IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日立金属株式会社の特許一覧

特開2024-37847SiC単結晶ウェハおよびその製造方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024037847
(43)【公開日】2024-03-19
(54)【発明の名称】SiC単結晶ウェハおよびその製造方法
(51)【国際特許分類】
   H01L 21/20 20060101AFI20240312BHJP
   H01L 21/265 20060101ALI20240312BHJP
   H01L 21/205 20060101ALI20240312BHJP
   C30B 29/36 20060101ALI20240312BHJP
【FI】
H01L21/20
H01L21/265 Z
H01L21/265 602A
H01L21/205
C30B29/36 A
【審査請求】有
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2023209109
(22)【出願日】2023-12-12
(62)【分割の表示】P 2020037757の分割
【原出願日】2020-03-05
(71)【出願人】
【識別番号】000005083
【氏名又は名称】株式会社プロテリアル
(72)【発明者】
【氏名】小林 慶亮
(72)【発明者】
【氏名】島 明生
(57)【要約】
【課題】デバイスを形成する前のSiCウェハにおいてウェハ表面の組成を制御する事により、デバイス形成後におけるゲート絶縁膜寿命のばらつきを低減できる、エピタキシャル成長層付きのSiCウェハを提供する。
【解決手段】SiC単結晶基板と、前記SiC単結晶基板上に形成され、SiC単結晶を含むエピタキシャル層と、を含み、XPSを用いた表面組成分析によって得られ、表面から1~3nmの領域における前記エピタキシャル層のC-Siの組成比が50atm%以下であり、前記エピタキシャル層の表面にSiを含み、前記エピタキシャル層の表面は、前記SiC単結晶基板の主面に沿った平面である、SiC単結晶ウェハ。
【選択図】図4


【特許請求の範囲】
【請求項1】
SiC単結晶基板と、
前記SiC単結晶基板上に形成され、SiC単結晶を含むエピタキシャル層と、
を含み、
XPSを用いた表面組成分析によって得られ、表面から1~3nmの領域における前記エピタキシャル層のC-Siの組成比が50atm%以下であり、前記エピタキシャル層の表面にSiを含み、
前記エピタキシャル層の表面は、前記SiC単結晶基板の主面に沿った平面である、SiC単結晶ウェハ。
【請求項2】
請求項1記載のSiC単結晶ウェハにおいて、
前記エピタキシャル層の表面において、C-Si以外の炭素を含む結合の組成比の合計は、C-Siの組成比よりも大きい、SiC単結晶ウェハ。
【請求項3】
(a)SiC単結晶基板を用意する工程、
(b)前記SiC単結晶基板上に、SiC単結晶を含むエピタキシャル層を形成する工程、
(c)前記エピタキシャル層の表面の組成を改質することで、XPSを用いた表面組成分析によって得られ、表面から1~3nmの領域における前記エピタキシャル層のC-Siの組成比を50atm%以下としており、前記エピタキシャル層の表面にSiを含んでいる工程、
を含む、
前記エピタキシャル層の表面は、前記SiC単結晶基板の主面に沿った平面である、SiC単結晶ウェハの製造方法。
【請求項4】
請求項3記載のSiC単結晶ウェハの製造方法において、
前記(c)工程の後、前記エピタキシャル層の表面において、C-Si以外の炭素を含む結合の組成比の合計は、C-Siの組成比よりも大きい、SiC単結晶ウェハの製造方法。


【発明の詳細な説明】
【技術分野】
【0001】
本発明はSiCウェハに関し、特に、上部にエピタキシャル層が形成されたSiCウェハおよびその製造方法に利用できるものである。
【背景技術】
【0002】
半導体パワー素子には高耐圧のほか、低オン抵抗、低スイッチング損失が要求されるが、現在の主流であるケイ素(Si)パワー素子は理論的な性能限界に近づいている。炭化ケイ素(SiC)はSiと比較して絶縁破壊電界強度が約1桁大きいため、耐圧を保持するドリフト層を約1/10に薄く、不純物濃度を約100倍高くすることで、素子抵抗を理論上3桁以上低減できる。また、Siに対してバンドギャップが約3倍大きいことから高温動作も可能であり、SiC半導体素子は、Si半導体素子を超える性能が期待され、SiCパワーデバイスの開発が進められている。
【0003】
特許文献1(特開2012-142597号公報)には、基板表面におけるステップバンチングの発生を防ぐことが記載されている。
【0004】
特許文献2(特開2010-258294号公報)には、炭化ケイ素エピタキシャル層の表面からシリコン原子を蒸発させて、炭化ケイ素表面を95at%以上の炭素原子とすることが記載されている。
【0005】
特許文献3~7には、エピタキシャル成長時の条件を調整し、流量比(原料供給比)またはエピタキシャル成長層の組成比を制御することが記載されている。ただし、特許文献3~7に記載の技術は、エピタキシャル成長層の表面をカーボンリッチの状態にするものではなく、また、当該流量比は、SiCウェハの表面の組成比と相関を有するものではない。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2012-142597号公報
【特許文献2】特開2010-258294号公報
【特許文献3】特開2003-282451号公報
【特許文献4】特開2015-143168号公報
【特許文献5】特開2009-239103号公報
【特許文献6】特開2007-137689号公報
【特許文献7】国際公開第2015/159949号
【非特許文献】
【0007】
【非特許文献1】Senzaki, Junji, et al. "Challenges of High-Performance and High-Reliablity in SiC MOS Structures." Materials Science Forum. Vol. 717. Trans TechPublications, 2012.
