IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士フイルム株式会社の特許一覧

特開2024-52487プロセッサ装置及び内視鏡システム並びにその作動方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024052487
(43)【公開日】2024-04-11
(54)【発明の名称】プロセッサ装置及び内視鏡システム並びにその作動方法
(51)【国際特許分類】
   A61B 1/00 20060101AFI20240404BHJP
【FI】
A61B1/00 630
A61B1/00 650
【審査請求】未請求
【請求項の数】15
【出願形態】OL
(21)【出願番号】P 2023049848
(22)【出願日】2023-03-27
(31)【優先権主張番号】P 2022158390
(32)【優先日】2022-09-30
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】306037311
【氏名又は名称】富士フイルム株式会社
(74)【代理人】
【識別番号】110001988
【氏名又は名称】弁理士法人小林国際特許事務所
(72)【発明者】
【氏名】北原 雅啓
(72)【発明者】
【氏名】吉森 悠
【テーマコード(参考)】
4C161
【Fターム(参考)】
4C161AA01
4C161AA04
4C161AA24
4C161CC06
4C161DD01
4C161DD03
4C161GG11
4C161HH51
4C161JJ17
4C161LL02
4C161MM03
4C161MM04
4C161MM05
4C161NN01
4C161QQ07
4C161QQ09
4C161RR04
4C161SS21
4C161TT01
4C161TT03
4C161WW02
4C161WW08
4C161WW18
(57)【要約】
【課題】内視鏡の先端部の構造、サイズ等に関わらず、内視鏡の先端部を調整治具内のチャートと適切な位置又は距離で位置決めできるようにすることができるプロセッサ装置及び内視鏡システム並びにその作動方法を提供する。
【解決手段】エラー判定部421は、内視鏡画像から、少なくとも3つの第1判定領域Jm1~Jm3を含む第1判定領域群の情報と、第1判定領域群の外側に設けられ、少なくとも3つの第2判定領域Jn1~Jn3を含む第2判定領域群の情報とを取得し、第1判定領域群の情報と第2判定領域群の情報に基づいて、チャート408と内視鏡の先端部12dとの位置関係に関するエラーが発生しているか否かのエラー判定を行う。
【選択図】図74
【特許請求の範囲】
【請求項1】
プロセッサを備え、
前記プロセッサは、
内視鏡の先端部からチャートを撮像して得られる内視鏡画像を取得し、
前記内視鏡画像から、少なくとも3つの第1判定領域を含む第1判定領域群の情報と、前記第1判定領域群の外側に設けられ、少なくとも3つの第2判定領域を含む第2判定領域群の情報とを取得し、前記第1判定領域群の情報と前記第2判定領域群の情報に基づいて、前記チャートと前記先端部との位置関係に関するエラーが発生してるか否かのエラー判定を行うプロセッサ装置。
【請求項2】
前記3つの第1判定領域の情報は明るさであり、
前記プロセッサは、前記3つの第1判定領域の中に、明るさが第1閾値未満の前記第1判定領域が少なくとも1つある場合には、前記エラーと判定する請求項1記載のプロセッサ装置。
【請求項3】
前記3つの第2判定領域の情報は明るさであり、
前記プロセッサは、前記3つの第1判定領域の中に、明るさが第2閾値以上の前記第2判定領域が少なくとも1つある場合には、前記エラーと判定する請求項1記載のプロセッサ装置。
【請求項4】
前記第2判定領域の情報は明るさであり、
前記プロセッサは、複数の前記第2判定領域の中に、明るさが第2閾値以上の前記第2判定領域が、予め定められた規定数以上ある場合には、前記エラーと判定する請求項1記載のプロセッサ装置。
【請求項5】
前記第2判定領域の情報は明るさであり、
前記プロセッサは、明るさが第2閾値以上の前記第2判定領域の数が、明るさが前記第2閾値未満の前記第2判定領域の数よりも大きい場合には、前記エラーと判定する請求項1記載のプロセッサ装置。
【請求項6】
前記第1判定領域の明るさは、規格化用領域用の明るさでよって規格化されている請求項2記載のプロセッサ装置。
【請求項7】
前記第2判定領域の明るさは、規格化用領域用の明るさでよって規格化されている請求項3ないし5いずれか1項記載のプロセッサ装置。
【請求項8】
前記第1判定領域群の配置形状は、前記3つの第1判定領域を結んで得られる逆三角形であり、前記第2判定領域群の配置形状は、前記3つの第2判定領域を結んで得られる三角形である請求項1記載のプロセッサ装置。
【請求項9】
前記第1判定領域群の内側には、第3判定領域が設けられ、
前記プロセッサは、前記第1判定領域の情報と前記第2判定領域の情報とに加えて、前記第3判定領域の情報に基づいて、前記エラーが発生しているか否かを判定する請求項1記載のプロセッサ装置。
【請求項10】
前記第3判定領域の情報は色調であり、
前記プロセッサは、前記第3判定領域の色調が特定の色調範囲外である場合に、前記エラー判定を行う請求項9記載のプロセッサ装置。
【請求項11】
プロセッサを備えるプロセッサ装置と、
前記内視鏡画像を表示するディスプレイとを備え、
前記プロセッサは、
内視鏡の先端部からチャートを撮像して得られる内視鏡画像を取得し、
前記内視鏡画像から、少なくとも3つの第1判定領域を含む第1判定領域群の情報と、前記第1判定領域群の外側に設けられ、少なくとも3つの第2判定領域を含む第2判定領域群の情報とを取得し、前記第1判定領域群の情報と前記第2判定領域群の情報に基づいて、前記チャートと前記先端部との位置関係に関するエラーが発生してるか否かのエラー判定を行い、
前記チャートにはマークが設けられており、
前記ディスプレイは、前記第1判定領域群と前記第2判定領域群の間に、前記マークの位置をガイドするためのガイド領域を表示する内視鏡システム。
【請求項12】
前記ガイド領域は、二重円を有する請求項11記載の内視鏡システム。
【請求項13】
プロセッサが、
内視鏡の先端部からチャートを撮像して得られる内視鏡画像をディスプレイに表示する表示ステップと、
前記内視鏡画像から、少なくとも3つの第1判定領域を含む第1判定領域群の情報と、前記第1判定領域群の外側に設けられ、少なくとも3つの第2判定領域を含む第2判定領域群の情報とを取得し、前記第1判定領域群の情報と前記第2判定領域群の情報に基づいて、前記チャートと前記先端部との位置関係に関するエラーが発生しているか否かのエラー判定を行うエラー判定ステップとを有する内視鏡システムの作動方法。
【請求項14】
前記3つの第1判定領域の情報は明るさであり、
前記エラー判定ステップでは、前記3つの第1判定領域の中に、明るさが第1閾値未満の前記第1判定領域が少なくとも1つある場合には、前記エラーと判定する請求項13記載の内視鏡システムの作動方法。
【請求項15】
前記3つの第2判定領域の情報は明るさであり、
前記エラー判定ステップでは、前記3つの第2判定領域の中に、明るさが第2閾値以上の前記第2判定領域が少なくとも1つある場合には、前記エラーと判定する請求項13記載の内視鏡システムの作動方法。



【発明の詳細な説明】
【技術分野】
【0001】
本発明は、チャートを用いて、ホワイトバランス調整などのキャリブレーション処理を行うプロセッサ装置及び内視鏡システム並びにその作動方法に関する。
【背景技術】
【0002】
近年では、内視鏡を使用する医療分野においては、酸素飽和度イメージングが知られている。酸素飽和度イメージングでは、血中ヘモグロビンの酸素飽和度の変化により吸光係数が変化する波長帯域を含む照明光を観察対象に照明し、撮像することによって行われる(例えば、特許文献1、2)。そして、撮像により得られた内視鏡画像に基づいて、酸素飽和度に応じて色調を変化させた酸素飽和度画像をディスプレイに表示する。
【0003】
上記の酸素飽和度イメージングにおいては、複数の内視鏡画像に基づく信号比を算出し、算出した信号比に基づいて酸素飽和度を数値として算出している。この場合、観察対象を照明する酸素飽和度用照明光の分光特性が内視鏡システムの個体別に異なることで、結果的に、酸素飽和度の算出に使用する信号比に個体差が生じることがある。さらには、内視鏡システムを構成する光源装置と内視鏡(カメラシステム)との組み合わせによって、同じ観察対象を撮像しても、得られる信号比に違いが生じることがある。
【0004】
以上のように、個体差等により生じた信号比の違いを補正するために、特許文献1、2では、ホワイトバランス調整を行っている。特許文献1~3においては、ホワイトバランス調整用のチャートが設けられた調整治具に対して、内視鏡の先端部を挿入し、チャートを撮像して得られた画像に基づいて、ホワイトバランス調整を行っている。なお、特許文献2では、調整治具の内部底面の縁をエッジ検出によって抽出し、サークルラインの縁画像SCがガイド枠GFに収まる場合、ホワイトバランス調整処理の実行を許可するようにしている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】国際公開第2021/065939号
【特許文献2】特開2019-136412号公報
【特許文献3】特開2014-236629号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記のように、チャートを撮像してホワイトバランス調整を行う場合においては、照明光の配光特性の波長依存性やカメラシェーディングの色ムラがあることで、内視鏡の先端部とチャートとの位置又は距離にバラツキがあると、ホワイトバランス調整を正確に行うことができない場合があった。また、内視鏡の先端部のサイズは、観察対象の器官などによって様々であり、チャートとの適切な位置又は距離も内視鏡によって異なっている。そのため、様々なサイズの内視鏡を調整治具の内部の位置決め機構によって、内視鏡の先端部を適切な位置又は距離に位置決めすることは難しい。
【0007】
そこで、内視鏡の先端部の構造、サイズ等に関わらず、内視鏡の先端部を調整治具内のチャートと適切な位置又は距離で位置決めできるようにすることが求められていた。加えて、調整治具内に機械的な位置決め構造を設けることなく、且つ、特許文献2のように、エッジ抽出などの高リソースの演算を用いることなく、内視鏡システムのプロセッサ装置に従来から備わっている低リソースの演算処理だけで、チャートとの位置決めをできるようにすることも求められていた。
【0008】
本発明は、内視鏡の先端部の構造、サイズ等に関わらず、内視鏡の先端部を調整治具内のチャートと適切な位置又は距離で位置決めできるようにすることができるプロセッサ装置及び内視鏡システム並びにその作動方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明のプロセッサ装置は、プロセッサを備え、プロセッサは、内視鏡の先端部からチャートを撮像して得られる内視鏡画像を取得し、内視鏡画像から、少なくとも3つの第1判定領域を含む第1判定領域群の情報と、第1判定領域群の外側に設けられ、少なくとも3つの第2判定領域を含む第2判定領域群の情報とを取得し、第1判定領域群の情報と第2判定領域群の情報に基づいて、チャートと先端部との位置関係に関するエラーが発生してるか否かのエラー判定を行う。
【0010】
3つの第1判定領域の情報は明るさであり、プロセッサは、3つの第1判定領域の中に、明るさが第1閾値未満の第1判定領域が少なくとも1つある場合には、エラーと判定することが好ましい。3つの第2判定領域の情報は明るさであり、プロセッサは、3つの第2判定領域の中に、明るさが第2閾値以上の第2判定領域が少なくとも1つある場合には、エラーと判定することが好ましい。
【0011】
第2判定領域の情報は明るさであり、プロセッサは、複数の第2判定領域の中に、明るさが第2閾値以上の第2判定領域が、予め定められた規定数以上ある場合には、エラーと判定することが好ましい。第2判定領域の情報は明るさであり、プロセッサは、明るさが第2閾値以上の第2判定領域の数が、明るさが第2閾値未満の第2判定領域の数よりも大きい場合には、エラーと判定することが好ましい。第1判定領域の明るさは、規格化用領域用の明るさでよって規格化されていることが好ましい。第2判定領域の明るさは、規格化用領域用の明るさでよって規格化されていることが好ましい。
【0012】
第1判定領域群の配置形状は、3つの第1判定領域を結んで得られる逆三角形であり、第2判定領域群の配置形状は、3つの第2判定領域を結んで得られる三角形であることが好ましい。第1判定領域群の内側には、第3判定領域が設けられ、プロセッサは、第1判定領域の情報と第2判定領域の情報とに加えて、第3判定領域の情報に基づいて、エラーが発生しているか否かを判定することが好ましい。第3判定領域の情報は色調であり、プロセッサは、第3判定領域の色調が特定の色調範囲外である場合に、エラー判定を行うことが好ましい。
【0013】
本発明の内視鏡システムは、上記記載の本発明のプロセッサ装置と、内視鏡画像を表示するディスプレイとを備え、チャートにはマークが設けられており、ディスプレイは、第1判定領域群と第2判定領域群の間に、マークの位置をガイドするためのガイド領域を表示す。ガイド領域は、二重円を有することが好ましい。
【0014】
本発明の内視鏡システムの作動方法は、プロセッサが、内視鏡の先端部からチャートを撮像して得られる内視鏡画像をディスプレイに表示する表示ステップと、内視鏡画像から、少なくとも3つの第1判定領域を含む第1判定領域群の情報と、第1判定領域群の外側に設けられ、少なくとも3つの第2判定領域を含む第2判定領域群の情報とを取得し、第1判定領域群の情報と第2判定領域群の情報に基づいて、チャートと先端部との位置関係に関するエラーが発生しているか否かのエラー判定を行うエラー判定ステップとを有する。
【0015】
3つの第1判定領域の情報は明るさであり、エラー判定ステップでは、3つの第1判定領域の中に、明るさが第1閾値未満の第1判定領域が少なくとも1つある場合には、エラーと判定することが好ましい。3つの第2判定領域の情報は明るさであり、エラー判定ステップでは、3つの第2判定領域の中に、明るさが第2閾値以上の第2判定領域が少なくとも1つある場合には、エラーと判定することが好ましい。
