IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士フイルム株式会社の特許一覧

<>
  • 特開-磁気テープおよび磁気記録再生装置 図1
  • 特開-磁気テープおよび磁気記録再生装置 図2
  • 特開-磁気テープおよび磁気記録再生装置 図3
  • 特開-磁気テープおよび磁気記録再生装置 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024026875
(43)【公開日】2024-02-28
(54)【発明の名称】磁気テープおよび磁気記録再生装置
(51)【国際特許分類】
   G11B 5/70 20060101AFI20240220BHJP
   G11B 5/73 20060101ALI20240220BHJP
   G11B 5/735 20060101ALI20240220BHJP
   G11B 5/738 20060101ALI20240220BHJP
   G11B 5/78 20060101ALI20240220BHJP
   G11B 5/84 20060101ALI20240220BHJP
   G11B 5/702 20060101ALI20240220BHJP
【FI】
G11B5/70
G11B5/73
G11B5/735
G11B5/738
G11B5/78
G11B5/84 C
G11B5/702
【審査請求】有
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2024006551
(22)【出願日】2024-01-19
(62)【分割の表示】P 2023028859の分割
【原出願日】2019-03-18
(31)【優先権主張番号】P 2018057168
(32)【優先日】2018-03-23
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】306037311
【氏名又は名称】富士フイルム株式会社
(74)【代理人】
【識別番号】110000109
【氏名又は名称】弁理士法人特許事務所サイクス
(72)【発明者】
【氏名】笠田 成人
(57)【要約】
【課題】低温高湿環境下でのミッシングパルスの発生頻度が低減された磁気テープを提供すること。
【解決手段】非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気テープであって、上記磁性層の面内方向について測定される屈折率Nxyと上記磁性層の厚み方向について測定される屈折率Nzとの差分の絶対値ΔNは0.25以上0.40以下であり、かつ上記磁性層の表面において振り子粘弾性試験により求められる対数減衰率は0.050以下である磁気テープ。この磁気テープを含む磁気記録再生装置。
【選択図】なし
【特許請求の範囲】
【請求項1】
非磁性支持体上に強磁性粉末を含む磁性層を有する磁気テープであって、
前記磁性層の厚みは20nm以上90nm以下であり、
前記磁性層の面内方向について測定される屈折率Nxyと前記磁性層の厚み方向について測定される屈折率Nzとの差分の絶対値ΔNは0.25以上0.40以下であり、かつ
前記磁性層の表面において振り子粘弾性試験により求められる対数減衰率は0.050以下である磁気テープ。
【請求項2】
前記屈折率Nxyと前記屈折率Nzとの差分、Nxy-Nz、は0.25以上0.40以下である、請求項1に記載の磁気テープ。
【請求項3】
前記対数減衰率は、0.010以上0.050以下である、請求項1または2に記載の磁気テープ。
【請求項4】
前記非磁性支持体と前記磁性層との間に、非磁性粉末を含む非磁性層を有する、請求項1~3のいずれか1項に記載の磁気テープ。
【請求項5】
前記非磁性支持体の前記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有する、請求項1~4のいずれか1項に記載の磁気テープ。
【請求項6】
前記非磁性支持体は、ポリエチレンテレフタレートおよびポリエチレンナフタレートからなる群から選択される1種以上を含む、請求項1~5のいずれか1項に記載の磁気テープ。
【請求項7】
請求項1~6のいずれか1項に記載の磁気テープと、
磁気ヘッドと、
を含む磁気記録再生装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気テープおよび磁気記録再生装置に関する。
【背景技術】
【0002】
磁気記録媒体にはテープ状のものとディスク状のものがあり、データストレージ用途には、テープ状の磁気記録媒体、即ち磁気テープが主に用いられている。磁気テープへの情報の記録および/または再生は、通常、磁気テープの表面(磁性層表面)と磁気ヘッド(以下、単に「ヘッド」とも記載する。)とを接触させ摺動させることにより行われる。磁気テープとしては、強磁性粉末および結合剤を含む磁性層が非磁性支持体上に設けられた構成のものが広く用いられている(例えば特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2005-243162号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
磁気テープに記録された情報を再生する際に、再生信号振幅の部分的な低下(「ミッシングパルス(missing pulse)」と呼ばれる。)が発生する頻度が高いほど、エラーレートが増加し磁気テープの信頼性は低下してしまう。そのため、高い信頼性をもって使用可能な磁気テープを提供するためには、ミッシングパルスの発生頻度を低減することが望まれる。
【0005】
ところで近年、データストレージ用途に用いられる磁気テープは、温度および湿度が管理されたデータセンターで使用されることがある。一方、データセンターではコスト低減のために省電力化が求められている。省電力化のためには、データセンターにおける温湿度の管理条件を現在より緩和できるか、または管理を不要にできることが望ましい。しかし、温湿度の管理条件を緩和し、または管理を行わないと、磁気テープは様々な環境において使用されることが想定され、低温かつ高湿の環境において使用されることも想定される。しかし本発明者の検討の結果、低温高湿環境下では、ミッシングパルスの発生頻度が高まる傾向があることが判明した。
【0006】
そこで本発明の目的は、低温高湿環境下でのミッシングパルスの発生頻度が低減された磁気テープを提供することにある。
【課題を解決するための手段】
【0007】
本発明の一態様は、
非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気テープであって、
上記磁性層の面内方向について測定される屈折率Nxyと上記磁性層の厚み方向について測定される屈折率Nzとの差分の絶対値ΔNは0.25以上0.40以下であり、かつ
上記磁性層の表面において振り子粘弾性試験により求められる対数減衰率(以下、「磁性層の対数減衰率」または単に「対数減衰率」とも記載する。)は0.050以下である磁気テープ、
に関する。
【0008】
一態様では、上記屈折率Nxyと上記屈折率Nzとの差分(Nxy-Nz)は、0.25以上0.40以下であることができる。
【0009】
一態様では、上記対数減衰率は、0.010以上0.050以下であることができる。
【0010】
一態様では、上記磁気テープは、上記非磁性支持体と上記磁性層との間に、非磁性粉末および結合剤を含む非磁性層を有することができる。
【0011】
一態様では、上記磁気テープは、上記非磁性支持体の上記磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を有することができる。
【0012】
本発明の更なる態様は、上記磁気テープと、磁気ヘッドと、を含む磁気記録再生装置に関する。
【発明の効果】
【0013】
本発明の一態様によれば、低温高湿環境下でのミッシングパルスの発生頻度の低減が可能な磁気テープを提供することができる。また、本発明の一態様によれば、上記磁気テープを含む磁気記録再生装置を提供することができる。
【図面の簡単な説明】
【0014】
図1】対数減衰率の測定方法の説明図である。
図2】対数減衰率の測定方法の説明図である。
図3】対数減衰率の測定方法の説明図である。
図4】磁気テープ製造工程の具体的態様の一例(工程概略図)を示す。
【発明を実施するための形態】
【0015】
[磁気テープ]
本発明の一態様は、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気テープであって、上記磁性層の面内方向について測定される屈折率Nxyと上記磁性層の厚み方向について測定される屈折率Nzとの差分の絶対値ΔNは0.25以上0.40以下であり、かつ上記磁性層の表面において振り子粘弾性試験により求められる対数減衰率は0.050以下である磁気テープに関する。
【0016】
本発明および本明細書において、「磁性層(の)表面」とは、磁気テープの磁性層側表面と同義である。また、本発明および本明細書において、「強磁性粉末」とは、複数の強磁性粒子の集合を意味するものとする。「集合」とは、集合を構成する粒子が直接接触している態様に限定されず、結合剤、添加剤等が、粒子同士の間に介在している態様も包含される。以上の点は、本発明および本明細書における非磁性粉末等の各種粉末についても同様とする。
【0017】
以下に、ΔNおよび対数減衰率の測定方法について説明する。
【0018】
本発明および本明細書において、磁性層の面内方向について測定される屈折率Nxyと磁性層の厚み方向について測定される屈折率Nzとの差分の絶対値ΔNは、以下の方法によって求められる値とする。
磁性層の各方向についての屈折率は、分光エリプソメトリーにより2層モデルを用いて求めるものとする。分光エリプソメトリーにより2層モデルを用いて磁性層の屈折率を求めるためには、磁性層と隣接する部分の屈折率の値が用いられる。以下では、非磁性支持体上に非磁性層と磁性層とがこの順に積層された層構成を有する磁気テープについて、磁性層の屈折率NxyおよびNzを求める場合を例に説明する。ただし、本発明の一態様にかかる磁気テープは、非磁性支持体上に非磁性層を介さずに磁性層が直接積層された層構成の磁気テープであることもできる。かかる構成の磁気テープについては、磁性層と非磁性支持体との2層モデルを用いて、以下の方法と同様に磁性層の各方向についての屈折率を求める。また、以下に記載の入射角度は、垂直入射の場合の入射角度を0°としたときの入射角度である。
(1)測定用試料の準備
非磁性支持体の磁性層を有する表面とは反対側の表面上にバックコート層を有する磁気テープについては、磁気テープから切り出した測定用試料のバックコート層を除去した後に測定を行う。バックコート層の除去は、バックコート層を溶媒を用いて溶解する等の公知の方法により行うことができる。溶媒としては、例えばメチルエチルケトンを用いることができる。ただし、バックコート層を除去できる溶媒であればよい。バックコート層除去後の非磁性支持体表面は、エリプソメーターでの測定において、この表面での反射光が検出されないように公知の方法により粗面化する。粗面化は、例えばバックコート層除去後の非磁性支持体表面をサンドペーパーを用いて研磨する方法等によって行うことができる。バックコート層を持たない磁気テープから切り出した測定用試料については、磁性層を有する表面とは反対側の非磁性支持体表面について、粗面化を行う。
