、によって白色光を生成する蛍光体である内視鏡用照明装置。
【請求項4】
請求項1~請求項3のいずれか1項記載の内視鏡用照明装置であって、
前記第1、第2の光源とは異なる発光波長の半導体発光素子を発光源とする少なくとも1つの第3の光源を、光源毎に発光波長を異ならせて更に備えた内視鏡用照明装置。
【請求項5】
請求項1~請求項4のいずれか1項記載の内視鏡用照明装置であって、
前記第1の光源から前記波長変換部材までの光路途中に配置され、少なくとも前記第2の光源からの出射光を前記第1の光源からの出射光と合わせて前記波長変換部材へ導光する光カップリング手段を備えた内視鏡用照明装置。
【請求項6】
請求項2~請求項5のいずれか1項記載の内視鏡用照明装置であって、
前記第1の光源および前記第2の光源の各発光波長のうち、いずれか一方がヘモグロビンの吸収波長帯の最大ピーク波長を挟んだ短波長側に、他方が長波長側にそれぞれ設定された内視鏡用照明装置。
【請求項7】
請求項1~請求項6のいずれか1項記載の内視鏡用照明装置であって、
前記光量比変更手段が、前記各光源からの出射光の光量をそれぞれ独立して変更する内視鏡用照明装置。
【請求項8】
請求項1~請求項7のいずれか1項記載の内視鏡用照明装置であって、
所望の光量比を指定する光量比情報が入力される入力手段を更に備え、
前記光量比変更手段が、前記入力手段に入力された光量比情報に基づいて、前記所望の光量比となる前記各光源の出射光量をそれぞれ決定する内視鏡用照明装置。
【請求項9】
請求項8記載の内視鏡用照明装置であって、
複数種の光量比をキー情報と関係付けた光量比テーブルが記憶された記憶手段を更に備え、
前記光量比情報が前記キー情報を含み、
前記光量比変更手段が、前記入力手段から入力された光量比情報に含まれるキー情報に基づき、前記光量比テーブルを参照して前記所望の光量比を決定する内視鏡用照明装置。
【請求項10】
請求項9記載の内視鏡用照明装置であって、
前記キー情報が、内視鏡装置の術者の識別情報である内視鏡用照明装置。
【請求項11】
請求項9記載の内視鏡用照明装置であって、
前記キー情報が、内視鏡装置の個体識別情報である内視鏡用照明装置。
【請求項12】
請求項9~請求項11のいずれか1項記載の内視鏡用照明装置であって、
前記入力手段が、前記光量比テーブルに設定された複数種の光量比のいずれかを指定する切り替えスイッチである内視鏡用照明装置。
【請求項13】
請求項1~請求項12のいずれか1項記載の内視鏡用照明装置からの照明光を、体腔内に挿入される内視鏡挿入部の先端側から出射する照明手段と、
前記照明光が照射された被観察領域を撮像する撮像素子が前記内視鏡挿入部に搭載され、観察画像となる画像信号を出力する撮像手段と、
を備えた内視鏡装置。
【請求項14】
請求項13記載の内視鏡装置であって、
少なくとも前記第1の光源および前記第2の光源を、前記撮像素子の画像信号1フレーム内に発光させる光源制御手段を備えた内視鏡装置。
【請求項15】
請求項14記載の内視鏡装置であって、
前記光源制御手段が、少なくとも前記第1の光源および前記第2の光源を、前記撮像素子の画像信号1フレーム内で互いに異なるタイミングで発光させる内視鏡装置。
【請求項16】
請求項13~請求項15のいずれか1項記載の内視鏡装置であって、
前記撮像素子から出力された画像信号に基づく表示用観察画像を生成する画像処理手段と、
前記表示用観察画像を含む情報を表示する表示手段と、
を備えた内視鏡装置。
【請求項17】
請求項16記載の内視鏡装置であって、
前記表示手段が、前記第1の光源からの出射光および前記波長変換部材からの励起発光光を含む可視光下で撮像した第1の画像情報と、
前記可視光に加えて前記第2の光源からの出射光を含む照明光下で撮像した第2の画像情報とを、同一画面内で同時に表示する内視鏡装置。
【請求項18】
請求項16または請求項17記載の内視鏡装置であって、
前記表示手段が、前記第1の光源からの出射光および前記波長変換部材からの励起発光光を含む可視光下で撮像した第1の画像情報と、
前記可視光に加えて前記第2の光源からの出射光を含む照明光下で撮像した第2の画像情報とのいずれか一方の画像情報を、互いに重ね合わせて同時に表示する内視鏡装置。
【請求項19】
請求項13~請求項18のいずれか1項記載の内視鏡装置であって、
前記画像処理手段から出力される観察画像を含む情報を記録する記録手段を備え、
前記記録手段が、前記観察画像と前記光量比とを関係付けて記録する内視鏡装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は内視鏡用照明装置および内視鏡装置に関する。
【背景技術】
【0002】
一般的な内視鏡装置は、光源装置のランプからの光を、被検体内に挿入される内視鏡挿入部に内設されたライトガイドで内視鏡先端部まで導光し、内視鏡先端部の照明窓から出射することで、被検体の観察部位を照明する。通常の生体組織の観察には白色光が用いられるが、近年においては、特定の狭帯域化された波長の光を照射して粘膜組織の状態を強調表示させたり、予め投与した蛍光物質からの自家蛍光を観察する特殊光観察が可能な内視鏡装置が活用されている(特許文献1,2)。この種の内視鏡装置では、生体組織に特殊光を照射することで、例えば粘膜層あるいは粘膜下層に発生する新生血管が観察でき、通常の観察像では得られない粘膜表面の微細構造の描写が可能になる。
【0003】
上記の特許文献1,2においては、キセノンランプ等の白色光源からの出射光をカラーフィルタにより特定の波長帯域のみ取り出して、特殊光として利用している。なお、白色光源としては、キセノンランプの他にレーザ光源も利用でき、例えば青色レーザ光源と、これを励起光として励起発光する蛍光体との組合せで白色光を発生する発光装置も提案されている(特許文献3)。
【0004】
しかし、これら特許文献1,2の内視鏡装置においては、白色光源からの光をカラーフィルタによって時分割し、異なる波長帯の光(R,G,B光等)を面順次に発光させる構成となっている。そのため、フルカラーの観察画像を得るには、複数フレーム(R,G,B)の撮像画像を合成する必要があり、観察画像のフレームレートを上げる妨げとなっている。また、カラーフィルタにより光吸収させて照明光を生成しているため、光量の減少は避けられず、観察画像のノイズ成分を増加させる要因となる。フレームレートを落として感度を上げることもできるが、その場合には、画像がブレやすくなる。
【0005】
一方、特殊光診断においては、生体組織の表層部や深層部にかけての組織情報等が重要な観察対象となる。例えば、消化管癌は早期から腫瘍血管が粘膜の表層部に現れ、腫瘍血管は通常の表層部に見える血管に比べると膨張や蛇行、血管の密度の増加が認められる。そのため、血管の性状を精査することで腫瘍の種類を鑑別できる。しかしながら、上記のカラーフィルタを用いる内視鏡装置では、生体組織の特に表層部の組織情報を観察したい場合等、カラーフィルタの透過波長帯域を特定の狭い帯域内に限定することは難しく、しかも、狭帯域に限定した照明光は十分な光量が得られず、観察画像の画質劣化を招く不利がある。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特許第3583731号公報
【特許文献2】特公平6-40174号公報
【特許文献3】特開2006-173324号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、白色光や特殊光による生体組織の観察時に、生体組織の所望の組織情報を、診断に適したより明瞭な状態で取得できる内視鏡用光源装置および内視鏡装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は下記構成からなる。
(1) 複数の光源の出射光を用いて照明光を得る内視鏡用照明装置であって、
半導体発光素子を発光源とする第1の光源と、
前記第1の光源とは異なる発光波長の半導体発光素子を発光源とする第2の光源と、
前記第1、第2の光源の少なくとも一方からの出射光により励起発光する波長変換部材と、
前記第1の光源からの出射光と前記第2の光源からの出射光との光量比を変更する光量比変更手段と、
を備えた内視鏡用照明装置。
(2) 上記内視鏡照明装置からの照明光を内視鏡挿入部の先端から出射する照明光学系と、
前記照明光が照射された被照明領域からの光を受光して画像信号を出力する撮像素子を含む撮像光学系と、
を備えた内視鏡装置。
【発明の効果】
【0009】
本発明の内視鏡用光源装置および内視鏡装置によれば、白色光や特定の波長帯域の特殊光を用いた生体組織の観察時に、生体組織の所望の組織情報を、診断に適したより明瞭な状態で取得できる。
【図面の簡単な説明】
【0010】
【
