(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024002229
(43)【公開日】2024-01-11
(54)【発明の名称】基板処理方法、および、基板処理装置
(51)【国際特許分類】
C23C 14/00 20060101AFI20231228BHJP
H01L 21/677 20060101ALI20231228BHJP
【FI】
C23C14/00 B
H01L21/68 A
【審査請求】未請求
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2022101301
(22)【出願日】2022-06-23
(71)【出願人】
【識別番号】000231464
【氏名又は名称】株式会社アルバック
(74)【代理人】
【識別番号】100105957
【弁理士】
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【弁理士】
【氏名又は名称】恩田 博宣
(72)【発明者】
【氏名】高橋 鉄兵
(72)【発明者】
【氏名】佐々木 俊介
(72)【発明者】
【氏名】前平 謙
【テーマコード(参考)】
4K029
5F131
【Fターム(参考)】
4K029BA01
4K029CA05
4K029DA09
4K029DC34
4K029DC35
4K029KA01
5F131AA02
5F131BA03
5F131BA04
5F131BA19
5F131BB04
5F131CA12
5F131CA32
5F131DA33
5F131DA36
5F131DA42
5F131DB32
5F131EA03
5F131EA25
5F131EB11
5F131EB18
5F131EB62
5F131EB78
5F131EB81
5F131EB82
5F131JA08
5F131JA16
5F131JA22
5F131JA27
5F131JA36
(57)【要約】
【課題】処理室内の異物を除電することを可能とした基板処理方法および基板処理装置を提供する。
【解決手段】第1スパッタ室12A外の除電通路に含まれる搬送室11において第1スパッタ室12A内に位置する異物を除電するためのプラズマを生成すること、および、プラズマに含まれる荷電粒子が第1スパッタ室12A内に到達するように第1スパッタ室12A内の圧力を除電通路内の圧力以上にし、第1スパッタ室12A内に到達した荷電粒子によって第1スパッタ室12A内の異物を除電することを含む。
【選択図】
図1
【特許請求の範囲】
【請求項1】
処理室外の除電通路において前記処理室内に位置する異物を除電するためのプラズマを生成すること、および、
前記プラズマに含まれる荷電粒子が前記処理室内に到達するように前記処理室内の圧力を前記除電通路内の圧力以上にし、前記処理室内に到達した前記荷電粒子によって前記処理室内の前記異物を除電すること、を含む
基板処理方法。
【請求項2】
除電された前記異物を前記処理室内から前記処理室外に排出することをさらに含む
請求項1に記載の基板処理方法。
【請求項3】
前記異物を除電することは、第1流量のガスを前記処理室内に導入することを含み、
前記異物を前記処理室外に排出することは、前記第1流量よりも大きい第2流量のガスを前記処理室内に導入することを含む
請求項2に記載の基板処理方法。
【請求項4】
前記異物を前記処理室外に排出することは、ガス導入口からガスを導入し、かつ、排気口から前記処理室内を排気することを含み、
前記ガス導入口と前記排気口とは、前記処理室が備える一対の壁部が対向する方向に沿って並んでいる
請求項2または3に記載の基板処理方法。
【請求項5】
処理室と、
前記処理室に接続された除電通路と、
前記除電通路内にプラズマを生成し、前記プラズマ中の荷電粒子が前記処理室内に到達するように前記処理室内の圧力を前記除電通路内の圧力以上に調整する除電部と、を備える
基板処理装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、基板処理方法、および、基板処理装置に関する。
【背景技術】
【0002】
半導体装置の製造装置の一例は、処理室と処理室に接続されたエアロック室とを備えている。エアロック室は、除電器と電極板とを備えている。半導体装置の製造装置では、まず、処理前の基板が搬入される前、かつ、減圧前のエアロック室において、除電器が作動される。これにより、エアロック室の内壁に付着した異物が除電される。次いで、エアロック室が減圧されることによって、除電された異物がエアロック室外に排気される。そして、大気圧に昇圧されたエアロック室に処理前の基板が搬入された後に、基板の帯電量に応じた電圧が電極板に印加され、これによって、基板に付着した異物が、電極板に向けて移動する。このように、半導体装置の製造装置では、エアロック室の内壁に付着した異物と、処理前の基板に付着した異物とが除去される(例えば、特許文献1を参照)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、エアロック室において基板から異物を除去する処理が行われた後であっても、異物の一部は基板に付着し続けるから、基板が処理室に搬入されることに伴って、処理室内に異物も搬入される。処理室内に搬入された異物は、基板から脱離した後に処理室内を浮遊する場合がある。こうした異物は、処理室内に搬入された基板に付着することによって、半導体装置の歩留まりを低下させる。
【課題を解決するための手段】
【0005】
上記課題を解決するための基板処理方法は、処理室外の除電通路において前記処理室内に位置する異物を除電するためのプラズマを生成すること、および、前記プラズマに含まれる荷電粒子が前記処理室内に到達するように前記処理室内の圧力を前記除電通路内の圧力以上にし、前記処理室内に到達した前記荷電粒子によって前記処理室内の前記異物を除電すること、を含む。
【0006】
上記課題を解決するための基板処理装置は、処理室と、前記処理室に接続された除電通路と、前記除電通路内にプラズマを生成し、前記プラズマ中の荷電粒子が前記処理室内に到達するように前記処理室内の圧力を前記除電通路内の圧力以上に調整する除電部と、を備える。
【0007】
上記基板処理方法および基板処理装置によれば、処理室内の圧力が除電通路内の圧力以上であるから、除電通路内の異物が処理室内に到達することを抑えながら、除電通路内で生成されたプラズマを処理室内に供給することによって処理室内の異物を除電することが可能である。