【発明の概要】
【発明が解決しようとする課題】
【0008】
SiCデバイスの量産工程では、ウェハ上に複数のチップ形成領域を同時に作製し、ダイシング工程でウェハから複数のチップに分割される。それぞれのチップの特性が全て同一となれば問題ないが、不良チップが一定数存在し、チップ同士の間でデバイス特性のばらつきが大きくなる。特に大面積を要するパワーデバイスにおいては、歩留り向上のためにデバイス特性のばらつきを低減する事が重要である。例えば非特許文献1には、基板表面におけるステップバンチングの発生を防ぐことで、ゲート絶縁膜の信頼性を向上することが記載されている。
【0009】
本願発明の目的は、ウェハ表面の組成を制御する事により、ゲート絶縁膜寿命のばらつきを低減できる、エピタキシャル成長層付きのSiCウェハを提供することにある。
【0010】
その他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
【課題を解決するための手段】
【0011】
本願において開示される実施の形態のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
【0012】
一実施の形態であるSiCウェハは、SiC基板と、前記SiC基板上に形成され、SiCを含むエピタキシャル層と、を含み、前記エピタキシャル層の上面のC-Siの組成比は、50atm%以下である。
【発明の効果】
【0013】
代表的な実施の形態によれば、SiCウェハの信頼性を向上させることができる。
【図面の簡単な説明】
【0014】
図1】実施の形態1に係るSiCウェハの製造工程を示す平面図である。
図2】実施の形態1に係るSiCウェハの製造工程を示す断面図である。
図3図2に続く製造工程を示す断面図である。
図4図3に続く製造工程を示す断面図である。
図5】XPSを用いた表面組成分析方法を説明する概略図である。
図6】XPSを用いた表面組成分析方法を説明する概略図である。
図7】XPSを用いた表面組成分析によって得られるC1sスペクトルのピーク分離の詳細を示すグラフである。
図8】XPSを用いた表面組成分析によって得られるC1sスペクトルのピーク分離の詳細を示すグラフである。
図9】XPSを用いた表面組成分析によって得られるC1sスペクトルのピーク分離の詳細を示すグラフである。
図10】XPSを用いた表面組成分析によって得られるC1sスペクトルのピーク分離の詳細を示すグラフである。
図11】カーボンリッチ処理前のSiCウェハの表面における炭素を含む各種の結合の組成比と、XPS分析の取り出し角との関係を示す表である。
図12】カーボンリッチ処理前のSiCウェハの表面における炭素を含む各種の結合の組成比と、XPS分析の取り出し角との関係を示すグラフである。
図13】カーボンリッチ処理後のSiCウェハの表面における炭素を含む各種の結合の組成比と、XPS分析の取り出し角との関係を示す表である。
図14】カーボンリッチ処理後のSiCウェハの表面における炭素を含む各種の結合の組成比と、XPS分析の取り出し角との関係を示すグラフである。
図15】カーボンリッチの処理前および処理後のそれぞれにおける、C-Si結合の組成比と、C-Si以外の炭素を含む結合の組成比の合計とを示すグラフである。
図16】累積故障率を示す式である。
図17】比較例および本実施の形態のそれぞれのSiCデバイスにおける、絶縁破壊注入電荷量と累積故障率との関係を示すグラフである。
図18】実施の形態1の変形例に係るSiCウェハ上におけるDMOSFETの製造工程を示す断面図である。
図19図18に続く製造工程を示す断面図である。
図20図19に続く製造工程を示す断面図である。
図21図20に続く製造工程を示す断面図である。
図22図21に続く製造工程を示す断面図である。
図23図22に続く製造工程を示す断面図である。
図24図23に続く製造工程を示す断面図である。
図25図24に続く製造工程を示す断面図である。
図26図25に続く製造工程を示す断面図である。
図27】実施の形態1の変形例に係るSiCウェハ上におけるDMOSFETの製造工程を示す平面図である。
図28】酸化処理を行ったSiCウェハの上面における、C-Si結合とC-Si結合以外の炭素を含む結合とのそれぞれの組成比を示すグラフである。
図29】比較例のSiCデバイスにおける、絶縁破壊注入電荷量と累積故障率との関係を示すグラフである。
【発明を実施するための形態】
【0015】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、実施の形態では、特に必要なときを除き、同一または同様な部分の説明を原則として繰り返さない。
【0016】
本願では、SiC基板のみから成るウェハ、SiC基板およびSiC基板上のエピタキシャル層を含むウェハのそれぞれをSiCウェハと呼ぶ。ここでいうSiC基板は、エピタキシャル層を含まないバルク基板である。
【0017】
(実施の形態1)
<改善の余地の詳細>
SiC(炭化ケイ素)はSi(シリコン)に比べてバンドギャップが広く、SiC基板上に形成された絶縁膜は、高い絶縁破壊強度を有する。このような特性を活かし、SiC基板上に形成した素子に高い電圧を印加することが考えられるが、その場合、絶縁膜に掛かる電界が問題となる。このため、SiC基板を用いたデバイスの設計においては、絶縁膜に掛かる電界を十分に考慮する必要がある。特にMOSFET(Metal Oxide Semiconductor Field Effect Transistor)またはIGBT(Insulated Gate Bipolar Transistor)の様なゲート絶縁膜を有するデバイス構造においては、ゲート絶縁膜に掛かる電界強度が強くなると、ゲート絶縁膜においてリーク電流が生じる。このようなリーク電流の発生は、ゲート絶縁膜寿命の低下、および、ゲート絶縁膜の絶縁破壊などの、デバイス動作不良の原因となる。