図1】本発明の実施形態を説明するための内視鏡用光源装置を用いた内視鏡装置の模式的構成図である。
【
図2】
図1に示す内視鏡装置のブロック構成図である。
【
図3】紫色レーザ光源からのレーザ光と、青色レーザ光源からの青色レーザ光および青色レーザ光が蛍光体により波長変換された後の光の発光スペクトルを示すグラフである。
【
図5】生体組織の粘膜表層の血管を模式的に表した説明図である。
【
図6】内視鏡装置による観察画像の概略的な表示例を示す説明図である。
【
図7a】内視鏡装置により観察した唇内側の白色光による拡大観察画像である。
【
図7b】内視鏡装置により観察した唇内側の光量比50:50の拡大観察画像である。
【
図7c】内視鏡装置により観察した唇内側の光量比75:25の拡大観察画像である。
【
図8】内視鏡装置による観察画像を表示する表示部の表示画面の例を示す説明図である。
【
図9】内視鏡装置による観察画像を表示する表示部の表示画面の他の例を示す説明図である。
【
図10】光源への印加電流と発光量との関係を示すグラフである。
【
図11】印加電流のパルス電流重畳波形を示すグラフである。
【
図12】パルス変調制御による種々の駆動波形(a),(b),(c)を示す説明図である。
【
図13】光源の発光量が交互に最大とする制御例を示すグラフである。
【
図14】ヘモグロビンの吸収波長帯と各光源の発光波長との概略的な関係を示すグラフである。
【
図15】内視鏡の術者が内視鏡挿入部を被検体内で移動させ、所望の観察位置で狭帯域光による観察を行い、次の観察位置へ移動させる際の、表示部の表示画像の様子を概略的に示す説明図である。
【
図16】通常画像と狭帯域光画像とを同一画面内でそれぞれ個別の領域に配置して同時に表示する例を示す説明図である。
【
図17】通常画像の中に所望の範囲の狭帯域光画像を重ね合わせて同時に表示する例を示す説明図である。
【
図18】内視鏡の術者に対する光量比を登録した光量比テーブルを示す説明図である。
【
図19】プリセットされた光量比を表示部へ表示する例を示す説明図である。
【
図21】光量比に対する色変換係数テーブルを示す説明図である。
【
図22】酸素濃度の低いヘモグロビンHbと酸素飽和した酸化ヘモグロビンHbO
2の吸収スペクトルを示すグラフである。
【
図23】複数のレーザ光源を備えた光源装置と内視鏡の構成例を示すブロック図である。
【
図24】光路を統合した光源装置と内視鏡の構成例を示すブロック図である。
【
図25】
図24に示す光源装置と蛍光体による発光スペクトルの例を示すグラフである。
【発明を実施するための形態】
【0011】
以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1は、本発明の実施形態を説明するための内視鏡用光源装置を用いた内視鏡装置の模式的構成図、
図2は
図1に示す内視鏡装置のブロック構成図である。
図1に示す内視鏡装置100は、内視鏡11と、この内視鏡11が接続される制御装置13とを有する。制御装置13には、画像情報等を表示する表示部15と、入力操作を受け付ける入力部17が接続されている。内視鏡11は、内視鏡挿入部19の先端から照明光を出射する照明光学系と、被観察領域を撮像する撮像素子を含む撮像光学系とを有する、電子内視鏡である。
【0012】
内視鏡11は、被検体内に挿入される内視鏡挿入部19と、内視鏡挿入部19の先端の湾曲操作や内視鏡挿入部19の先端からの吸引、送気・送水等の操作を行う操作部23と、内視鏡11を制御装置13に着脱自在に接続するコネクタ部25と、操作部23とコネクタ部25とを結ぶユニバーサルコード部27とを備える。なお、図示はしないが、内視鏡11の内部には、組織採取用処置具等を挿入する鉗子チャンネルや、送気・送水用のチャンネル等、各種のチャンネルが設けられる。
【0013】
内視鏡挿入部19は、可撓性を持つ軟性部31と、湾曲部33と、先端部(以降、内視鏡先端部とも呼称する)35から構成される。内視鏡先端部35には、被観察領域へ光を照射する照射口37A,37Bと、被観察領域の画像情報を取得するCCD(charge coupled device)イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等の撮像素子21が配置されている。なお、撮像素子21には対物レンズ等の結像部材39が取り付けられている。
【0014】
湾曲部33は、軟性部31と先端部35との間に設けられ、操作部23からのワイヤ操作やアクチュエータの作動操作等により湾曲自在にされている。この湾曲部33は、内視鏡11が使用される被検体の部位等に応じて、任意の方向、任意の角度に湾曲でき、内視鏡先端部35の照射口37A,37Bおよび撮像素子21の観察方向を、所望の観察部位に向けることができる。また、図示は省略するが、内視鏡挿入部19の照射口37A,37Bには、カバーガラスやレンズが配置される。
【0015】
制御装置13は、内視鏡先端部35の照射口37A,37Bに供給する照明光を発生する光源装置41、撮像素子21からの画像信号を画像処理するプロセッサ43を備えており、前述の表示部15と入力部17が接続されている。プロセッサ43は、内視鏡11の操作部23や入力部17からの指示に基づいて、内視鏡11から伝送されてくる撮像信号を画像処理し、表示部15へ表示用画像を生成して供給する。
【0016】
内視鏡11の内部には、光源装置41から照明光を導入するための光ファイバ45A,45Bと、撮像素子21とプロセッサ43を結ぶスコープケーブル47が挿通されている。また、図示はしないが、操作部23からの各種信号線および送気、送水チャンネル等のチューブ類もユニバーサルコード部27を通じてコネクタ部25を介し、制御装置13等に接続されている。この内視鏡11側のコネクタ25は、
図2に示すように、光源装置41とプロセッサ43のそれぞれに設けられたコネクタ部26A,26Bに着脱自在に接続される。
【0017】
光源装置41は、
図2に示すように、中心波長445nmの青色レーザ光源(第1の光源)51と、中心波長405nmの紫色レーザ光源(第2の光源)53とを発光源として備えている。これらの各光源51,53の半導体発光素子からの発光は、光源制御部55により個別に制御されており、青色レーザ光源51の出射光と、紫色レーザ光源53の出射光との光量比は変更自在になっている。
【0018】
第1の光源である青色レーザ光源51、および第2の光源である紫色レーザ光源53は、ブロードエリア型のInGaN系レーザダイオードが利用可能でき、また、InGaNAs系レーザダイオードやGaNAs系レーザダイオードを用いることもできる。また、上記光源として、発光ダイオード等の発光体を用いた構成としてもよい。
【0019】
これら各光源51,53から出射されるレーザ光は、集光レンズ(図示略)により光ファイバに入力され、コネクタ部26A及び内視鏡11側のコネクタ25(
図1参照)を介して、光ファイバ45A,45Bによって、それぞれ内視鏡11の内視鏡先端部35(
図1参照)まで伝搬される。そして、青色レーザ光源51からのレーザ光は、内視鏡先端部35に配置された波長変換部材である蛍光体57に照射され、紫色レーザ光源53からのレーザ光は、光偏向・拡散部材59に照射される。
【0020】
光ファイバ45A,45Bは、マルチモードファイバであり、一例として、コア径105μm、クラッド径125μm、外皮となる保護層を含めた径がφ0.3~0.5mmの細径なケーブルを使用できる。
【0021】
蛍光体57は、青色レーザ光源51からの青色レーザ光の一部を吸収して緑色~黄色に励起発光する複数種の蛍光体(例えばYAG系蛍光体、あるいはBAM(BaMgAl10O17)等を含む蛍光体等)を含んで構成される。これにより、青色レーザ光源51からの青色レーザ光を励起光とする緑色~黄色の励起光と、蛍光体57により吸収されず透過した青色レーザ光とが合わされて、白色(疑似白色)の照明光となる。本構成例のように、半導体発光素子を励起光源として用いれば、高い発光効率で高強度の白色光が得られ、さらに、白色光の強度を容易に調整できる。しかも、白色光の色温度、色度の変化は少なくなる。
【0022】
なお、青色レーザ光源51、蛍光体57、およびこれらを接続する光ファイバ45Aは、例えば、日亜化学工業社製の「マイクロホワイト」(商品名)を用いることができる。
【0023】
また、光偏向・拡散部材59は、紫色レーザ光源53からのレーザ光を透過させる材料であればよく、例えば透光性を有する樹脂材料やガラス等が用いられる。さらには、光偏向・拡散部材59は、樹脂材料やガラスの表面等に、微小凹凸や屈折率の異なる粒子(フィラー等)を混在させた光拡散層を設けた構成や、半透明体の材料を用いた構成としてもよい。これにより、光偏向・拡散部材59から出射する透過光は、所定の照射領域内で光量が均一化された狭帯域波長の照明光となる。