【0008】
上記基板処理方法において、除電された前記異物を前記処理室内から前記処理室外に排出することをさらに含んでもよい。この基板処理方法によれば、除電された異物を処理室内から排出するから、除電された異物が再び処理室内を浮遊することが抑えられる。
【0009】
上記基板処理方法において、前記異物を除電することは、第1流量のガスを前記処理室内に導入することを含み、前記異物を前記処理室外に排出することは、前記第1流量よりも大きい第2流量のガスを前記処理室内に導入することを含んでもよい。この基板処理方法によれば、第2流量のガスを処理室内に導入するから、除電された異物が、処理室内における流体の流れによって移動しやすくなる。これにより、異物が、処理室外に排出されやすくなる。
【0010】
上記基板処理方法において前記異物を前記処理室外に排出することは、ガス導入口からガスを導入し、かつ、排気口から前記処理室内を排気することを含み、前記ガス導入口と前記排気口とは、前記処理室が備える一対の壁部が対向する方向に沿って並んでいてもよい。この基板処理方法によれば、一対の壁部が対向する方向に沿って流体の流れを生じさせることによって、処理室内の異物を排気口に向けて移動させることが可能である。
【図面の簡単な説明】
【0011】
【
図1】第1実施形態の基板処理装置であるクラスタツール型のスパッタ装置の構造を模式的に示すブロック図である。
【
図2】
図1が示すスパッタ装置が備える搬送室および第1スパッタ室の構造を模式的に示すブロック図である。
【
図3】第1実施形態の基板処理方法を説明するためのフローチャートである。
【
図4】基板の各部における電圧値と経過時間との関係を示すグラフである。
【
図5】基板の各部における電圧値と経過時間との関係を示すグラフである。
【
図6】第2実施形態の基板処理装置の構造を模式的に示すブロック図である。
【発明を実施するための形態】
【0012】
[第1実施形態]
図1から
図5を参照して、基板処理方法および基板処理装置の第1実施形態を説明する。
【0013】
[基板処理装置]
図1および
図2を参照して、基板処理装置を説明する。以下では、基板処理装置の一例であるクラスタツール型のスパッタ装置を説明する。
【0014】
図1が示すように、クラスタツール型のスパッタ装置10は、搬送室11と、2つのスパッタ室12、搬出入室13、および、2つの基板処理室14を備えている。スパッタ装置10は、2つのスパッタ室12として第1スパッタ室12Aと第2スパッタ室12Bとを備えている。搬送室11は、除電通路に含まれる。第1スパッタ室12Aおよび第2スパッタ室12Bは、処理室の一例である。
【0015】
各処理室12A,12B,13,14は、搬送室11に接続されている。搬送室11と各処理室12A,12B,13,14との間にはゲートバルブが位置している。ゲートバルブが開くことによって、搬送室11が画定する搬送空間と、各処理室12A,12B,13,14が画定する空間とが連通される。これに対して、ゲートバルブが閉じることによって、搬送室11の搬送空間と、各処理室12A,12B,13,14とが、互いから隔てられる。
【0016】
搬送室11は、搬送ロボット11Rを備えている。搬送ロボット11Rは、搬送室11に接続された各処理室と搬送室11との間での基板の搬送が可能であるように構成されている。搬送室11は、搬送室11が画定する搬送空間内を排気する排気部11Eを備えている。搬送室11は、搬送空間内にプラズマを生成するプラズマ生成部11Pを備えている。プラズマ生成部11Pは、例えば、搬送室11を上面視した場合に、搬送室11の中央に位置してよい。
【0017】
搬出入室13は、処理前の基板をスパッタ装置10外からスパッタ装置10内に搬入し、かつ、処理後の基板をスパッタ装置10内からスパッタ装置10外に搬出することが可能に構成されている。搬出入室13は、排気部13Eを備えている。基板の搬入時には、搬出入室13が搬送室11から隔てられた状態で、搬出入室13の搬出入口が開かれ、これによって搬出入室13が大気に開放される。次いで、搬出入口から処理前の基板が搬入された後に、搬出入口が閉じられる。続いて、搬出入室13内が排気部13Eによって排気され、これによって、搬出入室13内が搬送室11と同程度まで減圧される。これに対して、基板の搬出時には、処理後の基板が搬送室11から搬出入室13に搬入された後に、搬出入室13と搬送室11との間に位置するゲートバルブが閉じられる。次いで、搬出入室13内が大気圧まで昇圧された後、搬出入室13の搬出入口が開かれる。そして、搬出入口から処理後の基板がスパッタ装置10外に搬出される。
【0018】
各スパッタ室12A,12Bは、カソード20を備えている。各スパッタ室12A,12Bは、カソード20を用いたスパッタ処理によって、基板の表面に薄膜を形成することが可能に構成されている。各スパッタ室12A,12Bは、スパッタ室12A,12Bが画定する処理空間内を排気する排気部12AE,12BEを備えている。
【0019】
各基板処理室14は、基板に対して所定の処理を行うことが可能に構成されている。基板処理室14において行われる処理は、スパッタ室12A,12Bでの成膜が行われる前に基板に対して行われる前処理でもよいし、スパッタ室12A,12Bでの成膜が行われた後に基板に対して行われる後処理でもよい。前処理および後処理は、例えば、加熱処理または冷却処理などであってよい。各基板処理室14は、基板処理室14が画定する処理空間内を排気する排気部14Eを備えている。なお、各基板処理室14も処理室の一例である。
【0020】
図2を参照して、搬送室11および第1スパッタ室12Aをより詳しく説明する。なお、
図2では、図示の便宜上、プラズマ生成部11Pと第1スパッタ室12Aとの間の距離が、
図1におけるプラズマ生成部11Pと第1スパッタ室12Aとの間の距離よりも短い。
【0021】
図2が示すように、搬送室11は、基板Sbが搬送される搬送空間11Sを画定している。第1スパッタ室12Aは、搬送空間11Sに連通されるように構成された第1処理空間12ASを画定している。
【0022】
搬送室11には、第1スパッタ室12Aが、連通部10Pによって接続されている。連通部10Pは、搬送室11の搬送空間11Sと、第1スパッタ室12Aの第1処理空間12ASに接続されている。連通部10Pには、ゲートバルブ10Gが位置している。ゲートバルブ10Gが開くことによって、第1処理空間12ASが、連通部10Pを介して搬送空間11Sに連通される。これに対して、ゲートバルブ10Gが閉じることによって、第1処理空間12ASが、搬送空間11Sから隔てられる。連通部10Pは、搬送室11とともに除電通路に含まれる。