【0018】
このような不良は、1つのウェハから分割されたチップのそれぞれに同様に生じるものではなく、ゲート絶縁膜寿命はチップ(デバイス)毎にばらつきがある。すなわち、デバイス量産時には、ウェハ上に複数のチップ形成領域を同時に作製し、ダイシング工程を行うことで、ウェハから複数のチップが分割される。それぞれのチップの特性が全て同一となれば問題ないが、不良チップは一定数存在し得る。不良チップが生じる原因として、製造プロセスにおける異物の存在に加え、例えばSiC基板の表面に存在する欠陥が挙げられる。
【0019】
当該欠陥の1つとして、ステップフロー成長法に起因して生じるステップバンチングが挙げられる。ステップバンチングは、ウェハ面内で局所的に形成されることが多く、またその凹凸形状は様々である。ステップバンチングを有するウェハ上にデバイスを作製すると、デバイスの特性ばらつきが大きくなる。したがって、ばらつきを低減するためには、凹凸などの欠陥を低減する事が重要となる。特に、大面積を要するパワーデバイスにおいては、歩留り向上のためにデバイス特性のばらつきを低減する事が重要である。
【0020】
図29に、比較例として、主に炭化ケイ素から成るウェハ上にMOSFET(SiCデバイス)を作製し、同一ウェハ面内に存在する複数のMOSFETに対してCCS-TDDB(Constant Current Stress Time Dependent Dielectric Breakdown:定電流経時絶縁破壊)特性を評価した結果のワイブルプロットを示す。図29に示すグラフの横軸(片対数)には、SiC基板上に形成された絶縁膜において絶縁破壊が生じるまでに、当該絶縁膜に注入された電荷量、つまり絶縁破壊注入電荷量Qbdを示している。また、当該グラフの縦軸には、累積故障率を示している。すなわち、図29は、比較例のSiCデバイスにおける、絶縁破壊注入電荷量と累積故障率との関係を示すグラフである。
【0021】
当該ワイブルプロットは、MOSキャパシタまたはMOSFETなどのMOS構造において、ゲートに一定電流ストレス(CCS)を与えた時における、複数個のデバイスの絶縁破壊注入電荷量Qbdをワイブル分布でプロットしたグラフである。ゲートに一定電流ストレス(CCS)を与えた際に、ゲート絶縁膜が破壊するまでのストレス時間を計測することで、そのストレス時間およびストレス電流から、絶縁破壊注入電荷量Qbdを算出することができる。
【0022】
ワイブルプロットにて、絶縁破壊に至るまでの時間(寿命)のばらつきがゼロである場合、プロットの分布は縦軸に平行な直線状になる。しかし、図29に示す比較例では、ワイブルプロットは傾きを持っている。このようなワイブルプロットの傾きはばらつきの存在を示しており、絶縁破壊注入電荷量Qbdを低下させる欠陥が存在する事を意味している。
【0023】
このように、SiCウェハにおいては、その上に形成するデバイス同士の間における絶縁膜の寿命などの特性ばらつきを抑えるという改善の余地がある。
【0024】
<SiCウェハの構成>
本実施の形態1では、上述した改善の余地を解決する工夫を施している。以下では、この工夫を施した本実施の形態における技術的思想について説明する。
【0025】
本発明者らが研究を進めた結果、ウェハ表面の組成がゲート絶縁膜の信頼性に影響を与え、SiCウェハの表面の組成を制御することで、ゲート絶縁膜寿命のばらつきを低減できることを見出した。以下では、SiCウェハの表面の組成を制御する事により、ゲート絶縁膜寿命のばらつきを低減できるエピタキシャル層付きSiCウェハについて説明する。
【0026】
ここでは、図1図4を用いて、本実施の形態のSiCウェハの製造工程を説明する。図1は、本実施の形態のSiCウェハの製造工程を示す平面図であり、図2図4は、本実施の形態のSiCウェハの製造工程を示す断面図である。
【0027】
本実施の形態のSiCウェハを製造する際には、まず、図1および図2に示すように、SiC基板(SiCバルク基板)2のみから成るSiCウェハ1を用意する。SiC基板2の結晶型は、例えば4H-SiCであるが、6H-SiCまたは3C-SiCであってもよい。SiC基板2の主面のオフ角は、例えば0.5度より大きく、8度未満が好ましい。ここでは、SiC基板2の主面のオフ角は、例えば4度である。SiC基板2の主面の面方位は、Si面、C面またはその他の面方位のいずれでもよく、ここではSiC基板2の主面の面方位はSi面である。
【0028】
SiC基板2は、昇華法を用いて作製した基板でも、溶液法を用いて作製した基板でも、ガス成長法を用いて作製した基板でもよい。SiC基板2のn型不純物の濃度は、例えば1×1018~1×1021/cm-3であり、ここでは、例えば1×1018/cm-3である。
【0029】
次に、図3に示すように、エピタキシャル成長法を用いて、SiC基板2の主面上にエピタキシャル層(エピタキシャル成長層、半導体層)3を形成する。具体的には、1500℃以上の温度下において、キャリアガスとしてH(水素)を用いて、SiC基板2に対してSiH(モノシラン)およびC(プロパン)を供給する。なお、エピタキシャル成長に用いるガスとしてトリクロロシランやメタンを用いてもよい。また、成長レート向上を目的に塩化水素を導入してもよい。これにより、エピタキシャル成長を行い、エピタキシャル層3を形成する。このとき、エピタキシャル層3は主にSiCから成る。