また、下記の非磁性層の屈折率測定のためには、更に磁性層を除去して非磁性層表面を露出させる。下記の非磁性支持体の屈折率測定のためには、更に非磁性層も除去して非磁性支持体の磁性層側の表面を露出させる。各層の除去は、バックコート層の除去について記載したように、公知の方法により行うことができる。なお以下に記載の長手方向とは、測定用試料が切り出される前に磁気テープに含まれていたときに、磁気テープの長手方向であった方向をいうものとする。この点は、以下に記載のその他の方向についても、同様である。
(2)磁性層の屈折率測定
エリプソメーターを用いて、入射角度を65°、70°および75°とし、長手方向から磁性層表面にビーム径300μmの入射光を照射することにより、Δ(s偏光とp偏光の位相差)およびΨ(s偏光とp偏光の振幅比)を測定する。測定は入射光の波長を400~700nmの範囲で1.5nm刻みで変化させて行い、各波長について測定値を求める。
各波長における磁性層のΔおよびΨの測定値、下記方法により求められる各方向における非磁性層の屈折率、ならびに磁性層の厚みを用いて、以下のように2層モデルによって各波長における磁性層の屈折率を求める。
2層モデルの基板である第0層を非磁性層とし、第1層を磁性層とする。空気/磁性層と磁性層/非磁性層の界面の反射のみを考慮し非磁性層の裏面反射の影響はないものと見做して2層モデルを作成する。得られた測定値に最も整合する第1層の屈折率を最小二乗法によってフィッティングにより求める。フィッティングの結果から得られた波長600nmにおける値として、長手方向における磁性層の屈折率Nx、および長手方向から入射光を入射させて測定した磁性層の厚み方向における屈折率Nzを求める。
入射光を入射させる方向を磁気テープの幅方向とする点以外は上記と同様として、フィッティングの結果から得られた波長600nmにおける値として、幅方向における磁性層の屈折率Ny、および幅方向から入射光を入射させて測定した磁性層の厚み方向における屈折率Nzを求める。
フィッティングは、以下の手法により行う。
一般的に「複素屈折率n=η+iκ」である。ここで、ηは屈折率の実数部であり、κは消光係数であり、iは虚数である。複素誘電率ε=ε1+iε2 (ε1とε2はクラマース・クローニッヒの関係を満たしている)とε1=η-κ、ε2=2ηκの関係にあり、NxおよびNz算出の際は、Nxの複素誘電率をε=ε1+iε2、Nzの複素誘電率をεz1=εz11+iεz12とする。
ε2を1つのガウシアンとし、ピーク位置が5.8~5.1eV、σが4~3.5 eVの任意の点を出発点とし、測定波長域(400~700nm)の外に誘電率にオフセットとなるパラメータを置き、測定値を最小二乗フィッティングすることによりNxを求める。同様に、εz12はピーク位置が3.2~2.9eV、σが1.5~1.2eVの任意の点を出発点とし、オフセットパラメータを置き、測定値を最小二乗フィッティングすることによりNzを求める。NyおよびNzも同様に求める。磁性層の面内方向について測定される屈折率Nxyは、「Nxy=(Nx+Ny)/2」として求める。磁性層の厚み方向について測定される屈折率Nzは、「Nz=(Nz+Nz)/2」として求める。求められたNxyとNzから、これらの差分の絶対値ΔNを求める。
(3)非磁性層の屈折率測定
以下の点を除き、上記方法と同様に非磁性層の波長600nmにおける屈折率(長手方向における屈折率、幅方向における屈折率、長手方向から入射光を入射させて測定される厚み方向における屈折率、および幅方向から入射光を入射させて測定される厚み方向における屈折率)を求める。
入射光の波長は、250~700nmの範囲で1.5nm刻みで変化させる。
非磁性層と非磁性支持体の2層モデルを用いて、2層モデルの基板である第0層を非磁性支持体とし、第1層を非磁性層とする。空気/非磁性層と非磁性層/非磁性支持体の界面の反射のみを考慮し非磁性支持体の裏面反射の影響はないものと見做して2層モデルを作成する。
フィッティングにおいて、複素誘電率の虚部(ε2)に、7か所のピーク(0.6eV、2.3eV、2.9eV、3.6eV、4.6eV、5.0eV、6.0eV)を仮定し、測定波長域(250~700nm)の外に誘電率にオフセットとなるパラメータを置く。
(4)非磁性支持体の屈折率測定
2層モデルにより非磁性層の屈折率を求めるために用いられる非磁性支持体の波長600nmにおける屈折率(長手方向における屈折率、幅方向における屈折率、長手方向から入射光を入射させて測定される厚み方向における屈折率、および幅方向から入射光を入射させて測定される厚み方向における屈折率)は、以下の点を除き、磁性層の屈折率測定のための上記方法と同様に求める。
2層モデルを用いず、表面反射のみの1層モデルを用いる。
フィッティングは、コーシーモデル(n=A+B/λ、nは屈折率、AおよびBはそれぞれフィッティングにより定まる定数、λは波長)により行う。
【0019】
次に、磁性層の対数減衰率について説明する。
本発明および本明細書において、磁性層の対数減衰率とは、以下の方法により求められる値とする。
図1図3は、対数減衰率の測定方法の説明図である。以下、これら図面を参照し対数減衰率の測定方法を説明する。ただし、図示された態様は例示であって、本発明を何ら限定するものではない。
測定対象の磁気テープから、測定用試料100を切り出す。切り出した測定用試料100を、振り子粘弾性試験機内の試料ステージ101において、基板103上に測定面(磁性層表面)を上方に向けて載置し、目視で確認できる明らかなしわが入っていない状態で、固定用テープ105等で固定する。
測定用試料100の測定面上に、質量13gの振り子付円柱型シリンダエッジ104(直径4mm)を、シリンダエッジの長軸方向が測定用試料100の長手方向と平行になるように載せる。こうして測定用試料100の測定面に、振り子付円柱型シリンダエッジ104を載せた状態(上方から見た状態)の一例を、図1に示す。図1に示す態様では、ホルダ兼温度センサー102が設置され、基板103の表面温度をモニタリングできる構成になっている。ただし、この構成は必須ではない。なお測定用試料100の長手方向とは、図1に示す態様では図中に矢印によって示した方向であり、測定用試料を切り出した磁気テープにおける長手方向と同方向である。また、振り子107(図2参照)としては、マグネットに吸着される性質を有する材料製(例えば金属製、合金製等)の振り子を用いる。
測定用試料100を載置した基板103の表面温度を5℃/min以下の昇温速度(5℃/min以下であれば任意の昇温速度でよい。)で昇温して80℃として、振り子運動を、振り子107とマグネット106との吸着を解除することにより開始(初期振動を誘起)させる。振り子運動している振り子107の状態(横から見た状態)の一例が、図2である。図2に示す態様では、振り子粘弾性試験機内で、試料ステージ下方に配置されたマグネット(電磁石)106への通電を停止して(スイッチをオフにして)吸着を解除することにより振り子運動を開始し、電磁石への通電を再開して(スイッチをオンにして)振り子107をマグネット106に吸着させることにより振り子運動を停止させる。振り子運動中、図2に示すように、振り子107は振幅を繰り返す。振り子が振幅を繰り返している間、振り子の変位を変位センサー108によりモニタリングして得られる結果から、変位を縦軸に取り、経過時間を横軸に取った変位-時間曲線を得る。変位-時間曲線の一例を、図3に示す。図3では、振り子107の状態と変位-時間曲線との対応が模式的に示されている。一定の測定間隔で、静止(吸着)と振り子運動とを繰り返し、10分以上(10分以上であれば任意の時間でよい。)経過した後の測定間隔において得られた変位-時間曲線を用いて、対数減衰率Δ(無単位)を、下記式から求め、この値を磁気テープの磁性層表面の対数減衰率とする。1回の吸着の吸着時間は1秒以上(1秒以上であれば任意の時間でよい。)とし、吸着終了から次の吸着開始までの間隔は6秒以上(6秒以上であれば任意の時間でよい。)とする。測定間隔とは、吸着開始から次の吸着開始までの時間の間隔である。また、振り子運動を行う環境の湿度は、相対湿度40~70%の範囲であれば任意の相対湿度でよい。
【0020】
【数1】
【0021】
変位-時間曲線において、変位が極小から再び極小になるまでの間隔を、波の一周期とする。nを、測定間隔中の変位-時間曲線に含まれる波の数とし、Anを、n番目の波における極小変位と極大変位との差とする。図3では、n番目の波の変位が極小から再び極小になるまでの間隔を、Pn(例えば1番目の波についてはP、2番目についてはP、3番目についてはP)と表示している。対数減衰率の算出には、n番目の波の次に現れる極小変位と極大変位との差(上記式中、An+1図3に示す変位-時間曲線ではA)も用いるが、極大変位以降に振り子107が静止(吸着)している部分は波の数のカウントには用いない。また、極大変位以前に振り子107が静止(吸着)している部分も、波の数のカウントには用いない。したがって、図3に示す変位-時間曲線では、波の数は3つ(n=3)である。
【0022】
本発明者は、上記磁気テープにおいて、低温高湿環境下でのミッシングパルスの発生頻度の低減が可能な理由について、以下のように推察している。
磁気テープに記録された情報を再生する際、磁性層表面とヘッドとの摺動において磁性層表面が削れると、発生した削れ屑がヘッドに付着してヘッド付着物となる場合がある。本発明者は、低温高湿環境下でのミッシングパルスの発生原因は、低温高湿環境下では磁性層表面とヘッドとの摺動時の摩擦係数が高まる傾向があるため磁性層表面とヘッドとが摺動する際の接触状態が不安定になりやすいことにあり、接触状態が不安定になる原因としてはヘッド付着物の発生が挙げられると推察している。
以上の点に関して、本発明者は、上記方法により求められるΔNは、磁性層の表層領域における強磁性粉末の存在状態の指標となり得る値と考えている。このΔNは、磁性層における強磁性粉末の配向状態に加えて、結合剤の存在状態、強磁性粉末の密度分布等の各種要因の影響を受ける値と推察される。そして、各種要因を制御することによってΔNを0.25以上0.40以下とした磁性層は、磁性層表面の強度が高くヘッドとの摺動によって削れ難いと考えられる。このことが、低温高湿環境下でのヘッドとの摺動時に磁性層表面が削れてヘッド付着物が発生することを抑制することに寄与し、結果的に低温高湿環境下でのミッシングパルスの発生頻度を低減することにつながると本発明者は推察している。
更に、対数減衰率に関して、本発明者は以下のように推察している。