【発明の効果】
【0016】
本発明によれば、内視鏡の先端部の構造、サイズ等に関わらず、内視鏡の先端部を調整治具内のチャートと適切な位置又は距離で位置決めできるようにすることができる。
【図面の簡単な説明】
【0017】
図1】消化管用の内視鏡システムの概略図である。
図2】通常モードにおけるディスプレイ及び拡張ディスプレイでの表示態様を示す説明図である。
図3】酸素飽和度モードにおけるディスプレイ及び拡張ディスプレイでの表示態様を示す説明図である。
図4】酸素飽和度モードに切り替えたタイミングに表示される拡張ディスプレイの表示態様を示す説明図である。
図5】(A)は消化管内部酸素飽和度画像を表示し、(B)は漿膜側酸素飽和度画像を表示する拡張ディスプレイの画像図である。
図6】第1実施形態の内視鏡システムの機能を示すブロック図である。
図7】白色光の発光スペクトルを示すグラフである。
図8】(A)は第1照明光の発光スペクトルを、(B)は第2照明光の発光スペクトルを、(C)は緑色光Gの発光スペクトルを示すグラフである。
図9】撮像センサの分光感度を示すグラフである。
図10】通常モードにおける照明及び取得する画像信号を示す表である。
図11】酸素飽和度モード又は補正モードにおける照明及び取得する画像信号を示す表である。
図12】酸素飽和度モード又は補正モードにおける発光制御及び表示制御を示す説明図である。
図13】血液濃度によって異なるヘモグロビンの反射スペクトルを示すグラフである。
図14】黄色色素の濃度によって異なるヘモグロビンの反射スペクトル及び黄色色素の吸収スペクトルを示すグラフである。
図15】黄色色素による影響がない場合のB1画像信号、G2画像信号、R2画像信号の酸素飽和度依存性、血液濃度依存性、及び明るさ依存性を示す表である。
図16】酸素飽和度を表す等高線を示すグラフである。
図17】信号比ln(R2/G2)を示すX軸の値、及び信号比ln(B1/G2)を示すY軸の値に関する酸素飽和度依存性、血液濃度依存性、及び明るさ依存性を示す表である。
図18】黄色色素による影響がある場合のB1画像信号、G2画像信号、R2画像信号の酸素飽和度依存性、血液濃度依存性、黄色色素依存性、及び明るさ依存性を示す表である。
図19】観察対象で同一の酸素飽和度を有する場合における黄色色素有りの場合の酸素飽和度と黄色色素無しの場合の酸素飽和度を表す説明図である。
図20】黄色色素による影響がある場合のB1画像信号、B3画像信号、G2、G3画像信号、R2画像信号、及びB2画像信号の酸素飽和度依存性、血液濃度依存性、黄色色素依存性、及び明るさ依存性を示す表である。
図21】黄色色素に応じた酸素飽和度を表す曲面を示すグラフである。
図22】X、Y、Zの3次元座標で表現された酸素飽和度の状態を、X、Yの2次元座標で表現した場合の説明図である。
図23】信号比ln(R2/G2)を示すX軸の値、信号比ln(B1/G2)を示すY軸の値、及び、信号比ln(B3/G3)を示すZ軸の値に関する酸素飽和度依存性、血液濃度依存性、黄色色素依存性及び明るさ依存性を示す表である。
図24】画像処理部の機能を示すブロック図である。
図25】酸素飽和度の算出方法を示す説明図である。
図26】特定色素濃度に対応する等高線の生成方法を示す説明図である。
図27】補正用画像及び特定領域を表示するディスプレイの画像図である。
図28】画素値と信頼度との関係を示すグラフである。
図29】出血と信頼度の関係を表すための二次元平面を示すグラフである。
図30】脂肪、残渣、粘液、残液と信頼度との関係を表すための二次元平面を示すグラフである。
図31】彩度が異なる低信頼度領域と高信頼度領域を表示するディスプレイの画像図である。
図32】領域強調線が重畳表示された低信頼度領域を表示するディスプレイの画像図である。
図33】(A)は第1色で強調表示された特定領域を、(B)は第2色で強調表示された特定領域を表示するディスプレイの画像図である。
図34】テーブル補正処理を適正に行うことができると判定された場合のディスプレイの画像図である。
図35】テーブル補正処理を適正に行うことができないと判定された場合のディスプレイの画像図である。
図36】補正モードにおける一連の流れを示すフローチャートである。
図37】第2実施形態の内視鏡システムの機能を示すブロック図である。
図38】回転フィルタの平面図である。
図39】算出値補正処理に用いる差分値ΔZを示す説明図である。
図40】特定の酸素飽和度算出処理の算出方法を示す説明図である。
図41】腹腔鏡用の内視鏡システムの概略図である。
図42】混合光の発光スペクトルを示すグラフである。
図43】4個のモノクロ撮像センサを有するカメラヘッドの機能を示す説明図である。
図44】紫色光及び第2青色光の発光スペクトルを示すグラフである。
図45】第1青色光の発光スペクトルを示すグラフである。
図46】緑色光の発光スペクトルを示すグラフである。
図47】赤色光の発光スペクトルを示すグラフである。
図48】黄色色素の濃度によって異なるヘモグロビンの反射スペクトルにおいて波長帯域Rkを示すグラフである。
図49】黄色色素による影響がある場合のG2、G3画像信号、R2画像信号、及びRk画像信号の酸素飽和度依存性、血液濃度依存性、黄色色素依存性、及び明るさ依存性を示す表である。
図50】カラー撮像センサとモノクロ撮像センサを有するカメラヘッドを有する2センサタイプの腹腔鏡用の内視鏡の説明図である。
図51】2センサタイプの腹腔鏡用の内視鏡を用いる場合の発光パターンであり、(A)は白色フレーム時の発光パターンを、(B)は緑色フレーム時の発光パターンを表すグラフである。
図52】(A)は白色フレーム時の発光パターンを、(B)はダイクロイックミラーの反射率を、(C)はモノクロ撮像センサの感度を、(D)は白色フレーム時のモノクロ撮像センサから出力される画像信号の画素値を表すグラフである。
図53】(A)は白色フレーム時の発光パターンを、(B)はダイクロイックミラーの透過率を、(C)はカラー撮像センサの感度を、(D)は白色フレーム時のカラー撮像センサから出力される画像信号の画素値を表すグラフである。
図54】(A)は緑色フレーム時の発光パターンを、(B)はダイクロイックミラーの透過率を、(C)はカラー撮像センサの感度を、(D)は緑色フレーム時のカラー撮像センサのB画素から出力される画像信号の画素値を、(E)は緑色フレーム時のカラー撮像センサのG画素から出力される画像信号の画素値を表すグラフである。
図55】白色フレーム又は緑色フレームで得られる画像信号のうち酸素飽和度モード又は補正モードで使用する画像信号を表す表である。
図56】FPGA処理又はPC処理を示す説明図である。
図57】2センサタイプの腹腔鏡用の内視鏡を用いる場合の発光制御及び画像信号セットを表す説明図である。
図58】有効画素判定された有効画素データを表す説明図である。
図59】ROIを表す説明図である。
図60】PC処理で使用する有効画素データを表す説明図である。
図61】信頼度算出、特定色素濃度算出、及び、特定色素濃度相関判定を表す説明図である。
図62】蓋部側から見た調整治具の斜視図である。
図63】挿入孔側から見た調整治具の斜視図である。
図64】内径が大きい方の挿入孔に内視鏡の先端部を挿入する場合の斜視図である。
図65】内径が小さい方の挿入孔に内視鏡の先端部を挿入する場合の斜視図である。
図66図65のI-I線に沿って切断した断面図である。
図67図65のII-II線に沿って切断した断面図である。
図68】蓋部の分離について説明する説明図である。
図69】(a)は蓋部の外面を表し、(b)蓋面の内面を表す説明図である。
図70】(a)は斜視鏡を表し、(b)は直視鏡を表す説明図である。
図71図65のI-I線に沿って切断した断面図であり、直視鏡を用いる場合の傾斜角を表す説明図である。
図72図65のI-I線に沿って切断した断面図であり、斜視鏡を用いる場合の傾斜角を表す説明図である。
図73】エラー判定部を備えるプロセッサ装置の機能を示すブロック図である。
図74】マークを含むチャートをディスプレイ上で表示する画像図である。
図75】ディスプレイ上で適切な位置からY方向又はZ方向にずれて表示されるマークの画像図である。
図76】チャートと内視鏡の先端部との距離が近すぎる場合のマークを表す画像図である。
図77】チャートと内視鏡の先端部との距離が遠すぎる場合のマークを表す画像図である。
図78】色調が特定の色調範囲外のマークを表す画像図である。
図79】ホワイトバランスモードの一連の流れを表すフローチャートである。
図80】4つの第1判定領域、8つの第2判定領域、及び、規格化用領域を示す説明図である。
図81】画像全体の明るさが基準範囲外である場合の説明図である。
図82】内視鏡画像に写り込んだフレアの説明図である。
図83】内視鏡画像において隣接する2つのマークの説明図である。
図84】楕円形に歪んだマークの説明図である。
【発明を実施するための形態】
【0018】
[第1実施形態]
図1に示すように、内視鏡システム10は、内視鏡12、光源装置13、プロセッサ装置14、ディスプレイ15、及び、プロセッサ側ユーザーインターフェース16、拡張プロセッサ装置17、及び、拡張ディスプレイ18を備える。内視鏡12は、光源装置13と光学的又は電気的に接続され、かつ、プロセッサ装置14と電気的に接続される。拡張プロセッサ装置17は、光源装置13及びプロセッサ装置14と電気的に接続される。なお、特許請求の範囲の「ディスプレイ」には、ディスプレイ15の他、拡張ディスプレイ18も含まれる。
【0019】
内視鏡12は、挿入部12a、操作部12b、湾曲部12c及び先端部12dを有している。挿入部12aは、被写体の体内に挿入される。操作部12bは、挿入部12aの基端部分に設けられる。湾曲部12c及び先端部12dは、挿入部12aの先端側に設けられる。湾曲部12cは、操作部12bのアングルノブ12eを操作することにより湾曲動作する。先端部12dは、湾曲部12cの湾曲動作によって所望の方向に向けられる。挿入部12aから先端部12dにわたって、処置具などを挿通するための鉗子チャンネル(図示しない)を設けている。処置具は、鉗子口12jから鉗子チャンネル内に挿入する。
【0020】
内視鏡12の内部には、被写体像を結像するための光学系、及び、被写体に照明光を照射するための光学系が設けられる。操作部12bには、アングルノブ12e、モード切替スイッチ12f、静止画像取得指示スイッチ12h及びズーム操作部12iが設けられる。モード切替スイッチ12fは、観察モードの切り替え操作に用いる。静止画像取得指示スイッチ12hは、被写体の静止画像の取得指示に用いる。ズーム操作部12iは、観察対象の拡大又は縮小の操作に用いる。なお、操作部12bには、モード切替スイッチ12f及び静止画像取得指示スイッチ12hの他、プロセッサ装置14に対する各種の操作を行うためのスコープ側ユーザーインターフェース19を設けてもよい。
【0021】
光源装置13は、照明光を発生する。プロセッサ装置14は、内視鏡システム10のシステム制御を行い、さらに、内視鏡12から送信された画像信号に対して画像処理等を行うことによって内視鏡画像を生成等する。ディスプレイ15は、プロセッサ装置14から送信される医療画像を表示する。プロセッサ側ユーザーインターフェース16は、キーボード、マウス、マイク、タブレット、フットスイッチ、及びタッチペン等を有し、機能設定等の入力操作を受け付ける。
【0022】
内視鏡システム10は、通常モード、酸素飽和度モード、補正モードの3つのモードを有しており、これら3つのモードは、ユーザーがモード切替スイッチ12fを操作することによって切り替えられる。図2に示すように、通常モードでは、照明光に白色光を用いて観察対象を撮像して得た自然な色合いの白色光画像をディスプレイ15に表示する一方、拡張ディスプレイ18には何も表示されない。
【0023】
図3に示すように、酸素飽和度モードでは、観察対象の酸素飽和度を算出し、算出した酸素飽和度を画像化した酸素飽和度画像を拡張ディスプレイ18に表示する。また、酸素飽和度モードにおいては、白色光画像よりも短波長成分が少ない白色光相当画像がディスプレイ15に表示される。補正モードでは、黄色色素など血中ヘモグロビン以外の特定色素の特定色素濃度に基づいて、酸素飽和度の算出に関する補正処理を行う。なお、酸素飽和度モードに切り替えると、図4に示すように、拡張ディスプレイ18に「補正処理を実施して下さい」とのメッセージMS0が表示される。補正処理が完了すると、拡張ディスプレイ18に酸素飽和度画像が表示される。
【0024】
なお、内視鏡システム10は、胃、大腸などの消化管用の軟性鏡タイプであり、酸素飽和度モードにおいては、図5(A)に示すように、消化管内部の酸素飽和度の状態を画像化した消化管内部酸素飽和度画像を拡張ディスプレイ18に表示する。また、後述する内視鏡システムは、漿膜などの腹腔用の硬性鏡タイプの場合には、酸素飽和度モードにおいて、図5(B)に示すように、漿膜側の酸素飽和度の状態を画像化した漿膜側酸素飽和度画像を拡張ディスプレイ18に表示する。漿膜側酸素飽和度画像は、白色光相当画像に対して彩度を調整した画像を用いることが好ましい。なお、彩度の調整に関しては、粘膜、漿膜、軟性鏡、硬性鏡の区別なく、補正モード時に行うことが好ましい。
【0025】
なお、酸素飽和度モードにおいては、以下の場合には、酸素飽和度を正確に算出することが可能である。
・予め定められた対象部位(例えば、食道、胃、大腸)を観察する場合
・周囲に照明がある体外環境以外の場合
・粘膜及び漿膜上に残渣や残液、粘液、血液、脂肪が残っていない場合
・粘膜上に色素を散布しない場合
・観察部位に対して、内視鏡12が7mmを超えて離れている場合
・観察部位に対して、内視鏡が大きく離れることなく適切な距離で観察する場合
・照明光が十分に当たっている領域
・観察部位からの正反射光が少ない場合
・酸素飽和度画像の2/3内部の領域
・内視鏡の動きが小さい場合、または、拍動や呼吸など患者の動きが少ない場合
・消化管粘膜深部の血管が観察されない場合
【0026】
