(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024020627
(43)【公開日】2024-02-14
(54)【発明の名称】地下ダム止水壁の透水性評価方法
(51)【国際特許分類】
G01M 3/04 20060101AFI20240206BHJP
【FI】
G01M3/04 R
【審査請求】有
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2023206574
(22)【出願日】2023-12-07
(62)【分割の表示】P 2020076601の分割
【原出願日】2020-04-23
(31)【優先権主張番号】P 2019090420
(32)【優先日】2019-05-13
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】501203344
【氏名又は名称】国立研究開発法人農業・食品産業技術総合研究機構
(74)【代理人】
【識別番号】100098545
【弁理士】
【氏名又は名称】阿部 伸一
(74)【代理人】
【識別番号】100189717
【弁理士】
【氏名又は名称】太田 貴章
(72)【発明者】
【氏名】石田 聡
(72)【発明者】
【氏名】白旗 克志
(72)【発明者】
【氏名】土原 健雄
(72)【発明者】
【氏名】吉本 周平
(57)【要約】
【課題】地下水位の変化によらずに漏水を判定できる地下ダム止水壁の透水性評価方法を提供すること。
【解決手段】本発明の地下ダム止水壁の透水性評価方法は、地下ダム止水壁1によって形成される貯水域3aにある上流側地下水4aの上流側地下水年代と、地下ダム止水壁1の下流域3bにある下流側地下水4bの下流側地下水年代とを比較することで地下ダム止水壁1の漏水を判定することを特徴とする。
【選択図】
図1
【特許請求の範囲】
【請求項1】
地下ダム止水壁によって形成される貯水域にある上流側地下水の上流側地下水年代と、前記地下ダム止水壁の下流域にある下流側地下水の下流側地下水年代とを比較することで前記地下ダム止水壁の漏水を判定する
ことを特徴とする地下ダム止水壁の透水性評価方法。
【請求項2】
前記上流側地下水年代及び前記下流側地下水年代を、前記上流側地下水及び前記下流側地下水に含まれる物質濃度によって推定する
ことを特徴とする請求項1に記載の地下ダム止水壁の透水性評価方法。
【請求項3】
前記物質濃度として、温室効果ガスの濃度を用いる
ことを特徴とする請求項2に記載の地下ダム止水壁の透水性評価方法。
【請求項4】
前記温室効果ガスとして、SF6、HFC-134a、CFC-11、及びCH3CCl3の少なくともいずれかを用いる
ことを特徴とする請求項3に記載の地下ダム止水壁の透水性評価方法。
【請求項5】
前記上流側地下水年代及び前記下流側地下水年代を、経時的に推定して監視する
ことを特徴とする請求項1から請求項4のいずれか1項に記載の地下ダム止水壁の透水性評価方法。
【請求項6】
前記上流側地下水年代が前記上流側地下水の深度によって異なる場合には、前記深度によって異なる前記上流側地下水年代を用いて前記地下ダム止水壁の漏水深度を判定する
ことを特徴とする請求項1から請求項5のいずれか1項に記載の地下ダム止水壁の透水性評価方法。
【請求項7】
地下ダム止水壁によって形成される貯水域にある上流側地下水に含まれる物質濃度と、前記地下ダム止水壁の下流域にある下流側地下水に含まれる前記物質濃度とを比較することで前記地下ダム止水壁の漏水を判定する
ことを特徴とする地下ダム止水壁の透水性評価方法。
【請求項8】
前記物質濃度として、温室効果ガスの濃度を用いる
ことを特徴とする請求項7に記載の地下ダム止水壁の透水性評価方法。
【請求項9】
前記物質濃度として、空気の濃度を用いる
ことを特徴とする請求項7に記載の地下ダム止水壁の透水性評価方法。
【請求項10】
前記物質濃度として、窒素又はネオンの濃度を用いる
ことを特徴とする請求項7に記載の地下ダム止水壁の透水性評価方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、地下に止水壁を設けて地盤の空隙に地下水を蓄える地下ダム止水壁の透水性評価方法に関する。