【0023】
搬送室11は、搬送空間11Sを画定する真空槽11Cを備えている。搬送室11は、上述したようにプラズマ生成部11Pを備えている。プラズマ生成部11Pは、搬送空間11S内にプラズマを生成する。プラズマ生成部11Pは、例えば、マイクロ波プラズマ源である。
【0024】
搬送室11は、さらにガス導入部11Aを備えている。ガス導入部11Aは、真空槽11Cが有するガス導入口である。ガス導入部11Aには、マスフローコントローラーを介してスパッタ装置10外に位置するガスボンベが接続されている。ガス導入部11Aは、所定流量のガスを真空槽11C内に導入する。ガス導入部11Aによって導入されるガスは、不活性ガスである。不活性ガスは、例えば希ガスであってよい。希ガスは、例えばアルゴンガスまたはヘリウムガスであってよい。
【0025】
搬送空間11S内は、上述した排気部11E(
図1参照)による排気と、ガス導入部11Aから導入されるガスとによって、所定の圧力に調整される。搬送空間11S内の圧力は、例えば1×10
-3Pa以上1×10
-1Pa以下であってよい。
【0026】
第1スパッタ室12Aは、第1処理空間12ASを画定する真空槽12ACを備えている。第1スパッタ室12Aは、上述したように、カソード20を備えている。カソード20は、ターゲット21とバッキングプレート22とを含んでいる。ターゲット21は、例えば金属、金属化合物、または、金属と金属化合物との混合物から形成される。ターゲット21は、基板Sbへの成膜時にスパッタされる被スパッタ面を備えている。バッキングプレート22は、ターゲット21に接合されている。バッキングプレート22は、導電性を有している。カソード20は、第1処理空間12ASを画定する側壁部の一面に取り付けられている。カソード20のうち、少なくともターゲット21の被スパッタ面が、第1処理空間12ASに露出している。
【0027】
バッキングプレート22には、ターゲット電源23が接続されている。ターゲット電源23がバッキングプレート22に電圧を印加することによって、バッキングプレート22に接続されたターゲット21に電圧が印加される。ターゲット電源23は、例えば、直流電源でもよいし、交流電源でもよい。
【0028】
第1スパッタ室12Aは、支持部31と吸着部32とを備えている。支持部31は、基板Sbを支持する支持面31Fを備えている。支持面31Fは、基板Sbにおいて支持面31Fに接触する面を形成する材料とは異なる材料から形成されている。例えば、支持面31Fが酸化アルミニウムから形成され、かつ、基板Sbがガラス基板であってよい。例えば、支持部31は平板状を有し、かつ、支持面31Fは支持部31が備える1つの平面である。
【0029】
吸着部32は、支持部31内に位置している。吸着部32は、支持面31Fに位置するSb基板を支持面31Fに静電吸着する。吸着部32は、静電気力を用いて基板Sbを吸着する静電チャックである。
【0030】
第1スパッタ室12Aは、位置変更部33を備えている。位置変更部33は、カソード20に対する支持部31の位置を変えることが可能に構成されている。位置変更部33は、第1位置と第2位置との間において支持部31の位置を変える。支持部31が第1位置に位置する際には、カソード20に対して支持面31Fがほぼ直交する。すなわち、支持部31が第1位置に位置する際には、支持面31Fがほぼ水平方向に沿って位置している。これに対して、支持部31が第2位置に位置する際には、カソード20に対して支持面31Fがほぼ平行である。すなわち、支持部31が第2位置に位置する際には、支持面31Fがほぼ鉛直方向に沿って位置している。
【0031】
第1スパッタ室12Aは、第1除電用ガス導入部34Aおよび第2除電用ガス導入部34Bをさらに備えている。各除電用ガス導入部34A,34Bは、真空槽12ACが有するガス導入口である。除電用ガス導入部34A,34Bには、マスフローコントローラーを介してスパッタ装置10外に位置するガスボンベが接続されている。なお、2つの除電用ガス導入部34A,34Bに対して1つのマスフローコントローラーが接続されてもよいし、2つの除電用ガス導入部34A,34Bに対して共通する1つのマスフローコントローラーが接続されてもよい。
【0032】
除電用ガス導入部34A,34Bは、所定流量の除電用ガスを真空槽12AC内に導入する。除電用ガス導入部34A,34Bによって導入される除電用ガスは、不活性ガスである。不活性ガスは、例えば希ガスであってよい。希ガスは、例えばアルゴンガスまたはヘリウムガスであってよい。除電用ガス導入部34A,34Bが導入する除電用ガスは、搬送室11のガス導入部11Aが導入するガスと同一のガスであることが好ましい。
【0033】
真空槽12AC内において、第1除電用ガス導入部34Aの位置が第1位置であり、第2除電用ガス導入部34Bの位置が第2位置である。支持部31は、支持面31Fが広がる平面と対向する視点から見て、第1位置と第2位置とが支持面31Fを挟むことが可能に構成されている。すなわち、支持部31が第1位置に位置し、これによって支持面31Fがほぼ水平方向に沿って位置する場合に、支持面31Fと対向する視点から見て、第1除電用ガス導入部34Aと第2除電用ガス導入部34Bとが、支持面31Fを挟んでいる。
【0034】
真空槽12ACは、鉛直方向において互いに対向する一対の壁部を備えている。一対の壁部は、上壁部と下壁部とから構成されている。第1除電用ガス導入部34Aおよび第2除電用ガス導入部34Bは、下壁部に位置している。各除電用ガス導入部34A,34Bは、鉛直方向における下方から上方に向かう方向に沿って、第1処理空間12AS内にガスを導入する。
【0035】
真空槽12ACは、排気部12AEが接続される排気口36をさらに備えている。支持面31Fがほぼ水平方向に沿って位置する場合に、支持面31Fと対向する視点から見て、排気口36、第1除電用ガス導入部34A、および、第2除電用ガス導入部34Bは、1つの直線上に位置することが好ましい。
【0036】