【0024】
なお、蛍光体57と光偏向・拡散部材59は、レーザ光の可干渉性により生じるスペックルに起因して、撮像の障害となるノイズの重畳や、動画像表示を行う際のちらつきの発生等の現象を防ぐことができる。また、蛍光体57は、蛍光体を構成する蛍光物質と、充填剤となる固定・固化用樹脂との屈折率差を考慮して、蛍光物質そのものと充填剤に対する粒径を、赤外域の光に対して吸収が小さく、かつ散乱が大きい材料で構成することが好ましい。これにより、赤色や赤外域の光に対して光強度を落とすことなく散乱効果が高められ、凹レンズ等の光路変更手段が不要となり、光学的損失が小さくなる。
【0025】
図3は、紫色レーザ光源53からのレーザ光と、青色レーザ光源51からの青色レーザ光および青色レーザ光が蛍光体57により波長変換された後の光の発光スペクトルを示すグラフである。紫色レーザ光源53からの紫色レーザ光は、中心波長405nmの輝線(プロファイルA)で表される。また、青色レーザ光源51からの青色レーザ光は、中心波長445nmの輝線で表され、青色レーザ光による蛍光体57からの励起発光光は、概ね450nm~700nmの波長帯域で発光強度が増大する分光強度分布となる(プロファイルB)。この励起発光光と青色レーザ光によるプロファイルBによって、前述した白色光が形成される。
【0026】
ここで、本明細書でいう白色光とは、厳密に可視光の全ての波長成分を含むものに限らず、例えばR,G,B等、特定の波長帯の光を含むものであればよく、例えば、緑色から赤色にかけての波長成分を含む光や、青色から緑色にかけての波長成分を含む光等も広義に含むものとする。
【0027】
つまり、この内視鏡装置100では、プロファイルAとプロファイルBとの発光強度を相対的に増減して照明光を生成するので、プロファイルA,Bの混合比率に応じて特性の異なる照明光を得ることができる。
【0028】
再び
図2に戻り説明する。上記のように青色レーザ光源51と蛍光体57、および紫色レーザ光源53により形成される照明光は、内視鏡11の先端部から被検体の被観察領域に向けて照射される。そして、照明光が照射された被観察領域の様子を撮像レンズ61により撮像素子21上に結像させて撮像する。
【0029】
撮像後に撮像素子21から出力される画像信号は、A/D変換器63によりデジタル信号に変換されて、プロセッサ43の画像処理部65に入力される。画像処理部65では、入力された画像信号を画像データに変換して適宜な画像処理を行い、所望の出力用画像情報を生成する。そして、得られた画像情報は、制御部67を通じて内視鏡観察画像として表示部15に表示される。また、必要に応じて、メモリやストレージ装置からなる記録装置69に記録する。
【0030】
記録装置69は、プロセッサ43に内蔵されてもよく、プロセッサ43にネットワークを介して接続されていてもよい。記録装置69に記録される内視鏡観察画像の情報には、撮像時の光量比の情報を併せて記録する。これにより、記録された内視鏡観察画像に対して内視鏡観察後に正確な読影が行え、また、光量比に応じて、画像を標準化する等の適宜な画像処理を施すこともでき、内視鏡観察画像の活用範囲を拡げることができる。特に、分光の異なる光量比の複数枚の情報をもとに、擬似的にバンド数(R,G,B)を増して分光反射率推定を行えば、より微少な色差の分離が可能になる。
【0031】
図4に画像処理部の詳細ブロック図を示した。画像処理部65に入力される撮像素子21からの画像信号は、まず輝度算出部65aに入力される。輝度算出部65aは、画像信号の最大輝度、最低輝度、画面平均輝度等の輝度情報を求め、輝度の正規化を行う。そして、画像信号の輝度が低すぎる場合や高すぎる場合は光源制御部55に補正信号を出力して、画像信号が所望の輝度レベルになるように、各光源51,53の発光量を増減させる。
【0032】
次に、色合わせ部65bは、正規化された画像データに対し、画像の色調が所望の色調となるように調整する。例えば画像信号がR,G,B各色の信号からなる場合、R,G,B各色の信号の強度バランスを調整する。上記の光源装置41においては、光源制御部55により、青色レーザ光源51と紫色レーザ光源53の発光量をそれぞれ制御して、青色レーザ光源51の出射光と紫色レーザ光源53の出射光との光量比を任意に変更可能に構成している。そのため、設定される光量比に応じて照明光の色味や合計照度が変化する場合があるので、輝度算出部65aや色合わせ部65bは、設定される光量比に応じて画像信号を補正し、観察画像の色調や輝度を所定の一定レベルに維持させている。
【0033】
そして、画像演算部65cでは、予め定めた、又は実施要求のあった画像演算を行い、その結果を表示画像生成部65dにおいて出力用画像情報を生成して制御部67に出力する。
【0034】
次に、上記の内視鏡装置100を、生体組織表層の血管画像の観察に利用する例を説明する。
図5は生体組織の粘膜表層の血管を模式的に表した説明図である。生体組織の粘膜表層は、粘膜深層の血管B1から樹脂状血管網等の毛細血管B2が粘膜表層までの間に形成され、生体組織の病変はその毛細血管B2等の微細構造に現れることが報告されている。そこで近年では、内視鏡装置を用いて、特定の狭帯域の波長光により粘膜表層の毛細血管を画像強調して観察し、微小病変の早期発見や、病変範囲の診断が試みられている。
【0035】
ところで、生体組織に照明光が入射されると、入射光は生体組織内を拡散的に伝播するが、生体組織の吸収・散乱特性は波長依存性を有しており、短波長ほど散乱特性が強くなる傾向がある。つまり、照明光の波長によって光の深達度が変化する。一方、血管中を流れる血液は400~420nm付近の波長に吸収の極大を持ち、大きなコントラストが得られる。例えば、照明光が波長400nm付近の波長域λaでは粘膜表層の毛細血管からの血管情報が得られ、波長500nm付近の波長域λbでは、さらに深層の血管を含む血管情報が得られる。そのため、生体組織表層の血管観察には、中心波長360~800nm、好ましくは365~515nm、さらに好ましくは中心波長400nm~470nmの光源が用いられる。
【0036】
したがって、
図6に内視鏡装置による観察画像の概略的な表示例を示すように、照明光を白色光とした場合の観察画像では、比較的粘膜深層の血管像が得られる反面、粘膜表層の微細な毛細血管はぼやけて見える。一方、短波長のみの狭帯域化した照明光とした場合の観察画像では、粘膜表層の微細な毛細血管が鮮明に見えるようになる。
【0037】
本構成例では、内視鏡装置100の光源制御部55(
図2参照)により、中心波長445nmの青色レーザ光源51と、中心波長405nmの紫色レーザ光源53による出射光の光量比を変更自在にしている。光量比の変更は、例えば
図1に示す内視鏡11の操作部23に設けたスイッチ89の操作により行い、粘膜表層の毛細血管をより観察しやすいように画像強調することができる。つまり、青色レーザ光源51による青色レーザ光成分が多い場合は、この青色レーザ光と、蛍光体57による励起発光光とによる白色光成分が多い照明光となり、
図6の白色光観察画像のような観察画像が得られる。ただし、狭帯域光である青色レーザ光が照明光に混在しているので、表層の毛細血管が画像強調された観察画像となる。
【0038】
また、紫色レーザ光源53による紫色レーザ光成分が多い場合は、
図6の狭帯域光観察画像のような観察画像が得られる。そして、青色レーザ光源51と紫色レーザ光源53の出射光の光量比を増減させることで、つまり、全照明光成分に対する紫色レーザ光成分の割合を増減させることで、粘膜表層の微細な毛細血管を連続的に強調表示させた観察が行える。
【0039】
したがって、紫色レーザ光成分が多いほど、粘膜表層の薄い深さ領域に含まれる微細な毛細血管が観察画像に鮮明に映出され、紫色レーザ光成分が少なくなるにつれて、粘膜表層から深層に向けた広い深さ領域に含まれる血管情報が映出される。これにより、粘膜表層から深さ方向の血管分布を擬似的に表示させることができ、観察部位の深さ方向の血管情報を各深さ範囲に対応して連続的した情報として抽出することができる。特に本構成例では、青色レーザ光により得られる血管情報と、紫色レーザ光により得られるさらに表層の血管情報とが共に抽出され、これら情報の画像表示によって双方を比較できるので、青色レーザ光では観察できなかったより表層の血管を含む血管情報を、視認性を高めて観察することができる。
【0040】
また、撮像素子21が配置される電子内視鏡の先端部35(
図1参照)では、近年の高画素化、フレーム速度の高速化等、消費電力の増大とともに発熱量が上昇しており、先端部35から出射可能な光も制限を受ける。この中で、各光源の光量比を変更することにより、照明光の総光量を抑制しつつ、必要な発光を増加させることは、例えば画像処理のみに頼って、結果的にノイズの多い画像しか得られない等の問題を解消できる。