【0030】
エピタキシャル層3のn型不純物濃度は、作製するデバイスによって異なるが、例えば1×1014~1×1018/cm-3程度である。また、エピタキシャル層3の膜厚は、作製するデバイスによって異なるが、例えば数μmから数十μmである。
【0031】
また、SiC基板2内には、通電劣化の原因となる欠陥である基底面転位(BPD:Basal Plane Dislocation)が存在することが考えられる。エピタキシャル成長時にSiC基板2側からエピタキシャル層3内に延びたBPDは、通電を妨げ、通電時に拡大する性質を有する。これに対し、SiC基板2内のBPDの一部は、SiC基板2とエピタキシャル層3との界面で貫通刃状転位(TED:Threading Edge Dislocation)に変換されてエピタキシャル層3内に延びることが考えられる。TEDは基板内の通電を妨げるものではなく、通電しても拡大しない。
【0032】
そこで、エピタキシャル層3を形成する前に、SiC基板2上に、SiCから成る高濃度のバッファ層(半導体層)を形成してもよい。バッファ層のn型不純物濃度は、例えば1×1018/cm-3程度である。SiC基板2とエピタキシャル層3との間にバッファ層を設けることで、エピタキシャル層3内にBPDが拡大する確率を低減することができる。すなわち、エピタキシャル成長時に、SiC基板2内のBPDはSiC基板2とバッファ層との界面でTEDに変換され易くなる。さらに、バッファ層が存在する事により正孔がSiC基板2のBPDに到達する確率を低減できる。これにより、SiC基板2およびエピタキシャル層3を含む積層基板上に形成されるデバイスにおいて、通電劣化が生じる確率を低減できる。
【0033】
また、エピタキシャル層3を形成する前に、SiC基板2の上面またはバッファ層の上面に対しCMP(Chemical Mechanical Polishing、化学的機械研磨)を実施してもよい。
【0034】
また、ここではSiC基板2上にエピタキシャル層3を形成することについて説明したが、図1図3を用いて説明した工程に代わり、SiC基板2上に既にエピタキシャル層3が積層された積層基板(SiCウェハ1)を用意してもよい。
【0035】
次に、図4に示すように、カーボンリッチ処理を行う。すなわち、エピタキシャル層3の表面組成がカーボンリッチとなるような処置を実施する。具体的には、エピタキシャル層3の上面において、C-Siの結合の割合よりも、C-CまたはC-OなどといったC-Si以外の結合の割合(atomic percent、atm%)が多い状態になるように表面組成を改変する。つまり、本願でいうカーボンリッチとは、C-Siの結合の割合よりも、Cを含むC-Si以外の結合の割合の方が多い状態を指す。言い換えれば、本願でいうカーボンリッチとは、エピタキシャル層の上面のC-Siの組成比が50atm%以下であることを指す。
【0036】
カーボンリッチ処理の方法は幾つか考えられるが、ここでは、例えば、CMPにより表面組成を改変する。これにより、エピタキシャル層3の上面に、カーボンリッチ層4を形成する。SiCウェハの表面の組成の改変は、例えば、CMP法によって実現できる。
【0037】
エピタキシャル層3の表面組成(カーボンリッチ層4の組成)の割合は、例えば、XPS(X-ray Photoelectron Spectroscopy)を用いた表面組成分析により調べられる。ここでは、XPSを用いた表面組成分析では、C1sスペクトルのピーク分離を行った時、C-Siの結合の割合よりも、C-CまたはC-Oなどの、C-Si以外の結合の割合が多い状態になるように、カーボンリッチ処理の条件を調整する。
【0038】
図5および図6に、XPSを用いた表面組成分析方法を説明する概略図を示す。なお、図5および図6では、エピタキシャル層の上面に形成されたカーボンリッチ層の図示を省略している。ここでは、角度分解機能を有するディテクタ(検出器)35を備えたXPSを用いる。XPSを用いて表面組成分析をする場合、ディテクタ35が角度分解機能を有していることで、ウェハ表面から数nm(例えば1~3nm)における深さにおける情報を、ウェハ表面からより深い位置(例えば7nm程度)での情報から分解して得られる。言い換えれば、ディテクタ35が角度分解機能を有していない場合、ウェハ表面の比較的浅い領域の表面組成と、ウェハ表面の比較的深い領域の表面組成とを区別して検出することはできない。
【0039】
XPS測定においては、透過力が強いX線25を対象にSiCウェハ1に照射し、これにより発生した光電子(2次電子)を検出する。このため、検出深さは光電子の平均自由工程によって決まる。ディテクタに角度分解機能を持つXPSにおいては、光電子を検出したディテクタ面内の位置によって深さ情報を知る事ができる。つまり、ウェハ表面の浅い領域で発生した光電子は、図5に示すようにディテクタ35の全面で検出できる。これに対し、ウェハ表面の深い領域で発生した光電子は、SiCウェハ1内における平均自由工程が短いため、図6に示すように低角でのみ脱出でき、高角ではSiCウェハ1内から脱出できない。したがって、ウェハから低角でディテクタ35に向かって離脱した光電子から、ウェハ表面の比較的浅い領域(例えばウェハ表面から1~3nmの領域)での組成分析を行うことができる。このように、角度分解機能を持つXPSを用いれば、ウェハ表面から数nmの深さにおける組成を、分解して取得できる。
【0040】