上記方法により求められる対数減衰率は、ヘッドと磁性層表面とが接触し摺動する際に磁性層表面から遊離して磁性層表面とヘッドとの間に介在する粘着性成分の量の指標となる値と考えられる。かかる粘着性成分が多く存在するほど磁性層表面とヘッドとの密着力が高まり、磁性層表面とヘッドとが摺動する際の接触状態が不安定になると考えられる。これに対し、上記磁気テープにおいて磁性層の対数減衰率が0.050以下の状態であること、即ち粘着性成分が低減された状態であることは、磁性層表面とヘッドとを円滑に摺動させることに寄与すると考えられる。このことが、磁性層表面とヘッドとが摺動する際の接触状態の安定化に寄与し、その結果、低温高湿環境下でのミッシングパルスの発生頻度を低減することにつながると本発明者は推察している。
なお上記粘着性成分の詳細は明らかではない。本発明者は、上記粘着性成分は、結合剤として用いられる樹脂に由来する可能性があると推察している。詳しくは、次の通りである。結合剤としては、詳細を後述するように各種樹脂を用いることができる。樹脂とは、2つ以上の重合性化合物の重合体(ホモポリマーおよびコポリマーを包含する。)であり、分子量が平均分子量を下回る成分(以下、「低分子量結合剤成分」と記載する。)も通常含まれる。このような低分子量結合剤成分が、ヘッドと磁性層表面との摺動時に磁性層表面から遊離し磁性層表面とヘッドとの間に介在するのではないかと、本発明者は考えている。そして、上記の低分子量結合剤成分は粘着性を有すると考えられ、振り子粘弾性試験により求められる対数減衰率が、磁性層表面とヘッドとの摺動時に磁性層表面から遊離する低分子量結合剤成分の量の指標になるのではないかと、本発明者らは推察している。なお、一態様では、磁性層は、強磁性粉末および結合剤に加えて、硬化剤を含む磁性層形成用組成物を非磁性支持体上に直接または他の層を介して塗布し、硬化処理を施し形成される。ここでの硬化処理により、結合剤と硬化剤とを硬化反応(架橋反応)させることができる。ただし、低分子量結合剤成分は、理由は定かではないものの、硬化反応の反応性に乏しいのではないかと本発明者は考えている。このため、低分子量結合剤成分は磁性層に留まり難く磁性層から遊離しやすいことが、低分子量結合剤成分が磁性層表面とヘッドとの摺動時に磁性層表面とヘッドとの間に介在してしまう理由の1つではないかと、本発明者は推察している。
ただし、以上は推察であって、本発明を何ら限定するものではない。
【0023】
以下に、上記磁気テープについて更に詳細に説明する。以下において、低温高湿環境下でのミッシングパルスの発生頻度を、単に「ミッシングパルスの発生頻度」とも記載する。
【0024】
<磁性層>
(磁性層のΔN)
上記磁気テープの磁性層のΔNは、0.25以上0.40以下である。先に記載したように、ΔNが0.25以上0.40以下である磁性層は、磁性層表面の強度が高く、低温高湿環境下でのヘッドとの摺動によって削れ難いと推察される。そのため、ΔNが上記範囲である磁性層は、低温高湿環境下で磁性層に記録された情報を再生する際、磁性層表面とヘッドとの摺動において磁性層表面の削れが生じ難いと考えられる。このことが、低温高湿環境下でのミッシングパルスの発生頻度を低減することに寄与すると推察される。ミッシングパルスの発生頻度をより一層低減する観点からは、ΔNは0.25以上0.35以下であることが好ましい。ΔNを調整するための手段の具体的態様は、後述する。
【0025】
ΔNは、NxyとNzとの差分の絶対値である。Nxyは磁性層の面内方向について測定される屈折率であり、Nzは磁性層の厚み方向について測定される屈折率である。一態様では、Nxy>Nzであることができ、他の一態様ではNxy<Nzであることができる。磁気テープの電磁変換特性の観点からは、Nxy>Nzであることが好ましく、したがってNxyとNzとの差分(Nxy-Nz)が0.25以上0.40以下であることが好ましく、0.25以上0.35以下であることがより好ましい。
【0026】
以上説明したΔNを調整するための各種手段については後述する。
【0027】
(対数減衰率)
上記磁気テープの磁性層の表面において振り子粘弾性試験により求められる対数減衰率は、低温高湿環境下でのミッシングパルスの発生頻度を低減する観点から0.050以下である。ミッシングパルスの発生頻度をより一層低減する観点から、対数減衰率は、0.048以下であることが好ましく、0.045以下であることがより好ましく、0.040以下であることが更に好ましい。一方、ミッシングパルスの発生頻度を低減する観点からは、対数減衰率は低いほど好ましいため、下限値は特に限定されるものではない。一例として、対数減衰率は、例えば0.010以上、または0.015以上であることができる。ただし対数減衰率は、上記の例示した値を下回ってもよい。対数減衰率を調整するための手段の具体的態様は、後述する。
【0028】
(強磁性粉末)
磁性層に含まれる強磁性粉末としては、各種磁気記録媒体の磁性層において通常用いられる強磁性粉末を使用することができる。強磁性粉末として平均粒子サイズの小さいものを使用することは、磁気記録媒体の記録密度向上の観点から好ましい。この点から、強磁性粉末としては、平均粒子サイズが50nm以下の強磁性粉末を用いることが好ましい。一方、磁化の安定性の観点からは、強磁性粉末の平均粒子サイズは5nm以上であることが好ましく、10nm以上であることがより好ましい。
【0029】
強磁性粉末の好ましい具体例としては、強磁性六方晶フェライト粉末を挙げることができる。強磁性六方晶フェライト粉末は、強磁性六方晶バリウムフェライト粉末、強磁性六方晶ストロンチウムフェライト粉末等であることができる。強磁性六方晶フェライト粉末の平均粒子サイズは、記録密度向上と磁化の安定性の観点から、10nm以上50nm以下であることが好ましく、20nm以上50nm以下であることがより好ましい。強磁性六方晶フェライト粉末の詳細については、例えば、特開2011-225417号公報の段落0012~0030、特開2011-216149号公報の段落0134~0136、および特開2012-204726号公報の段落0013~0030を参照できる。
【0030】
強磁性粉末の好ましい具体例としては、強磁性金属粉末を挙げることもできる。強磁性金属粉末の平均粒子サイズは、記録密度向上と磁化の安定性の観点から、10nm以上50nm以下であることが好ましく、20nm以上50nm以下であることがより好ましい。強磁性金属粉末の詳細については、例えば特開2011-216149号公報の段落0137~0141および特開2005-251351号公報の段落0009~0023を参照できる。
【0031】
強磁性粉末の好ましい具体例としては、ε-酸化鉄粉末を挙げることもできる。ε-酸化鉄粉末の製造方法としては、ゲータイト(goethite)から作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε-酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284、J. Mater. Chem. C, 2013, 1, pp.5200-5206等を参照できる。ただし、上記磁性層において強磁性粉末として使用可能なε-酸化鉄粉末の製造方法は限定されない。
【0032】
本発明および本明細書において、特記しない限り、強磁性粉末等の各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H-9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS-400を用いて行うことができる。後述の実施例に示す平均粒子サイズ等の粉末のサイズに関する値は、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を用いて測定された値である。
【0033】
粒子サイズ測定のために磁気記録媒体から試料粉末を採取する方法としては、例えば特開2011-048878号公報の段落0015に記載の方法を採用することができる。
【0034】
本発明および本明細書において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不特定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
【0035】
また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
【0036】
一態様では、磁性層に含まれる強磁性粉末を構成する強磁性粒子の形状は板状であることができる。以下において、板状の強磁性粒子から構成される強磁性粉末を、板状強磁性粉末と記載する。板状強磁性粉末の平均板状比は、好ましくは2.5~5.0の範囲であることができる。平均板状比とは、上記の定義(2)の場合における(最大長径/厚みまたは高さ)の算術平均である。平均板状比が大きいほど、配向処理によって、板状強磁性粉末を構成する強磁性粒子の配向状態の均一性が高まり易い傾向があり、ΔNの値は大きくなる傾向がある。
【0037】
また、強磁性粉末の粒子サイズの指標としては、活性化体積を用いることもできる。「活性化体積」とは、磁化反転の単位である。本発明および本明細書に記載の活性化体積は、振動試料型磁束計を用いて保磁力Hc測定部の磁場スイープ速度3分と30分とで雰囲気温度23℃±1℃の環境下で測定し、以下のHcと活性化体積Vとの関係式から求められる値である。後述の実施例に示されている活性化体積は、東英工業社製振動試料型磁束計を用いて測定を行って求められた値である。
Hc=2Ku/Ms{1-[(kT/KuV)ln(At/0.693)]1/2
[上記式中、Ku:異方性定数、Ms:飽和磁化、k:ボルツマン定数、T:絶対温度、V:活性化体積、A:スピン歳差周波数、t:磁界反転時間]
記録密度向上の観点からは、強磁性粉末の活性化体積は、2500nm以下であることが好ましく、2300nm以下であることがより好ましく、2000nm以下であることが更に好ましい。一方、磁化の安定性の観点からは、強磁性粉末の活性化体積は、例えば800nm以上であることが好ましく、1000nm以上であることがより好ましく、1200nm以上であることが更に好ましい。
【0038】
磁性層における強磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。磁性層の強磁性粉末以外の成分は、少なくとも、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上ならびに結合剤であり、任意に一種以上の更なる添加剤が含まれ得る。磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。
【0039】
(結合剤、硬化剤)