【0041】
ここで、
図7a,b,cに内視鏡装置100により同一の光量で同様の画像処理条件の下で観察した唇内側の拡大画像を示した。同図においては、中心波長445nmの青色レーザ光と蛍光体の励起発光光からなる白色照明光による観察画像(
図7a)と、中心波長405nmの紫色レーザ光と中心波長445nmの青色レーザ光との光量比を50:50とした場合の観察画像(
図7b)と、中心波長405nmの紫色レーザ光と中心波長445nmとの光量比を75:25とした場合の観察画像(
図7c)を示している。なお、
図7b,cにおいても中心波長445nmの青色レーザ光を励起光とする蛍光体からの励起発光光が照明光に含まれている。
【0042】
図7の観察画像は、照明光の波長によりa→b→cの順で表層からの観察深さが浅くなり、微細な毛細血管の映出量が増加している。つまり、照明光内における紫色レーザ光の割合を増加させるほど表層の毛細血管がより強調された画像が得られ、粘膜表層の毛細血管および粘膜微細模様を、コントラストを高めてより明瞭に観察することができる。また、青色レーザ光と紫色レーザ光の光量比を無段階で自在に変更できるため、連続的に光量比を変えた際の観察画像の変化から、粘膜表層における立体的な血管構造を推察したり、所望の観察対象を選択的に明瞭に映出させたりすることが容易に行える。
【0043】
このような、互いに近接した波長帯域となる紫色光と青色光に対して、紫色領域だけの光量を青色領域の光と区別して増減させることは、従来のハロゲンランプやキセノンランプとカラーフィルタ等の波長制限手段で実現することは難しい。光路中に波長制限手段を用いて発光スペクトルを狭帯域化すると、元々のハロゲンランプやキセノンランプの自体の光量が少ない上、紫色領域の光量はさらに不足する。また、この紫色領域の光量を増やすために発光スペクトルの半値幅を拡げようとすると、照明光の狭帯域化が図れずに、所望の血管の画像強調が不十分となる。
【0044】
そして、照明光の光量が不足する場合、一般的にはイメージセンサの感度を上げること、またはフレームレートを落とすことで光量不足に対処できるが、撮像時にイメージセンサの感度を上げると、撮像画像のノイズ成分が増加する不利がある。また、フレームレートを落として感度を増加させると、ぶれが大きくなって、却って観察画像が見にくくなる。本構成例では、光源としてレーザ光を用いるため、高強度の照明光が常時安定して得られ、観察画像を明るくでき、しかも低ノイズの良好な画質にできる。そして、遠景を撮像する場合でも必要十分な照度が得られる。
【0045】
上記の光量比は、
図2に示す光源制御部55が各光源51,53を制御することで変更するが、次に、この光量比を術者が観察画像を見ながら変更する方法を
図8、
図9を用いて説明する。
図8は内視鏡装置100による観察画像を表示する表示部15の表示画面71の例を示している。表示画面71には、内視鏡装置による観察画像を表示する内視鏡画像領域73と、通常の白色光照明による観察画像を内視鏡画像領域73に表示させる通常画像切り替えボタン75、紫色レーザ光の狭帯域照明光による観察画像を表示させる狭帯域光画像切り替えボタン77が設けられ、さらに光量比を調整する調整用バー79とつまみ81が設けられている。そして、マウスやキーボード等の入力部17からの指示に基づいて、つまみ81を調整用バー79内でスライド移動させ、所望の観察画像となるように光量比を調整する。
【0046】
制御部67は、調整用バー79のつまみ81の位置に応じて光量比を決定し、この光量比に対応する各光源51,53の出射光量となるように各光源51,53を駆動する。ここで、光量比と各光源51,53の出射光量との関係は、光量比対応テーブルとして記憶部83(
図2参照)に記憶されており、制御部67は、記憶部83の光量比対応テーブルを参照して各光源51,53の出射光量を求める。
【0047】
上記のように、各光源51,53(
図1参照)の光量を増減して所望の光量比に設定するに際し、制御部67は表示画面71で設定された光量比に基づいて、予め記憶された光量比対応テーブルを参照して各光源51,53の出射光量を決定する。これにより、各光源51,53それぞれの出射光量を内視鏡の術者が直接設定することなく、簡単な操作で所望の光量比となるように設定できる。
【0048】
また、
図9に示すように、光量比の変更は、画像信号のR,G,Bの各色成分の強度バランス、輝度、コントラストの各種調整の設定部85を代用して設定してもよく、あるいは光量比変更用のつまみ81の調整と併用して使用してもよい。これによれば、所望の観察対象を擬似カラー化して表現する等、任意に画像強調して表示することができ、表示画像の変更自由度が向上して、一層診断しやすい画像にできる。
【0049】
次に、光源制御部55による各光源51,53の駆動方法について説明する。
図2に示す光源制御部55は、入力部17からの指示に基づいて各光源51,53の出射光量を制御する。各光源51,53は、
図10に示すような印加電流と発光量との関係R1を有しており、各光源51,53への印加電流を制御することで所望の発光量を得ている。例えば、発光量Laを得るためには、印加電流をIbとして関係R1に基づく発光量Lbを確保し、さらに、微調整代としての発光量LbとLaとの差ΔLを、印加電流にパルス変調されたパルス電流を重畳することで得る。
【0050】
例えば、
図11に印加電流のパルス電流重畳波形を示すように、発光量Laは印加電流Ibをバイアスとするパルス電流により得られる。このようなバイアス電流制御とパルス変調制御により、設定可能な発光量のダイナミックレンジを広く確保できる。
【0051】
この場合のパルス変調制御は、種々の駆動波形が利用できる。例えば、
図12(a)に示すような撮像素子の画像1フレーム分の光蓄積時間と同期してオンオフを繰り返すパルス波形を用いれば、CCD、CMOSイメージセンサの暗電流による影響を受けにくくなり、画像の鮮鋭度が高くなる。また、
図12(b)に示すような前記の光蓄積時間に対して十分に速い周期のパルス波形を用いれば、画像表示に関係するフリッカーの発生を軽減でき、しかも、レーザのスペックルによる画像ノイズも低減できる。さらに、
図12(c)に示すような、
図12(a)のパルス波形のオン期間を
図12(b)の速い周期のパルス波形とした(a)および(b)の混合型のパルス波形を用いれば、フリッカー軽減以外の上記効果を享受できる。
【0052】
また、
図13に示すように、各光源51,53を交互に点灯して、発光量が交互に最大となるように制御すると、光源51,53を合わせた光源装置41の最大駆動電力を抑えることができ、被検体である生体への負担も軽減できる。また、各光源51,53の照明光による撮像画像を個別に取得することもでき、その場合、取得した画像の画像間演算も可能となり、画像処理の自由度が向上する。
【0053】
図14にヘモグロビンの吸収波長帯と各光源51,53の発光波長との概略的な関係を示した。
血中に含まれるヘモグロビンは、前述のように400~420nm付近の波長に吸収の極大があり、ヘモグロビンの吸収波長帯に含まれるか、又は吸収波長帯に近い発光波長の各光源51,53からの出射光は、血管情報を高コントラストで捉えることができる。また、各光源51,53の発光波長がヘモグロビンの吸収波長帯を挟んで、それぞれ同程度の吸収率に設定されることにより、血管情報の強弱が各光源51,53の光量比によって影響を受けることがない。つまり、各光源51,53の光量比を変更しても、血管像自体の検出感度が一定に保たれる。
【0054】
そして、ヘモグロビンの吸収波長帯の最大ピーク波長を避け、吸収波長帯の裾野領域における適度な吸収率となる波長領域の光を照明光として使用することで、観察領域で生体組織から出血を生じた場合に、組織表面層に滲出した血液による吸収の影響を受けて観察画像が暗くなることが防止される。
【0055】
以上説明した紫色レーザ光の狭帯域光による照明と、白色光による照明によって得られる観察画像は、フレーム毎に瞬時に切り替えることができる。
図15は、内視鏡の術者が内視鏡挿入部を被検体内で移動させ、所望の観察位置で狭帯域光による観察を行い、次の観察位置へ移動させる際の、表示部15(
図1,2参照)の表示画像の様子を概略的に示している。
【0056】
白色光観察による通常の表示画像から狭帯域光観察による表示画像への切り替え、およびこれと逆方向への切り替えは、撮像素子21の撮像画像(R,G,B三色のフルカラー画像)1フレーム単位でも切り替えが可能である。このため、内視鏡挿入部を移動させながら観察する場合であっても、リアルタイムで色ずれのない画像を表示でき、術者に違和感を生じさせることがない。つまり、内視鏡の素早い動きに対しても確実に追従する良好な観察画像を提供でき、内視鏡装置の操作性を向上できる。