真空槽12ACは、互いに対向する一対の側壁部をさらに備えている。各側壁部は、鉛直方向に沿って延びる壁部であり、かつ、上述した上壁部と下壁部とに接続されている。除電用ガス導入部34A,34Bの一方と排気口36とは、一対の側壁部が対向する方向に沿って並んでいることが好ましい。除電用ガス導入部34A,34Bの一方は一方の側壁部の近傍に位置し、排気口36は他方の側壁部の近傍に位置することが好ましい。なお、第1スパッタ室12Aは、ガス導入部を複数備えることが好ましい。複数のガス導入部は、一対の側壁部が対向する方向に直交する方向において、側壁部に沿って位置することが好ましい。
【0037】
第1スパッタ室12A内の除電が行われる際には、第1処理空間12AS内は、排気部12AEによる排気と、除電用ガス導入部34A,34Bから導入される除電用ガスとによって、所定の圧力に調整される。第1処理空間12AS内の圧力は、搬送空間11S内の圧力以上である。第1処理空間12AS内の圧力は、例えば1×10-1Pa以上1×101Pa以下であってよい。
【0038】
第1スパッタ室12Aは、成膜用ガス導入部35をさらに備えている。成膜用ガス導入部35は、真空槽12ACが有するガス導入口である。成膜用ガス導入部35は、マスフローコントローラーを介してスパッタ装置10外に位置するガスボンベに接続されている。成膜用ガス導入部35は、プラズマ生成用ガスを第1処理空間12AS内に導入する。プラズマ生成用ガスは、例えば不活性ガスでもよいし、不活性ガスと反応性ガスとの混合ガスでもよい。成膜用ガス導入部35が導入するプラズマ生成用ガスは、除電用ガス導入部34A,34Bが導入するガスと同一のガスであることが好ましい。
【0039】
支持部31が第2位置に位置し、これによって支持面31Fがほぼ鉛直方向に沿って位置する場合に、水平面と対向する視点から見て、成膜用ガス導入部35は、支持部31とターゲット21との間に位置することが好ましい。成膜用ガス導入部35は、真空槽12ACの上壁部に位置している。成膜用ガス導入部35は、鉛直方向における上方から下方に向かう方向に沿って、第1処理空間12AS内にガスを導入する。
【0040】
基板Sbに対する成膜が行われる際には、第1処理空間12AS内は、排気部12AEによる排気と、成膜用ガス導入部35から導入されるプラズマ生成用ガスとによって、所定の圧力に調整される。第1処理空間12AS内の圧力は、例えば1×10-1Pa以上1×101Pa以下であってよい。成膜時における第1処理空間12AS内の圧力は、第1スパッタ室12A内の除電時における第1処理空間12AS内の圧力と同一であることが好ましい。
【0041】
[基板処理方法]
図3を参照して、基板処理方法を説明する。
本開示の基板処理方法は、プラズマを生成すること、および、処理室内の異物を除電することを含んでいる。プラズマを生成することでは、処理室外の除電通路において処理室内に位置する異物を除電するためのプラズマを生成する。処理室内の異物を除電することでは、プラズマに含まれる荷電粒子が処理室内に到達するように処理室内の圧力を除電通路内の圧力以上にし、処理室内に到達した荷電粒子によって処理室内の異物を除電する。
【0042】
本開示の基板処理方法によれば、処理室内の圧力が除電通路内の圧力以上であるから、除電通路内の異物が処理室内に到達することを抑えながら、除電通路内で生成されたプラズマを処理室内に供給することによって処理室内の異物を除電することが可能である。以下、図面を参照して、基板処理方法を詳しく説明する。
【0043】
基板処理方法は、基板搬入工程(ステップS11)、成膜工程(ステップS12)、基板搬出工程(ステップS13)、および、除電処理工程(ステップS14)を備えている。なお、本実施形態の除電処理工程では、排出処理工程も兼ねている。すなわち、本実施形態では、除電処理と排出処理とが同時に行われる。
【0044】
なお、基板搬入工程が行われる前に、搬送空間11S内の圧力は、例えば1×10-3Pa以上1×10-1Pa以下の範囲内に含まれる圧力に調整されている。これに対して、第1処理空間12AS内の圧力は、例えば1×10-1Pa以上1×101Pa以下の範囲内に含まれる圧力に調整されている。なお、搬送空間11S内の圧力は、ガス導入部11Aからのガスの導入と、排気部11Eによる排気とによって所定の圧力に調整されている。一方で、第1処理空間12AS内の圧力は、除電用ガス導入部34A,34Bからのガスの導入と、排気部12AEによる排気とによって所定の圧力に調整されている。
【0045】
基板搬入工程では、まず、搬送ロボット11Rが、搬送室11内に位置する処理前の基板Sbを第1スパッタ室12A内に搬送する。この際に、搬送室11を第1スパッタ室12Aに接続する連通部10Pに位置するゲートバルブ10Gが開いている。次いで、搬送ロボット11Rは、第1位置に位置する支持部31の支持面31Fに基板Sbに載置する。その後、ゲートバルブ10Gが閉じられる。そして、吸着部32が支持面31F上に位置する基板Sbを支持面31Fに吸着する。
【0046】
成膜工程では、まず、除電用ガス導入部34A,34Bからのガス導入を、成膜用ガス導入部35からのガス導入に切り替える。なお、除電用ガス導入部34A,34Bから導入されるガスの総流量と、成膜用ガス導入部35から導入されるガスの流量とは同一であることが好ましい。これにより、ガス導入の切り替え前後において、第1処理空間12AS内の圧力が変動することが抑えられる。
【0047】
次いで、位置変更部33が、支持部31の位置を第1位置から第2位置に変える。そして、ターゲット電源23がバッキングプレート22に電圧を印加することによって、ターゲット21の周りに位置するガスから、プラズマが生成される。これにより、ターゲット21の被スパッタ面がスパッタされる。結果として、被スパッタ面から基板Sbに向けて飛行したスパッタ粒子により、基板Sbに薄膜が形成される。ターゲット21に対する電圧の印加が所定時間にわたって継続されると、ターゲット電源23がバッキングプレート22に対する電圧の印加を停止する。その後、位置変更部33が、支持部31の位置を第2位置から第1位置に変える。
【0048】
基板搬出工程では、まず、吸着部32が、支持面31Fに対する基板Sbの吸着を解除する。次いで、成膜用ガス導入部35からのガス導入を除電用ガス導入部34A,34Bからのガス導入に切り替える。なお、除電用ガス導入部34A,34Bから導入されるガスの総流量と、成膜用ガス導入部35から導入されるガスの流量とは同一であることが好ましい。これにより、ガス導入の切り替え前後において、第1処理空間12AS内の圧力が変動することが抑えられる。