図6に示すように、光源装置13は、光源部20と、光源部20を制御する光源用プロセッサ21とを備えている。光源部20は、例えば、複数の半導体光源を有し、これらをそれぞれ点灯または消灯し、点灯する場合には各半導体光源の発光量を制御することにより、観察対象を照明する照明光を発する。本実施形態では、光源部20は、V-LED(Violet Light Emitting Diode)20a、BS-LED(Blue Short -wavelength Light Emitting Diode)20b、BL-LED(Blue Long-wavelength Light Emitting Diode)20c、G-LED(Green Light Emitting Diode)20d、及びR-LED(Red Light Emitting Diode)20eの5色のLEDを有する。
【0027】
V-LED20aは、410nm±10nmの紫色光Vを発する。BS-LED20bは、450nm±10nmの第2青色光BSを発する。BL-LED20cは、470nm±10nmの第1青色光BLを発する。G-LED20dは、緑色帯域の緑色光Gを発する。緑色光Gの中心波長は540nmであることが好ましい。R-LED20eは、赤色帯域の赤色光Rを発する。赤色光Rの中心波長は620nmであることが好ましい。なお、各LED20a~20eにおける中心波長とピーク波長は、同じであってもよく、異なっても良い。
【0028】
光源用プロセッサ21は、各LED20a~20eに対して独立に制御信号を入力することによって、各LED20a~20eの点灯又は消灯、点灯時の発光量などを独立に制御する。光源用プロセッサ21における点灯又は消灯制御は、各モードによって異なっており、詳細は後述する。
【0029】
各LED20a~20eが発する光は、ミラーやレンズなどで構成される光路結合部23を介して、ライトガイド25に入射される。ライトガイド25は、内視鏡12及びユニバーサルコード(内視鏡12と、光源装置13及びプロセッサ装置14を接続するコード)に内蔵されている。ライトガイド25は、光路結合部23からの光を、内視鏡12の先端部12dまで伝搬する。
【0030】
内視鏡12の先端部12dには、照明光学系30と撮像光学系31が設けられている。照明光学系30は照明レンズ32を有しており、ライトガイド25によって伝搬した照明光は照明レンズ32を介して観察対象に照射される。撮像光学系31は、対物レンズ35及び撮像センサ36を有している。照明光が照射された観察対象からの光は、対物レンズ35を介して撮像センサ36に入射する。これにより、撮像センサ36に観察対象の像が結像される。
【0031】
撮像センサ36は、照明光で照明中の観察対象を撮像するカラー撮像センサである。撮像センサ36の各画素には、B(青色)カラーフィルタを有するB画素(青色画素)、G(緑色)カラーフィルタを有するG画素(緑色画素)、R(赤色)カラーフィルタを有するR画素(赤色画素)のいずれかが設けられている。Bカラーフィルタ、Gカラーフィルタ、及び、Rカラーフィルタの分光透過率については、後述する。なお、例えば、撮像センサ36は、B画素とG画素とR画素の画素数の比率が、1:2:1であるベイヤー配列のカラー撮像センサであることが好ましい。
【0032】
撮像センサ36としては、CCD(Charge Coupled Device)撮像センサやCMOS(Complementary Metal-Oxide Semiconductor)撮像センサを利用可能である。また、原色の撮像センサ36の代わりに、C(シアン)、M(マゼンタ)、Y(イエロー)及びG(グリーン)の補色フィルタを備えた補色撮像センサを用いても良い。補色撮像センサを用いる場合には、CMYGの4色の画像信号が出力されるので、補色-原色色変換によって、CMYGの4色の画像信号をRGBの3色の画像信号に変換することにより、撮像センサ36と同様のRGB各色の画像信号を得ることができる。
【0033】
撮像センサ36、撮像用プロセッサ37によって駆動制御される。撮像用プロセッサ37における各モードの制御は後述する。CDS/AGC回路40(Correlated Double Sampling/Automatic Gain Control)は、撮像センサ36から得られるアナログの画像信号に相関二重サンプリング(CDS)や自動利得制御(AGC)を行う。CDS/AGC回路40を経た画像信号は、A/Dコンバータ41(Analog/Digital)により、デジタルの画像信号に変換される。A/D変換後のデジタル画像信号がプロセッサ装置14に入力される。
【0034】
プロセッサ装置14は、画像処理部50と、表示制御部52と、中央制御部53とを備えている。プロセッサ装置14には、各種処理に関するプログラムがプログラム用メモリ(図示しない)に組み込まれている。プロセッサによって構成される中央制御部53がプログラム用メモリ内のプログラムを実行することによって、画像処理部50と、表示制御部52と、中央制御部53との機能が実現する。
【0035】
画像処理部50は、内視鏡12から受信した画像信号に対して、欠陥補正処理、オフセット処理、ゲイン補正処理、リニアマトリクス処理、ガンマ変換処理、デモザイク処理、ホワイトバランス処理、YC変換処理、及び、ノイズ低減処理等の各種信号処理を行う。欠陥補正処理では、撮像センサ36の欠陥画素の信号が補正される。オフセット処理では、欠陥補正処理を施した画像信号から暗電流成分を除かれ、正確な零レベルを設定される。ゲイン補正処理は、オフセット処理後の各色の画像信号に特定のゲインを乗じることにより各画像信号の信号レベルを整える。ゲイン補正処理後の各色の画像信号には、色再現性を高めるリニアマトリクス処理が施される。
【0036】
その後、ガンマ変換処理によって、各画像信号の明るさや彩度が整えられる。リニアマトリクス処理後の画像信号には、デモザイク処理(等方化処理,同時化処理とも言う)が施され、補間により各画素の欠落した色の信号を生成される。デモザイク処理によって、全画素がRGB各色の信号を有するようになる。画像処理部50は、デモザイク処理後の各画像信号にYC変換処理を施し、輝度信号Yと色差信号Cb及び色差信号Crを生成する。画像処理部50は、デモザイク処理等を施した画像信号に対して、例えば移動平均法やメディアンフィルタ法等によるノイズ低減処理を施す。
【0037】
また、画像処理部50は、3×3のマトリックス処理、階調変換処理、3次元LUT(Look Up Table)処理等の色変換処理、色彩強調処理、空間周波数強調等の構造強調処理などの画像処理も合わせて行われる。画像処理部50では、モードに応じた画像処理が行われる。通常モードの場合においては、画像処理部50は、通常モード用の画像処理が行われることによって、白色光画像を生成する。酸素飽和度モードの場合においては、画像処理部50は、酸素飽和度用の画像処理が行われることによって、白色光相当画像を生成する。また、酸素飽和度モードの場合においては、画像処理部50は、画像通信部51を介して、内視鏡12からの画像信号を、拡張プロセッサ装置17に送信する。
【0038】
表示制御部52は、画像処理部50からの白色光画像、又は酸素飽和度画像などの画像情報、その他の情報を、ディスプレイ15に表示するための表示制御を行う。表示制御に従って、ディスプレイ15には、白色光画像又は白色光相当画像が表示される。
【0039】
拡張プロセッサ装置17は、プロセッサ装置14から画像信号を受信し、各種の画像処理を行う。拡張プロセッサ装置17は、酸素飽和度モードにおいて、酸素飽和度を算出し、算出した酸素飽和度を画像化した酸素飽和度画像を生成する。生成された酸素飽和度画像は、拡張ディスプレイ18に表示される。また、拡張プロセッサ装置17は、補正モードの場合には、ユーザー操作に従って、特定色素濃度を算出し、算出した特定色素濃度に基づいて酸素飽和度の算出に関する補正処理を行う。拡張プロセッサ装置17で行う酸素飽和度モード及び補正モードの詳細については、後述する。
【0040】
各モードにおける点灯又は消灯制御について説明を行う。通常モードでは、V-LED20a、BS-LED20b、G-LED20d、及び、R-LED20eを同時に点灯することによって、図7に示すように、中心波長410nmの紫色光V、中心波長450nmの第2青色光BS、緑色帯域で広帯域の緑色光G、中心波長620nmの赤色光Rを含む白色光として発光する。
【0041】
酸素飽和度モード及び補正モードでは、発光パターンがそれぞれ異なる3フレーム分の発光が繰り返し行われる。1フレーム目においては、図8(A)に示すように、BL-LED20c、G-LED20d、及び、R-LED20eを同時に点灯することによって、中心波長470nmの第1青色光BL、緑色帯域で広帯域の緑色光G、及び、中心波長620nmの赤色光Rを含む広帯域の第1照明光を発光する。2フレーム目においては、図8(B)に示すように、BS-LED20b、G-LED20d、及び、R-LED20eを同時に点灯することによって、中心波長450nmの第2青色光BS、緑色帯域で広帯域の緑色光G、中心波長620nmの赤色光Rを含む第2照明光を発光する。3フレーム目においては、図8(C)に示すように、G-LED20dを点灯することによって、緑色帯域で広帯域の緑色光Gを発光する。なお、酸素飽和度モードにおいては、酸素飽和度の算出に必要な画像信号を得るために必要なフレームは1フレーム目と2フレーム目であるので、1フレーム目と2フレーム目のみ発光を行ってもよい。
【0042】
図9に示すように、撮像センサ36のB画素に設けられるBカラーフィルタBFは、主として青色帯域の光、具体的には、波長帯域が380~560nm(青色透過帯域)の光を透過させる。透過率が最大となるピーク波長は460~470nm付近に存在する。撮像センサ36のG画素に設けられるGカラーフィルタGFは、主として緑色帯域の光、具体的には、波長帯域が450~630nm(緑色透過帯域)の光を透過させる。撮像センサ36のR画素に設けられるRカラーフィルタRFは、主として赤色帯域の光、具体的には580~760nm(赤色透過帯域)の光を透過させる。
【0043】
図10に示すように、通常モードでは、撮像用プロセッサ37は、紫色光V、第2青色光BS、緑色光G、赤色光Rで照明中の観察対象を1フレーム毎に撮像するように、撮像センサ36を制御する。これにより、撮像センサ36のB画素からBc画像信号が出力され、G画素からGc画像信号が出力され、R画素からRc画像信号が出力される。
【0044】
図11に示すように、酸素飽和度モードでは、1フレーム目で、第1青色光BL、緑色光G、及び赤色光Rを含む第1照明光が観察対象に照明された場合には、撮像用プロセッサ37によって、第1照明光画像として、撮像センサ36のB画素からB1画像信号が出力され、G画素からG1画像信号が出力され、R画素からR1画像信号が出力される。2フレーム目で、第2青色光BS、緑色光G、及び赤色光Rを含む第2照明光が観察対象に照明された場合には、撮像用プロセッサ37によって、第2照明光画像として、撮像センサ36のB画素からB2画像信号が出力され、G画素からG2画像信号が出力され、R画素からR2画像信号が出力される。
【0045】
3フレーム目で、緑色光Gである第3照明光が観察対象に照明された場合には、撮像用プロセッサ37によって、第3照明光画像として、撮像センサ36のB画素からB3画像信号が出力され、G画素からG3画像信号が出力され、R画素からR3画像信号が出力される。
【0046】
酸素飽和度モードでは、図12に示すように、1フレーム目(1stF)で第1照明光を発光し、2フレーム目(2ndF)で第2照明光を発光し、3フレーム目(3rdF)で第3照明光を発光した後は、2フレーム目の第2照明光を発光し、1フレーム目の第1照明光を発光する。2フレーム目の第2照明光の発光に基づいて得られる白色光相当画像は、ディスプレイ15に表示される。また、1~3フレーム目の第1~第3照明光の発光に基づいて得られる酸素飽和度画像は、拡張ディスプレイ18に表示される。
【0047】
酸素飽和度モードでは、上記の3フレーム分の画像信号のうち、第1照明光画像に含まれるB1画像信号、及び、第2照明光画像に含まれるG2画像信号、R2画像信号が用いられる。また、補正モードでは、酸素飽和度の算出精度に影響を与える特定色素(黄色色素など)の濃度を測定するために、B1画像信号、G2画像信号、及び、R2画像信号に加えて、第3照明光画像に含まれるB3画像信号及びG3画像信号が用いられる。
【0048】
B1画像信号は、第1照明光の中でBカラーフィルタBFを透過した光のうち、少なくとも第1青色光BLに関する画像情報が含まれている。B1画像信号(酸素飽和度用画像信号)には、第1青色光BLに関する画像情報として、血中ヘモグロビンの酸素飽和度の変化により反射スペクトルが変化する波長帯域B1の画像情報を含んでいる。波長帯域B1としては、例えば、図13に示すように、曲線55b、56bで示す酸化ヘモグロビンの反射スペクトルと曲線55a、56aで示す還元ヘモグロビンの反射スペクトルの差が極大化する470nmを含む460nm~480nmの波長帯域とすることが好ましい。
【0049】
なお、図13では、曲線55aは、血液濃度が高い場合の還元ヘモグロビンの反射スペクトルを表し、曲線55bは、血液濃度が高い場合の酸化ヘモグロビンの反射スペクトルを表している。一方、曲線56aは、血液濃度が低い場合の還元ヘモグロビンの反射スペクトルを表し、曲線56bは、血液濃度が低い場合の酸化ヘモグロビンの反射スペクトルを表している。
【0050】
G2画像信号は、第1照明光の中でGカラーフィルタGFを透過した光のうち、少なくとも緑色光Gに関する波長帯域G2の画像情報が含まれている。波長帯域G2は、例えば、図13に示すように、500nm~580nmの波長帯域とすることが好ましい。R2画像信号は、第1照明光の中でRカラーフィルタRFを透過した光のうち、少なくとも赤色光Rに関する波長帯域R2の画像情報が含まれている。波長帯域R2は、例えば、図13に示すように、610nm~630nmの波長帯域とすることが好ましい。
【0051】
また、図14に示すように、波長帯域B1の画像情報には、第1青色光BLに関する画像情報が入っており、波長帯域B3の画像情報には緑色光Gに関する画像情報が入っている。それら第1青色光BL及び緑色光Gに関する画像情報は、黄色色素などの特定色素の濃度の変化により特定色素の吸光スペクトルが変化する画像情報である。特定色素の吸光スペクトルの変化に伴って、ヘモグロビンの反射スペクトルについても変化が生ずる。曲線55aは、黄色色素の影響がない場合の還元ヘモグロビンの反射スペクトルを表しており、曲線55cは、黄色色素の影響が有る場合の還元ヘモグロビンの反射スペクトルを表している。これら曲線55a、55cに示すように、黄色色素の有無によって還元ヘモグロビンの反射スペクトルが変化する(酸化ヘモグロビンの反射スペクトルも同様)。したがって、波長帯域B1及び波長帯域B3は、黄色色素などの特定色素の影響を受けて、血中ヘモグロビンの酸素飽和度の変化により反射スペクトルが変化する。