【0057】
また、表示部15における観察画像の表示パターンとしては、白色光観察時の通常画像と、狭帯域光観察時の狭帯域光画像とを自在に配置できる。例えば、
図16に示すように、通常画像と狭帯域光画像とを同一画面内でそれぞれ個別の領域に配置して、同時に表示させることで、通常画像と、特定の情報が強調された狭帯域光画像とを対比観察することが容易になる。この場合、白色光による通常画像用に青色レーザ光源51を点灯させて撮像し、次のフレームでは狭帯域光画像用に青色レーザ光源51と紫色レーザ光源53とを同時に点灯させて撮像することを繰り返し、得られた通常画像と狭帯域光画像をそれぞれの表示領域に表示する。
【0058】
また、
図17においては、通常画像の中に所望の範囲の狭帯域光画像を重ね合わせて同時に表示する、所謂、P in P(Picture in Picture)機能の表示画面を示している。狭帯域光画像の表示範囲は、入力部17(
図1,2参照)からの指示により、通常画像内の任意の位置、任意の大きさに設定することができる。そして、狭帯域光画像の表示範囲内には、通常画像における被検体の表示位置と同一位置の画像が表示されている。これにより、同一位置における対比観察が一層容易となる。なお、上記の表示パターンは一例であって、狭帯域光画像の中に通常画像を埋め込む表示形態であってもよく、その他任意に組み合わせた表示が行えることは言うまでもない。
【0059】
次に、青色レーザ光と紫光レーザ光の光量比の設定について説明する。
上記の説明において、
図2に示す青色レーザ光源51、紫色レーザ光源53からの出射光の光量比を、入力部17からの指示により光源制御部55が任意に設定できるとした。ここでは、予め複数種の光量比を登録しておき、入力部17からいずれかの光量比を指定する場合を説明する。
【0060】
例えば、血管画像の内視鏡観察においては、内視鏡の術者毎に青レーザ光と紫色レーザ光の光量比の嗜好が異なることがある。例えば、術者Aは紫色レーザ光λa、青色レーザ光λbの光量比を60:40とした観察画像を好ましく感じ、術者Bは75:25の光量比を好ましく感じる等、嗜好による違いが生じることがある。その場合、
図18に示すように、キー情報となる術者名と、術者の好みの光量比とを関係付けた光量比情報を、記憶部83(
図2参照)等に光量比テーブルとして予め登録しておく。そして、入力部17から術者名に対応する情報が入力されると、制御部67は、記憶部83の光量比テーブルを参照して所望の光量比を自動的に設定する。これにより、内視鏡の術者の嗜好に応じた光量比に設定できる。
【0061】
また、内視鏡の個体によっても光学特性が異なる場合があるので、上記キー情報とした術者名に代えて、内視鏡の個体を識別する個体識別情報をキー情報としてもよい。その場合、内視鏡の個体毎に付与された番号、機種名等を用いて、これに対応する光量比の情報を光量比テーブルとして予め登録しておく。これにより、内視鏡の個体毎の種類や特性に応じて、最適な光量比に設定することができる。
【0062】
さらに、任意の複数種の光量比をプリセットしておき、術者が簡単な操作により自由に選択できる構成としてもよい。例えば、
図19に表示部15による表示例を示すように、プリセットされた複数種の光量比を、GUI(Graphical User Interface)の「選択ボタン」87として表示して、術者や助手が表示部15(
図1,2参照)を見て入力部17を操作することで自在に選択できるようにする。また、表示部15をタッチパネルとすれば、術者が観察時に注視している表示部15に対し、選択ボタン87を直接タッチすることで、スイッチ操作をより直感的に素早く行える。また、光量比の変更により変化する各観察画像を、術者は目を離すことなく比較でき、微妙な画像変化をより確実に認識できる。
【0063】
また、光量比の切り替えは、表示部15への表示パターンから行うことに限らず、
図1に示す内視鏡11の操作部23に設けたスイッチ89を切り替えスイッチとして操作する構成としてもよい。操作部23にスイッチ89を設けることで、術者が内視鏡11から手を離すことなく光量比の変更が迅速、かつ簡単に行えて、内視鏡の操作性が向上する。
【0064】
このスイッチ89としては、トグルスイッチ、プッシュスイッチ、スライドスイッチ、ロータリースイッチ等の各種スイッチが利用でき、
図20に示すように、一回の押下操作の度に、または多接点スイッチの接点位置により、予めプリセットされた異なる光量比が順次に設定される。例えば、
図2の青色レーザ光源51と蛍光体57による白色光で観察する通常光観察と、紫色レーザ光源53からの狭帯域光を所定の割合で白色光に重畳した狭帯域光観察A,B,C,・・・、または狭帯域光だけの狭帯域光観察等、複数種の光量比の観察光モードを順次に選択できるようにする。
【0065】
スイッチ操作が押下操作等の繰り返しであるとスイッチ89を目視確認する必要がなく、表示部15を注視しながらスイッチ操作できる。これにより、診断に適した照明光に簡単に切り替えできる。なお、光量比を切り替えるスイッチ89は、プリセットされた光量比を切り替えることに限らず、光量比を連続的に変化させるボリュームスイッチやスライドスイッチとしてもよい。その場合は、光量比を観察対象に応じて最適に調整することが容易となる。また、スイッチ操作により光量比を連続的に変更することで、観察画像の連続的な変化を観察でき、血管構造のより正確な把握が可能となる。
【0066】
次に、光量比の変更に伴って発生する観察画像の色味変化を補正することについて説明する。
図4に示す画像処理部65には、画像信号R,G,Bが入力されて、この画像信号R,G,Bは輝度算出部65aにより輝度の正規化が行われ、Rnorm,Gnorm,Bnormの画像データに変換される。これら正規化された画像データRnorm,Gnorm,Bnormは、光量比に応じた色調への補正が色合わせ部65bで行われる。即ち、色合わせ部65bは、色調補正後の画像データRadj,Gadj,Badjを、(1)式で示すような演算により求める。
【0067】
【0068】
ここで、k
R、k
G、k
Bは、それぞれ各色の色変換係数であり、撮像時に設定された光量比に応じて定められる。
図21に光量比に対応する各色の色変換係数を定めた色変換係数テーブルを示した。色変換係数k
R、k
G、k
Bは、それぞれ各光量比に対応してR00~R100,G00~G100、B00~B100として設定されており、記憶部83(
図2参照)に記憶されている。撮像時に用いた光量比に対応する色変換係数を(1)式に代入することで、色調補正された画像データRadj,Gadj,Badjが得られる。
【0069】
この色変換係数は、
図21に示すテーブルとして表すことに限らず、数式化して表してもよく、また、代表点のみ数値化して他の点を補間演算により求めてもよい。その場合、記憶部83に記憶する情報量を軽減できる。
【0070】
以上説明した内視鏡装置100によれば、紫色レーザ光(および青色レーザ光)、即ち、特に血管の観察に適した短い波長帯域の照明光を用いることにより、生体組織表層の微細血管を画像強調して観察でき、血管の微細構造の観察が容易になる。そして、紫色レーザ光と青色レーザ光(白色光)の出射光の光量比を連続的に変更できるため、生体組織表層から深さ方向に変化する血管構造の観察が簡単に行え、生体組織のより表層部の血管構造が明瞭に把握できる。よって、白色光や特殊光による生体組織の観察時に、生体組織の所望の組織情報を、診断に適したより明瞭な状態で取得でき、内視鏡診断を円滑に行うことができる。
【0071】
そして、上記の内視鏡装置100が、被観察領域を拡大観察可能な撮像光学系を備えた、所謂、拡大内視鏡の構成とした場合は、生体組織表層の微小血管と粘膜微細模様との分離性を高めて、より高度な内視鏡診断が可能となる。つまり、拡大観察により、微小血管の口径不同、形状不均一、拡張、蛇行等の異変、粘膜微細模様の消失や不整微小化等の異変、等の異変の存在が確認でき、例えば腺癌の種類を診断する等の有益な情報を提供できる。
【0072】
次に、内視鏡装置の他の構成例を説明する。
まず、ヘモグロビンと酸化ヘモグロビンの吸収特性の違いを利用して、観察画像内の血液の酸素濃度分布を求める内視鏡装置について説明する。
図22に波長450nm~700nmにおける酸素濃度の低いヘモグロビンHbと酸素飽和した酸化ヘモグロビンHbO
2の吸収スペクトルを示した。観察用の照明光として、ヘモグロビンHbと、酸化ヘモグロビンHbO
2との吸収が等しくなる等吸収点の波長λ1と、双方の吸収が異なる波長λ2とを選択して、波長λ1の照明光による観察画像の輝度Ab1と、波長λ2の照明光による観察画像の輝度Ab2を求める。