【0049】
続いて、ゲートバルブ10Gが開かれた後に、搬送ロボット11Rが支持部31から処理後の基板Sbを受け取る。そして、搬送ロボット11Rが第1スパッタ室12Aから搬送室11に処理後の基板Sbを搬出する。
【0050】
除電処理工程では、ゲートバルブ10Gが開いた状態で、プラズマ生成部11Pが搬送空間11S内のガスからプラズマを生成する。プラズマ中に含まれる荷電粒子は、搬送空間11S内および第1処理空間12AS内に位置する粒子に衝突することによって、連通部10Pを通じて搬送空間11Sから第1処理空間12ASに向けて移動する。この際に、第1処理空間12ASの搬送空間11S内の圧力以上であるから、搬送空間11Sから第1処理空間12ASに向けた異物の移動が抑えられる。荷電粒子を搬送空間11Sから第1処理空間12ASに移動させ、かつ、搬送空間11S内の異物を第1処理空間12ASに移動させないことは、各空間での圧力、および、当該圧力下における粒子の平均自由行程における差によって実現される。
【0051】
これにより、搬送空間11S内に生成されたプラズマが第1処理空間12AS内に供給されるから、第1処理空間12AS内を浮遊する帯電した異物、および、真空槽11Cに付着した帯電した異物などがプラズマ中の荷電粒子によって除電される。このように、本実施形態では、除電部が、プラズマ生成部11P、ガス導入部11A、排気部11E、除電用ガス導入部34A,34B、および、排気部12AEを含んでいる。除電部は、除電通路内にプラズマを生成し、プラズマ中の荷電粒子が第1スパッタ室12A内に到達するように第1スパッタ室12A内の圧力を除電通路内の圧力以上に調整する。
【0052】
除電処理では、第1処理空間12AS内に導入される除電用ガスによって排気口36に向けて流体が流れることにより、除電された異物の少なくとも一部が流体の流れによって排気口36に向けて移動する。これにより、除電された異物が第1スパッタ室12A内から第1スパッタ室12A外に排出される。このように、本実施形態の基板処理方法によれば、除電された異物を第1スパッタ室12A内から排出するから、除電された異物が再び第1スパッタ室12A内を浮遊することが抑えられる。
【0053】
また、除電用ガス導入部34A,34Bと排気口36とが一対の側壁部が対向する方向に沿って並ぶことによって、一対の側壁部が対向する方向において流体の流れを生じさせる。そのため、第1スパッタ室12A内の異物を排気口36に向けて移動させることが可能である。
【0054】
なお、異物を除電する際に第1スパッタ室12A内に導入されるガスの総流量が第1流量である場合に、異物を第1スパッタ室12A外に排出する排出処理工程は、第1流量よりも大きい第2流量のガスを第1スパッタ室12A内に導入することを含むことが好ましい。この場合には、プラズマ生成部11Pによるプラズマの生成を終了した後に、第1スパッタ室12A内に除電用ガス導入部34A,34Bから導入するガスの総流量を第1流量から第2流量に変更すればよい。これにより、第2流量のガスを第1スパッタ室12A内に導入するから、除電された異物が、第1スパッタ室12A内における流体の流れによって移動しやすくなる。結果として、異物が、第1スパッタ室12A外に排出されやすくなる。
【0055】
また、上述した第2スパッタ室12Bは、第1スパッタ室12Aと同様の構成を有している。すなわち、スパッタ装置10は、除電通路に含まれる搬送室11に接続される第2スパッタ室12Bをさらに備えている。除電部は、除電通路に含まれる搬送室11内にプラズマを生成し、プラズマ中の荷電粒子が第2スパッタ室12B内に到達するように第2スパッタ室12B内の圧力を除電通路内の圧力以上に調整する。除電部は、上述した第2スパッタ室12Bの排気部12BEと、第2スパッタ室12Bが備える除電用ガス導入部とを含む。
【0056】
この場合には、1つの除電部を用いて第1スパッタ室12A内の除電と第2スパッタ室12B内の除電とを行うことが可能である。そのため、スパッタ装置10が処理室ごとに除電部を備える場合に比べて、スパッタ装置10を構成する部品の点数を減らすことが可能である。
【0057】
なお、除電部が除電するための荷電粒子を生成する生成部としてプラズマ生成部11Pを備えるから、上述した構成の実現が可能である。例えば、除電部が紫外線を照射することによって処理室を除電する場合に比べて、プラズマ生成部11Pが生成したプラズマが供給される範囲が相対的に広い。そのため、1つのプラズマ生成部のみを含む除電部によって、複数の処理室内を除電することが可能である。紫外線を照射することによって処理室内の除電を行う場合には、紫外線を照射する照射部が、処理室毎に1つ以上必要とされ、かつ、各照射部が処理室内に位置することが必要とされる。
【0058】
[試験例1]
図4および
図5を参照して試験例1を説明する。
第1スパッタ室と搬送室とを備えるクラスタツール型のスパッタ装置において、搬送室を上面視した場合に、搬送室の中央にプラズマ生成部を取り付けた。次いで、第1スパッタ室内に位置する支持体に帯電プレートを取り付けた。この際に、四角形状を有した支持面の4隅のそれぞれに1つの帯電プレートを取り付けた。そして、第1スパッタ室と搬送室との間に位置するゲートバルブを開けた状態で、プラズマ生成部を用いて搬送室内にプラズマを生成した。帯電プレートの電圧値をプラズマ生成時から監視した。
【0059】
図4は、第1スパッタ室内の圧力を1×10
-3Paに調整し、かつ、搬送室内の圧力を1×10
-2Paに調整した際の帯電プレートにおける電圧値の経時変化を示すグラフである。
図5は、第1スパッタ室内の圧力を0.3Paに調整し、かつ、搬送室内の圧力を1×10
-1Paに調整した際の帯電プレートにおける電圧値の経時変化を示すグラフである。なお、4つの帯電プレートのうち、帯電プレートCとプラズマ生成部との間の距離が最も小さく、帯電プレートDとプラズマ生成部との間の距離が2番目に小さい。また、4つの帯電プレートのうち、帯電プレートBとプラズマ生成部との間の距離が2番目に大きく、帯電プレートAとプラズマ生成部との間の距離が最も大きい。
【0060】
図4が示すように、第1スパッタ室内の圧力が搬送室内の圧力よりも低い場合には、プラズマ生成部からの距離が小さい帯電プレートほど、帯電プレートが除電されやすいことが認められた。また、プラズマ生成部に最も近い帯電プレートであっても、帯電プレートの電圧値が-100Vに到達するまでに150秒以上を要することが認められた。また、除電処理の開始から200秒が経過した時点においても、帯電プレートAの電圧値はおよそ-600Vであり、帯電プレートBの電圧値はおよそ-400Vであり、帯電プレートDの電圧値はおよそ-200Vであることが認められた。