上記磁気テープは塗布型磁気テープであって、磁性層に結合剤を含む。結合剤とは、一種以上の樹脂である。樹脂はホモポリマーであってもコポリマー(共重合体)であってもよい。磁性層に含まれる結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選択したものを単独で用いることができ、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂および塩化ビニル樹脂である。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。以上の結合剤については、特開2010-24113号公報の段落0029~0031を参照できる。結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。本発明および本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)によって測定された値をポリスチレン換算して求められる値である。測定条件としては、下記条件を挙げることができる。後述の実施例に示す重量平均分子量は、下記測定条件によって測定された値をポリスチレン換算して求めた値である。
GPC装置:HLC-8120(東ソー社製)
カラム:TSK gel Multipore HXL-M(東ソー社製、7.8mmID(Inner Diameter)×30.0cm)
溶離液:テトラヒドロフラン(THF)
【0040】
一態様では、結合剤として、酸性基を含む結合剤を用いることができる。本発明および本明細書における酸性基とは、水中または水を含む溶媒(水性溶媒)中でHを放出してアニオンに解離可能な基およびその塩の形態を包含する意味で用いるものとする。酸性基の具体例としては、例えば、スルホン酸基、硫酸基、カルボキシ基、リン酸基、それらの塩の形態等を挙げることができる。例えば、スルホン酸基(-SOH)の塩の形態とは、-SOMで表され、Mが水中または水性溶媒中でカチオンになり得る原子(例えばアルカリ金属原子等)を表す基を意味する。この点は、上記の各種の基の塩の形態についても同様である。酸性基を含む結合剤の一例としては、例えば、スルホン酸基およびその塩からなる群から選ばれる少なくとも一種の酸性基を含む樹脂(例えばポリウレタン樹脂、塩化ビニル樹脂等)を挙げることができる。ただし、磁性層に含まれる樹脂は、これらの樹脂に限定されるものではない。また、酸性基を含む結合剤において、酸性基量は、例えば20~500eq/tonの範囲であることができる。なおeqは当量( equivalent)であり、SI単位に換算不可の単位である。樹脂に含まれる酸性基等の各種官能基の含有量は、官能基の種類に応じて公知の方法で求めることができる。酸性基量が多い結合剤を使用するほど、ΔNの値は大きくなる傾向がある。結合剤は、磁性層形成用組成物中に、強磁性粉末100.0質量部に対して、例えば1.0~30.0質量部の量で使用することができ、好ましくは1.0~20.0質量部の量で使用することができる。強磁性粉末に対する結合剤の使用量を多くするほど、ΔNの値は大きくなる傾向がある。
【0041】
また、結合剤として使用可能な樹脂とともに硬化剤を使用することもできる。硬化剤は、一態様では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一態様では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。硬化剤は、磁性層形成工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。この点は、他の層を形成するために用いられる組成物が硬化剤を含む場合に、この組成物を用いて形成される層についても同様である。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011-216149号公報の段落0124~0125を参照できる。硬化剤は、磁性層形成用組成物中に、結合剤100.0質量部に対して例えば0~80.0質量部、磁性層の強度向上の観点からは好ましくは50.0~80.0質量部の量で使用することができる。
【0042】
(添加剤)
磁性層には、強磁性粉末および結合剤が含まれ、必要に応じて一種以上の添加剤が含まれていてもよい。添加剤としては、一例として、上記の硬化剤が挙げられる。また、磁性層に含まれる添加剤としては、非磁性粉末(例えば無機粉末、カーボンブラック等)、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。また、非磁性粉末としては、研磨剤として機能することができる非磁性粉末、磁性層表面に適度に突出する突起を形成する突起形成剤として機能することができる非磁性粉末(例えば非磁性コロイド粒子等)等が挙げられる。なお後述の実施例に示すコロイダルシリカ(シリカコロイド粒子)の平均粒子サイズは、特開2011-048878号公報の段落0015に平均粒径の測定方法として記載されている方法により求められた値である。添加剤は、所望の性質に応じて市販品を適宜選択して、または公知の方法で製造して、任意の量で使用することができる。研磨剤を含む磁性層に使用され得る添加剤の一例としては、特開2013-131285号公報の段落0012~0022に記載の分散剤を、研磨剤の分散性を向上するための分散剤として挙げることができる。例えば、潤滑剤については、特開2016-126817号公報の段落0030~0033、0035および0036を参照できる。非磁性層に潤滑剤が含まれていてもよい。非磁性層に含まれ得る潤滑剤については、特開2016-126817号公報の段落0030、0031、0034、0035および0036を参照できる。分散剤については、特開2012-133837号公報の段落0061および0071を参照できる。分散剤は、非磁性層に含まれていてもよい。非磁性層に含まれ得る分散剤については、特開2012-133837号公報の段落0061を参照できる。
【0043】
以上説明した磁性層は、非磁性支持体表面上に直接、または非磁性層を介して間接的に、設けることができる。
【0044】
<非磁性層>
次に非磁性層について説明する。
上記磁気テープは、非磁性支持体表面上に直接磁性層を有していてもよく、非磁性支持体と磁性層との間に非磁性粉末と結合剤を含む非磁性層を有していてもよい。非磁性層に含まれる非磁性粉末は、無機粉末でも有機粉末でもよい。また、カーボンブラック等も使用できる。無機粉末としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等の粉末が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2010-24113号公報の段落0036~0039を参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。
【0045】
非磁性層の結合剤、添加剤等のその他詳細は、非磁性層に関する公知技術が適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。
【0046】
本発明および本明細書における非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が7.96kA/m(100Oe)以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が7.96kA/m(100Oe)以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。
【0047】
<非磁性支持体>
次に、非磁性支持体(以下、単に「支持体」とも記載する。)について説明する。
非磁性支持体としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドが好ましい。これらの支持体はあらかじめコロナ放電、プラズマ処理、易接着処理、熱処理等を行ってもよい。
【0048】
<バックコート層>
上記磁気テープは、非磁性支持体の磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を有することもできる。バックコート層には、カーボンブラックおよび無機粉末の一方または両方が含有されていることが好ましい。バックコート層に含まれる結合剤、任意に含まれ得る各種添加剤については、バックコート層に関する公知技術を適用することができ、磁性層および/または非磁性層の処方に関する公知技術を適用することもできる。例えば、特開2006-331625号公報の段落0018~0020および米国特許第7,029,774号明細書の第4欄65行目~第5欄38行目の記載を、バックコート層について参照できる。
【0049】
<各種厚み>
上記磁気テープにおける非磁性支持体および各層の厚みについて、以下に説明する。
非磁性支持体の厚みは、例えば3.0~80.0μmであり、好ましくは3.0~50.0μmであり、より好ましくは3.0~10.0μmである。
【0050】
磁性層の厚みは、用いる磁気ヘッドの飽和磁化、ヘッドギャップ長、記録信号の帯域等に応じて最適化することができる。磁性層の厚みは、一般には10nm~100nmであり、高密度記録化の観点から、好ましくは20~90nmであり、より好ましくは30~70nmである。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。2層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。
【0051】
非磁性層の厚みは、例えば0.1~1.5μmであり、0.1~1.0μmであることが好ましい。
【0052】
バックコート層の厚みは、0.9μm以下であることが好ましく、0.1~0.7μmであることが更に好ましい。
【0053】
各層および非磁性支持体の厚みは、磁気テープの厚み方向の断面を、イオンビーム、ミクロトーム等の公知の手法により露出させた後、露出した断面において走査型透過電子顕微鏡(STEM;Scanning Transmission Electron Microscope)により断面観察を行い求めるものとする。厚みの測定方法の具体例については、後述の実施例における厚みの測定方法に関する記載を参照できる。
【0054】
<製造工程>
(各層形成用組成物の調製)
磁性層、非磁性層またはバックコート層を形成するための組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含む。個々の工程はそれぞれ二段階以上に分かれていてもかまわない。各層形成用組成物の調製に用いられる成分は、どの工程の最初または途中で添加してもかまわない。溶媒としては、塗布型磁気記録媒体の製造に通常用いられる各種溶媒の一種または二種以上を用いることができる。溶媒については、例えば特開2011-216149号公報の段落0153を参照できる。また、個々の成分を2つ以上の工程で分割して添加してもかまわない。例えば、結合剤を混練工程、分散工程および分散後の粘度調整のための混合工程で分割して投入してもよい。上記磁気テープを製造するためには、従来の公知の製造技術を各種工程において用いることができる。混練工程ではオープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつものを使用することが好ましい。これらの混練処理の詳細については特開平1-106338号公報および特開平1-79274号公報を参照できる。分散機は公知のものを使用することができる。また、強磁性粉末と研磨剤とを別分散することもできる。別分散とは、より詳しくは、研磨剤および溶媒を含む研磨剤液(但し、強磁性粉末を実質的に含まない)を、強磁性粉末、溶媒および結合剤を含む磁性液と混合する工程を経て磁性層形成用組成物を調製する方法である。上記の「強磁性粉末を実質的に含まない」とは、研磨剤液の構成成分として強磁性粉末を添加しないことを意味するものであって、意図せず混入した不純物として微量の強磁性粉末が存在することは許容されるものとする。ΔNに関しては、上記磁性液の分散時間を長くするほど、ΔNの値が大きくなる傾向がある。これは、磁性液の分散時間を長くするほど、磁性層形成用組成物の塗布層における強磁性粉末の分散性が高まり、配向処理によって強磁性粉末を構成する強磁性粒子の配向状態の均一性が高まり易い傾向があるためと考えられる。また、非磁性層形成用組成物の各種成分を混合し分散する際の分散時間を長くするほど、ΔNの値は大きくなる傾向がある。磁性液の分散時間および非磁性層形成用組成物の分散時間は、0.25以上0.40以下のΔNが実現できるように設定すればよい。