【0073】
これら画像の輝度Ab1,Ab2の比は、血液中の酸素濃度を表す指標となり、生体組織の代謝状態の変化をモニタできる。一般的に癌の領域は酸素濃度が低いといわれ、酸素濃度は内視鏡診断に有益な情報となる。
【0074】
上記の酸素濃度分布を求める内視鏡装置の構成としては、
図23に光源装置41と内視鏡11の構成例を示すように、内視鏡装置200には、光源装置41に複数の光源が追加される。ここでは、等吸収点の照明光として、例えば、中心波長515nmの青緑色レーザ光源91による青緑色レーザ光を用い、吸収が異なる波長の照明光として、中心波長630nmの赤色レーザ光源93による赤色レーザ光を用いる。勿論、酸素濃度分布の測定を主とする場合には、紫色レーザ光源53は省略することもできる。なお、図中の符号は
図2と同じ部材に対しては同一の符号を付与することで、その説明を省略する。
【0075】
なお、上記構成の光ファイバ45A,45B,45C,45Dは、使用する波長に応じてそれぞれ最適なファイバを選定して用いることが好ましい。光ファイバのコアは、水酸基(OH-)濃度の高/低により伝送損失が変化する波長依存性を有し、赤外域の特定の波長では可視域の波長とは異なる吸収率となる。そのため、光源の波長が650nm以下の場合は高水酸基濃度のコアの光ファイバを用い、650nmを超える場合は低水酸基濃度のコアの光ファイバを用いるようにする。
【0076】
酸素濃度分布を求めるには、まず、青緑色レーザ光源91からの青緑色レーザ光を照明光として被観察領域を撮像し、次いで、赤色レーザ光源93からの赤色レーザ光を照明光として被観察領域を撮像する。撮像時には、観察画像データの平均輝度値等が一定になるように、各光源91,93の出射光量をそれぞれ調整する。そして、得られた各観察画像の輝度Ab1,Ab2から、酸素濃度指標Oindxを各画素毎に(2)式により求める。
Oindx = k・(Ab2/Ab1) ・・・(2)
ただし、kは係数である。
【0077】
これにより、酸素濃度指数Oindxの分布画像が得られ、観察画像内の酸素濃度の分布状態が把握できる。
【0078】
また、青緑色レーザ光源91と、赤色レーザ光源93は、青色レーザ光源51や紫色レーザ光源53と同様に、光源制御部55により出射光の光量がそれぞれ個別に変更でき、観察対象や手技の内容等に応じて各出射光の光量比が調整される。そして、各レーザ光源91,93は、撮像信号の1フレーム内でそれぞれ発光させて、その光量比を適宜調整してもよい。青緑色レーザ光は生体組織の微細血管や発赤の観察に好適であり、赤色レーザ光は生体組織の深部血管の観察に好適となる。したがって、これらの各レーザ光の出射光の光量比を変更することで、前述同様に、深さ方向に異なる領域からの情報、異なる対象からの情報を画像強調して表示させることができる。
【0079】
また、撮像信号の1フレーム内で各光源を同時に発光させても、撮像素子21から出力されるR,G,Bの各画像信号から、青緑色レーザ光源91による光成分、赤色レーザ光源93による光成分、または励起光量をそれぞれ分離して検出することができる。
【0080】
このように、白色光に対する青緑色レーザ光の光量比、白色光に対する赤色レーザ光の光量比、あるいは、青緑色レーザ光と赤色レーザ光との光量比を、それぞれ任意に、かつ連続的に変更可能とすることで、所望の観察対象の視認性を高めて表示できる。そして、内視鏡の照明光種類を増やして多機能化することで、内視鏡診断時に予期しない観察の必要性が生じた場合でも、内視鏡を被検体から抜去することなく、速やかに観察対象に応じた適切な照明光での観察が可能となる。なお、白色光を青色レーザ光と蛍光体の励起発光光により生成することに代えて、ハロゲンランプ等の白色光源を用いる構成にすることもできる。その場合、青色レーザ光の光量と白色光の光量とを個別に制御することができ、光量比の調整をより細かに行える。
【0081】
次に、光源装置41から内視鏡11までの光路を1本の光ファイバ45で構成した内視鏡装置について説明する。
図24に光源装置41と内視鏡11の構成例を示した。内視鏡装置300は、中心波長445nmの青色レーザ光源51からの青色レーザ光が、図示しない集光レンズを介して光ファイバ45Aに導入されるまでの光路途中に、中心波長405nmの紫色レーザ光源53からの紫色レーザ光を合流させる光カップリグ手段としてのダイクロイックプリズム95を備える。
【0082】
光ファイバ45Aの光出射側に配置される蛍光体97は、青色レーザ光源51からの青色レーザ光の一部を吸収して緑色~黄色に励起発光し、吸収されず透過した青色レーザ光と合わせて白色光を形成すると共に、紫色レーザ光源53からの紫色レーザ光を殆ど吸収せずに透過させる性質を有する。そのため、蛍光体97には、青色レーザ光により高効率で励起発光して、青色レーザ光と合わせて白色光が形成される材料と、紫色レーザ光に対しては、蛍光体の発光光量が少なくなる材料とを選択して用いる。
【0083】
蛍光体97による波長変換には、原理的に発生する発熱等の波長変換損失(ストークスロス)が存在する。そのため、発光波長の長い励起波長を選択した方が蛍光体の発光効率が高く、蛍光体の発熱を抑制する上で有利となることが知られている。そこで本構成例では、長波長側のレーザ光により白色光を生成して、発光効率を高めている。
【0084】
図24に示す光源装置41と蛍光体97による照明光の発光スペクトルの例を
図25に示した。
図25に示すように、紫色レーザ光による蛍光体97の励起発光量は、青色レーザ光による励起発光量に比較して、数分の一(少なくとも1/3、望ましくは1/5、さらに望ましくは1/10以下)であることが望ましい。
【0085】
以上、本構成によれば、青色レーザ光と紫色レーザ光の光路をダイクロイックプリズム95により統合させるため、光源装置41から蛍光体97までを1本の光ファイバ45Aで導光させ、しかも、照明光の出射口を蛍光体97の1箇所に収められるので、スペース効率を高めて内視鏡挿入部の細径化に寄与できる。
【0086】
また、青色レーザ光源51、紫色レーザ光源53の他に他のレーザ光源を備える場合であっても、同様にダイクロイックプリズム等の光カップリング手段を介して光路を統合すればよい。また、蛍光体97についても、他のレーザ光源の波長に励起しない、または励起しにくい蛍光物質を用いればよい。
【0087】
ここで、本構成例における具体的な蛍光体97の材料としては、例えば、特開2006-2115号公報に記載のような、添加元素として鉛(Pb)を含み4硫化2ガリウムカルシウム(CaGa2S4)を母体とする結晶性の固体蛍光材料、あるいは、添加元素として鉛(Pb)とセリウム(Ce)を含み4硫化2ガリウムカルシウム(CaGa2S4)を母体とする結晶性の固体蛍光材料が使用できる。この蛍光体材料によれば、約460nm~約660nmのほぼ可視全域に至る蛍光を得ることができ、白色光照明時における演色性が向上する。
【0088】
また、この他にも、緑色蛍光体であるLiTbW2O8(小田喜 勉、“白色LED用蛍光体について”、電子情報通信学会技術研究報告ED2005-28, CFM2005-20,SDM2005-28, pp.69-74(2005-05)等を参照)、ベータサイアロン(β-sialon:Eu)青色蛍光体(広崎 尚登、解 栄軍、佐久間 健、“サイアロン系信蛍光体とそれを用いた白色LEDの開発”、応用物理学会誌 第74巻、第11号、pp.1449-1452(2005)、あるいは、山元 明 東京工科大パイオニクス学部、応用物理学会誌 第76巻 第3号、p.241(2007)を参照)、CaAlSiN3赤色蛍光体等を組み合わせて用いることができる。ベータサイアロンは、β型窒化ケイ素結晶にアルミニウムと酸とが固溶したSi6-zAl2O2N8-z(zは固溶量)の組成で示される結晶である。蛍光体97は、これらLiTbW2O8とベータサイアロン、CaAlSiN3を混在させたものとしてもよく、また、これらの蛍光体を層状に重ねた構成としてもよい。
【0089】
上記例示した各蛍光体は、青色レーザ光源51からの青色レーザ光により励起され、他の紫色レーザ光源53からの紫色レーザ光によっては励起発光しない、つまり、蛍光体固有の主要な励起波長帯に他の光源の発光波長が含まれないようにする。
【0090】
以上説明した内視鏡装置においては、白色光を青色レーザ光と蛍光体57,97の励起発光光とによって生成したが、これに限らず、例えば、青色レーザ光により緑色の励起発光を発生させる蛍光体と、紫色レーザ光により赤色の励起発光光を発生させる蛍光体を用いた構成にする等、白色光の生成には種々の光源、蛍光体との組合せが可能である。
【0091】
このように、本発明は上記の実施形態に限定されるものではなく、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