【背景技術】
【0002】
地下ダム止水壁は、我が国では、土木技術の発達により大規模なものが施工可能となった1980年代後半以降、沖縄県や鹿児島県の南西諸島において、地表水の利用が困難な離島における貴重な農業用水源として施工され、2019年2月現在では10基が既に工事を完了し、3基が建設中、1基が計画されている。
最初に施工された地下ダム止水壁は、完成してから既に20年以上が経過しており、施設の老朽化が懸念される時期に差し掛かってきている。2015年に閣議決定された食料・農業・農村基本計画では、農業水利施設の点検、機能診断、及び監視を通じた適切なリスク管理の下で、施設の徹底した長寿命化とライフサイクルコストの低減を図ることとされており、地下ダムについてもこのようなストックマネジメント手法の導入が必要と考えられる。
しかし、地下ダム止水壁は、地中深くに造られており、目視で漏水の有無や劣化の程度を確認することができない。延長数km、深度50m以上の止水壁を掘削によって露わにして点検することは、工事費を考慮すると現実的ではなく、経済的でかつ有効な止水壁の機能診断技術の確立が求められている。
図1を用いてこの診断方法について説明する。
図1(a)は漏水が無い状態を示し、
図1(b)は漏水時の状態を示している。
この診断方法は、地下ダム止水壁1の上流に地下水観測孔2aを、地下ダム止水壁1の下流に地下水観測孔2bをそれぞれ設けて地下水位を観測する。そして、下流に設けた地下水観測孔2bで観測される地下水位の上昇が検知されると、上流に設けた地下水観測孔2aで観測される地下水位以下の位置において漏水が発生したと推定する。
なお、特許文献1には、地下水観測孔2aおよび地下水観測孔2bに検出器を設置し、両者の検出値を比較することによって、壁材の水理学的性質を推定する方法が記載されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、地下ダム止水壁が建設される地域は、透水性が高い地質であることから、漏水が発生しても、その水は速やかに下流に流れ去ってしまい、下流での地下水位の上昇は小さい。
一例として、日本で最初に完成した大規模地下ダムである沖縄県宮古島砂川地下ダムでは、漏水箇所から観測孔までの距離が20mであり、500m3/日の漏水があった場合でも水位上昇は3cm程度である。また、止水壁下流での地下水位は降雨によって大きく変動する。従って、3cm程度の僅かな水位上昇によって漏水を推定することは事実上不可能であった。
【0005】
そこで本発明は、地下水位の変化によらずに漏水を判定できる地下ダム止水壁の透水性評価方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
請求項1記載の本発明の地下ダム止水壁1の透水性評価方法は、地下ダム止水壁1によって形成される貯水域3aにある上流側地下水4aの上流側地下水年代と、前記地下ダム止水壁1の下流域3bにある下流側地下水4bの下流側地下水年代とを比較することで前記地下ダム止水壁1の漏水を判定することを特徴とする。
請求項2記載の本発明は、請求項1に記載の地下ダム止水壁1の透水性評価方法において、前記上流側地下水年代及び前記下流側地下水年代を、前記上流側地下水4a及び前記下流側地下水4bに含まれる物質濃度によって推定することを特徴とする。
請求項3記載の本発明は、請求項2に記載の地下ダム止水壁1の透水性評価方法において、前記物質濃度として、温室効果ガスの濃度を用いることを特徴とする。
請求項4記載の本発明は、請求項3に記載の地下ダム止水壁1の透水性評価方法において、前記温室効果ガスとして、SF6、HFC-134a、CFC-11、及びCH3CCl3の少なくともいずれかを用いることを特徴とする。
請求項5記載の本発明は、請求項1から請求項4のいずれか1項に記載の地下ダム止水壁1の透水性評価方法において、前記上流側地下水年代及び前記下流側地下水年代を、経時的に推定して監視することを特徴とする。
請求項6記載の本発明は、請求項1から請求項5のいずれか1項に記載の地下ダム止水壁1の透水性評価方法において、前記上流側地下水年代が前記上流側地下水4aの深度によって異なる場合には、前記深度によって異なる前記上流側地下水年代を用いて前記地下ダム止水壁1の漏水深度を判定することを特徴とする。