【0052】
内視鏡12を用いた観察対象において、黄色色素などの特定色素による影響がない理想的な場合には、図15に示すように、B1画像信号(「B1」と表記)、G2画像信号(「G2」と表記)、R2画像信号(「R2」と表記)は、それぞれ酸素飽和度依存性、血液濃度依存性、又は、明るさ依存性の影響を受ける。B1画像信号は、上記したように、酸化ヘモグロビンの反射スペクトルと還元ヘモグロビンの反射スペクトルの差が極大化する波長帯域B1を含んでいるため、酸素飽和度によって変化する酸素飽和度依存性が「大」程度である。また、B1画像信号は、曲線55a、55bと曲線56a、56bに示すように、血液濃度によって変化する血液濃度依存性が「中」程度である。また、B1画像信号は、観察対象の明るさによって変化する明るさ依存性が「有」る。なお、依存性の程度として、「大」、「中」、「小」を用いるが、「大」は他の画像信号と比較して依存性が大きいことを表しており、「中」は他の画像信号と比較して依存性が中程度であることを表しており、「小」は他の画像信号と比較して依存性が低いことを表している。
【0053】
G2画像信号は、広帯域な波長帯域において酸化ヘモグロビンの反射スペクトルと還元ヘモグロビンの反射スペクトルの大小関係が入れ替わることから、酸素飽和度依存性が「小」である。また、G2画像信号は、曲線55a、55bと曲線56a、56bに示すように、血液濃度依存性が「大」程度である。また、G2画像信号は、B1画像信号と同様、明るさ依存性が「有」る。
【0054】
R2画像信号は、B1画像信号ほど酸素飽和度によって変化することがないものの、酸素飽和度依存性は「中」程度である。また、R2画像信号は、曲線55a、55bと曲線56a、56bに示すように、血液濃度依存性が「小」程度である。また、G2画像信号は、B1画像信号と同様、明るさ依存性が「有」る。
【0055】
上記したように、B1画像信号、G2画像信号、R2画像信号のいずれも明るさ依存性を有するため、G2画像信号を規格化信号に用いることによって、B1画像信号をG2画像信号で規格化した信号比ln(B1/G2)と、R2画像信号をG2画像信号で規格化した信号比ln(R2/G2)を用いて、酸素飽和度を算出するための酸素飽和度算出用テーブル83が作成される。なお、信号比ln(B1/G2)の「ln」は自然対数である(信号比ln(R2/G2)も同様)。
【0056】
信号比ln(B1/G2)及び信号比ln(R2/G2)と酸素飽和度との関係を、信号比ln(R2/G2)をX軸、信号比ln(B1/G2)をY軸の2次元座標で表した場合、図16に示すように、酸素飽和度は、Y軸方向に沿った等高線ELで表される。等高線ELHは、酸素飽和度が「100%」であることを表していており、等高線ELLは、酸素飽和度が「0%」であることを表している。等高線ELHから等高線ELLに向けて、酸素飽和度が徐々に小さくなるように、等高線が分布している(図16では「80%」、「60%」、「40%」、「20%」の等高線が分布している)。
【0057】
X軸の値(信号比ln(R2/G2))、Y軸の値(信号比ln(B1/G2))は、それぞれ酸素飽和度依存性、血液濃度依存性の影響を受ける。ただし、明るさ依存性に関しては、図17に示すように、X軸の値、Y軸の値はそれぞれG2画像信号で規格化されているため、影響を受けない「無」とされる。X軸の値については、酸素飽和度依存性は「中」程度であり、血液濃度依存性は「大」程度とされる。一方、Y軸の値については、酸素飽和度依存性は「大」程度であり、血液濃度依存性は「中」程度とされる。
【0058】
一方、内視鏡12を用いた観察対象において、黄色色素などの特定色素の影響を受ける現実的な場合には、図18に示すように、B1画像信号(「B1」と表記)、G2画像信号(「G2」と表記)、R2画像信号(「R2」と表記)は、それぞれ酸素飽和度依存性、血液濃度依存性、黄色色素依存性、又は、明るさ依存性の影響を受ける。B1画像信号は、黄色色素などの特定色素の濃度の変化により特定色素の吸光スペクトルが変化する画像情報を含んでいるため、黄色色素によって変化する黄色色素依存性が「大」程度である。これに対して、G2画像信号は、B1画像信号と比較すると、黄色色素による変化が少ないため、黄色色素依存性は「小~中」程度である。R1画像信号は、黄色色素による変化が少ないため、黄色色素依存性は「小」程度である。
【0059】
また、信号比ln(R2/G2)をX軸、信号比ln(B1/G2)をY軸の2次元座標で表した場合、観察対象で同一の酸素飽和度を有する場合であっても、図19に示すように、黄色色素無しの場合の酸素飽和度StO2Aと、黄色色素有りの場合の酸素飽和度StO2bとは異なって表される。酸素飽和度StO2Bは、黄色色素の存在によって、見かけ上、酸素飽和度StO2Aよりも高くシフトしている。
【0060】
そこで、黄色色素依存性の場合にも酸素飽和度を正確に算出することができるようにするために、酸素飽和度の算出に際して、第3照明光画像に含まれるB3画像信号及びG3画像信号を用いる。B3画像信号は、第3照明光の中でBカラーフィルタBFを透過した光に関する画像情報が含まれている。B3画像信号(特定色素画像信号)には、黄色色素などのヘモグロビン以外の特定色素に感度を持つ波長帯域B3の画像情報が含まれる(図14参照)。B3画像信号は、B1画像信号ほど、特定色素に対する感度が大きくないものの、特定色素に対して一定の感度を有している。したがって、図20に示すように、B1画像信号が黄色色素の依存性が「大」であるのに対して、B3画像信号の黄色色素依存性は「中」程度である。なお、B3画像信号は、酸素飽和度依存性が「小」であり、血液濃度依存性が「大」であり、明るさ依存性が「有」りである。
【0061】
G3画像信号についても、B3画像信号ほど特定色素に感度を有しないものの、ある程度の特定色素に感度を持つ波長帯域G3の画像信号が含まれる(図14参照)。したがって、G3画像信号の黄色色素依存性は「小~中」程度である。なお、G3画像信号は、酸素飽和度依存性が「小」であり、血液濃度依存性が「大」であり、明るさ依存性が「有」である。また、B2画像信号についても、黄色色素依存性が「大」であるため、酸素飽和度の算出に際して、B3画像信号の代わりに、B2画像信号を用いてもよい。B2画像信号は、酸素飽和度依存性が「小」であり、血液濃度依存性が「大」であり、明るさ依存性が「有」である。
【0062】
信号比ln(B1/G2)及び信号比ln(R2/G2)と黄色色素と酸素飽和度との関係を、信号比ln(R2/G2)をX軸、信号比ln(B1/G2)をY軸、信号比ln(B3/G3)をZ軸の3次元座標で表した場合、図21に示すように、酸素飽和度を表す曲面CV0~CV4が、黄色色素の色素濃度に応じて、Z軸方向に分布される。曲面CV0は、黄色色素が濃度「0」(黄色色素の影響無し)の場合の酸素飽和度を表している。曲面CV1~CV4は、それぞれ黄色色素が濃度「1」~「4」の場合の酸素飽和度を表している。濃度の数字は、大きくなるほど、黄色色素の濃度が大きいことを表している。なお、曲面CV0~CV4に示すように、黄色色素の濃度が大きくなるほど、Z軸の値が低くなる方向に変化する。
【0063】
図22(A)に示すように、X、Y、Zの3次元座標で表現された酸素飽和度の状態を、X、Yの2次元座標で表現した場合には、図22(B)に示すように、酸素飽和度の状態を表す領域AR0~AR4は、それぞれ黄色色素の濃度に応じて異なる位置に分布する。領域AR0~AR4は、それぞれ黄色色素の濃度が「0」~「4」の場合の酸素飽和度の分布を表している。これら領域AR0~AR4ごとに酸素飽和度を表す等高線ELを定めることによって、黄色色素の濃度に対応した酸素飽和度を求めることができる(図16参照)。なお、領域AR0~AR4に示すように、黄色色素の濃度が大きくなるほど、X軸の値が高くなり、Y軸の値が低くなる。
【0064】
なお、図23に示すように、X軸の値(信号比ln(R2/G2))、Y軸の値(信号比ln(B1/G2))、Z軸の値(信号比ln(B3/G3))は、黄色色素依存性を受ける。X軸の値の黄色色素依存性は「小~中」であり、Y軸の値の黄色色素依依存性は「大」であり、Z軸の値の黄色色素依存性は「中」である。また、Z軸の値については、酸素飽和度依存性が「小~中」であり、血液濃度依存性が「小~中」である。また、Z軸の値については、G3画像信号で規格化されていることから、明るさ依存性が「無」い。
【0065】
図24に示すように、拡張プロセッサ装置17は、酸素飽和度画像生成部61、特定色素濃度算出部62、テーブル補正部63、モード切替部64、表示態様制御部65、信頼度算出部66、第1補正判定部67、第2補正判定部68、判定報知部69を備えている。拡張プロセッサ装置17には、各種処理に関するプログラムがプログラム用メモリ(図示しない)に組み込まれている。プロセッサによって構成される中央制御部(図示しない)がプログラム用メモリ内のプログラムを実行することによって、酸素飽和度画像生成部61、特定色素濃度算出部62、テーブル補正部63、モード切替部64、表示態様制御部65、信頼度算出部66、第1補正判定部67、第2補正判定部68、判定報知部69の機能が実現する。
【0066】
酸素飽和度画像生成部61は、ベース画像生成部70と、演算値算出部71と、酸素飽和度算出部72と、酸素飽和度算出用テーブル73と、色調調整部74とを備えている。ベース画像生成部70は、プロセッサ装置14からの画像信号に基づいて、ベース画像を生成する。ベース画像は、観察対象の形状など形態情報を把握することができる画像であることが好ましい。ベース画像は、B2画像信号、G2画像信号、及び、R2画像信号から構成される。なお、ベース画像は、狭帯域光などによって、血管又は構造(腺管構造)などを強調表示された狭帯域光画像であってもよい。
【0067】
演算値算出部71は、酸素飽和度用画像信号に含まれるB1画像信号、G2画像信号、R2画像信号に基づく演算処理によって演算値を算出する。具体的には、演算値算出部71は、酸素飽和度の算出に用いる演算値として、B1画像信号とG2画像信号の信号比B1/G2と、R2画像信号とG2画像信号の信号比R2/G2とを算出する。なお、信号比B1/G2と信号比R2/G2については、それぞれ対数化(ln)することが好ましい。また、演算値としては、B1画像信号、G2画像信号、及びR2画像信号から算出される色差信号Cr、Cb、又は、彩度S、色相Hなどを用いてもよい。
【0068】
酸素飽和度算出部72は、酸素飽和度算出用テーブル73を参照し、演算値に基づいて、酸素飽和度を算出する。酸素飽和度算出用テーブル73には、演算値の一つである信号比B1/G2、R2/G2と、酸素飽和度との相関関係が記憶されている。相関関係については、信号比ln(B1/G2)を縦軸、信号比ln(R2/G2)を横軸の2次元座標で表現した場合には、酸素飽和度の状態は横軸方向に延びた等高線ELで表現され、酸素飽和度が異なると等高線ELは縦軸方向に異なる位置に分布する(図16参照)。
【0069】
酸素飽和度算出部72は、酸素飽和度算出用テーブル73を参照し、信号比B1/G2,R2/G2に対応する酸素飽和度を画素毎に算出する。例えば、図25に示すように、特定の画素の信号比がln(B1/G2)、ln(R2/G2)である場合には、信号比がln(B1/G2)、ln(R2/G2)に対応する酸素飽和度は「40%」である。したがって、酸素飽和度算出部72は、特定の画素の酸素飽和度を「40%」と算出する。
【0070】
色調調整部74は、酸素飽和度算出部72で算出した酸素飽和度を用いて、ベース画像の色調を変化させる合成色処理を行うことによって、酸素飽和度画像を生成する。色調調整部74では、ベース画像において、酸素飽和度が閾値を超えている領域については、色調を維持し、酸素飽和度が閾値以下の領域については、酸素飽和度に応じて変化する色調に変更する。これにより、酸素飽和度が閾値を超える正常な部位の色調は維持する一方、酸素飽和度が低くなる閾値以下の異常な部位の色調のみを変化させているため、正常な部位の形態情報を観察可能な状況下で、異常な部位の酸素状態を把握することが可能となる。
【0071】
なお、色調調整部74においては、酸素飽和度の大小に関わらず、酸素飽和度に応じた色を割り当てた疑似カラー処理によって、酸素飽和度画像を生成してもよい。疑似カラー処理を行う場合には、ベース画像は不要となる。
【0072】
特定色素濃度算出部62は、補正モードにおいて、観察対象に含まれる色素のうち血中ヘモグロビン以外の特定色素に感度を持つ波長帯域の画像情報を含む特定色素画像信号に基づいて、特定色素濃度を算出する。特定色素としては、例えば、ビリルビンなどの黄色色素が含まれる。特定色素画像信号には、少なくともB3画像信号を含めることが好ましい。具体的には、特定色素濃度算出部62は、信号比ln(B1/G2)、ln(G2/R2)、ln(B3/G3)を算出する。そして、特定色素濃度算出部62は、特定色素濃度算出用テーブル62aを参照して、信号比ln(B1/G2)、ln(G2/R2)、ln(B3/G3)に対応する特定色素濃度を算出する。
【0073】
特定色素濃度算出用テーブル62aには信号比ln(B1/G2)、ln(G2/R2)、ln(B3/G3)と特定色素濃度との相関関係が記憶されている。例えば、信号比ln(B1/G2)、ln(G2/R2)、ln(B3/G3)の範囲を5段階に分けた場合には、それら5段階の範囲の信号比ln(B1/G2)、ln(G2/R2)、ln(B3/G3)に対して、それぞれ特定色素濃度が「0」~「4」が対応付けて特定色素濃度算出用テーブル62aに記憶されている。なお、信号比B3/G3については、対数化(ln)することが好ましい。
【0074】
テーブル補正部63は、補正モード時に行う補正処理として、特定色素濃度に基づいて、酸素飽和度算出用テーブル73を補正するテーブル補正処理を行う。テーブル補正処理では、酸素飽和度算出用テーブル73で記憶されている信号比B1/G2、R2/G2と酸素飽和度との相関関係を補正する。具体的には、テーブル補正部63は、特定色素濃度が「2」の場合において、図26に示すように、特定色素濃度に応じて定められる領域AR0~AR4のうち、特定色素濃度が「2」に対応する領域AR2において、酸素飽和度の状態を表す等高線ELを生成する。テーブル補正部63は、生成された等高線ELになるように、酸素飽和度算出用テーブル73を補正する。