各層形成用組成物を調製する任意の段階において、公知の方法によってろ過を行ってもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01~3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
【0055】
(塗布工程)
非磁性層および磁性層は、非磁性層形成用組成物および磁性層形成用組成物を、逐次または同時に重層塗布することにより形成することができる。バックコート層は、バックコート層形成用組成物を、非磁性支持体の非磁性層および磁性層を有する(または非磁性層および/または磁性層が追って設けられる)表面とは反対側の表面に塗布することにより形成することができる。また、各層を形成するための塗布工程は、2段階以上の工程に分けて行うこともできる。例えば一態様では、磁性層形成用組成物を2段階以上の工程に分けて塗布することができる。この場合、2つの段階の塗布工程の間に乾燥処理を施してもよく、施さなくてもよい。また、2つの段階の塗布工程の間に配向処理を施してもよく、施さなくてもよい。各層形成のための塗布の詳細については、特開2010-231843号公報の段落0066も参照できる。また、各層形成用組成物を塗布した後の乾燥工程については、公知技術を適用できる。磁性層形成用組成物に関しては、磁性層形成用組成物を塗布して形成された塗布層(以下、「磁性層形成用組成物の塗布層」または単に「塗布層」とも記載する。)の乾燥温度を低くするほど、ΔNの値は大きくなる傾向がある。乾燥温度は、例えば乾燥工程を行う雰囲気温度であることができ、0.25以上0.40以下のΔNが実現できるように設定すればよい。
【0056】
(その他の工程)
磁気テープ製造のためのその他の各種工程については、公知技術を適用できる。各種工程については、例えば特開2010-231843号公報の段落0067~0070を参照できる。
例えば、磁性層形成用組成物の塗布層には、この塗布層が湿潤状態にあるうちに配向処理を施すことが好ましい。0.25以上0.40以下のΔNを実現する容易性の観点からは、配向処理は、磁性層形成用組成物の塗布層の表面に対して垂直に磁場が印加されるように磁石を配置して行うこと(即ち垂直配向処理)が好ましい。配向処理時の磁場の強度は、0.25以上0.40以下のΔNが実現できるように設定すればよい。また、磁性層形成用組成物の塗布工程を2段階以上の塗布工程により行う場合には、少なくとも最後の塗布工程の後に配向処理を行うことが好ましく、垂直配向処理を行うことがより好ましい。例えば2段階の塗布工程によって磁性層を形成する場合、1段階目の塗布工程の後には配向処理を行うことなく乾燥工程を行い、その後に2段階目の塗布工程で形成された塗布層に対して配向処理を施すことができる。
また、磁性層形成用組成物の塗布層を乾燥させた後の任意の段階でカレンダ処理を行うことが好ましい。カレンダ処理の条件については、例えば特開2010-231843号公報の段落0026を参照できる。カレンダ温度(カレンダロールの表面温度)を高くするほど、ΔNの値は大きくなる傾向がある。カレンダ温度は、0.25以上0.40以下のΔNが実現できるように設定すればよい。
【0057】
(好ましい製造方法の一態様)
好ましい一態様では、強磁性粉末、結合剤、硬化剤および溶媒を含む磁性層形成用組成物を非磁性支持体上に直接または非磁性層を介して塗布することにより塗布層を形成する塗布工程、塗布層を加熱処理により乾燥させる加熱乾燥工程、ならびに、塗布層に硬化処理を施す硬化工程を含む磁性層形成工程を経て、磁性層を形成することができる。磁性層形成工程は、塗布工程と加熱乾燥工程との間に、塗布層を冷却する冷却工程を含むことが好ましく、更に加熱乾燥工程と硬化工程との間に、上記塗布層表面をバーニッシュ(burnish)処理するバーニッシュ処理工程を含むことが好ましい。
【0058】
上記の磁性層形成工程の中で冷却工程およびバーニッシュ処理工程を実施することは、対数減衰率を0.050以下とするための好ましい手段であると考えられる。詳しくは、次の通りである。
塗布工程と加熱乾燥工程との間に塗布層を冷却する冷却工程を行うことは、先に記載した粘着性成分を、上記塗布層の表面および/または表面近傍の表層部分に局在させることに寄与するのではないかと推察される。これは、加熱乾燥工程前に磁性層形成用組成物の塗布層を冷却することにより、加熱乾燥工程における溶媒揮発時に粘着性成分が塗布層表面および/または表層部分に移行しやすくなるためではないかと考えられる。ただし、その理由は明らかではない。そして、粘着性成分が表面および/または表層部分に局在した塗布層の表面をバーニッシュ処理することにより、粘着性成分を除去することができると考えられる。こうして粘着性成分を除去した後に硬化工程を行うことが、対数減衰率を0.050以下にすることにつながると推察される。ただし、以上は推察に過ぎず、本発明を何ら限定するものではない。
【0059】
上記の通り、磁性層形成用組成物は、非磁性層形成用組成物と逐次または同時に重層塗布することができる。好ましい一態様では、上記磁気テープは、逐次重層塗布により製造することができる。逐次重層塗布を含む製造工程は、好ましくは次のように行うことができる。非磁性層形成用組成物を非磁性支持体上に塗布することにより塗布層を形成する塗布工程、および形成した塗布層を加熱処理により乾燥させる加熱乾燥工程を経て、非磁性層を形成する。そして形成された非磁性層上に磁性層形成用組成物を塗布することにより塗布層を形成する塗布工程、および形成した塗布層を加熱処理により乾燥させる加熱乾燥工程を経て、磁性層を形成する。
【0060】
以下、上記製造方法の具体的態様を、図4に基づき説明する。ただし本発明は、下記具体的態様に限定されるものではない。以下では、硬化処理が施される前の磁性層形成用組成物の塗布層を磁性層と記載することもある。この点は、他の層についても同様である。
【0061】
図4は、非磁性支持体の一方の面に非磁性層と磁性層とをこの順に有し、他方の面にバックコート層を有する磁気テープを製造する工程の具体的態様を示す工程概略図である。図4に示す態様では、非磁性支持体(長尺フィルム)を、送り出し部から送り出し巻き取り部で巻き取る操作を連続的に行い、かつ図4に示されている各部または各ゾーンにおいて塗布、乾燥、配向等の各種処理を行うことにより、走行する非磁性支持体上の一方の面に非磁性層および磁性層を逐次重層塗布により形成し、他方の面にバックコート層を形成することができる。かかる製造方法は、磁性層形成工程に冷却ゾーンを含み、かつ硬化処理前にバーニッシュ処理工程を含む点以外は、塗布型磁気テープの製造のために通常行われる製造方法と同様にすることができる。
【0062】
送り出し部から送り出された非磁性支持体上には、第一の塗布部において、非磁性層形成用組成物の塗布が行われる(非磁性層形成用組成物の塗布工程)。
【0063】
上記塗布工程後、第一の加熱処理ゾーンでは、塗布工程で形成された非磁性層形成用組成物の塗布層を加熱することにより、塗布層を乾燥させる(加熱乾燥工程)。加熱乾燥工程は、非磁性層形成用組成物の塗布層を有する非磁性支持体を加熱雰囲気中に通過させることにより行うことができる。ここでの加熱雰囲気の雰囲気温度は、例えば40~140℃程度とすることができる。ただし、溶媒を揮発させて塗布層を乾燥させることができる温度とすればよく、上記範囲に限定されるものではない。また任意に、加熱した気体を塗布層表面に吹き付けてもよい。以上の点は、後述する第二の加熱処理ゾーンにおける加熱乾燥工程および第三の加熱処理ゾーンにおける加熱乾燥工程についても、同様である。
【0064】
次に、第二の塗布部において、第一の加熱処理ゾーンにて加熱乾燥工程を行い形成された非磁性層上に、磁性層形成用組成物が塗布される(磁性層形成用組成物の塗布工程)。
【0065】
上記塗布工程後、冷却ゾーンにおいて、塗布工程で形成された磁性層形成用組成物の塗布層が冷却される(冷却工程)。例えば、非磁性層上に上記塗布層を形成した非磁性支持体を冷却雰囲気中に通過させることにより、冷却工程を行うことができる。冷却雰囲気の雰囲気温度は、好ましくは-10℃~0℃の範囲とすることができ、より好ましくは-5℃~0℃の範囲とすることができる。冷却工程を行う時間(例えば、塗布層の任意の部分が冷却ゾーンに搬入されてから搬出されるまでの時間(以下において、「滞在時間」ともいう。))は特に限定されるものではない。滞在時間を長くするほど対数減衰率の値は小さくなる傾向があるため、0.050以下の対数減衰率を実現できるように必要に応じて予備実験を行う等して調整することが好ましい。なお冷却工程では、冷却した気体を塗布層表面に吹き付けてもよい。
【0066】
その後、配向処理を行う態様では、磁性層形成用組成物の塗布層が湿潤状態にあるうちに、配向ゾーンにおいて塗布層中の強磁性粉末の配向処理が行われる。配向処理については、先の記載も参照できる。
【0067】
配向処理後の塗布層は、第二の加熱処理ゾーンにおいて加熱乾燥工程に付される。
【0068】
次いで、第三の塗布部において、非磁性支持体の非磁性層および磁性層が形成された面とは反対側の面に、バックコート層形成用組成物が塗布されて塗布層が形成される(バックコート層形成用組成物の塗布工程)。その後、第三の加熱処理ゾーンにおいて、上記塗布層を加熱処理し乾燥させる。
【0069】
こうして、非磁性支持体の一方の面に、非磁性層上に磁性層を有し、他方の面にバックコート層を有する磁気テープを得ることができる。ここで得られた磁気テープは、この後に、後述する各種処理を施した後に、製品磁気テープとなる。
【0070】
得られた磁気テープは、巻き取り部で巻き取られた後に、製品磁気テープのサイズに裁断(スリット)される。スリットは、公知の裁断機を用いて行うことができる。
【0071】
スリットされた磁気テープは、磁性層に含まれている硬化剤の種類に応じた硬化処理(加熱、光照射等)を行う前に、磁性層の表面をバーニッシュ処理する(加熱乾燥工程と硬化工程との間のバーニッシュ処理工程)。このバーニッシュ処理により、冷却ゾーンにおいて冷却されて磁性層表面および/または表層部分に移行した粘着性成分を除去できることが、上記対数減衰率を0.050以下にすることにつながると推察される。ただし推察に過ぎず、本発明を何ら限定するものではない。