【0092】
以上の通り、本明細書には次の事項が開示されている。
(1) 複数の光源の出射光を用いて照明光を得る内視鏡用照明装置であって、
半導体発光素子を発光源とする第1の光源と、
前記第1の光源とは異なる発光波長の半導体発光素子を発光源とする第2の光源と、
前記第1、第2の光源の少なくとも一方からの出射光により励起発光する波長変換部材と、
前記第1の光源からの出射光と前記第2の光源からの出射光との光量比を変更する光量比変更手段と、
を備えた内視鏡用照明装置。
この内視鏡用照明装置によれば、第1の光源と第2の光源の出射光の光量比が変更自在であるので、第1の光源からの出射光成分が多い照明光と、第2の光源からの出射光成分が多い照明光と、その中間の照明光とを任意に発生させることができる。したがって、生体組織の吸収特性および散乱特性に応じて、診断に適した照明光を提供でき、生体組織の所望の組織情報が、より明瞭な状態で取得可能となる。
【0093】
(2) (1)の内視鏡用照明装置であって、
前記第1の光源と前記第2の光源のうち、少なくとも一方の半導体発光素子の発光波長が400nm乃至470nmの範囲に含まれる内視鏡用照明装置。
この内視鏡用照明装置によれば、400nm乃至470nmの半導体発光素子の光を使用することで、特に生体組織の表層部における血管を強調させて観察できる。
【0094】
(3) (1)または(2)の内視鏡用照明装置であって、
前記波長変換部材は、該波長変換部材が励起光により発光する発光光と、前記第1、第2の光源の少なくとも一方からの出射光と、によって白色光を生成する蛍光体である内視鏡用照明装置。
この内視鏡用照明装置によれば、半導体発光素子からの光を励起光とした波長変換部材の発光により白色光を生成するため、高い発光効率で高強度の白色光が得られる。また、半導体発光素子を励起光源として用いるため、白色光の強度を容易に調整でき、しかも、白色光の色温度、色度の変化が少ない。
【0095】
(4) (1)~(3)のいずれかの内視鏡用照明装置であって、
前記第1、第2の光源とは異なる発光波長の半導体発光素子を発光源とする少なくとも1つの第3の光源を、光源毎に発光波長を異ならせて更に備えた内視鏡用照明装置。
この内視鏡用照明装置によれば、発光波長の異なる第3の光源を更に備えることで、照明光の波長帯域を拡大でき、照明光の波長選択の自由度が向上する。これにより、例えば、紫色光や青色光による血管強調画像、緑色光と赤色光とによる酸素濃度の分布画像等、種々の画像形成用の照明光を得ることができる。
【0096】
(5) (1)~(4)のいずれかの内視鏡用照明装置であって、
前記第1の光源から前記波長変換部材までの光路途中に配置され、少なくとも前記第2の光源からの出射光を前記第1の光源からの出射光と合わせて前記波長変換部材へ導光する光カップリング手段を備えた内視鏡用照明装置。
この内視鏡用照明装置によれば、光カップリング手段から波長変換部材までの間が一系統の光路で済み、内視鏡用照明装置を内視鏡装置に組み込む際に、スペース効率をより高めた簡素な構成にできる。
【0097】
(6) (2)~(5)のいずれかの内視鏡用照明装置であって、
前記第1の光源および前記第2の光源の各発光波長のうち、いずれか一方がヘモグロビンの吸収波長帯の最大ピーク波長を挟んだ短波長側に、他方が長波長側にそれぞれ設定された内視鏡用照明装置。
この内視鏡用照明装置によれば、血管情報を高コントラストで捉えることができる。また、ヘモグロビンの吸収波長の極大付近の照明光成分を少なくすることで、組織表面層に滲出した血液の吸収によって観察画像が暗くなることを防止できる。
【0098】
(7) (1)~(6)のいずれかの内視鏡用照明装置であって、
前記光量比変更手段が、前記各光源からの出射光の光量をそれぞれ独立して変更する内視鏡用照明装置。
この内視鏡用照明装置によれば、出射光の光量を光源毎に変更自在にすることで、各光源光により最終的に形成される照明光の分光特性を、自由度を高めて調整できる。
【0099】
(8) (1)~(7)のいずれかの内視鏡用照明装置であって、
所望の光量比を指定する光量比情報が入力される入力手段を更に備え、
前記光量比変更手段が、前記入力手段に入力された光量比情報に基づいて、前記所望の光量比となる前記各光源の出射光量をそれぞれ決定する内視鏡用照明装置。
この内視鏡用照明装置によれば、入力手段から入力のあった光量比情報により、光量比が指定され、この光量比となるような光源の出射光量が決定される。つまり、光量比を指定した通りに自在に変更できる。
【0100】
(9) (8)の内視鏡用照明装置であって、
複数種の光量比をキー情報と関係付けた光量比テーブルが記憶された記憶手段を更に備え、
前記光量比情報が前記キー情報を含み、
前記光量比変更手段が、前記入力手段から入力された光量比情報に含まれるキー情報に基づき、前記光量比テーブルを参照して前記所望の光量比を決定する内視鏡用照明装置。
この内視鏡用照明装置によれば、光量比情報に含まれるキー情報に基づいて、光量比テーブルを参照して所望の光量比が決定される。つまり、光量比テーブルに予め光量比をキー情報毎に登録しておくことで、キー情報を指定するだけで、このキー情報に対応する光量比が自動的に決定される。
【0101】
(10) (9)の内視鏡用照明装置であって、
前記キー情報が、内視鏡装置の術者の識別情報である内視鏡用照明装置。
この内視鏡用照明装置によれば、内視鏡の術者の嗜好に応じて、術者毎に任意の光量比に設定できる。
【0102】
(11) (9)の内視鏡用照明装置であって、
前記キー情報が、内視鏡装置の個体識別情報である内視鏡用照明装置。
この内視鏡用照明装置によれば、内視鏡装置の個体毎の種類や特性に応じて、個体毎に光量比を設定することができる。
【0103】
(12) (9)~(11)のいずれかの内視鏡用照明装置であって、
前記入力手段が、前記光量比テーブルに設定された複数種の光量比のいずれかを指定する切り替えスイッチである内視鏡用照明装置。
この内視鏡用照明装置によれば、切り替えスイッチの操作により、複数種の光量比の中から所望の光量比を任意に指定でき、光量比の切り替えが迅速かつ簡単に行える。
【0104】
(13) (1)~(12)のいずれかの内視鏡用照明装置からの照明光を、体腔内に挿入される内視鏡挿入部の先端側から出射する照明手段と、
前記照明光が照射された被観察領域を撮像する撮像素子が前記内視鏡挿入部に搭載され、観察画像となる画像信号を出力する撮像手段と、
を備えた内視鏡装置。
この内視鏡装置によれば、第1の光源と第2の光源からの各出射光の光量比が所望の光量比に設定された照明光を被観察領域に照射し、この被観察領域を撮像素子により撮像することで、光量比に対応した観察画像が得られる。つまり、診断に適した照明光を照射でき、生体組織の所望の組織情報を、より明瞭な状態で取得可能となる。
【0105】
(14) (13)の内視鏡装置であって、
少なくとも前記第1の光源および前記第2の光源を、前記撮像素子の画像信号1フレーム内に発光させる光源制御手段を備えた内視鏡装置。
この内視鏡用照明装置によれば、画像信号1フレーム内で各光源を発光させて撮像素子により撮像することで、複数の光源からの出射光が共に被観察領域に照射された観察画像を得ることができる。
【0106】
(15) (14)の内視鏡装置であって、
前記光源制御手段が、少なくとも前記第1の光源および前記第2の光源を、前記撮像素子の画像信号1フレーム内で互いに異なるタイミングで発光させる内視鏡装置。
この内視鏡装置によれば、各光源を同時に発光させる必要がなくなり、被検体への負担や装置の消費電力を抑えることができる。
【0107】
(16) (13)~(15)のいずれかの内視鏡装置であって、
前記撮像素子から出力された画像信号に基づく表示用観察画像を生成する画像処理手段と、
前記表示用観察画像を含む情報を表示する表示手段と、
を備えた内視鏡装置。
この内視鏡装置によれば、撮像素子からの画像信号の情報を表示手段に表示させることで、観察画像の確認が容易となり内視鏡診断をより円滑に実施できる。
【0108】
(17) (16)の内視鏡装置であって、
前記表示手段が、前記第1の光源からの出射光および前記波長変換部材からの励起発光光を含む可視光下で撮像した第1の画像情報と、
前記可視光に加えて前記第2の光源からの出射光を含む照明光下で撮像した第2の画像情報とを、同一画面内で同時に表示する内視鏡装置。
この内視鏡装置によれば、波長帯域の広い可視光を照明光としたときの観察画像である第1の画像情報と、狭帯域光を含む照明光による観察画像である第2の画像情報とを、表示手段の同一画面内で同時に表示する。これにより、通常の観察画像と、特定の情報が強調された画像とを対比観察することが容易になる。