【0075】
本実施形態では、補正モードにおいては、図27に示すように、補正用画像80が拡張ディスプレイ18に表示され、補正用画像80には、特定色素濃度の算出に使用する特定領域81が表示されている。特定領域81の形状は、円の他、楕円、矩形などであってもよい。特定領域81の位置は、画面中央であることが好ましいが、その他の位置であってもよい。ユーザーは、補正用画像を観察しながら、酸素飽和度算出用テーブル73の補正に適した領域が特定領域81内に入るように、内視鏡12を操作する。そして、補正に適した領域が特定領域81内に入った場合には、ユーザーは、プロセッサ側ユーザーインターフェース16又はスコープ側ユーザーインターフェース19を用いて、補正操作を行う。テーブル補正部63は、補正操作が行われたタイミングの特定領域内の特定色素濃度を用いて、酸素飽和度算出用テーブル73の補正を行う。特定領域内の特定色素濃度については、特定領域内の各画素における特定色素濃度の平均値とすることが好ましく、また、後述の信頼度算出部66で算出した信頼度に応じて特定色素濃度を重み付けした荷重平均値とすることが好ましい。
【0076】
なお、本実施形態では、酸素飽和度算出用テーブル73の補正に適した領域として、酸素飽和度の算出に影響を与える外乱の影響が少ない適正補正領域が明確に表示されるようにし、且つ、補正操作によってユーザーが適正補正領域を選択することができるようにするために、補正支援が行われる。補正支援の詳細については後述する。
【0077】
モード切替部64は、ユーザーによってモード切替スイッチ12fの操作に従って、酸素飽和度モードと補正モードの切り替えを行う。モードの切り替えによって、酸素飽和度モードに切り替えられた場合には、酸素飽和度画像生成部61において酸素飽和度画像を生成する。補正モードに切り替えられた場合には、補正処理を行うための補正操作を受け付け可能状態にし、補正操作に従って、補正処理を実行する。
【0078】
補正モードにおける補正支援について以下説明する。補正モードに切り替えられると、補正用画像80が拡張ディスプレイ18に表示され、特定色素濃度の算出に用いる特定領域81が拡張ディスプレイ18に表示される(図27参照)。表示態様制御部65は、補正操作によってユーザーが適正補正領域を選択することができるようにするために、補正用画像の表示態様を変更し、又は、酸素補飽和度の算出に関する信頼度に応じて、特定領域の表示態様を変更することの少なくともいずれかを行う。なお、補正用画像は、B1画像信号、G1画像信号、及び、R1画像信号からなるカラー画像であることが好ましいが、その他の画像であってもよい。
【0079】
なお、残渣や出血、脂肪、残渣、粘液が薄く粘膜上に乗っかっている場合や、白色光相当画像上では視認しにくいことで補正処理を適切に行えるかどうか判断しにくい場合があるため、下記の信頼度の大きさに関わらず、表示態様制御部65によって、以下のような補正用画像を生成することが好ましい。例えば、残渣や出血、脂肪、残渣、粘液を視認しやすくするために、表示態様制御部65は、白色光相当画像などの画像を彩度強調した補正用画像を生成することが好ましい。また、管腔等の暗くて信号強度が十分でないところをより暗くするために、表示態様制御部65は、暗部の輝度を低くした補正用画像を生成することが好ましい。
【0080】
また、補正用画像は信頼度に応じて表示態様を変更してもよい。具体的には、表示態様制御部65は、酸素飽和度の算出に関する信頼度が低い低信頼度領域と信頼度が高い高信頼度領域との違いが強調されるように、補正用画像80の表示態様を変更する。信頼度は、各画素における酸素飽和度の算出精度を表しており、大きいほど、酸素飽和度の算出精度が良いこと表している。低信頼度領域は、信頼度が信頼度用閾値未満の領域である。高信頼度領域は、信頼度が信頼度用閾値以上の領域である。補正用画像において、低信頼度領域と高信頼度領域の違いを強調することによって、特定領域の内部に、低信頼度領域を避けて、高信頼度領域に入るようにすることができる。
【0081】
信頼度は、信頼度算出部66において算出される。具体的には、信頼度算出部66は、第1照明光画像に含まれるB1画像信号、G1画像信号、R1画像信号、又は、第2照明光画像に含まれるB2画像信号、G2画像信号、R2画像信号に基づいて、酸素飽和度の算出に影響を与える少なくとも1つの信頼度を算出する。信頼度は、例えば、0から1の間の少数で表される。信頼度算出部66において複数種類の信頼度を算出する場合には、各画素の信頼度は、複数種類の信頼度のうち最小値の信頼度を採用することが好ましい。
【0082】
例えば、酸素飽和度の算出精度に影響を与える輝度値については、図28に示すように、G2画像信号の輝度値が一定範囲Rx外の信頼度は、G2画像信号の輝度値が一定範囲Rx内の信頼度よりも低くなっている。一定範囲Rx外の場合とは、ハレーションなどの高輝度値である場合の他、暗部などの極小輝度値の場合である。このように一定範囲Rx外の場合には、酸素飽和度の算出精度が低くなっているため、それに応じて信頼度も低くなっている。なお、G2画像信号の代わりに、G1画像信号の輝度値で信頼度を算出してもよい。
【0083】
また、酸素飽和度の算出精度に影響を与える外乱としては、出血、脂肪、残渣、粘液、又は残液が少なくとも含まれ、これら外乱によっても信頼度は変動する。上記外乱の一つである出血については、図29に示すように、縦軸ln(B2/G2)、横軸ln(R2/G2)からなる二次元平面において、定義線DFXからの距離に応じて信頼度が定められている。ここでは、B2画像信号、G2画像信号、R2画像信号に基づいて二次元平面上でプロットした座標が、定義線DFXから離れるほど信頼度が低くなっている。例えば、二次元平面上でプロットした座標が、右下ほど、信頼度は低くなる。なお、図29おいて、lnは自然対数を表している。B2/G2はB2画像信号とG2画像信号との信号比を、R2/G2はR2画像信号とG2画像信号との信号比を表している。
【0084】
また、上記外乱に含まれる脂肪、又は、残渣、残液、粘液については、図30に示すように、縦軸ln(B1/G1)、横軸ln(R1/G1)からなる二次元平面において、定義線DFYからの距離に応じて信頼度が定められている。ここでは、B1画像信号、G1画像信号、R1画像信号に基づいて二次元平面上でプロットした座標が、定義線DFYから離れるほど信頼度が低くなっている。例えば、二次元平面でプロットした座標が左下ほど、信頼度は低くなる。なお、図30において、lnは自然対数を表している。B1/G1はB1画像信号とG1画像信号との信号比を、R1/G1はR2画像信号とG2画像信号との信号比を表している。
【0085】
表示態様制御部65によって低信頼度領域と高信頼度領域の違いを強調する方法の一つとして、表示態様制御部65は、図31に示すように、低信頼度領域82aの彩度を高信頼度領域82bの彩度よりも高くする。これにより、ユーザーは、特定領域81として、低信頼度領域82aを避けて、高信頼度領域82bを選択しやすくなる。また、表示態様制御部65は、低信頼度領域82aのうち暗部BAの輝度を低くする。これにより、特定領域81の選択に際して、暗部BAを避けやすくなる。暗部とは、輝度値が一定値以下の暗い領域である。なお、低信頼度領域82aと高信頼度領域82bとはそれぞれ反対色であってもよい。
【0086】
また、表示態様制御部65は、低信頼度領域に領域強調線を重畳表示すること、又は、低信頼度領域82aをモノクロ表示にすることの少なくともいずれかを行うことが好ましい。例えば、図32に示すように、低信頼度領域82aにおいて、領域強調線として、一定間隔の斜め線を重畳表示することが好ましい。これにより、ユーザーは、特定領域81として、低信頼度領域82aを避けて、高信頼度領域82bを選択しやすくなる。なお、領域強調線は、一定間隔の斜め線としているが、その他、信頼度に応じて、斜め線の間隔を変動させてもよい。
【0087】
表示態様制御部65は、特定領域内の信頼度に応じて、特定領域の表示態様を変更することが好ましい。補正モードにおいて補正操作が行われる前の段階では、第1補正判定部67において、特定領域内の信頼度に基づいて、補正処理を適正に行えるか否かを判定する。第1補正判定部67では、特定領域内の画素について信頼度が信頼度用閾値以上の有効画素の数が一定値以上である場合には、補正処理を適正に行えると判定する。一方、特定領域内の画素について有効画素の数が一定値未満の場合には、補正処理を適正に行えないと判定する。なお、第1補正判定部67は、補正操作が行われるまでの間、画像を取得して信頼度を算出する毎に、判定を行うことが好ましい。判定を行う周期は、適宜変更してもよい。
【0088】
表示態様制御部65は、第1補正判定部67において、補正処理を適正に行えると判定された場合の特定領域の表示態様と、補正処理を適正に行えないと判定された場合の特定領域の表示態様とを異ならせることが好ましい。例えば、図33(A)に示すように、第1補正判定部67において補正処理を適正に行えると判定された場合には、特定領域81を第1色で強調表示する。一方、図33(B)に示すように、第1補正判定部67において補正処理を適正に行えないと判定された場合には、特定領域81を、第1色と異なる第2色で強調表示する。第1色と第2色は、適正か否かを把握しやすくするために、それぞれ反対色であることが好ましい。
【0089】
一方、補正モードにおいて補正操作が行われた段階では、第2補正判定部68において、補正操作が行われたタイミングの特定領域内の信頼度に基づいて、補正処理を適正に行えるか否かを判定する。第2補正判定部68は、第1補正判定部67と同様に、判定を行う。判定報知部69は、第2補正判定部68の判定に関する報知を行う。
【0090】
判定報知部69は、第2補正判定部68において、補正処理を適正に行うことができると判定された場合には、補正処理を適正に行うことができる旨の報知を行う。例えば、図34に示すように、「補正処理は適正に行われます」といったメッセージMS1を拡張ディスプレイ18に表示する。この場合、テーブル補正部63は、補正処理として、特定領域内の特定色素濃度に基づいて、テーブル補正処理を行う。
【0091】
一方、判定報知部69は、第2補正判定部68において、補正処理を適正に行うことができないと判定された場合には、補正処理を適正に行うことができないため、再度の補正操作が必要である旨の報知を行う。例えば、図35に示すように、「彩度の補正操作が必要です」といったメッセージMS2を拡張ディスプレイ18に表示する。この場合には、判定報知部69は、メッセージMS2に加えて又は代えて、適正なテーブル補正処理を行うための操作ガイダンスGDを報知することが好ましい。例えば、操作ガイダンスGDとして、「暗部を避けて下さい」といった操作ガイダンスを拡張ディスプレイ18に表示することが好ましい。その他の操作ガイダンスとしては、「出血、残液、脂肪等を避けて下さい」などの操作ガイダンスがある。
【0092】
次に、補正モードにおける一連の流れについて、図36のフローチャートに沿って説明を行う。ユーザーがモード切替スイッチ12fを操作することによって、補正モードに切り替えられる。補正モードでは、補正モードに切り替えられると、拡張ディスプレイ18には、補正用画像80が表示され、且つ、特定領域81が表示される。また、特定領域81に含まれる血中ヘモグロビン以外の特定色素の特定色素濃度に基づいて、酸素飽和度算出に関する補正処理が実行可能状態となる。
【0093】
補正モードにおいては、ユーザーによる特定領域の選択を容易にするために、補正用画像80の表示態様を変更すること、又は、酸素飽和度の算出に関する信頼度に応じて、特定領域81の表示態様を変更することの少なくともいずれかを行う。ユーザーは、酸素飽和度の算出に影響を与える外乱の影響が少ない適正補正領域が特定領域81内に入った場合には、プロセッサ側ユーザーインターフェース16又はスコープ側ユーザーインターフェース19を用いて補正操作を行う。補正操作が行われたタイミングの特定領域内の特定色素濃度に基づいて、補正処理が行われる。補正処理が完了すると、酸素飽和度モードに手動又は自動で切り替えられる。
【0094】
[第2実施形態]
第2実施形態においては、第1実施形態に示すLED20a~20eの代わりに、キセノンランプなどの広帯域光源と回転フィルタを用いて観察対象の照明を行ってもよい。この場合には、図37に示すように、内視鏡システム100において、光源装置13において、LED20a~20eに代えて、広帯域光源102、回転フィルタ104、フィルタ切替部105が設けられる。また、撮像光学系31には、カラーの撮像センサ36の代わりに、カラーフィルタが設けられていないモノクロの撮像センサ106が設けられている。それ以外については、上記内視鏡システム10と同様である。
【0095】
広帯域光源102はキセノンランプ、白色LEDなどであり、波長域が青色から赤色に及ぶ白色光を発する。回転フィルタ104は、内側に設けられた内側フィルタ108と、外側に設けられた外側フィルタ109とを備えている(図38参照)。フィルタ切替部105は、回転フィルタ104を径方向に移動させるものであり、モード切替スイッチ12fにより通常モードにセットしたときに、回転フィルタ104の内側フィルタ108を白色光の光路に挿入し、酸素飽和度モード又は補正モードにセットしたときに、回転フィルタ104の外側フィルタ109を白色光の光路に挿入する。
【0096】
図38に示すように、内側フィルタ108には、周方向に沿って、白色光のうち紫色光V及び第2青色光BSを透過させるB1フィルタ108a、白色光のうち緑色光Gを透過させるGフィルタ108b、白色光のうち赤色光Rを透過させるRフィルタ108cが設けられている。したがって、通常モード時には、回転フィルタ104の回転により、紫色光V及び第2青色光BS、緑色光G、赤色光Rが交互に観察対象に照射される。
【0097】