【0072】
バーニッシュ処理は、部材(例えば研磨テープ、または研削用ブレード、研削用ホイール等の研削具)により処理対象の表面を擦る処理であり、塗布型磁気記録媒体製造のために公知のバーニッシュ処理と同様に行うことができる。ただし、冷却工程および加熱乾燥工程を経た後、硬化工程前の段階でバーニッシュ処理を行うことは、従来行われていなかった。これに対し、上記段階でバーニッシュ処理を行うことにより、上記の対数減衰率を0.050以下にすることができる。
【0073】
バーニッシュ処理は、好ましくは、研磨テープによって処理対象の層の表面を擦る(研磨する)ことおよび研削具によって処理対象の層の表面を擦る(研削すること)の一方または両方を行うことにより、実施することができる。研磨テープとしては、市販品を用いてもよく、公知の方法で作製した研磨テープを用いてもよい。また、研削具としては、固定式ブレード、ダイヤモンドホイール、回転式ブレード等の公知の研削用ブレード、研削用ホイール等を用いることができる。また、研磨テープおよび/または研削具によって擦られた層の表面をワイピング材によって拭き取るワイピング(wiping)処理を行ってもよい。好ましい研磨テープ、研削具、バーニッシュ処理およびワイピング処理の詳細については、特開平6-52544号公報の段落0034~0048、図1および同公報の実施例を参照できる。バーニッシュ処理を強化するほど、上記の対数減衰率の値は小さくなる傾向がある。バーニッシュ処理は、研磨テープに含まれる研磨剤として高硬度な研磨剤を用いるほど強化することができ、研磨テープ中の研磨剤量を増やすほど強化することができる。また、研削具として高硬度な研削具を用いるほど強化することができる。バーニッシュ処理条件に関しては、処理対象の層の表面と部材(例えば研磨テープまたは研削具)との摺動速度を速くするほど、バーニッシュ処理を強化することができる。上記摺動速度は、部材を移動させる速度および処理対象の磁気テープを移動させる速度の一方または両方を速くすることにより、速くすることができる。
【0074】
上記のバーニッシュ処理(バーニッシュ処理工程)後、磁性層に硬化処理を施す。図4に示す態様では、磁性層には、バーニッシュ処理後、硬化処理前に、表面平滑化処理が施される。表面平滑化処理は、カレンダ処理によって行うことが好ましい。
【0075】
その後、磁性層に、この層に含まれる硬化剤の種類に応じた硬化処理を施す(硬化工程)。硬化処理は、加熱処理、光照射等の上記塗布層に含まれる硬化剤の種類に応じた処理によって行うことができる。硬化処理条件は特に限定されるものではなく、磁性層形成用組成物の処方、硬化剤の種類、磁性層の厚み等に応じて適宜設定すればよい。例えば、硬化剤としてポリイソシアネートを含む磁性層形成用組成物を用いて磁性層を形成した場合には、硬化処理は加熱処理であることが好ましい。なお磁性層以外の層に硬化剤が含まれる場合、その層の硬化反応も、ここでの硬化処理により進行させることもできる。または別途、硬化工程を設けてもよい。なお硬化工程後に、更にバーニッシュ処理を行ってもよい。
【0076】
以上により、本発明の一態様にかかる磁気テープを得ることができる。ただし上記の製造方法は例示であって、ΔNおよび対数減衰率を調整可能な任意の手段によって、それらの値をそれぞれ上記範囲に制御することができ、そのような態様も本発明に包含される。磁気テープは、通常、磁気テープカートリッジに収容され、磁気テープカートリッジが磁気記録再生装置に装着される。低温高湿環境下で磁気記録再生装置において磁気テープに記録された情報を再生する際、本発明の一態様にかかる磁気テープであれば、ミッシングパルスの発生頻度を低減することができる。
【0077】
上記のように製造された磁気テープには、磁気記録再生装置における磁気ヘッドのトラッキング制御、磁気テープの走行速度の制御等を可能とするために、公知の方法によってサーボパターンを形成することができる。「サーボパターンの形成」は、「サーボ信号の記録」ということもできる。以下に、サーボパターンの形成について説明する。
【0078】
サーボパターンは、通常、磁気テープの長手方向に沿って形成される。サーボ信号を利用する制御(サーボ制御)の方式としては、タイミングベースサーボ(TBS)、アンプリチュードサーボ、周波数サーボ等が挙げられる。
【0079】
ECMA(European Computer Manufacturers Association)―319に示される通り、LTO(Linear Tape-Open)規格に準拠した磁気テープ(一般に「LTOテープ」と呼ばれる。)では、タイミングベースサーボ方式が採用されている。このタイミングベースサーボ方式において、サーボパターンは、互いに非平行な一対の磁気ストライプ(「サーボストライプ」とも呼ばれる。)が、磁気テープの長手方向に連続的に複数配置されることによって構成されている。上記のように、サーボパターンが互いに非平行な一対の磁気ストライプにより構成される理由は、サーボパターン上を通過するサーボ信号読み取り素子に、その通過位置を教えるためである。具体的には、上記の一対の磁気ストライプは、その間隔が磁気テープの幅方向に沿って連続的に変化するように形成されており、サーボ信号読み取り素子がその間隔を読み取ることによって、サーボパターンとサーボ信号読み取り素子との相対位置を知ることができる。この相対位置の情報が、データトラックのトラッキングを可能にする。そのために、サーボパターン上には、通常、磁気テープの幅方向に沿って、複数のサーボトラックが設定されている。
【0080】
サーボバンドは、磁気テープの長手方向に連続するサーボ信号により構成される。このサーボバンドは、通常、磁気テープに複数本設けられる。例えば、LTOテープにおいて、その数は5本である。隣接する2本のサーボバンドに挟まれた領域は、データバンドと呼ばれる。データバンドは、複数のデータトラックで構成されており、各データトラックは、各サーボトラックに対応している。
【0081】
また、一態様では、特開2004-318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる。)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボストライプのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボストライプのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ信号読み取り素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。
【0082】
なお、サーボバンドを一意に特定する方法には、ECMA―319に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対の磁気ストライプ(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ信号読み取り素子によりサーボパターンを読み取る際に、サーボバンドを一意に特定することも可能となっている。
【0083】
また、各サーボバンドには、ECMA―319に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる。)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボストライプの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。
【0084】
上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。
また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボストライプの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
【0085】
サーボパターン形成用ヘッドは、サーボライトヘッドと呼ばれる。サーボライトヘッドは、上記一対の磁気ストライプに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボパターンの形成の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボパターンを形成することができる。各ギャップの幅は、形成されるサーボパターンの密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1~10μm、10μm以上等に設定可能である。
【0086】
磁気テープにサーボパターンを形成する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、更に2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。
【0087】
形成されるサーボパターンの磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボパターンの形成は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボパターンが読み取られて得られるサーボ信号の出力を、大きくすることができる。なお、特開2012-53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、双極パルス形状となる。
【0088】
[磁気記録再生装置]
本発明の一態様は、上記磁気テープと、磁気ヘッドと、を含む磁気記録再生装置に関する。
【0089】
本発明および本明細書において、「磁気記録再生装置」とは、磁気テープへの情報の記録および磁気テープに記録された情報の再生の少なくとも一方を行うことができる装置を意味するものとする。かかる装置は、一般にドライブと呼ばれる。上記磁気記録再生装置に含まれる磁気ヘッドは、磁気テープへの情報の記録を行うことができる記録ヘッドであることができ、磁気テープに記録された情報の再生を行うことができる再生ヘッドであることもできる。また、上記磁気記録再生装置は、一態様では、別々の磁気ヘッドとして、記録ヘッドと再生ヘッドの両方を含むことができる。他の一態様では、上記磁気記録再生装置に含まれる磁気ヘッドは、記録素子と再生素子の両方を1つの磁気ヘッドに備えた構成を有することもできる。再生ヘッドとしては、磁気テープに記録された情報を感度よく読み取ることができる磁気抵抗効果型(MR;Magnetoresistive)素子を再生素子として含む磁気ヘッド(MRヘッド)が好ましい。MRヘッドとしては、公知の各種MRヘッドを用いることができる。また、情報の記録および/または情報の再生を行う磁気ヘッドには、サーボパターン読み取り素子が含まれていてもよい。または、情報の記録および/または情報の再生を行う磁気ヘッドとは別のヘッドとして、サーボパターン読み取り素子を備えた磁気ヘッド(サーボヘッド)が上記磁気記録再生装置に含まれていてもよい。