請求項7記載の本発明の地下ダム止水壁1の透水性評価方法は、地下ダム止水壁1によって形成される貯水域3aにある上流側地下水4aに含まれる物質濃度と、前記地下ダム止水壁1の下流域3bにある下流側地下水4bに含まれる前記物質濃度とを比較することで前記地下ダム止水壁1の漏水を判定することを特徴とする。
請求項8記載の本発明は、請求項7に記載の地下ダム止水壁1の透水性評価方法において、前記物質濃度として、温室効果ガスの濃度を用いることを特徴とする。
請求項9記載の本発明は、請求項7に記載の地下ダム止水壁1の透水性評価方法において、前記物質濃度として、空気の濃度を用いることを特徴とする。
請求項10記載の本発明は、請求項7に記載の地下ダム止水壁1の透水性評価方法において、前記物質濃度として、窒素又はネオンの濃度を用いることを特徴とする。
【発明の効果】
【0007】
本発明の地下ダム止水壁の透水性評価方法によれば、地下水年代や水圧により上流側地下水と下流側地下水とで相違が生じる物質濃度を用いることで、地下水位の変化によらずに漏水を判定できる。
【図面の簡単な説明】
【0008】
【
図3】沖縄県砂川地下ダムにおける地下水年代を示す図
【
図4】気象庁HPで公表されている温室効果ガスの大気中における濃度変化を示すグラフ
【
図5】地下ダム止水壁によって形成される貯水域での過剰大気を示す図
【発明を実施するための形態】
【0009】
本発明の第1の実施の形態による地下ダム止水壁の透水性評価方法は、地下ダム止水壁によって形成される貯水域にある上流側地下水の上流側地下水年代と、地下ダム止水壁の下流域にある下流側地下水の下流側地下水年代とを比較することで地下ダム止水壁の漏水を判定するものである。
本実施の形態によれば、地下水年代や水圧により上流側地下水と下流側地下水とで相違が生じる物質濃度を用いることで、地下水位の変化によらずに漏水を判定できる。
【0010】
本発明の第2の実施の形態は、第1の実施の形態による地下ダム止水壁の透水性評価方法において、上流側地下水年代及び下流側地下水年代を、上流側地下水及び下流側地下水に含まれる物質濃度によって推定するものである。
本実施の形態によれば、地下水に含まれる物質濃度によって地下水年代を推定できる。
【0011】
本発明の第3の実施の形態は、第2の実施の形態による地下ダム止水壁の透水性評価方法において、物質濃度として、温室効果ガスの濃度を用いるものである。
本実施の形態によれば、既に長年の測定値が存在する温室効果ガスを用いることで地下水年代を推定できる。
【0012】
本発明の第4の実施の形態は、第3の実施の形態による地下ダム止水壁の透水性評価方法において、温室効果ガスとして、SF6、HFC-134a、CFC-11、及びCH3CCl3の少なくともいずれかを用いるものである。
本実施の形態によれば、既に気象庁が公表しているこれらの化学物質を用いることで地下水年代を推定できる。
【0013】
本発明の第5の実施の形態は、第1から第4のいずれかの実施の形態による地下ダム止水壁の透水性評価方法において、上流側地下水年代及び下流側地下水年代を、経時的に推定して監視するものである。
本実施の形態によれば、地下水年代の経時的変化を監視することで、更に精度良く漏水を判定できる。
【0014】
本発明の第6の実施の形態は、第1から第5のいずれかの実施の形態による地下ダム止水壁の透水性評価方法において、上流側地下水年代が上流側地下水の深度によって異なる場合には、深度によって異なる上流側地下水年代を用いて地下ダム止水壁の漏水深度を判定するものである。
本実施の形態によれば、漏水深度を判定できることで、補修工事を容易にすることができる。
【0015】
本発明の第7の実施の形態による地下ダム止水壁の透水性評価方法は、地下ダム止水壁によって形成される貯水域にある上流側地下水に含まれる物質濃度と、地下ダム止水壁の下流域にある下流側地下水に含まれる物質濃度とを比較することで地下ダム止水壁の漏水を判定するものである。
本実施の形態によれば、地下水年代や水圧により上流側地下水と下流側地下水とで相違が生じる物質濃度を用いることで、地下水位の変化によらずに漏水を判定できる。