外側フィルタ109には、周方向に沿って、白色光のうち第1青色光BLを透過させるB1フィルタ109aと、白色光のうち第2青色光BSを透過させるB2フィルタ109bと、白色光のうち緑色光Gを透過させるGフィルタ109cと、白色光のうち赤色光Rを透過させるRフィルタ109dと、白色光のうち波長帯域B3の青緑光BGを透過させるB3フィルタ109eが設けられている。したがって、酸素飽和度モード時には、回転フィルタ104が回転することで、第1青色光BL、第2青色光BS、緑色光G、赤色光R、青緑光BGが交互に観察対象に照射される。
【0098】
内視鏡システム100では、通常モード時には、紫色光V及び第2青色光BS、緑色光G、赤色光Rで観察対象が照明される毎にモノクロの撮像センサ106で観察対象を撮像する。これにより、Bc画像信号、Gc画像信号、Rc画像信号が得られる。そして、それら3色の画像信号に基づいて、上記第1実施形態と同様の方法で、白色光画像が生成される。
【0099】
一方、酸素飽和度モード又は補正モード時には、第1青色光BL、第2青色光BS、緑色光G、赤色光R、青緑光BGで観察対象が照明される毎にモノクロの撮像センサ106で観察対象を撮像する。これにより、B1画像信号と、B2画像信号と、G2画像信号、R2画像信号、B3画像信号が得られる。これら5色の画像信号に基づいて、第1実施形態と同様の方法で、酸素飽和度モード又は補正モードが行われる。ただし、第2実施形態では、信号比ln(B3/G3)に代えて、信号比ln(B3/G2)が用いられる。
【0100】
上記第1及び第2実施形態においては、補正モードにおける酸素飽和度の算出に関する補正処理として、酸素飽和度算出用テーブル73を補正するテーブル補正処理を行っているが、酸素飽和度算出用テーブル73に基づいて算出した酸素飽和度に対して、特定色素濃度から得られる補正値を加算又は減算する算出値補正処理を行ってもよい。
【0101】
具体的には、算出値補正処理については、図39に示す2次元座標90を用いて、酸素飽和度算出用テーブル73に基づいて算出した酸素飽和度の補正に用いる補正値を算出する。2次元座標の縦軸は、B1画像信号、G2画像信号、R2画像信号、及び、B3画像信号に基づいて得られる特定演算値であり、横軸はLn(R2/G2)である。特定演算値は、下記式A)により定められる。
式A)B1/G2×cosφ-B3/G2×sinφ
【0102】
2次元座標90では、予め定められた基準ベースライン情報の分布を示す基準線91と、実際の観察対象の撮像によって得られた実測ベースライン情報の分布を示す実測線92とが示されている。基準線91と実測線92との差分値ΔZが、補正値として算出される。算出値補正処理では、酸素飽和度算出用テーブル73に基づいて算出した酸素飽和度に対して、前記補正値を加算又は減算する。なお、基準ベースライン情報は、特定色素が無い状態で得られ、且つ、酸素飽和度に依存しない情報として定められている。具体的には、上記式A)が、酸素飽和度が変化しても一定になるように、φを調整した値を、基準ベースライン情報としている。
【0103】
また、補正モードにおいては、補正処理に代えて、少なくとも酸素飽和度用画像信号及び特定色素画像信号に基づいて、特定色素濃度に応じて酸素飽和度を算出する特定の酸素飽和度算出処理を行ってもよい。具体的には、特定の酸素飽和度算出処理には、図40に示す3次元座標93が用いられる。3次元座標93では、X軸に信号比ln(R2/G2)が割り当てられ、Y軸に信号比ln(B1/G2)が割り当てられ、Z軸にln(B3/G3)が割り当てられている。曲面CV0~CV4は、3次元座標93において、特定色素濃度が「0」~「4」に対応する酸素飽和度の状態を表している。
【0104】
特定の酸素飽和度算出処理においては、3次元座標93において、B1画像信号、G2画像信号、R2画像信号、B3画像信号、及びG3画像信号に基づいて算出される信号比ln(R1/G1)、ln(B2/G1)、ln(B3/G3)を3次元座標93上にプロットした値が、酸素飽和度として算出される。算出された酸素飽和度は、特定色素濃度の影響を受けていないため、正確な値となっている。
【0105】
なお、第1及び第2実施形態においては、消化管用の軟性鏡である内視鏡12を用いているが、腹腔鏡用の硬性鏡である内視鏡を用いてもよい。硬性鏡の内視鏡を用いる場合には、図41に示す内視鏡システム200が用いられる。内視鏡201と、光源装置13と、プロセッサ装置14と、ディスプレイ15と、プロセッサ側ユーザーインターフェース16と、拡張プロセッサ装置17と、拡張ディスプレイ18とを備えている。なお、以下、内視鏡システム200において、第1及び第2実施形態と共通する部分は省略し、相違する部分のみ説明を行う。
【0106】
内視鏡201は、腹腔鏡手術などに用いられ、硬質で細長く形成され、被検体内に挿入される。内視鏡201は、光源装置13からライトガイド202を介して供給される照明光を観察対象に照明する。また、内視鏡201は、照明光で照明中の観察対象からの反射光を受光する。カメラヘッド203は、内視鏡201に取り付けられ、内視鏡201から導光された反射光に基づいて、観察対象を撮像する。カメラヘッド203で撮像された画像信号は、プロセッサ装置14に送信される。
【0107】
光源装置13は、通常モードにおいては、紫色光V、第2青色光BS、緑色光G、及び、赤色光Rを含む白色光を内視鏡201に供給する。また、光源装置13は、酸素飽和度モード及び補正モードにおいては、図42に示すように、第1青色光BL、第2青色光BS、緑色光G、及び、赤色光Rを含む混合光を内視鏡12に供給する。
【0108】
図43に示すように、カメラヘッド203は、ダイクロイックミラー205、206、及び、207と、モノクロの撮像センサ210、211、212、及び213とを備えている。ダイクロイックミラー205は、内視鏡201からの混合光の反射光のうち、紫色光V及び第2青色光BSを反射させ、第1青色光BL、緑色光G、及び、赤色光Rを透過させる。図44に示すように、ダイクロイックミラー205で反射した紫色光V又は第2青色光BSは撮像センサ210に入射する。撮像センサ210は、通常モードでは紫色光V及び第2青色光BSの入射に基づいてBc画像信号を出力し、酸素飽和度又は補正モードでは第2青色光BSの入射に基づいてB2画像信号を出力する。
【0109】
ダイクロイックミラー206は、ダイクロイックミラー205を透過した光のうち、第1青色光BLを反射させ、緑色光G及び赤色光Rを透過させる。図45に示すように、ダイクロイックミラー206で反射した第1青色光BLは、撮像センサ211に入射する。撮像センサ211は、通常モードでは画像信号の出力を停止し、酸素飽和度又は補正モードでは第1青色光BLの入射に基づいてB1画像信号を出力する。
【0110】
ダイクロイックミラー207は、ダイクロイックミラー206を透過した光のうち、緑色光Gを反射させ、赤色光を透過させる。図46に示すように、ダイクロイックミラー207で反射した緑色光Gは撮像センサ212に入射する。撮像センサ212は、通常モードでは緑色光Gの入射に基づいてGc画像信号を出力し、酸素飽和度又は補正モードで緑色光Gの入射に基づいてG2画像信号を出力する。
【0111】
図47に示すように、ダイクロイックミラー207で透過した赤色光Rは撮像センサ213に入射する。撮像センサ213は、通常モードでは赤色光Rの入射に基づいてRc画像信号を出力し、酸素飽和度又は補正モードで赤色光Rの入射に基づいてR2画像信号を出力する。
【0112】
なお、上記第1及び第2実施形態においては、酸素飽和度の算出に、血中ヘモグロビンの酸素飽和度の変化により反射スペクトルが変化する波長帯域B1の画像情報を含むB1画像信号、G2画像信号、及び、R2画像信号を用いているが、B1画像信号に代えて、その他の画像信号を用いてもよい。例えば、図48に示すように、B1画像信号の代わりに、血中ヘモグロビンの酸素飽和度の変化により反射スペクトルが変化する波長帯域Rxの画像情報を含むRk画像信号を用いてもよい。波長帯域Rxは680nm±10nmであることが好ましい。図49に示すように、Rk画像信号は、酸素飽和度依存性が「中~小」であるものの、血液濃度依存性が「小」であり、また、黄色色素依存性が「小」である。したがって、観察対象に黄色色素が存在する状況下であっても、3つのG2画像信号、R2画像信号、Rk画像信号の3つの画像信号だけで、酸素飽和度を正確に算出することができる。
【0113】
なお、腹腔鏡用の硬性鏡である内視鏡(図41参照)を用いる場合には、4つのモノクロの撮像センサ210~213を用いて観察対象の撮像を行う内視鏡201(図43参照)と異なり、他の撮像方式で観察対象の撮像を内視鏡を用いてもよい。図50に示す様に、内視鏡300は、1つのカラー撮像センサ301及び1つのモノクロ撮像センサ302を有する2センサタイプの腹腔用の内視鏡である。内視鏡300のカメラヘッド303には、カラー撮像センサ301及びモノクロ撮像センサ302に加えて、カメラヘッド303に入射した光のうち一部の光を透過させ、その他の光を反射させるダイクロイックミラー305が設けられている。
【0114】
内視鏡300を用いる場合の光源装置13の発光制御においては、図51に示すように、第1青色光BL、第2青色光BS、緑色光G、及び、赤色光Rを同時に発光する白色フレーム(同図(A)参照)と、緑色光Gのみを発光する緑色フレーム(同図(B)参照)とを、特定の発光パターンに従って、切り替えて発光される。
【0115】
図52に示すように、白色フレームで、第1青色光BL、第2青色光BS、緑色光G、及び、赤色光Rを同時に発光した場合(同図(A)参照)には、ダイクロイックミラー305で、カメラヘッド303に入射した光のうち、第1青色光BLが反射する(同図(B)参照)。ダイクロイックミラー305で反射した第1青色光BLは、モノクロ撮像センサ302に入射する(同図(C)参照)。モノクロ撮像センサ302は、入射した第1青色光BLに対応する画素値を有するB1画像信号を出力する(同図(D)参照)。
【0116】
また、図53に示すように、白色フレームでは、ダイクロイックミラー305で透過した第2青色光BS、緑色光G、及び、赤色光Rは、カラー撮像センサ301に入射する(図53(C)参照)。カラー撮像センサ301のうち、B画素は、第2青色光のうちBカラーフィルタBFを透過した光に対応する画素値を有するB2画像信号を出力する。また、G画素は、緑色光GのうちGカラーフィルタGFを透過した光に対応する画素値を有するG2画像信号を出力する。R画素は、赤色光RのうちRカラーフィルタRFを透過した光に対応する画素値を有するR2画像信号を出力する。
【0117】
一方、図54に示すように、緑色フレームで、緑色光Gのみを発光した場合(同図(A)参照)には、カメラヘッド303に入射した緑色光Gは、ダイクロイックミラー305で透過する。ダイクロイックミラー305で透過した緑色光Gは、カラー撮像センサ301に入射する。カラー撮像センサ301のうち、B画素は、緑色光GのうちBカラーフィルタBFを透過した光に対応する画素値を有するB3画像信号を出力する。G画素は、緑色光GのうちGカラーフィルタGFを透過した光に対応する画素値を有するG3画像信号を出力する。なお、緑色フレームでは、モノクロ撮像センサ302から出力される画像信号と、カラー撮像センサ301のうちR画素から出力される画像信号は、その後の処理工程で使用されない。
【0118】
以上、図55に示すように、白色フレームでは、モノクロ撮像センサ302からB1画像信号が出力され、カラー撮像センサ301から、B2画像信号、G2画像信号、R2画像信号が出力され、それらB1、B2、G2、R2画像信号は、その後の処理工程で使用される。一方、緑色フレームでは、カラー撮像センサ301から、B3画像信号及びG3画像信号が出力され、その後の処理工程で使用される。
【0119】
図56に示すように、カメラヘッド303から出力された画像信号は、プロセッサ装置14に送られ、プロセッサ装置14で各種処理が施されたデータは、拡張プロセッサ装置17に送られる。内視鏡300を用いる場合には、プロセッサ装置14での処理負荷を考慮して、酸素飽和度モード及び補正モードで行われる処理についてプロセッサ装置14で負荷が低い処理を行った後に、拡張プロセッサ装置17で負荷が大きい処理を行う。酸素飽和度モード及び補正モードで行われる処理のうち、プロセッサ装置14で行われる処理は、主として、FPGA(Field-Programmable Gate Array)で行われることから、FPGA処理と称する。一方、拡張プロセッサ装置17で行われる処理は、拡張プロセッサ装置がPC(Personal Computer)で行われることから、PC処理と称する。
【0120】
なお、内視鏡300にFPGA(図示しない)が設けられている場合には、内視鏡300のFPGAでFPGA処理を行ってもよい。また、以下においては、補正モードにおけるFPGA処理とPC処理について説明を行うが、酸素飽和度モードにおいても、FPGA処理とPC処理に分けることで、処理負荷を分担することが好ましい。
【0121】
内視鏡300を用い、白色フレームWと緑色フレームGrを特定の発光パターンに従って発光制御を行う場合には、図57に示すように、特定の発光パターンとしては、白色フレームWを2フレーム分発光した後に、光源装置13から発光を行わないブランクフレームBLを2フレーム分行う。その後に、緑色フレームGrを2フレーム分発光した後に、2フレーム以上のブランクフレームを数フレーム分(例えば、7フレーム分)行う。その後に、再度、白色フレームWを2フレーム分発光する。以上の特定の発光パターンを繰り返し行う。なお、上記の特定の発光パターンのように、白色フレームWと緑色フレームGrとを発光するのは少なくとも補正モードであり、酸素飽和度モードでは、緑色フレームGrを発光せずに、白色フレームWのみを発光してもよい。
【0122】
以下、特定の発光パターンにおいて発光を行う各発光フレームを区別するために、最初の2フレーム分の白色フレームのうち最初の白色フレームを白色フレームW1、次の白色フレームを白色フレームW2とする。2フレーム分の緑色フレームのうち最初の緑色フレームを緑色フレームGr1、次の緑色フレームを緑色フレームGr2とする。そして、最後の2フレーム分の白色フレームのうち最初の白色フレームを白色フレームW3、次の白色フレームを白色フレームW4とする。
【0123】