【0061】
図5が示すように、第1スパッタ室内の圧力が搬送室内の圧力よりも高い場合には、除電処理の開始から200秒が経過した時点において、全ての帯電プレートにおいて、電圧値が-200Vを下回ることが認められた。また、第1スパッタ室内の圧力が搬送室内の圧力よりも低い場合と、第1スパッタ室内の圧力が搬送室内の圧力よりも高い場合とにおいて、同一の帯電プレートの電圧値を比べたところ、以下の事項が認められた。すなわち、いずれの帯電プレートにおいても、第1スパッタ室内の圧力が搬送室内の圧力よりも高い場合に、除電処理の開始時点から100秒後までにおける電圧値の絶対値が低下する速度が高い、あるいは、第1スパッタ室内の圧力が搬送室内の圧力よりも低い場合と同程度であることが認められた。
【0062】
このように、第1スパッタ室内の圧力が搬送室内の圧力よりも低い場合に比べて、第1スパッタ室内の圧力が搬送室内の圧力よりも高い場合に、搬送室内で生成されたプラズマ中の荷電粒子が第1スパッタ室内に到達しやすいことが認められた。また、第1スパッタ室内の圧力が搬送室内の圧力よりも高い場合に、荷電粒子の到達量が第1スパッタ室内においてばらつきにくいことが認められた。
【0063】
[試験例2]
[試験例2‐1]
まず、試験例1において用いたクラスタツール型のスパッタ装置を用いて、処理前の基板を搬送室から第1スパッタ室内に搬入した後に、基板を支持部に載置した。その後、基板を第1スパッタ室から搬送室に搬出した。基板をスパッタ装置外に搬出し、次いで、搬出された基板に付着した異物の数を計数した。当該処理を3枚の基板に対して行った。
【0064】
次に、同一のスパッタ装置を用いて、処理前の基板を搬送室から第1スパッタ室内に搬入する前に、除電処理を行った。なお、除電処理において、第1スパッタ室内の圧力を0.3Paに調整し、かつ、搬送室内の圧力を1×10-1Paに調整した。また、除電処理において、第1スパッタ室および搬送室の両方に、アルゴンガスを導入した。次いで、処理前の基板を搬送室から第1スパッタ室内に搬入した後に、基板を支持部に載置した。その後、基板を第1スパッタ室から搬送室に搬出した。基板をスパッタ装置外に搬出し、次いで、搬出された基板に付着した異物の数を計数した。当該処理を3枚の基板に対して行った。
【0065】
除電処理を行わない場合には、基板に付着した異物のうち、5μm以上の大きさを有した異物の個数における平均値が270個であり、20μm以上の大きさを有した異物の個数における平均値が30.3個であることが認められた。これに対して、除電処理を行った場合には、基板に付着した異物のうち、5μm以上の大きさを有した異物の個数における平均値が197個であり、20μm以上の大きさを有した異物の個数における平均値は19.7個であることが認められた。
【0066】
このように、試験例2‐1の結果によれば、除電処理を行うことによって、基板に付着する異物の量を減らすことが可能であることが認められた。
【0067】
[試験例2‐2]
試験例2‐1において、基板に対して成膜処理を行った以外は、試験例2‐1と同様の処理を行った。すなわち、試験例2‐2ではまず、処理前の基板を搬送室から第1スパッタ室内に搬入した後に、基板を支持部に載置した。その後、第1スパッタ室内のターゲットをスパッタすることによって、基板に薄膜を形成した。続いて、基板を第1スパッタ室から搬送室に搬出した。基板をスパッタ装置外に搬出し、次いで、搬出された基板に付着した異物の数を計数した。当該処理を3枚の基板に対して行った。
【0068】
なお、成膜処理における条件を以下のように設定した。
・ターゲット アルミニウム
・スパッタガス アルゴンガス
・第1スパッタ室内の圧力 0.3Pa
【0069】
次に、同一のスパッタ装置を用いて、処理前の基板を搬送室から第1スパッタ室内に搬入する前に、除電処理を行った。なお、除電処理において、第1スパッタ室内の圧力を0.3Paに調整し、かつ、搬送室内の圧力を1×10-1Paに調整した。次いで、処理前の基板を搬送室から第1スパッタ室内に搬入した後に、基板を支持部に載置した。その後、第1スパッタ室内のターゲットをスパッタすることによって、基板に薄膜を形成した。続いて、基板を第1スパッタ室から搬送室に搬出した。基板をスパッタ装置外に搬出し、次いで、搬出された基板に付着した異物の数を計数した。当該処理を3枚の基板に対して行った。
【0070】
除電処理を行わない場合には、基板に付着した異物のうち、5μm以上の大きさを有した異物の個数における平均値が226個であり、20μm以上の大きさを有した異物の個数における平均値が13.3個であることが認められた。これに対して、除電処理を行った場合には、基板に付着した異物のうち、5μm以上の大きさを有した異物の個数における平均値が162個であり、20μm以上の大きさを有した異物の個数における平均値が5.0個であることが認められた。
【0071】
このように、試験例2‐2の結果によれば、除電処理を行うことによって、基板に付着する異物の量を減らすことが可能であることが認められた。
以上説明したように、基板処理方法および基板処理装置の第1実施形態によれば、以下に記載の効果を得ることができる。
【0072】
(1‐1)第1スパッタ室12A内の圧力が除電通路内の圧力以上である。そのため、除電通路内の異物が第1スパッタ室12A内に到達することを抑えながら、除電通路内で生成されたプラズマを第1スパッタ室12A内に供給することによって、第1スパッタ室12A内の異物を除電することが可能である。
【0073】
(1‐2)除電された異物を第1スパッタ室12A内から排出するから、除電された異物が再び第1スパッタ室12A内を浮遊することが抑えられる。
(1‐3)第2流量のガスを第1スパッタ室12A内に導入する場合には、除電された異物が、第1スパッタ室12A内における流体の流れによって移動しやすくなる。これによって、異物が、第1スパッタ室12A外に排出されやすくなる。
【0074】
(1‐4)一対の壁部が対向する方向に沿って流体の流れを生じさせることによって、第1スパッタ室12A内の異物を排気口36に向けて移動させることが可能である。
【0075】
[第2実施形態]