【0016】
本発明の第8の実施の形態は、第7の実施の形態による地下ダム止水壁の透水性評価方法において、物質濃度として、温室効果ガスの濃度を用いるものである。
本実施の形態によれば、既に長年の測定値が存在する温室効果ガスを用いることで地下水年代を推定でき、地下水位の変化によらずに漏水を判定できる。
【0017】
本発明の第9の実施の形態は、第7の実施の形態による地下ダム止水壁の透水性評価方法において、物質濃度として、空気の濃度を用いるものである。
地下ダム止水壁によって形成される貯水域にある上流側地下水には、水圧が加わっているために下流側地下水に比較して空気の溶け込み量が多くなるため、本実施の形態によれば、地下水に含まれる空気の濃度によって、地下水位の変化によらずに漏水を判定できる。
【0018】
本発明の第10の実施の形態は、第7の実施の形態による地下ダム止水壁の透水性評価方法において、物質濃度として、窒素又はネオンの濃度を用いるものである。
地下ダム止水壁によって形成される貯水域にある上流側地下水には、水圧が加わっているために下流側地下水に比較して空気の溶け込み量が多く、更に空気に含まれる窒素又はネオンは地下水中において岩石との反応による増減が少ないため、本実施の形態によれば、地下水に含まれる窒素又はネオンの濃度によって、地下水位の変化によらずに漏水を判定できる。
【実施例0019】
以下本発明の一実施例による地下ダム止水壁の透水性評価方法について説明する。
図1に示すように、地下ダム止水壁1は、難透水性基盤11に至る深度まで、透水性が高い地質12に形成する。
地下ダム止水壁1によって、地下ダム止水壁1の上流には、貯水域3aが形成される。
貯水域3aにある上流側地下水4aは地下水観測孔2aから採取し、地下ダム止水壁1の下流域3bにある下流側地下水4bは地下水観測孔2bから採取する。
【0020】
図1(b)では、地下ダム止水壁1に透水性劣化部位1xが生じた状態を示している。
本発明による地下ダム止水壁の透水性評価方法は、地下ダム止水壁1によって形成される貯水域3aにある上流側地下水4aの上流側地下水年代と、地下ダム止水壁1の下流域3bにある下流側地下水4bの下流側地下水年代とを比較することで地下ダム止水壁1の漏水を判定するものである。
上流側地下水年代及び下流側地下水年代は、上流側地下水4a及び下流側地下水4bに含まれる物質濃度によって推定する。なお、本発明において地下水年代とは、水が地下に浸透してからの経過年である。
物質濃度として、温室効果ガスの濃度を用いることができる。
【0021】
図1(a)に示すように地下ダム止水壁1に漏水が無い場合には、例えば貯水域3aにある上流側地下水4aは、地下ダム建設時から現在までの地下水が混合して貯留されているため比較的古い年代を持ち、下流域3bにある下流側地下水4bは、降水が涵養された後に速やかに下流に流れ去るため常に新しい年代を持つ。また、上流側地下水4aの汲み上げ量や流れ込み量が多く、下流側地下水4bが流れにくい場合には、下流側地下水4bが上流側地下水4aに対して比較的古い年代を持つ場合もある。
しかし、
図1(b)に示すように地下ダム止水壁1に透水性劣化部位1xが生じた場合には、比較的古い年代の上流側地下水4aが下流側地下水4bとして流れ込むため、下流側地下水4bの地下水年代が古くなる。
このように、上流側地下水4aの上流側地下水年代と下流側地下水4bの下流側地下水年代とを比較することで、下流側地下水年代が上流側地下水年代と同じ年代又は近い年代の場合には漏水と判定でき、又は、下流側地下水年代を経時的に比較することで、下流側地下水年代が古い年代に変化した場合には漏水と判定できる。
【0022】
図2はSF
6濃度の変化を示すグラフであり、
図2(a)はアメリカ海洋大気庁(NOAA)が公表している北半球8箇所でのモニタリング値であり年度別大気中のSF
6濃度の変化を示し、
図2(b)はSF
6濃度による地下水年代の推定を示している。
温室効果ガスの一つであるSF
6(六フッ化硫黄)は、1960年代から電気及び電子機器の分野で絶縁材などとして広く使用されている化学物質であり、
図2(a)に示すように大気中の濃度は年間約7%の割合で上昇を続けている。降水中のSF