また、白色フレームW1で得られる補正モード用の画像信号(B1画像信号、B2画像信号、G2画像信号、R2画像信号、B3画像信号、G3画像信号)については、画像信号セットW1と称する。同様にして、白色フレームW2で得られる補正モード用の画像信号については、画像信号セットW2と称する。また、緑色フレームGr1で得られる補正モード用の画像信号については、画像信号セットGr1と称する。また、緑色フレームGr2で得られる補正モード用の画像信号については、画像信号セットGr2と称する。また、白色フレームW3で得られる補正モード用の画像信号については、画像信号セットW3と称する。また、白色フレームW4で得られる補正モード用の画像信号については、画像信号セットW4と称する。なお、酸素飽和度モード用の画像信号は、白色フレームに含まれる画像信号(B1画像信号、B2画像信号、G2画像信号、R2画像信号)である。
【0124】
なお、白色フレームWと緑色フレームWとの間のブランクフレームが2フレーム程度で良いのは、緑色光G以外の光を消すだけで済むのに対して、緑色フレームGと白色フレームWとの間のブランクフレームを2フレーム以上とするのは、緑色光G以外の点灯開始により、時間をかけて発光状態を安定化させる必要があるためである。
【0125】
FPGA処理においては、図58に示すように、各画像信号セットW1、W2、Gr1、Gr2、W3、W4に含まれる全ての画像信号の画素について、酸素飽和度モード又は補正モードで精度良く処理行うことができるか否かの有効画素判定を行う。有効画素判定は、図59に示すように、画像中心部に設けられた16個の関心領域ROI内の画素値に基づいて行われる。具体的には、ROI内の各画素について、画素値が上限閾値と下限閾値の間の範囲内に収まっている場合には、有効画素と判定する。有効画素判定は、画像信号セットに含まれる全ての画像信号の画素に対して行われる。また、上限閾値又は下限閾値は、カラー撮像センサ301のB画素、G画素、R画素の感度、又は、モノクロ撮像センサ302の感度に合わせて、予め設定されている。
【0126】
以上の有効画素判定に基づいて、ROI毎に、有効画素の画素数、有効画素の画素値総和、及び、有効画素の画素値の二乗和を算出する。これらROI毎の有効画素の画素数、有効画素の画素値総和、及び、有効画素の画素値の二乗和は、それぞれ有効画素データW1、W2、Gr1、Gr2、W3、W4として、拡張プロセッサ装置17に出力される。FPGA処理は、有効画素判定のように、同一フレームの画像信号での演算処理であり、後述のPC処理のように、発光フレームが異なるフレーム間画像信号での演算処理と比較して、処理負荷が軽くなっている。なお、有効画素データW1、W2、Gr1、Gr2、W3、W4は、それぞれ画像信号セットW1、W2、Gr1、Gr2、W3、W4に含まれる全ての画像信号に対して有効画素判定されたデータに対応している。
【0127】
PC処理では、有効画素データW1、W2、Gr1、Gr2、W3、W4のうち、同一フレームの画像信号に対する同一フレーム用PC処理と、異なるフレームの画像信号に対するフレーム間用PC処理が行われる。同一フレーム用PC処理では、各有効画素データに含まれる全ての画像信号に対して、ROI内における画素値の平均値、画素値の標準偏差値、及び、有効画素率が算出される。これら同一フレーム用PC処理で得られるROI内の画素値の平均値等は、酸素飽和度モード又は補正モードで、特定の結果を得るための演算で使用される。
【0128】
フレーム間用PC処理においては、図60に示すように、FPGA処理で得られた有効画素データW1、W2、Gr1、Gr2、W3、W4のうち、白色フレームと緑色フレームとの時間的間隔が近いものが使用され、それ以外は、フレーム間用PC処理では使用されない。具体的には、有効画素データW2と有効画素データGr1のペアと、有効画素データGr2と有効画素データW3のペアが、フレーム間用PC処理で使用される。その他の有効画素データW1、W4は、フレーム間用PC処理では使用されない。なお、時間的間隔が近い画像信号をペアにすることで、画素間の位置ずれがない精度の良いフレーム間用PC処理を行うことができる。
【0129】
図61に示すように、有効画素データW2と有効画素データGr1のペアを用いるフレーム間用PC処理では、信頼度算出、及び、特定色素濃度算出が行われ、有効画素データGr2と有効画素データW3のペアを用いるフレーム間PC処理においても、同様に、信頼度算出、及び、特定色素濃度算出が行われる。そして、算出された特定色素濃度に基づいて、特定色素濃度相関判定が行われる。
【0130】
信頼度の算出においては、16個のROI毎に、信頼度を算出する。信頼度の算出方法は、上記の信頼度算出部66による算出方法と同様である。例えば、G2画像信号の輝度値が一定範囲Rx外の信頼度を、G2画像信号の輝度値が一定範囲Rx内の信頼度を低くすることが好ましい(図28参照)。有効画素データW2と有効画素データGr1のペアの場合であれば、各有効画素データに含まれるG2画像信号に対するROI毎の信頼度算出によって、合計32の信頼度が算出される。同様にして、有効画素データGr2と有効画素データW3のペアの場合にも、合計32の信頼度が算出される。信頼度を算出した場合には、信頼度が低いROIが存在する場合、又は、各ROIの信頼度平均値が所定値に満たない場合などにおいては、信頼度に関するエラー判定を行う。信頼度に関するエラー判定の結果は、拡張ディスプレイ18への表示などによってユーザーに報知する。
【0131】
特定色素濃度算出においては、16個のROI毎に、特定色素濃度を算出する。特定色素濃度の算出方法は、上記の特定色素濃度算出部62による算出方法と同様である。例えば、有効画素データW2及び有効画素データGr1に含まれるB1画像信号、G2画像信号、R2画像信号、B3画像信号、及び、G3画像信号を用い、特定色素濃度算出テーブル62aを参照して、信号比ln(B1/G2)、ln(G2/R2)、ln(B3/G3)に対応する特定色素濃度を算出する。これにより、ROI毎に合計16の特定色素濃度PG1が算出される。なお、有効画素データGr2と有効画素データW3のペアの場合にも、同様に、ROI毎に合計16の特定色素濃度PG2が算出される。
【0132】
特定色素濃度PG1と特定色素濃度PG2が算出されると、ROI毎に、特定色素濃度PG1と特定色素濃度PG2との相関値を算出する。相関値は、同じ位置のROI毎に算出することが好ましい。相関値が所定値よりも低いROIが一定数以上ある場合には、フレーム間で、動きが生じたと判定し、動きに関するエラー判定を行う。動きに関するエラー判定の結果は、拡張ディスプレイ18への表示などによってユーザーに報知する。
【0133】
動きに関するエラー判定でエラー無しの場合には、合計32の特定色素濃度PG1と特定色素濃度PG2の中から、特定の推定方法(例えば、ロバスト推定方法)を用いて、1つの特定色素濃度を算出する。算出された特定色素濃度は、補正モードの補正処理で使用される。補正モードの補正処理については、テーブル補正処理など、上記と同様である。
【0134】
図62及び図63に示すように、内視鏡用ホワイトバランス調整治具(以下、調整治具という)400は、内視鏡のホワイトバランス調整のために使用される用具である。調整治具400は箱型であり、外側に、挿入部401と、蓋部402と、外周部403とを備えており、内側に、内部空間406(図67参照)を備えている。挿入部401は、内視鏡12の先端部12d(図64参照)を挿入する2つの挿入孔405を備えている。挿入孔405は、挿入孔405a、405bから構成される。
【0135】
挿入孔405から挿入方向Xで挿入された先端部12dは、内部空間406の適切な位置まで挿入を進められ、蓋部402の内部空間406側に設けられるチャート408(図66参照)を撮影する。チャート408を撮影した内視鏡画像によりホワイトバランス調整を行う。なお、内視鏡12の先端部12dを調整治具400に挿入する場合ついて説明するが、内視鏡201の先端部についても、同様に、調整治具400に挿入してホワイトバランス調整を行うことが可能である。
【0136】
2つの挿入孔405の内径は、外径が異なる内視鏡12の先端部12dに対応できるように、それぞれ異なっている。挿入孔405の内径は、挿入のし易さ、チャート408を撮影する際の先端部12dの位置調節のための可動域を確保するため等に、先端部12dを挿入孔405で挿入した際に、先端部12dと挿入孔405との間に適度な隙間が生じるようにした上で、なるべく小さくすることが好ましい。これにより、挿入部401が先端部12dの挿入をガイドし先端部12dの位置調節する機能を担保すること、及び、先端部12dと挿入孔405との隙間から内部空間406に入る光を抑えることが可能となる。
【0137】
なお、2つの挿入孔405のうち一方の挿入孔405aの内径を12mmとし、他方の挿入孔405bの内径を7mmとすることが好ましい。図64に示すように、先端部12dの外径が5mmより大きく10mm以下の範囲の太い内視鏡12であれば、挿入孔405aに先端部12dを挿入する。図65に示すように、先端部12dの外径が5mm以下の細い内視鏡12であれば、挿入孔405bに先端部12dを挿入する。
【0138】
挿入部401には、各挿入孔405a、405bに対応させてガイド部401a、401bを設けてもよい。ガイド部401aは、使用者が先端部12dを挿入孔405に挿入する際のガイドの機能を有する。ガイド部401aは、長手方向が挿入方向Xとなっている筒状とすることができる。筒状のガイド部401aを形成することにより、使用者による先端部12dの挿入の際に、自然に先端部12dの底部、外面等の一部が、筒状の挿入孔405aの底部、内面との一部と接しながら挿入することとなり、先端部12dを蓋部402に向かってより適切に挿入することができる。また、使用者が内部空間406における内視鏡12の先端部12dをより容易に適切な位置に配置することができる。なお、ガイド部401bも、ガイド部401aと同様である。
【0139】
図66及び図67に示すように、ガイド部401a、401bは、挿入孔405a、405bの入り口から挿入方向Xに沿って蓋部402に向かうにつれて、わずかに内径が大きくなるテーパ状としてもよい。挿入孔405aにおいて、入り口の内径は11mmであるが、ガイド部401aにおいて挿入方向Xに沿って最も蓋部402に近い位置である挿入孔405aの出口では内径を12mmとする。同様に、挿入孔405bにおいて、入り口の内径は6mmであるが、ガイド部401bにおいて挿入方向Xに沿って最も蓋部402に近い位置である挿入孔405bの出口では内径を7mmとする。
【0140】
また、内部空間406については、挿入孔405a、405bのそれぞれに応じて仕切られている。仕切り403eは、内部空間406を、挿入孔405aに連なる内部空間406aと、挿入孔405bに連なる内部空間406bの2つに仕切っている。例えば、挿入孔405aに先端部12dを挿入した場合には、挿入孔405bからの光は、仕切り403eに遮られて、内部空間406aに入射することを防ぐことができる。本実施形態のように、先端部の外径が異なる様々な種類の内視鏡に対応させるために、2つの挿入孔405a、405bを設けた場合であっても、先端部12dを挿入した使用中の内部空間に対して、使用していない内部空間からの光が入ることがないため、適切な撮影条件にてチャート408を撮影することができる。
【0141】
図68に示すように、蓋部402は、厚みが均一な板状であり、内部空間406に面する表面を内面402bとし、内面402bの反対側の面を外面402aとする。チャート408は、内面402bに設けられている。蓋部402と外周部403とは分離可能に連結することが好ましい。蓋部402と外周部403との連結を解除することにより、蓋部402のみを調整治具400から取り外すことができる。したがって、調整治具400の内部を洗浄、消毒等することが可能となる。また、蓋部402のみを洗浄、交換等することが可能であり、複数の蓋部402から、ホワイトバランス調整を行いたい内視鏡12の種類に対応したチャート408を備える蓋部を選択した、それまでに用いてた蓋部402を交換することができる。
【0142】
チャート408は、内視鏡12からの光が反射しない材質を用いることが好ましい。これにより、チャート40上でフレアFLA(図82参照)などの発生を抑えることができるため、後述するエラー判定(チャート408と内視鏡の先端部12dの位置関係に関する判定)で、フレアをマーク407a等と誤認識することを回避することができ、また、マーク407aの色を正しい色で認識することができる。また、内視鏡12からの光がチャート408で反射しなくなるため、後述するエラー判定で、なお、例えば、チャート408は、ユポ材などのマット紙であることが好ましい。また、チャート408は、光が乱反射して局所的な反射が発生しにくい構造、例えば、ミクロポイドの構造であることが好ましい。
【0143】
蓋部402と外周部403とは、分離及び連結を容易に行いような構成とすることが好ましい。蓋部402と外周部403とは磁力及び/又は嵌合により分離可能に連結してもよい。即ち、蓋部402と外周部403とは、磁石を用いることにより、連結してもよいし、蓋部402及び外周部403のそれぞれの少なくとも一部が、凸部と凹部との嵌め込みにより連結してもよいし、磁石を用い、かつ、凸部と凹部との嵌め込みにより連結してもよい。
【0144】
本実施形態では、外周部403が、内部に磁石が嵌め込まれた磁石挿入部403fを備えている。蓋部402は、少なくとも磁石挿入部403fに対応する凸部402cが、磁石挿入部403fの内部に対応する外周部403の凹部403gの一部に、磁石により吸着する性質を有している。したがって、蓋部402と外周部403とは、蓋部402を外周部403に近づけることにより容易に連結することができる。また、蓋部402を取り外す際には、磁石挿入部403fからの磁力に抗する程度の力だけで、蓋部402を外周部403から容易に取り外すことができる。また、外周部403の凹部403gは、外周部403の上下左右の外周にそれぞれ1つずつ設けられており、また、蓋部402の凸部402cについても、蓋部402の上下左右の外周にそれぞれ1つずつ設けられている。そして、外周部403の凹部403gに蓋部402の凸部402cを嵌め込むことによって、調整治具400の2つの内部空間406a、406bの全面を覆うことができる。
【0145】
図69(a)に示すように、蓋部402の外面402aは、調整治具400の外面を構成する。図69(b)に示すように、蓋部402の内面402bは、内部空間406に面し、調整治具400の内面を構成する。内面402bには、4つのマーク407a、407b、407c、407dが設けられている。これら4つのマーク407a、407b、407c、407dによって、チャート408が構成される。