ここでいう高角、低角などの角度(取り出し角、2次電子の離脱角度)は、SiCウェハ1の表面(主面)に対して垂直な線と、X線25の照射によりSiCウェハ1の表面から放出された光電子の進行方向との間の角度θである。
【0041】
本実施の形態では、XPSによりSiCウェハの極表面近傍(例えばウェハ表面から1~3nmの領域)の組成分析を実施した場合に、C-Siの表面組成比が43atm%となるよう、カーボンリッチ処理によりSiCウェハの表面組成を調整した。ただし、SiCウェハの極表面近傍(例えばウェハ表面から1~3nmの領域)の組成を分解検出しない場合、XPS分析の結果には、ウェハ表面から数nm(例えば7nm)程度深い箇所の結合状態の情報も含まれる。この場合、XPS分析の結果であるC-Siの表面組成比は83atm%となる。このことを、以下に図7~13を用いて説明する。
【0042】
図7図10は、XPSを用いた表面組成分析によって得られるC1sスペクトルのピーク分離の詳細を示すグラフである。これらのグラフにおいて、横軸にはウェハ表面の組成物の結合エネルギーを示し、縦軸には光電子のエネルギー(放出光電子強度)を示している。図7図9には、本実施の形態のカーボンリッチ処理を施したSiCウェハにおけるXPS分析の結果を示し、図10には、本実施の形態のカーボンリッチ処理を施していない、比較例のSiCウェハにおけるXPS分析の結果を示している。
【0043】
図7および図10は、ディテクタ35の検出角度が81.125度、つまり高角である場合の分析結果を示すグラフである。つまり、図7および図10は、ウェハ表面の比較的浅い領域の組成を表している。図9は、ディテクタ35の検出角度が24.875度、つまり低角である場合の分析結果を示すグラフである。つまり、図9は、ウェハ表面の比較的深い領域の組成を表している。図8は、ディテクタ35の検出角度が51.125度である場合の分析結果を示すグラフである。つまり、図8は、浅い領域の組成を示す図7と、深い領域の組成を示す図9との中間の深さの領域における組成を示すものである。比較例のウェハ表面の比較的深い領域の組成は、図10に示す比較例のウェハ表面の比較的浅い領域の組成とほぼ同様であるため、ここでは図示を省略する。
【0044】
図7図10には、炭素とシリコンとの結合であるC-Si、炭素と炭素との結合であるC-C、炭素と酸素との結合であるC-O、炭素と酸素との二重結合であるC=O、および、酸素と炭素とのエーテル結合であるO-C-Oのそれぞれの分析結果のグラフを示している。図7図10においては、C-Siのグラフを実線で示し、C-Cのグラフを破線で示し、C-Oのグラフ一点鎖線で示し、C=Oのグラフを二点鎖線で示し、O-C-Oのグラフを三点鎖線で示している。
【0045】
図7図9に示すように、炭素を含む各種結合のそれぞれの組成比は、深さ依存性を有している。このことについて、以下に図11図15を用いて説明する。図11および図12は、カーボンリッチ処理前のSiCウェハの表面における炭素を含む各種の結合の組成比と、XPS分析の取り出し角との関係を示す表およびグラフである。図13および図14は、カーボンリッチ処理後のSiCウェハの表面における炭素を含む各種の結合の組成比と、XPS分析の取り出し角との関係を示す表およびグラフである。図12および図14では、グラフの横軸にXPS分析の取り出し角を示し、グラフの縦軸に組成比を示している。これらのグラフの横軸であるXPS分析の取り出し角が大きい程、XPS分析の箇所はウェハ表面に近い。
【0046】
図15は、カーボンリッチの処理前および処理後のそれぞれにおける、C-Si結合の組成比と、C-Si以外の炭素を含む結合の組成比の合計とを示すグラフである。図15では、右側にカーボンリッチ処理前のグラフを示し、左側にカーボンリッチ処理後のグラフを示している。図15では、C-Si結合の組成比を白色の棒グラフで示し、C-Si以外の炭素を含む結合の組成比の合計の比率の棒グラフにハッチングを付している。
【0047】
図12および図14においては、C-Siのグラフを実線で示し、C-Cのグラフを破線で示し、C-Oのグラフ一点鎖線で示し、C=Oのグラフを二点鎖線で示し、O-COのグラフを三点鎖線で示している。
【0048】
図11図12および図15に示すように、カーボンリッチ処理前は、ウェハ表面近傍の組成比の殆どはC-Si結合が占めており、C-Si結合以外の、炭素を含む結合の組成比の合計の比率は、C-Si結合の組成比以下である。これに対し、図13図15に示すように、カーボンリッチ処理後は、ウェハ表面近傍であって、特に浅い領域の組成比は、C-Si結合が43%程度であり最も大きい。しかし、図13図15に示すように、C-Si結合以外の炭素を含む結合の組成比の合計の比率は、57%程度となっており、C-Si結合の組成比よりも大きい。特に、ウェハ表面の比較的浅い領域におけるCC結合の組成比はC-Si結合と組成比に近い値になっている。
【0049】
このように、ウェハ表面では、C-Si結合の組成比よりも、C-Si結合の他の炭素を含む結合のそれぞれの組成比の合計の比率の方が大きくなっている。つまり、カーボンリッチの状態となっている。また、カーボンリッチ処理によりSiCウェハの表面組成を調整した場合、XPSによりSiCウェハの極表面近傍(例えばウェハ表面から1~3nmの領域)のC-Siの表面組成比が43atm%となっている。このことから、角度分解機能を持つXPSを用いて測定を行いたとき、エピタキシャル層の極表面近傍のC-Siの組成比が50atm%以下であれば、カーボンリッチの状態であるといえる。これに対し、当該カーボンリッチ処理により、ウェハ表面から数nm(例えば7nm)程度深い箇所C-Siの表面組成比は、83atm%となっている。よって、ウェハ表面から数nm(例えば7nm)程度深い箇所C-Siの表面組成比が83atm%以下であれば、カーボンリッチの状態であるといえる。つまり、角度分解機能を持たないXPSを用いて測定を行う場合、ウェハ表面の組成比を測定しても、ウェハ表面の浅い領域と深い領域とを区別して測定することはできない。したがって、そのようなXPSを用いて測定を行う場合は、ウェハ表面であるエピタキシャル層の上面のC-Siの組成比が83atm%以下であるときに、カーボンリッチの状態であるといえる。