図6を参照して、基板処理方法、および、基板処理装置の第2実施形態を説明する。
[基板処理装置]
図6を参照して、基板処理装置を説明する。以下では、基板処理装置の一例であるスパッタ装置を説明する。
【0076】
図6が示すように、スパッタ装置40は、スパッタ室41と除電通路42とを備えている。スパッタ室41は、基板Sbに対するスパッタ処理を行う空間を画定する真空槽41Cを備えている。除電通路42は、真空槽41Cが有する除電口43に接続されている。除電通路42は、真空槽41Cが画定する空間外に位置している。
【0077】
除電通路42には、プラズマ生成部44が取り付けられている。プラズマ生成部44は、例えばマイクロ波プラズマ源である。プラズマ生成部44は、除電通路42内にプラズマを生成することが可能に構成されている。除電通路42は、除電バルブ42Aを備えている。除電バルブ42Aが開くことによって、除電通路42が真空槽41Cに接続される。これに対して、除電バルブ42Aが閉じることによって、除電通路42が真空槽41Cから隔てられる。
【0078】
スパッタ装置40は、排気部45を備えている。排気部45は、真空槽41Cが有する排気口46に接続されている。排気部45は、排気バルブ45A、第1排気ポンプ45B、第2排気ポンプ45C、および、排気通路45Dを備えている。排気部45によって流体が排気される方向において、排気バルブ45Aが最も下流に位置し、かつ、第2排気ポンプ45Cが最も上流に位置している。第2排気ポンプ45Cは、排気通路45Dによって第1排気ポンプ45Bに接続されている。排気通路45Dには、除電通路42が接続されている。排気バルブ45Aは、例えばバタフライバルブであってよい。第1排気ポンプ45Bは、例えばターボ分子ポンプであってよい。第2排気ポンプ45Cは、例えばドライポンプであってよい。
【0079】
真空槽41C内には、基板Sbを支持する支持部47が位置している。真空槽41Cのうち、支持部47と対向する位置にカソード50が取り付けられている。カソード50は、ターゲット51とバッキングプレート52とを含んでいる。ターゲット51は、例えば金属、金属化合物、または、金属と金属化合物との混合物から形成される。ターゲット51は、基板Sbへの成膜時にスパッタされる被スパッタ面を備えている。バッキングプレート52は、ターゲット51に接合されている。バッキングプレート52は、導電性を有している。カソード50のうち、少なくともターゲット51の被スパッタ面が、真空槽41Cが画定する空間に露出している。
【0080】
バッキングプレート52には、ターゲット電源53が接続されている。ターゲット電源53がバッキングプレート52に電圧を印加することによって、バッキングプレート52に接続されたターゲット51に電圧が印加される。ターゲット電源53は、例えば、直流電源でもよいし、交流電源でもよい。
【0081】
真空槽41Cは、ガス導入口48を有している。ガス導入口48には、マスフローコントローラーを介してスパッタ装置40外に位置するガスボンベが接続されている。ガス導入口48は、所定流量のガスを真空槽41C内に導入する。ガス導入口48によって導入されるガスは、例えば不活性ガスであってよい。不活性ガスは、例えば希ガスであってよい。希ガスは、例えばアルゴンガスまたはヘリウムガスであってよい。なお、ガス導入口48から導入されるガスは、反応性ガスを含んでもよい。反応性ガスは、例えば酸素ガスなどであってよい。
【0082】
ガス導入口48から導入されるガスは、第1のガスと第2のガスとの間で切り替えられてもよい。例えば、ターゲット51をスパッタし、これによって基板Sbに薄膜を形成する際に第1のガスを用いる一方で、真空槽41C内の異物を除電する際に第2のガスを用いてもよい。この場合には、例えば第1のガスが不活性ガスと反応性ガスとの混合ガスであり、かつ、第2のガスが不活性ガスであってよい。
【0083】
真空槽41Cは、互いに対向する一対の側壁部を備えている。各側壁部は、鉛直方向に沿って延びる壁部であり、かつ、上壁部と下壁部とに接続されている。ガス導入口48と除電口43とは、一対の側壁部が対向する方向に沿って並んでいる。ガス導入口48の一方は一方の側壁部の近傍に位置し、除電口43は他方の側壁部に位置することが好ましい。なお、スパッタ室41は、ガス導入口を複数備えることが好ましい。複数のガス導入口は、側壁部が対向する方向に直交する方向において、側壁部に沿って位置することが好ましい。
【0084】
真空槽41Cが画定する空間の圧力は、ガス導入口48から導入されるガスと、排気口46を通じた排気部45の排気とによって、第1の圧力に調整される。第1の圧力は、例えば1×10-1Pa以上1×101Pa以下の範囲内に含まれる圧力である。これに対して、排気通路45Dの圧力は、排気部45によって第1の圧力以下の圧力である第2の圧力に調整される。第2の圧力は、例えば1×10-3Pa以上1×10-1Pa以下の範囲内に含まれる圧力である。
【0085】
[基板処理方法]
本実施形態の基板処理方法は、上述した第1実施形態の基板処理方法と同様に、基板搬入工程、成膜工程、基板搬出工程、および、除電処理工程を備えている。なお、本実施形態の除電処理工程は、第1実施形態の除電処理工程と同様に、排出処理工程も兼ねている。なお、搬出入工程が行われる前に、排気バルブ45Aが開かれ、かつ、除電バルブ42Aが閉じられた状態で、排気部45が駆動される。排気部45の駆動時には、まず、第2排気ポンプ45Cが駆動され、続いて、真空槽41C内の圧力が所定の圧力まで減圧されると、第1排気ポンプ45Bが駆動される。これにより、真空槽41C内がさらに減圧される。
【0086】
基板搬入工程では、図示されない真空槽41Cの搬出入口が開かれる。次いで、搬出入口から真空槽41C内に基板Sbが搬入され、かつ、搬入された基板Sbが支持部47に載置される。なお、真空槽41Cの搬出入口は、減圧が可能に構成された搬出入室に接続されるから、真空槽41Cに対する処理前の基板Sbの搬入と、処理後の基板Sbの搬出とによって、真空槽41C内は大気に暴露されない。
【0087】
成膜工程では、まず、ガス導入口48から所定流量のガスが導入される。これにより、真空槽41C内の圧力が第1の圧力に調整される。次いで、ターゲット電源53がバッキングプレート52を介してターゲット51に電圧を印加することによって、ターゲット51の周りにプラズマが生成される。これにより、ターゲット51の被スパッタ面がスパッタされるから、被スパッタ面からスパッタ粒子が放出される。結果として、スパッタ粒子が基板Sbに到達することによって基板Sbに薄膜が形成される。ガスの導入が所定期間わたって継続された後、ガスの導入と電圧の印加とが停止される。これにより、所定の厚さを有した薄膜が基板Sbに形成される。