【0109】
(18) (16)または(17)の内視鏡装置であって、
前記表示手段が、前記第1の光源からの出射光および前記波長変換部材からの励起発光光を含む可視光下で撮像した第1の画像情報と、
前記可視光に加えて前記第2の光源からの出射光を含む照明光下で撮像した第2の画像情報とのいずれか一方の画像情報を、互いに重ね合わせて同時に表示する内視鏡装置。
この内視鏡装置によれば、通常の観察画像と、特定の情報が強調された画像とが重ね合わされて表示され、対比観察することが容易となる。
【0110】
(19) (13)~(18)のいずれか1項記載の内視鏡装置であって、
前記画像処理手段から出力される観察画像を含む情報を記録する記録手段を備え、
前記記録手段が、前記観察画像と前記光量比とを関係付けて記録する内視鏡装置。
この内視鏡装置によれば、観察画像が、この観察画像の撮像時に設定された光量比と関係づけられて記録されるため、記録された観察画像に対して、撮像時の光量比に応じて画像処理する等、観察画像の活用範囲を拡大できる。
【符号の説明】
【0111】
11 内視鏡
13 制御装置
15 表示部
17 入力部
19 内視鏡挿入部
21 撮像素子
23 操作部
35 先端部
37A,37B 照射口
41 光源装置
43 プロセッサ
45A,45B,45C,45D 光ファイバ
51 青色レーザ光源(第1の光源)
53 青色レーザ光源(第2の光源)
55 光源制御部
57 蛍光体(波長変換部材)
59 光偏向・拡散部材
65 画像処理部
67 制御部
71 表示画面
73 内視鏡画像領域
75 通常画像切り替えボタン
77 狭帯域光切り替えボタン
79 調整用バー
81 つまみ
83 記憶部
85 調整部
87 選択ボタン
89 スイッチ(切り替えスイッチ)
91 青緑色レーザ光源
93 赤色レーザ光源
95 ダイクロイックプリズム
97 蛍光体(波長変換部材)
100,200,300 内視鏡装置
A,B プロファイル
B1,B2 血管
【手続補正書】
【提出日】2024-10-31
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
内視鏡挿入部と操作部を有する内視鏡を備え、複数の半導体発光素子からの出射光を用いた照明光を、前記内視鏡挿入部の先端側から出射して、被観察領域の観察画像を出力する内視鏡装置であって、
紫色半導体発光素子と、
前記紫色半導体発光素子より長い波長の光を発する第1半導体発光素子と、
前記第1半導体発光素子よりも長い波長の光を発する第2半導体発光素子と、
前記紫色半導体発光素子からの出射光と前記第1半導体発光素子からの出射光と前記第2半導体発光素子からの出射光との光量比を、ユーザ操作の度に予めプリセットされた複数の異なる比に順次設定する光量比設定手段と、
前記内視鏡挿入部に搭載され、前記照明光が照射された前記被観察領域からの反射光を撮像して血管情報を含む観察画像の画像信号を出力する撮像素子と、
前記光量比設定手段で設定された光量比に基づいて、前記撮像素子の前記画像信号の1フレーム内における前記紫色半導体発光素子、前記第1半導体発光素子、及び、前記第2半導体発光素子の駆動波形を制御するパルス変調制御によって、前記紫色半導体発光素子の出射光の光量と前記第1半導体発光素子の出射光の光量と前記第2半導体発光素子の出射光の光量を制御し、かつ、前記紫色半導体発光素子と前記第1半導体発光素子と前記第2半導体発光素子を前記1フレーム単位で切り替えて点灯させる光源制御部と、
前記紫色半導体発光素子が点灯したフレームで得られる前記画像信号と、前記第1半導体発光素子が点灯したフレームで得られる前記画像信号と、前記第2半導体発光素子が点灯したフレームで得られる前記画像信号とを用いて画像演算を行う画像処理部と、
を備える内視鏡装置。
【請求項2】
請求項1に記載の内視鏡装置であって、
前記光量比設定手段は、前記操作部に設けられる、内視鏡装置。
【請求項3】
請求項1又は2に記載の内視鏡装置であって、
前記複数の異なる比は、3つ以上である、内視鏡装置。
【請求項4】
請求項1から3のいずれか1項に記載の内視鏡装置であって、
前記複数の異なる比は、観察対象を擬似カラー化して表現する前記画像信号を得るためのものを含む、内視鏡装置。
【請求項5】
請求項1から4のいずれか1項に記載の内視鏡装置であって、
前記複数の異なる比は、内視鏡装置の個体を識別する個体識別情報に応じて決められている、内視鏡装置。
【請求項6】
請求項1から5のいずれか1項に記載の内視鏡装置であって、
前記複数の異なる比には、前記紫色半導体発光素子を点灯させない場合の比が含まれる内視鏡装置。
【請求項7】
請求項1から6のいずれか1項に記載の内視鏡装置であって、
前記内視鏡挿入部の先端側から出射される前記照明光は、前記第1半導体発光素子からの出射光を吸収して励起発光する発光光を含む内視鏡装置。
【請求項8】
請求項1から7のいずれか1項に記載の内視鏡装置であって、
前記内視鏡は、被観察領域を拡大観察可能な撮像光学系を有する内視鏡装置。
【請求項9】
請求項1から8のいずれか1項に記載の内視鏡装置であって、
前記光源制御部は、前記撮像素子からの画像信号の輝度値と、前記光量比設定手段によって設定された光量比に基づいて、前記紫色半導体発光素子又は前記第1半導体発光素子の発光量を増減させる内視鏡装置。
【請求項10】
請求項1から9のいずれか1項に記載の内視鏡装置であって、
前記第1半導体発光素子は青緑色半導体発光素子であり、
前記第2半導体発光素子は赤色半導体発光素子である内視鏡装置。
【手続補正3】
【補正対象書類名】明細書
【補正対象項目名】0001
【補正方法】変更
【補正の内容】
【0001】
本発明は、内視鏡装置に関する。
【手続補正4】
【補正対象書類名】明細書
【補正対象項目名】0007
【補正方法】変更
【補正の内容】
【0007】
本発明は、白色光や特殊光による生体組織の観察時に、生体組織の所望の組織情報を、診断に適したより明瞭な状態で取得できる内視鏡装置を提供することを目的とする。
【手続補正5】
【補正対象書類名】明細書
【補正対象項目名】0008
【補正方法】変更
【補正の内容】
【0008】
本発明は下記構成からなる。
内視鏡挿入部と操作部を有する内視鏡を備え、複数の半導体発光素子からの出射光を用いた照明光を、前記内視鏡挿入部の先端側から出射して、被観察領域の観察画像を出力する内視鏡装置であって、
紫色半導体発光素子と、
前記紫色半導体発光素子より長い波長の光を発する第1半導体発光素子と、
前記第1半導体発光素子よりも長い波長の光を発する第2半導体発光素子と、
前記紫色半導体発光素子からの出射光と前記第1半導体発光素子からの出射光と前記第2半導体発光素子からの出射光との光量比を、ユーザ操作の度に予めプリセットされた複数の異なる比に順次設定する光量比設定手段と、
前記内視鏡挿入部に搭載され、前記照明光が照射された前記被観察領域からの反射光を撮像して血管情報を含む観察画像の画像信号を出力する撮像素子と、
前記光量比設定手段で設定された光量比に基づいて、前記撮像素子の前記画像信号の1フレーム内における前記紫色半導体発光素子、前記第1半導体発光素子、及び、前記第2半導体発光素子の駆動波形を制御するパルス変調制御によって、前記紫色半導体発光素子の出射光の光量と前記第1半導体発光素子の出射光の光量と前記第2半導体発光素子の出射光の光量を制御し、かつ、前記紫色半導体発光素子と前記第1半導体発光素子と前記第2半導体発光素子を前記1フレーム単位で切り替えて点灯させる光源制御部と、
前記紫色半導体発光素子が点灯したフレームで得られる前記画像信号と、前記第1半導体発光素子が点灯したフレームで得られる前記画像信号と、前記第2半導体発光素子が点灯したフレームで得られる前記画像信号とを用いて画像演算を行う画像処理部と、
を備える内視鏡装置。
【手続補正6】
【補正対象書類名】明細書
【補正対象項目名】0009
【補正方法】変更
【補正の内容】
【0009】
本発明の内視鏡装置によれば、白色光や特定の波長帯域の特殊光を用いた生体組織の観察時に、生体組織の所望の組織情報を、診断に適したより明瞭な状態で取得できる。
【手続補正7】
【補正対象書類名】明細書
【補正対象項目名】0081
【補正方法】変更
【補正の内容】
【0081】
次に、光源装置41から内視鏡11までの光路を1本の光ファイバ45で構成した内視鏡装置について説明する。
図24に光源装置41と内視鏡11の構成例を示した。内視鏡装置300は、中心波長445nmの青色レーザ光源51からの青色レーザ光が、図示しない集光レンズを介して光ファイバ45Aに導入されるまでの光路途中に、中心波長405nmの紫色レーザ光源53からの紫色レーザ光を合流させる
光カップリング手段としてのダイクロイックプリズム95を備える。