【0090】
上記磁気記録再生装置において、磁気テープへの情報の記録および磁気テープに記録された情報の再生は、磁気テープの磁性層表面と磁気ヘッドとを接触させて摺動させることにより行うことができる。上記磁気記録再生装置は、本発明の一態様にかかる磁気テープを含むものであればよく、その他については公知技術を適用することができる。
【0091】
上記磁気記録再生装置は、本発明の一態様にかかる磁気テープを含む。したがって、低温高湿環境下で磁気テープに記録された情報を再生する際、ミッシングパルスの発生頻度を低減することができる。また、低温高湿環境下で磁気テープへの情報の記録のために磁性層表面とヘッドとが摺動する際にも、磁性層表面の削れに起因するヘッド付着物によって、磁性層表面とヘッドとの接触状態が不安定になることを抑制することも可能である。
【実施例0092】
以下に、本発明を実施例に基づき説明する。ただし本発明は実施例に示す態様に限定されるものではない。以下に記載の「部」および「%」は、質量基準である。
【0093】
[実施例1]
<研磨剤液の調製>
アルファ化率約65%、BET(Brunauer-Emmett-Teller)比表面積20m/gのアルミナ粉末(住友化学社製HIT-80)100.0部に対し、2,3-ジヒドロキシナフタレン(東京化成社製)を3.0部、SONa基含有ポリエステルポリウレタン樹脂(東洋紡社製UR-4800(SONa基:0.08meq/g))の32%溶液(溶媒はメチルエチルケトンとトルエンの混合溶媒)を31.3部、溶媒としてメチルエチルケトンとシクロヘキサノン1:1(質量比)の混合溶媒570.0部を混合し、ジルコニアビーズの存在下で、ペイントシェーカーにより5時間分散させた。分散後、メッシュにより分散液とビーズとを分け、アルミナ分散物を得た。
【0094】
<磁性層形成用組成物の調製>
(磁性液)
板状強磁性六方晶バリウムフェライト粉末 100.0部
(活性化体積:1600nm、平均板状比:3.5)
SONa基含有ポリウレタン樹脂 表1参照
(重量平均分子量:70,000、SONa基量:表1参照)
シクロヘキサノン 150.0部
メチルエチルケトン 150.0部
(研磨剤液)
上記で調製したアルミナ分散物 6.0部
(シリカゾル(突起形成剤液))
コロイダルシリカ(平均粒子サイズ:100nm) 2.0部
メチルエチルケトン 1.4部
(その他成分)
ステアリン酸 2.0部
ブチルステアレート 2.0部
ポリイソシアネート(東ソー社製コロネート(登録商標)) 2.5部
(仕上げ添加溶媒)
シクロヘキサノン 200.0部
メチルエチルケトン 200.0部
【0095】
(調製方法)
上記磁性液の各種成分を、バッチ式縦型サンドミルにおいて分散メディアとしてビーズを用いてビーズ分散することにより、磁性液を調製した。ビーズとしてはジルコニアビーズ(ビーズ径:表1参照)を用いて、表1に記載の時間(磁性液ビーズ分散時間)、ビーズ分散を行った。
こうして得られた磁性液、上記の研磨剤液、シリカゾル、その他成分および仕上げ添加溶媒を混合し5分間ビーズ分散した後、バッチ型超音波装置(20kHz、300W)で0.5分間処理(超音波分散)を行った。その後、0.5μmの孔径を有するフィルタを用いてろ過を行い磁性層形成用組成物を調製した。
【0096】
<非磁性層形成用組成物の調製>
下記の非磁性層形成用組成物の各種成分のうち、ステアリン酸、シクロヘキサノンおよびメチルエチルケトンを除いた成分を、バッチ式縦型サンドミルを用いてビーズ分散(分散メディア:ジルコニアビーズ(ビーズ径:0.1mm)、分散時間:表1参照)して分散液を得た。その後、得られた分散液に残りの成分を添加し、ディゾルバー撹拌機により撹拌した。次いで、得られた分散液をフィルタ(孔径0.5μm)を用いてろ過し、非磁性層形成用組成物を調製した。
【0097】
非磁性無機粉末 α-酸化鉄:100.0部
(平均粒子サイズ10nm、BET比表面積75m/g)
カーボンブラック:25.0部
(平均粒子サイズ20nm)
SONa基含有ポリウレタン樹脂:18.0部
(重量平均分子量70,000、SONa基含有量0.2meq/g)
ステアリン酸:1.0部
シクロヘキサノン:300.0部
メチルエチルケトン:300.0部
【0098】
<バックコート層形成用組成物の調製>
下記のバックコート層形成用組成物の各種成分のうち、ステアリン酸、ブチルステアレート、ポリイソシアネートおよびシクロヘキサノンを除いた成分をオープンニーダにより混練および希釈して混合液を得た。その後、得られた混合液に対して横型ビーズミルにより、ビーズ径1.0mmのジルコニアビーズを用い、ビーズ充填率80体積%およびローター先端周速10m/秒で、1パスあたりの滞留時間を2分とし、12パスの分散処理を行った。その後、得られた分散液に残りの成分を添加し、ディゾルバー撹拌機により撹拌した。次いで、得られた分散液をフィルタ(孔径:1.0μm)を用いてろ過し、バックコート層形成用組成物を調製した。
【0099】
非磁性無機粉末:α-酸化鉄 80.0部
平均粒子サイズ(平均長軸長):0.15μm
平均針状比:7
BET比表面積:52m/g
カーボンブラック 20.0部
平均粒子サイズ:20nm
塩化ビニル共重合体 13.0部
スルホン酸塩基含有ポリウレタン樹脂 6.0部
フェニルホスホン酸 3.0部
メチルエチルケトン 155.0部
ステアリン酸 3.0部
ブチルステアレート 3.0部
ポリイソシアネート 5.0部
シクロヘキサノン 355.0部
【0100】
<磁気テープの作製>
図4に示す具体的態様により磁気テープを作製した。詳しくは、次の通りとした。
厚み5.0μmのポリエチレンナフタレート製支持体を送り出し部から送りだし、一方の表面に、第一の塗布部において乾燥後の厚みが0.7μmになるように非磁性層形成用組成物を塗布し、第一の加熱処理ゾーン(雰囲気温度100℃)にて乾燥させて非磁性層を形成した。
その後、第二の塗布部において乾燥後の厚みが50nmになるように磁性層形成用組成物を非磁性層上に塗布し塗布層を形成した。形成した塗布層が湿潤状態にあるうちに雰囲気温度0℃に調整した冷却ゾーンに表1に示す滞在時間で通過させて冷却工程を行った。その後、配向ゾーンにおいて表1に示す強度の磁場を、磁性層形成用組成物の塗布層表面に対し垂直方向に印加し垂直配向処理を行った後、上記塗布層を第二の加熱処理ゾーン(雰囲気温度:表1中の磁性層乾燥温度)にて乾燥させて磁性層を形成した。
その後、第三の塗布部において、上記ポリエチレンナフタレート製支持体の非磁性層および磁性層を形成した表面とは反対側の表面に、乾燥後の厚みが0.5μmになるようにバックコート層形成用組成物を塗布して塗布層を形成し、形成した塗布層を第三の加熱処理ゾーン(雰囲気温度100℃)にて乾燥させてバックコート層を形成した。
こうして得られた磁気テープを1/2インチ(0.0127メートル)幅にスリットした後、磁性層表面のバーニッシュ処理およびワイピング処理を行った。バーニッシュ処理およびワイピング処理は、特開平6-52544号公報の図1に記載の構成の処理装置において、研磨テープとして市販の研磨テープ(富士フイルム社製商品名MA22000、研磨剤:ダイヤモンド/Cr/ベンガラ)を使用し、研削用ブレードとして市販のサファイヤブレード(京セラ社製、幅5mm、長さ35mm、先端角度60度)を使用し、ワイピング材として市販のワイピング材(クラレ社製商品名WRP736)を使用して行った。処理条件は、特開平6-52544号公報の実施例12における処理条件を採用した。
上記バーニッシュ処理およびワイピング処理後、金属ロールのみから構成されるカレンダロールで、速度80m/分、線圧300kg/cm(294kN/m)、および表1に示すカレンダ温度(カレンダロールの表面温度)にてカレンダ処理(表面平滑化処理)を行った。
その後、雰囲気温度70℃の環境で36時間加熱処理(硬化処理)を行った後、市販のサーボライターによって磁性層にサーボパターンを形成した。
以上により、実施例1の磁気テープを得た。
【0101】
[実施例4、比較例1~6]
表1に示す各種項目を表1に示すように変更した点以外、実施例1と同様に磁気テープを作製した。
表1中、「磁性層の形成と配向」欄に「配向処理なし」と記載されている比較例は、磁性層形成用組成物の塗布層について配向処理を行わずに磁気テープを作製した。
表1中、冷却ゾーン滞在時間の欄および硬化処理前バーニッシュ処理の欄に「未実施」と記載されている比較例では、磁性層形成工程に冷却ゾーンを含まず、かつ硬化処理前のバーニッシュ処理およびワイピング処理を行わない製造工程により磁気テープを作製した。
【0102】
[実施例2]
非磁性層形成後、非磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第一の塗布層を形成した。この第一の塗布層を、磁場の印加なしに表1に示す雰囲気温度(磁性層乾燥温度)の雰囲気中を通過させて第一の磁性層(配向処理なし)を形成した。
その後、第一の磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第二の塗布層を形成した。形成した第二の塗布層が湿潤状態にあるうちに雰囲気温度0℃に調整した冷却ゾーンに表1に示す滞在時間で通過させて冷却工程を行った。その後、配向ゾーンにおいて表1に示す強度の磁場を、第二の塗布層表面に対し垂直方向に印加し垂直配向処理を行った後、第二の加熱処理ゾーン(雰囲気温度:表1中の磁性層乾燥温度)にて乾燥させ、第二の磁性層を形成した。
以上のように重層磁性層を形成した点以外、実施例1と同様にして磁気テープを作製した。
【0103】
[実施例3]
冷却ゾーン滞在時間を表1に示すように変更した点以外、実施例2と同様にして磁気テープを作製した。
【0104】
[比較例7]
非磁性層形成後、非磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第一の塗布層を形成した。この第一の塗布層が湿潤状態にあるうちに、表1に示す雰囲気温度(磁性層乾燥温度)の雰囲気中で対向磁石を用いて表1に示す強度の磁場を第一の塗布層の表面に対して垂直方向に印加して垂直配向処理および乾燥処理を行い、第一の磁性層を形成した。
その後、第一の磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第二の塗布層を形成した。この第二の塗布層を、磁場の印加なしに表1に示す雰囲気温度(磁性層乾燥温度)の雰囲気中を通過させて第二の磁性層(配向処理なし)を形成した。
以上のように重層磁性層を形成した点以外、比較例2と同様にして磁気テープを作製した。
【0105】
[比較例8]
非磁性層形成後、非磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第一の塗布層を形成した。この第一の塗布層が湿潤状態にあるうちに、表1に示す雰囲気温度(磁性層乾燥温度)の雰囲気中で対向磁石を用いて表1に示す強度の磁場を第一の塗布層の表面に対して垂直方向に印加して垂直配向処理および乾燥処理を行い、第一の磁性層を形成した。