【0088】
基板搬出工程では、上述した真空槽41Cの搬出入口が開かれる。次いで、搬出入口から真空槽41C外に基板Sbが搬出される。
除電処理工程では、まず、排気バルブ45Aが閉じられ、かつ、除電バルブ42Aが開かれる。次いで、ガス導入口48から真空槽41C内にガスが導入され、これによって、真空槽41C内の圧力が第1の圧力に調整される。この際に、排気通路45D内の圧力は、第1の圧力以下の圧力である第2圧力に調整される。そのため、除電通路42内の圧力は、真空槽41Cから排気通路45Dに向かう方向に沿って低下する。
【0089】
次いで、プラズマ生成部44が除電通路42内にプラズマを生成する。この際に、除電通路42内には除電口43を通じて真空槽41C内に導入されたガスの一部が導入されるから、当該ガスからプラズマが生成される。プラズマ中に含まれる荷電粒子は、除電通路42内および真空槽41C内に位置する粒子に衝突することによって、除電通路42から真空槽41Cに向けて移動する。この際に、真空槽41C内の圧力が除電通路42内の圧力以上であるから除電通路42から真空槽41Cに向けた異物の移動が抑えられる。荷電粒子を除電通路42から真空槽41Cに移動させ、かつ、除電通路42内の異物を真空槽41Cに移動させないことは、各空間での圧力、および、当該圧力下における粒子の平均自由行程における差によって実現される。
【0090】
これにより、除電通路42内に生成されたプラズマが真空槽41C内に供給されるから、真空槽41C内を浮遊する帯電した異物、および、真空槽41Cに付着した帯電した異物などがプラズマ中の荷電粒子によって除電される。このように、本実施形態では、除電部が、プラズマ生成部44、排気部45、および、ガス導入口48を含んでいる。
【0091】
また、除電処理では、真空槽41C内に導入されるガスによって除電口43に向けて流体が流れることにより、除電された異物が流体の流れによって除電口43に向けて移動する。これにより、除電された異物が真空槽41C内から真空槽41C外に排出される。
【0092】
本実施形態では、プラズマ生成部44が生成した荷電粒子が真空槽41Cに向けて移動する通路と、除電された異物が排出される通路とが同一である。すなわち、荷電粒子と異物とはともに、同一の除電通路42を通過する。そのため、異物が除電通路42に向けて移動する際にも荷電粒子と衝突する可能性があるから、異物の除電が不十分であることが抑えられる。
【0093】
なお、異物を除電する際にスパッタ室41内に導入されるガスの流量が第1流量である場合に、異物をスパッタ室41外に排出する排出処理工程は、第1流量よりも大きい第2流量のガスをスパッタ室41内に導入することを含むことが好ましい。この場合には、プラズマ生成部44によるプラズマの生成を終了した後に、真空槽41C内にガス導入口48から導入するガスの総流量を第1流量から第2流量に変更すればよい。これにより、第2流量のガスを真空槽41C内に導入するから、除電された異物が、真空槽41C内における流体の流れによって移動しやすくなる。結果として、異物が、真空槽41C外に排出されやすくなる。
【0094】
また、ガス導入口48と除電口43とが一対の側壁部が対向する方向に沿って並ぶことによって、一対の側壁部が対向する方向において流体の流れを生じさせるから、スパッタ室41内の異物を除電口43に向けて移動させることが可能である。
【0095】
以上説明したように、基板処理方法および基板処理装置の第2実施形態によれば、上述した(1‐1)から(1‐4)に加えて、以下に記載の効果を得ることができる。
(2‐1)荷電粒子が移動する通路と異物が排出される通路とが同一であるから、異物が除電通路42に向けて移動する際にも荷電粒子と衝突する可能性がある。これにより、異物の除電が不十分であることが抑えられる。
【0096】
[変更例]
なお、上述した各実施形態は、以下のように変更して実施することができる。
[除電処理工程]
・各実施形態において、基板処理方法では、基板Sbに対する成膜を繰り返す場合に、最初の基板Sbを搬入する前に除電処理を行ってもよい。
【0097】
・各実施形態において、除電処理工程では、異物の除電を行う一方で、異物の排出を行わなくてもよい。例えば、排気部の排気流量、および、処理室内に導入するガスの流量の少なくとも一方を調整することによって、異物の除電時に生じる異物の排出を抑えることが可能である。
【0098】
[基板処理方法]
・第1実施形態において、除電処理を行う際には、排気部11Eによる搬送空間11S内の排気が省略されてもよい。この場合であっても、連通部10Pのコンダクタンスが十分に高ければ、ゲートバルブ10Gを開放することによって、第1処理空間12ASと搬送空間11S内との両方を、第1スパッタ室12Aが備える排気部12AEによって排気することが可能である。そして、ガス導入部11Aから導入されるガスの流量と、除電用ガス導入部34A,34Bから導入するガスの流量を調整することによって、第1処理空間12AS内の圧力を搬送空間11S内の圧力以上の大きさに調整することは可能である。
【0099】
[スパッタ装置]
・第1実施形態において、スパッタ装置10は、搬送室11と第1スパッタ室12Aのみを備えてもよい。この場合であっても、上述した(1‐1)に準じた効果を得ることは可能である。
【0100】
[基板処理装置]
・各実施形態において、基板処理装置は、スパッタ装置に限らず、例えば他の方法によって基板Sbに薄膜を形成する装置であってもよい。例えば、基板処理装置は、CVD装置または真空蒸着装置などであってもよい。また、各実施形態において、基板処理装置は、基板Sbに対する成膜を行う装置に限らず、基板Sbに対して他の処理を行う装置であってもよい。例えば、基板処理装置は、例えばエッチング装置などであってもよい。いずれの装置であっても、処理室と処理室外に位置する除電通路とを備え、かつ、除電通路内にプラズマを生成することが可能に構成された装置であればよい。
【符号の説明】
【0101】
10,40…スパッタ装置
11…搬送室
11P,44…プラズマ生成部
12,41…スパッタ室
12A…第1スパッタ室
12B…第2スパッタ室
42…除電通路