【0050】
ここでは、発明者らは、XPSの取り出し角度が24.875度である場合に、エピタキシャル層の上面において、C-Cの組成比が8.79atm%、C-Oの組成比が3.6atm%であることを確認した。すなわち、XPSの取り出し角度が小さく、エピタキシャル層の比較的深い領域を分析した場合、C-Cの組成比が8.7atm%以上、COの組成比が3.6atm%以上であるとき、カーボンリッチの状態となると考えられる。
【0051】
また、発明者らは、XPSの取り出し角度が81.125度である場合に、エピタキシャル層の上面において、C-Cの組成比が36.01atm%、C-Oの組成比が10.55atm%であることを確認した。すなわち、XPSの取り出し角度が大きく、エピタキシャル層の比較的浅い領域を分析した場合、C-Cの組成比が35atm%以上、COの組成比が10atm%以上であるとき、カーボンリッチの状態となると考えられる。
【0052】
<本実施の形態の効果>
本発明者らは、カーボンリッチ処理を行った本実施の形態のSiCウェハと、カーボンリッチ処理を行っていないSiCウェハのそれぞれの上に作製した68個のDMOSFET(Double-Diffused MOSFET)に対して、TDDB特性評価を行った。ここでは、ソースとドレインのそれぞれの電位を0Vとして、ゲートに一定電流が流れるような電圧を制御して与え、ゲート絶縁膜が破壊するまでの時間を計測した。測定時の温度は150℃程度とし、電流密度が一定となるように電圧を調整した。
【0053】
図17に、上記TDDB特性を評価した結果のワイブルプロットを示す。図17に示すグラフの横軸および縦軸は、図29の横軸および縦軸と同様に、それぞれ絶縁破壊注入電荷量Qbdと累積故障率とを示している。図17は、比較例および本実施の形態のそれぞれのSiCデバイスにおける、絶縁破壊注入電荷量と累積故障率との関係を示すグラフである。図17では、カーボンリッチ処理を行っていない比較例のデバイスの評価結果のプロットを菱形で示し、カーボンリッチ処理を行った本実施の形態のウェハを用いたデバイスの評価結果のプロットを三角形で示している。
【0054】
当該評価では、解析にあたって形状パラメータmを算出した。また、ここでは尺度パラメータをηとする。一般に累積故障率F(t)がワイブル分布に従う場合、累積故障率F(t)は図16に示す式(1)で記述される。
【0055】
また、式(1)は以下の式(2)に書き換えられる。
ln(-ln(1-F(t))=mln(t)-mlnη) ・・・(2)
ワイブルプロットにおいては、y=ln(-ln(1-F(t))、x=ln(t)である時の傾きはmであり、切片は-mlnηとなる。つまり、mの増加により分布が揃って特性ばらつきが低減し、ηの増加によって主分布の最大値が増加する。つまり、図17に示すように、比較例のワイブルプロットのグラフは、縦軸に対して傾きを有しているが、本実施の形態のワイブルプロットのグラフは、縦軸に対し平行になるように揃った分布を有している。
【0056】
カーボンリッチ処理を行った本実施の形態と、カーボンリッチ処理を行っていない比較例とのそれぞれの仕様において形状パラメータmを算出すると、カーボンリッチ処理有の仕様でm=11.3であり、カーボンリッチ処理無しの仕様でm=2.1であった。すなわち、カーボンリッチ処理によってmの値が増加する。また、本発明者らは、ηの値についても増大している事を確認している。これは、主分布の傾きが急峻となり、Qbdの最大値が高くなっている事を示している。このカーボンリッチ処理によるmとηの増加は歩留向上の観点から有効である。
【0057】
以上に述べたように、本実施の形態では、SiC基板上にエピタキシャル層を備えたSiCウェハであって、主面がカーボンリッチの状態であるSiCウェハを提供する。つまり、エピタキシャル層の上面のC-Siの組成比は、50atm%以下である。このようなSiCウェハ上に形成した、ゲート絶縁膜を有するMOSFETなどの素子は、SiCウェハの表面がカーボンリッチであることにより、絶縁破壊に至るまでの時間(寿命)を延ばせる。また、円形のSiCウェハに行列状に並ぶ各チップ領域に形成する素子のそれぞれのゲート絶縁膜の寿命などの特性を揃えることができ、特性ばらつきの発生を防げる。したがって、上記改善の余地を解消することができる。SiCウェハの信頼性を高めることができる。また、不良チップの発生を防げるため、本実施の形態のカーボンリッチ処理を施したSiCウェハを用いることで、製品の歩留まりを高めることができる。
【0058】
ただし、カーボンリッチ処理後のウェハ面内の組成比に気を付ける必要がある。カーボンリッチ処理によりSiC表面を完全に炭化してしまった場合、すなわち、ウェハ表面のC-Si以外の結合の組成比が90~100atm%になると、MOSFETまたはIGBTなどのデバイスを作製した際、SiCから成る層(エピタキシャル層)とゲート絶縁膜との界面にグラフェンが存在することとなる。グラフェンがSiC/SiOの界面に存在すると、ゲート電圧に依らずソースドレイン間で導通し、素子が正常に動作しなくなる虞がある。したがって、ウェハ表面のC-Siの組成比は、10atm%よりも大きいことが望ましい。