6濃度は、その時の大気中の濃度と平衡しており、地下水として涵養された後は大気との接触が断たれるため浸透時の濃度を保つ。
従って、
図2(b)に示すように、地下水中のSF
6濃度を測定することによって、その地下水の涵養年、言い換えれば地下水年代を推定することができる。
【0023】
図3は沖縄県砂川地下ダムにおける地下水年代を示す図である。
図中に示すダム軸の下に地下ダム止水壁1が形成されている。貯水域3aは、地下ダム止水壁1の上流に、貯留域境界までの間に形成される。
貯水域3aにおいて15箇所で採取した上流側地下水4aの平均地下水年代は6年であった。
【0024】
図4は気象庁HP(https://ds.data.jma.go.jp/ghg/kanshi/ghgp/cfcs_trend.html)で公表されている温室効果ガスの大気中における濃度変化を示すグラフである。
図4(a)はSF
6、
図4(b)はHFC-134a、
図4(c)はCFC-11、
図4(d)はCH
3CCl
3の濃度変化を示している。
このように、温室効果ガスとして、SF
6、HFC-134a、CFC-11、及びCH
3CCl
3の少なくともいずれか一つ又はこれらを組み合わせて用いることで、地下水年代を推定することができる。
【0025】
図5は地下ダム止水壁によって形成される貯水域での過剰大気を示す図であり、
図5(a)は沖縄県糸満市の米須地下ダムにおける過剰大気を示す図、
図5(b)は沖縄県八重洲町の慶座地下ダムにおける過剰大気を示す図である。
図中に示すダム軸の下に地下ダム止水壁1が形成されている。貯水域3aは、地下ダム止水壁1の上流に形成される。
図5(a)に示すように、米須地下ダムにおける貯水域3aでの過剰大気(大気開放状態で水に溶け込む空気量を越えた溶存空気量)は4.2~4.3cc/kg、
図5(b)に示すように、慶座地下ダムにおける貯水域3aでの過剰大気(大気開放状態で水に溶け込む空気量を越えた溶存空気量)は2.2~4.3cc/kgであった。
このように、地下ダム止水壁1によって形成される貯水域3aにある上流側地下水4aには、水圧が加わっているために下流側地下水に比較して空気の溶け込み量が多くなる。
従って、物質濃度として空気の濃度を用い、地下ダム止水壁1によって形成される貯水域3aにある上流側地下水4aに含まれる物質濃度と、地下ダム止水壁1の下流域3bにある下流側地下水4bに含まれる物質濃度とを比較することでも、水圧により上流側地下水4aと下流側地下水4bとで物質濃度に違いが生じ、地下水位の変化によらずに漏水を判定できる。
空気に含まれる窒素又はネオンは地下水中において岩石との反応による増減が少ない。従って、物質濃度として、窒素又はネオンの濃度を用いることで、地下水位の変化によらずに更に正確に漏水を判定できる。
【0026】
本発明の地下ダム止水壁の透水性評価方法によれば、地下水年代を用いることで、地下水位の変化によらずに漏水を判定できる。
なお、上流側地下水年代及び下流側地下水年代を、経時的に推定して監視することで、更に精度良く漏水を判定できる。
また、上流側地下水年代が上流側地下水4aの深度によって異なる場合には、深度によって異なる上流側地下水年代を用いて地下ダム止水壁1の漏水深度を判定することで、補修工事を容易にすることができる。
また本発明の地下ダム止水壁の透水性評価方法によれば、地下水年代や水圧により上流側地下水と下流側地下水とで相違が生じる物質濃度を用いることで、地下水位の変化によらずに漏水を判定できる。
しかし、地下ダム止水壁が建設される地域は、透水性が高い地質であることから、漏水が発生しても、その水は速やかに下流に流れ去ってしまい、下流での地下水位の上昇は小さい。
一例として、日本で最初に完成した大規模地下ダムである沖縄県宮古島砂川地下ダムでは、漏水箇所から観測孔までの距離が20mであり、500m3/日の漏水があった場合でも水位上昇は3cm程度である。また、止水壁下流での地下水位は降雨によって大きく変動する。従って、3cm程度の僅かな水位上昇によって漏水を推定することは事実上不可能であった。
本発明の地下ダム止水壁の透水性評価方法によれば、地下水年代や水圧により上流側地下水と下流側地下水とで相違が生じる物質濃度を用いることで、地下水位の変化によらずに漏水を判定できる。