その後、第一の磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第二の塗布層を形成した。この第二の塗布層を、磁場の印加なしに表1に示す雰囲気温度(磁性層乾燥温度)の雰囲気中を通過させて第二の磁性層(配向処理なし)を形成した。
以上のように重層磁性層を形成した点、および磁性層形成工程に冷却ゾーンを含まず、かつ硬化処理前のバーニッシュ処理およびワイピング処理を行わない製造工程により磁気テープを作製した点以外、比較例6と同様にして磁気テープを作製した。
【0106】
[比較例9]
非磁性層形成後、非磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第一の塗布層を形成した。この第一の塗布層を磁場の印加なしに表1に示す雰囲気温度(磁性層乾燥温度)の雰囲気中を通過させて第一の磁性層(配向処理なし)を形成した。
その後、第一の磁性層の表面上に乾燥後の厚みが25nmになるように磁性層形成用組成物を塗布して第二の塗布層を形成した。この第二の塗布層が湿潤状態にあるうちに、表1に示す雰囲気温度(磁性層乾燥温度)の雰囲気中で対向磁石を用いて表1に示す強度の磁場を第二の塗布層の表面に対して垂直方向に印加して垂直配向処理および乾燥処理を行い、第二の磁性層を形成した。
以上のように重層磁性層を形成した点以外、比較例3と同様にして磁気テープを作製した。
【0107】
[磁気テープの物性評価]
(1)磁性層の対数減衰率の測定
測定装置として、株式会社エー・アンド・ディー製剛体振り子型物性試験器RPT-3000W(振り子:真鍮製、基板:ガラス基板、基板昇温速度5℃/min)を用いて、先に記載した方法により磁気テープの磁性層の対数減衰率を求めた。磁気テープから切り出した測定用試料は、約3cm×約5cmのサイズのガラス基板上に、固定用テープ(東レ・デュポン製カプトンテープ)で図1に示すように4箇所を固定し載置した。吸着時間を1秒間かつ測定間隔を7~10秒とし、86回目の測定間隔について変位-時間曲線を作成し、この曲線を用いて対数減衰率を求めた。測定は、相対湿度約50%の環境下にて行った。
【0108】
(2)非磁性支持体および各層の厚み
作製した各磁気テープの磁性層、非磁性層、非磁性支持体およびバックコート層の厚みを以下の方法によって測定した。測定の結果、いずれの磁気テープにおいても、磁性層の厚みは50nm、非磁性層の厚みは0.7μm、非磁性支持体の厚みは5.0μm、バックコート層の厚みは0.5μmであった。
ここで測定された磁性層、非磁性層および非磁性支持体の厚みを、以下の屈折率の算出のために用いた。
(i)断面観察用試料の作製
特開2016-177851号公報の段落0193~0194に記載の方法にしたがい、磁気テープの磁性層側表面からバックコート層側表面までの厚み方向の全領域を含む断面観察用試料を作製した。
(ii)厚み測定
作製した試料をSTEM観察し、STEM像を撮像した。このSTEM像は、加速電圧300kVおよび撮像倍率450000倍で撮像したSTEM -HAADF(High-Angle Annular Dark Field)像であり、1画像に、磁気テープの磁性層側表面からバックコート層側表面までの厚み方向の全領域が含まれるように撮像した。こうして得られたSTEM像において、磁性層表面を表す線分の両端を結ぶ直線を、磁気テープの磁性層側表面を表す基準線として定めた。上記の線分の両端を結ぶ直線とは、例えば、STEM像を、断面観察用試料の磁性層側が画像の上方に位置しバックコート層側が下方に位置するように撮像した場合には、STEM像の画像(形状は長方形または正方形)の左辺と上記線分との交点とSTEM像の右辺と上記線分との交点とを結ぶ直線である。同様に磁性層と非磁性層との界面を表す基準線、非磁性層と非磁性支持体との界面を表す基準線、非磁性支持体とバックコート層との界面を表す基準線、磁気テープのバックコート層側表面を表す基準線を定めた。
磁性層の厚みは、磁気テープの磁性層側表面を表す基準線上の無作為に選んだ1箇所から、磁性層と非磁性層との界面を表す基準線までの最短距離として求めた。同様に、非磁性層、非磁性支持体およびバックコート層の厚みを求めた。
【0109】
(3)磁性層のΔN
以下では、エリプソメーターとしてウーラム社製M-2000Uを使用した。2層モデルまたは1層モデルの作成およびフィッティングは、解析ソフトとしてウーラム社製WVASE32を使用して行った。
(i)非磁性支持体の屈折率測定
各磁気テープから測定用試料を切り出し、メチルエチルケトンを染み込ませた布を用いて測定用試料のバックコート層をふき取り除去して非磁性支持体表面を露出させた後、露出した表面の反射光がこの後に行われるエリプソメーターでの測定において検出されないように、この表面をサンドペーパーにより粗面化した。
その後、メチルエチルケトンを染み込ませた布を用いて測定用試料の磁性層および非磁性層をふき取り除去した後、シリコンウェハー表面と粗面化した表面とを静電気を利用して貼り付けることにより、測定用試料を、磁性層および非磁性層を除去して露出した非磁性支持体表面(以下、「非磁性支持体の磁性層側表面」と記載する。)を上方に向けてシリコンウェハー上に配置した。
エリプソメーターを用いて、このシリコンウェハー上の測定用試料の非磁性支持体の磁性層側表面に先に記載したように入射光を入射させてΔおよびΨを測定した。得られた測定値および上記(2)で求めた非磁性支持体の厚みを用いて、先に記載した方法によって非磁性支持体の屈折率(長手方向における屈折率、幅方向における屈折率、長手方向から入射光を入射させて測定される厚み方向における屈折率、および幅方向から入射光を入射させて測定される厚み方向における屈折率)を求めた。
(ii)非磁性層の屈折率測定
各磁気テープから測定用試料を切り出し、メチルエチルケトンを染み込ませた布を用いて測定用試料のバックコート層をふき取り除去して非磁性支持体表面を露出させた後、露出した表面の反射光がこの後に行われる分光エリプソメーターでの測定において検出されないように、この表面をサンドペーパーにより粗面化した。
その後、メチルエチルケトンを染み込ませた布を用いて測定用試料の磁性層表面を軽くふき取り磁性層を除去して非磁性層表面を露出させた後、上記(i)と同様にシリコンウェハー上に測定用試料を配置した。
このシリコンウェハー上の測定用試料の非磁性層表面について、エリプソメーターを用いて測定を行い、分光エリプソメトリーにより、先に記載した方法によって非磁性層の屈折率(長手方向における屈折率、幅方向における屈折率、長手方向から入射光を入射させて測定される厚み方向における屈折率、および幅方向から入射光を入射させて測定される厚み方向における屈折率)を求めた。
(iii)磁性層の屈折率測定
各磁気テープから測定用試料を切り出し、メチルエチルケトンを染み込ませた布を用いて測定用試料のバックコート層をふき取り除去して非磁性支持体表面を露出させた後、露出した表面の反射光がこの後に行われる分光エリプソメーターでの測定において検出されないように、この表面をサンドペーパーにより粗面化した。
その後、測定用試料を、上記(i)と同様にシリコンウェハー上に測定用試料を配置した。
このシリコンウェハー上の測定用試料の磁性層表面について、エリプソメーターを用いて測定を行い、分光エリプソメトリーにより、先に記載した方法によって磁性層の屈折率(長手方向における屈折率Nx、幅方向における屈折率Ny、長手方向から入射光を入射させて測定される厚み方向における屈折率Nz、および幅方向から入射光を入射させて測定される厚み方向における屈折率Nz)を求めた。求められた値から、Nxy、Nzを求め、更にこれらの差分の絶対値ΔNを求めた。実施例および比較例のいずれの磁気テープについても、求められたNxyは、Nzより大きな値(即ちNxy>Nz)であった。
【0110】
(4)垂直方向角型比(SQ;Squareness Ratio)
磁気テープの垂直方向角型比とは、磁気テープの垂直方向において測定される角型比である。角型比に関して記載する「垂直方向」とは、磁性層表面と直交する方向をいう。実施例および比較例の各磁気テープについて、振動試料型磁束計(東英工業社製)を用いて、23℃±1℃の測定温度において、磁気テープに外部磁場を最大外部磁場1194kA/m(15kOe)かつスキャン速度4.8kA/m/秒(60Oe/秒)の条件で掃引して垂直方向角型比を求めた。測定値は反磁界補正後の値であり、振動試料型磁束計のサンプルプローブの磁化をバックグラウンドノイズとして差し引いた値として得るものとする。一態様では、磁気テープの垂直方向角型比は0.60以上1.00以下であることが好ましく、0.65以上1.00以下であることがより好ましい。また、一態様では、磁気テープの垂直方向角型比は、例えば0.90以下、0.85以下、または0.80以下であることもでき、これらの値を上回ることもできる。
【0111】
[低温高湿環境下でのミッシングパルス発生頻度]
以下の測定は、温度13℃かつ相対湿度80%の低温高湿環境下で行った。
実施例および比較例の各磁気テープ(磁気テープ全長500m)を収容した磁気テープカートリッジを、IBM社製LTO-G6(Linear Tape-Open Generation 6)ドライブにセットし、磁気テープを、テンション0.6N、走行速度8m/秒で1500往復走行させた。
上記走行後の磁気テープカートリッジを、リファレンスドライブ(IBM社製LTO-G6ドライブ)にセットし、磁気テープを走行させて記録および再生を行った。走行中の再生信号を外部AD(Analog/Digital)変換装置に取り込み、再生信号振幅が平均(全トラックでの測定値の平均)に対して70%以上低下した信号をミッシングパルスとして、その発生頻度(発生回数)を磁気テープ全長で除して、磁気テープの単位長さ当たり(1m当たり)のミッシングパルス発生頻度(単位:回/m)として求めた。ミッシングパルス発生頻度が5回/m以下であれば、実用上、信頼性の高い磁気テープと判断することができる。
【0112】
以上の結果を、表1(表1-1~表1-4)に示す。
【0113】
【表1-1】
【0114】
【表1-2】
【0115】
【表1-3】
【0116】
【表1-4】
【0117】
表1に示す結果から、磁性層のΔNおよび対数減衰率がそれぞれ先に記載した範囲である実施例1~4の磁気テープでは、比較例1~9の磁気テープと比べて、低温高湿環境下でのミッシングパルス発生頻度が低減されていることが確認できる。
なお一般に、角型比は磁性層における強磁性粉末の存在状態の指標として知られている。ただし、表1に示すように、垂直方向角型比が同じ磁気テープであってもΔNは相違している(例えば実施例1と比較例8)。このことは、ΔNは、磁性層における強磁性粉末の存在状態に加えて他の要因の影響も受ける値であることを示していると本発明者は考えている。
【産業上の利用可能性】
【0118】
本発明の一態様は、データストレージ用磁気テープ等の各種磁気記録媒体の技術分野において有用である。
図1
図2
図3
図4