【0059】
このように、本実施の形態の効果を得るためには、C-Siの結合の組成比が10atm%よりも大きくなるように調整する必要がある。
【0060】
<変形例1>
上述したカーボンリッチ処理は、SiCウェハに対し、不活性ガス(例えばAr(アルゴン))雰囲気中で、例えば1300℃程度の温度で行う短時間の熱処理であってもよい。このような熱処理でSiCウェハの表面を炭化させることで、カーボンリッチ処理を行うことができる。
【0061】
ただし、この場合でも、カーボンリッチ処理後のウェハ面内の組成比に気を付ける必要がある。すなわち、Ar雰囲気中の高温アニールによりSiC表面を完全に炭化してしまった場合、SiC/SiOの界面にグラフェンが形成されるため、ゲート電圧に依らずソースドレイン間で導通し、素子が正常に動作しなくなる虞がある。したがって、ウェハ表面のC-Siの組成比は10atm%よりも大きいことが望ましい。
【0062】
<変形例2>
以下に、本実施の形態の変形例2として、図18図27を用いて、SiCウェハ上にDMOSFETを形成する工程を説明する。図18図26は、本変形例のSiCウェハ上におけるDMOSFETの製造工程を示す断面図である。図27は、本変形例に係るSiCウェハ上におけるDMOSFETの製造工程を示す平面図である。
【0063】
ここではまず、図1図4を用いて説明したように、カーボンリッチ処理を行ったエピタキシャル層3を備えたSiCウェハ1を形成する。なお、以下の説明で用いる図18図26では、エピタキシャル層3の上面のカーボンリッチ層の図示を省略する。
【0064】
次に、図18に示すように、エピタキシャル層3上に設けたマスク(図示しない)を用いて、エピタキシャル層3の表層部に、Al(アルミニウム)イオンを注入する。これにより、エピタキシャル層3の上面にp型半導体領域であるpボディ領域5を形成する。なお、不純物の注入深さは、例えば、1μm程度である。また、pボディ領域5のp型の不純物濃度は、例えば、5×1016~1×1019cm-3の範囲である。また、pボディ領域5を形成するために注入するイオンは、B(ホウ素)イオンでもよい。また、エピタキシャル層3の上にSiCから成るp型のエピタキシャル層をさらに成膜し、当該エピタキシャル層をpボディ領域としてもよい。この場合、図4を用いて説明したカーボンリッチ処理は、当該エピタキシャル層の形成前ではなく、当該エピタキシャル層の形成後であって、下記ゲート絶縁膜の形成前に行う。その後、上記マスクを除去する。
【0065】
次に、図19に示すように、エピタキシャル層3上に設けたマスク(図示しない)を用いて、エピタキシャル層3の上面に、N(窒素)イオンを注入する。これにより、pボディ領域5の上面に、pボディ領域5よりも深さが浅いn型半導体領域であるソース領域6を形成する。不純物の注入深さは、例えば、0.1~0.5μmの範囲である。また、ソース領域6のn型の不純物濃度は、例えば、1×1018~1×1021cm-3の範囲である。また、ソース領域6を形成するために注入するイオンはP(リン)イオンでもよい。その後、上記マスクを除去する。
【0066】
次に、図20に示すように、エピタキシャル層3上に設けたマスク(図示しない)を用いて、エピタキシャル層3の上面に、Alイオンを注入する。これにより、pボディ領域5の上面に、pボディ領域5よりも深さが浅く、ソース領域6に隣接するp型半導体領域である電位固定領域7を形成する。不純物の注入深さは、例えば、0.1~0.5μmの範囲である。また、電位固定領域7のp型の不純物濃度は、例えば、1×1018~1×1021cm-3程度に設定する。また、電位固定領域7を形成するために注入するイオンは、Bイオンでもよい。その後、上記マスクを除去する。
【0067】
次に、図21に示すように、SiC基板2の裏面にNイオンを注入することで、n型半導体領域であるドレイン領域8を形成する。ドレイン領域8のn型の不純物濃度は、例えば、1×1016~1×1019cm-3の範囲である。また、ドレイン領域8を形成するために注入するイオンは、Pイオンでもよい。
【0068】
なお、本変形例では、MOSFETが動作する最小限の構成の形成工程を説明するが、例えばターミネーション領域などの機能を付加する構造を形成してもよい。
【0069】
次に、図示はしないが、SiC基板2およびエピタキシャル層3から成るSiCウェハ1の周囲を覆うキャップ材として炭素膜を堆積させた後、不純物活性化アニールを、例えば1600~1800℃の温度で行う。その後、当該炭素膜を酸素プラズマアッシングにより除去する。この後、さらに清浄な表面を得る為に、熱酸化膜を形成し、希釈フッ酸溶液を用いて除去してもよい。
【0070】
次に、図22に示すように、エピタキシャル層3上にゲート絶縁膜9を形成する。本実施の形態では、例えばCVD(Chemical Vapor Deposition)法を用いて、厚さ10~100nm程度の堆積酸化膜を形成する。
【0071】
次に、図23に示すように、エピタキシャル層3上に、厚さ100~300nm程度のn型多結晶シリコン膜から成るゲート電極10を堆積する。ゲート電極10は、例えばCVD法などにより当該シリコン膜を形成した後、当該シリコン膜をパターニングすることで形成することができる。ソース領域6および電位固定領域7のそれぞれの上面は、ゲート電極10から露出している。これにより、ゲート電極10、ソース領域6およびドレイン領域8を備えたMOSFETを形成する。
【0072】
次に、図24に示すように、ゲート電極を覆う層間膜(層間絶縁膜)11を形成する。層間膜11は、ゲート電極10上に例えばCVD法などにより酸化シリコン膜を形成した後、当該酸化シリコン膜をパターニングすることで形成することができる。当該パターニングにより、ソース領域6および電位固定領域7のそれぞれの上面を露出するコンタクトホールが形成される。
【0073】
次に、図25に示すように、n型のソース領域6およびp型の電位固定領域7との電気的な導通を可能とするために、ソース領域6および電位固定領域7のそれぞれの上にシリサイド層12を形成する。すなわち、エピタキシャル層3上にシリサイド用金属膜を堆積させ、例えば、700℃~1000℃のアニール処理によりシリサイド化を行う。これにより、ソースベース共通接続部であるシリサイド層12を形成する。その後、図示しない領域において、ゲート電極と電気導通を確保するために、層間膜をエッチングし、ゲートコンタクトホールを形成する。
【0074】
続いて、エピタキシャル層3上に、層間膜11およびシリサイド層12を覆うソース電極13を形成する。ソース電極13は、シリサイド層12を介してソース領域6および電位固定領域7に電気的に接続されている。
【0075】
次に、図26に示すように、ドレイン領域8の下面をシリサイド化して、シリサイド層14を形成する。その後、シリサイド層14の下に、ドレインコンタクト電極15を形成する。シリサイド用金属膜、ソース電極13およびドレインコンタクト電極15のそれぞれには、例えばNi(ニッケル)またはAlなどの金属材料を用いる。その後、デバイス保護のため、絶縁体から成る表面保護膜を、SiCウェハ1の上面上に形成する工程、および、各電極への配線を行う工程を経て、半導体装置が完成する。これにより、図27に示すSiCウェハが得られる。SiCウェハには、平面視で行列状に並ぶチップ領域が形成されている。チップ領域同士の間をダイシング工程により切削することで、SiCウェハから複数の半導体チップが得られる。
【0076】
本変形例で形成したMOSFETでは、ゲート絶縁膜9と接するエピタキシャル層3の上面にカーボンリッチ層が形成されている。これにより、ゲート電極10とエピタキシャル層3との間におけるゲート絶縁膜9の絶縁破壊に至るまでの時間(寿命)を延ばせる。また、円形のSiCウェハに行列状に並ぶ各チップ領域のそれぞれに形成する素子のゲート絶縁膜の寿命などの特性を揃えることができ、特性ばらつきの発生を防げる。したがって、SiCウェハの信頼性を高めることができ、さらに、製品の歩留まりを高めることができる。
【0077】
ここでは、エピタキシャル層を形成した後、pボディ領域を形成する前の時点でカーボンリッチ層(図3参照)を形成することについて説明した。ただし、カーボンリッチ処理は、当該時点に限らず、SiCウェハの最表面を構成するエピタキシャル層を形成した後あって、ゲート絶縁膜の成膜工程の前であれば、どの時点で行ってもよい。
【0078】
なお、トレンチゲート型のMOSFETを形成する場合、エピタキシャル層の上面にトレンチを形成した後、トレンチ内にゲート絶縁膜を介してゲート電極を埋め込む。この場合は、トレンチを形成した後であって、ゲート絶縁膜の形成前にカーボンリッチ処理を行う。
【0079】
(実施の形態2)
カーボンリッチ処理は、エピタキシャル層を備えたSiCウェハの表面を酸化して、それにより形成された酸化膜をフッ酸などの薬液を用いて除去する方法によっても実現できる。
【0080】
図28は、カーボンリッチ処理前のSiCウェハ、1300℃での酸化処理を行った後に酸化膜を除去したSiCウェハ、および、1150℃での酸化処理を行った後に酸化膜を除去したSiCウェハのそれぞれの上面における、C-Si結合とC-Si結合以外の炭素を含む結合とのそれぞれの組成比を示すグラフである。図28では、右から左に向かって順に、カーボンリッチ処理前の場合、1300℃での酸化処理を行った場合、および、1150℃での酸化処理を行った場合のグラフを並べている。すなわち、図28は、1150℃および1300℃のそれぞれの温度で、乾燥酸素雰囲気下で50nm程度の酸化膜が形成されるよう酸化処理を行った後、酸化膜をフッ酸により除去して得られたそれぞれのSiCウェハの表面組成比を比較したものである。図28では、C-Si結合の組成比を白色の棒グラフで示し、C-Si以外の炭素を含む結合の組成比の合計の比率の棒グラフにハッチングを付している。
【0081】
図28に示すように、カーボンリッチ処理前よりも、1300℃で酸化処理を行った場合の方が、C-Si結合の組成比が小さくなり、C-Si結合以外の炭素を含む結合の組成比が大きくなっている。また、1300℃で酸化処理を行った場合よりも、1150℃で酸化処理を行った場合の方が、C-Si結合の組成比が小さくなり、C-Si結合以外の炭素を含む結合の組成比が大きくなっている。
【0082】
すなわち、C-Si結合の組成比を減らすためには、より低温で酸化を行うことが重要である。
【0083】
以上、本発明者らによってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
【符号の説明】
【0084】
1 SiCウェハ
2 SiC基板
3 エピタキシャル層
4 カーボンリッチ層


図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29