【0146】
なお、マーク407a~407dは、蓋部基材402eの内面402bに直接形成されてもよいし、チャート408を構成する基材上にマーク407a~dが形成され。マーク407a~dを有するチャート408を内面402b上に配置してもよい。この場合、チャート408の形状は、蓋部402と同じでもよく、異なってもよい。本実施形態では、チャート408は蓋部402と異なる形状であり、凸部402cのような凸部を有しない矩形状である。
【0147】
チャート408は、内視鏡の先端部12dの挿入方向Xに垂直な垂直面を有し、挿入部401側に傾斜するように配置される。なお、垂直面は仮想の面である。これにより、複数の種類の内視鏡のそれぞれがホワイトバランス調整を行う場合に、チャート408を適切に撮影可能となり、ホワイトバランスを適切に調整することができる。なお、ここでいう複数種類の内視鏡とは、先端部の軸方向に対する撮像光学系31の光軸方向の角度により区別される種類である。
【0148】
複数種類の内視鏡としては、先端部12dの軸方向に対する撮像光学系31の光軸方向が平行となる直視鏡と、先端部12dの軸方向に対する撮像光学系31の光軸方向が所定の角度を有する斜視鏡とがある。内視鏡が、内視鏡201のように、硬性鏡であり直線状である場合、先端部12dの軸方向と同じである。内視鏡12が軟性鏡であっても、先端部12dが湾曲しない場合、先端部12dの軸方向に対する撮像光学系31の光軸方向により、内視鏡12の種類を区別することができる。なお、斜視鏡は、側視鏡等と呼ばれることがある。
【0149】
図70(a)に示すように、斜視鏡411では、撮像光学系31の光軸方向mと先端部12dの先端面12kの軸方向nのなす角である傾斜角αが、例えば、30°、45°等である。図70(b)に示すように、直視鏡412では、撮像光学系31の光軸方向mと先端部12dとの軸方向nとが平行である。直視鏡412では、先端部12dの軸方向前方にある被写体の内視鏡画像を得ることができ、斜視鏡411では、先端部12dの軸方向からみてやや側面の前方にある被写体の内視鏡画像を得ることができる。
【0150】
調整治具400において、マーク407a~dを適切に配置したチャート408を、挿入方向Xに垂直な垂直面に対し適切な角度で傾斜するように配置することにより、傾斜角αが様々である複数種類の内視鏡12のいずれにおいても、マーク407a~dを撮影した際に、内視鏡の先端部12dとマーク407a~dとの距離及び角度が所定範囲内になる。
【0151】
チャート408の傾斜の程度は、複数の内視鏡12のそれぞれがチャート408を撮影して得た内視鏡画像をホワイトバランス調整に用いた際に、先端部12dとマーク407a~dとの距離及び角度が所定範囲内であり、チャート408が傾斜することによるマーク407a~dの色、明るさ、歪み等がホワイトバランス調整において問題にならない程度となればよい。チャート408の傾斜の程度は、直視鏡又は斜視鏡の光軸に垂直な垂直面に対するチャート408の傾斜により示すことができる。
【0152】
図71に示すように、直視鏡412では、チャート408の表面を含む面kを、直視鏡412の撮像光学系の光軸方向m1に垂直な垂直面lに対して傾斜角β1となるように配置する。傾斜角β1で直視鏡412がマーク407bを撮影することにより、マーク17bの撮像により得られた内視鏡画像に基づいてホワイトバランス調整を適切に行うことができる。また、図72に示すように、斜視鏡411では、チャート408の表面kを、斜視鏡411の撮像光学系の光軸方向m2に垂直な垂直面lに対して傾斜角β2となるように配置する。傾斜角β2で斜視鏡411がマーク407aを撮影することにより、マーク407aの撮像により得られた内視鏡画像に基づいてホワイトバランス調整を適切に行うことができる。
【0153】
調整治具400を用いてホワイトバランス調整を行うホワイトバランスモード時においては、内視鏡10の先端部12dとチャート408との位置関係に関するエラーが発生しているか否かエラー判定が行われる。本実施形態では、エラー判定として、調整治具400に挿入された内視鏡10の先端部12dがチャート408上のマーク407a~dのいずれかと適切な位置関係にあるどうかのエラー判定を行う。先端部12dがチャート408上のマーク407a~407dのいずれかと適切な位置関係にあることで、ホワイトバランス調整を適切に行うことができる。
【0154】
本実施形態では、エラー判定を行うために、図73に示すように、プロセッサ装置14には、画像取得部420と、エラー判定部421とが設けられている。プロセッサ装置14には、画像取得部420及びエラー判定部421についての各種処理に関するプログラムがメモリ(図示しない)に組み込まれている。プロセッサによって構成される制御部(図示しない)によってプログラムが実行されることによって、画像取得部420と、エラー判定部421との機能が実現される。
【0155】
画像取得部420は、内視鏡の先端部12dからチャート408を撮像して得られる内視鏡画像を取得する。具体的には、ホワイトバランス調整モード作動中で、内視鏡の先端部12dが調整治具400に挿入されている状態において、内視鏡の先端部12dは、調整治具400内のチャート408のマーク407a~407dのいずれかを撮像する(例えば、図71図72参照)。撮像により得られた内視鏡画像が、画像取得部420で取得される。なお、画像取得部420とエラー判定部421とは、プロセッサ装置14に設け、ホワイトバランスモード時に表示する内視鏡画像を拡張ディスプレイ18に表示してもよい。
【0156】
エラー判定部421は、内視鏡画像から、少なくとも3つの第1判定領域を含む第1判定領域群の情報と、第1判定領域群の外側に設けられ、少なくとも3つの第2判定領域を含む第2判定領域群の情報を取得し、第1領域判定群の情報と第2領域判定群の情報とに基づいて、チャート408と内視鏡の先端部12dとの位置関係に関するエラーが発生しているか否かのエラー判定を行う。
【0157】
具体的には、図74に示すように、第1判定領域群は、3つの第1判定領域Jm1~Jm3を有している。ホワイトバランスモードにおいて、内視鏡の先端部12dが適切な位置にある場合には、第1判定領域Jm1~Jm3は、チャート408のマーク407a~407dの部分に位置される。3つの第1判定領域Jm1~Jm3の情報としては、明るさが用いられ、内視鏡画像では、マーク407a等の明るさは、チャート408のうちマーク407a等以外の背景部分の明るさよりも大きくなっている。内視鏡の先端部12dが適切な位置にある状態で、内視鏡画像から第1判定領域Jm1~Jm3の明るさを取得した場合には、3つの第1判定領域Jm1~Jm3のいずれも、明るさが第1閾値以上となっている。したがって、エラー判定部421は、3つの第1判定領域Jm1~Jm3の中に、明るさが第1閾値未満の第1判定領域が少なくとも1つある場合には、エラーと判定する。このように、明るさの判定に関する演算処理は、エッジ抽出のような高リソースの演算処理ではなく、プロセッサ装置14に従来から備わっている低リソースの処理であるため、演算負荷が少なく、短時間で行うことができる。
【0158】
また、第2判定領域群は、3つの第2判定領域Jn1~Jn3を有している。ホワイトバランスモードにおいて、内視鏡の先端部12dが適切な位置にある場合には、第2判定領域Jn1~Jn3は、背景部分に位置される。3つの第2判定領域の情報としては、明るさが用いられ、内視鏡画像では、背景部分の明るさは、マーク407a等の明るさよりも小さくなっている。内視鏡の先端部12dが適切な位置にある状態で、内視鏡画像から第2判定領域Jn1~Jn3の明るさを取得した場合には、3つの第2判定領域Jn1~Jn3のいずれも、明るさが第2閾値未満となっている。したがって、エラー判定部421は、3つの第2判定領域Jn1~Jn3の中に、明るさが第2閾値以上の第2判定領域が少なくとも1つある場合には、エラーと判定する。
【0159】
本実施形態においては、エラー判定部421で正確にエラー判定を行うために、内視鏡画像上のチャート408は、マーク407a等と背景部分とのコントラストが十分についていることが好ましい。例えば、マーク407aの明るさから、ノイズと背景部分の明るさを足し合わせたものを減算したもの((マーク407a等の明るさ―(ノイズ+背景部分))が、ランダムノイズ以上となるように、チャート408を構成することが好ましい。
【0160】
また、内視鏡画像における第1判定領域群の配置形状は、3つの第1判定領域Jm1~Jm3を結んで得られる逆三角形である。一方、内視鏡画像における第2判定領域群の配置形状は、3つの第2判定領域Jn1~Jn3を結んで得られる三角形である。このように配置された6つの第1判定領域Jm1~Jm3及び第2判定領域Jn1~Jn3にいより、マーク407a等の位置ずれ等を360°の方向で検出できるようにしている。例えば、第1判定領域群の配置形状が三角形の場合には、マーク407a等がチャート下方にズレている場合に、エラー判定を正確に行うことが難しい場合がある。
【0161】
なお、第1判定領域Jm1~Jm3及び第2判定領域Jn1~Jn3は、図74では、それらの位置において内視鏡画像の情報を得る領域を説明するための説明用として図示しており、実際には、ディスプレイ15上には表示されない。なお、第1判定領域Jm1~Jm3又は第2判定領域Jn1~Jn3の形状は、矩形状であることが好ましい。また、第1判定領域Jm1~Jm3又は第2判定領域Jn1~Jn3のサイズは、処理負担を考慮し、第1閾値又は第2閾値に基づく明るさの判定に影響が出ない程度に、できるだけ小さいことが好ましい。
【0162】
エラー判定部421は、第1判定領域群の情報と第2判定領域群の情報とに加えて、第3判定領域の情報に基づいて、エラーが発生しているか否かを判定する。第3判定領域Jtは、第1判定領域群の内側に設けられ、矩形状を有している(第1、第2判定領域と同様、ディスプレイ15には表示されない)。具体的には、第3判定領域Jtの情報は色調であることが好ましい。エラー判定部421は、第3判定領域Jtの色調が特定の色調範囲外である場合に、エラー判定を行うことが好ましい。
【0163】
特定の色調範囲は、マーク407a等の色調を基準に定められ、例えば、グレーであることが好ましい。特定の色調範囲外は、マーク407a等の色調のうち彩度が一定範囲外であることが好ましい。例えば、特定の色調範囲が、グレーに基づく一定の彩度範囲である場合には、赤色、青色などのように、グレーから離れた彩度については、特定の色調範囲外とすることが好ましい。実際には、内視鏡の先端部12dには血液などが付着することがあり、このような場合に、第3判定領域Jtが特定の色調範囲外となることが想定される。なお、第3判定領域Jtの情報のみに基づいてエラー判定を行ってもよい。
【0164】
また、ホワイトバランスモードでは、内視鏡画像をディスプレイ15に表示する際に、チャート408のマーク407a~407dのいずれかの位置をガイドするためのガイド領域GAが内視鏡画像に重畳表示される。ガイド領域GAは、第1判定領域群と第2判定領域群の間に設けられ、内側円GAxと外側円GAyからなる二重円を有している。ユーザーは、ホワイトバランスモードにおいて、内視鏡画像上のマークが内側円GAxと外側円GAyとの間の領域入るように、内視鏡の先端部12dを操作する(図74では、マーク407aを例として挙げている)。
【0165】
具体的には、図74に示すように、3つの第1判定領域の明るさがいずれも第1閾値以上であり、且つ、3つの第2判定領域の明るさがいずれも第2閾値未満である場合には、エラー判定部421は、エラー判定を行わない。この場合には、ディスプレイ15に「位置決めOK」などのガイダンス表示を表示することが好ましい。
【0166】
一方、3つの第1判定領域の中に、明るさが第1閾値未満の第1判定領域が少なくとも1つある場合、又は、3つの第2判定領域の中に、明るさが第2閾値以上の第2判定領域が少なくとも1つある場合のうち少なくともいずれかを満たす場合には、エラー判定部421は、エラー判定を行う。エラー判定の結果は、ディスプレイ15に表示することが好ましい(例えば、「スコープが適切な位置にありません」などのガイダンス表示を行う)。
【0167】
例えば、図75に示すように、マーク407aの位置が、内視鏡の先端部12dの挿入方向Xとは略直交する方向(Y方向又はZ方向(図62参照))にずれている場合には、3つの第1判定領域Jm1~Jm3のうちの1つの第1判定領域Jm1の明るさが第1閾値未満となっているため、エラー判定される。この場合には、ユーザーは、マーク407aがガイド領域の内側円GAxと外側円GAyの間に入るように、先端部12dをY方向又はZ方向に操作する。
【0168】
また、チャート408と内視鏡の先端部12との距離が近すぎる場合には、図76に示すように、3つの第2判定領域のJn1~Jn3明るさがいずれも第2閾値以上となっているため、エラー判定される。この場合には、ユーザーは、マーク407aがガイド領域の内側円GAxと外側円GAyの間に収まるように、先端部12dをX方向に操作する。反対に、チャート408と内視鏡の先端部12との距離が通すぎる場合には、図77に示すように、3つの第1判定領域Jm1~Jm3のうちの2つの第2判定領域Jm1、Jm2域の明るさが第1閾値未満となっているため、エラー判定される。この場合には、ユーザーは、マーク407aが内側円GAxと外側円GAyの間に収まるように、先端部12dをX方向に操作する。
【0169】
エラー判定部421は、3つの第1判定領域の明るさがいずれも第1閾値以上であり、且つ、3つの第2判定領域の明るさがいずれも第2閾値未満である場合において、第3判定領域Jtの色調が特定の色調範囲外である場合に、エラー判定を行ってもよい。図78に示すように、マーク407aの位置がガイド領域の内側円GAxと外側円GAyの間に入っているにもかかわらず、第3判定領域Jtの色調が赤色等の色調の場合には、エラー判定を行う。この場合にも、エラー判定の結果を報知することが好ましいが、第1判定領域群の情報及び第2判定領域群の情報に基づくエラー判定の結果の報知とは、異ならせることが好ましい。例えば、「ホワイトバランス調整に適した色調になっていません」などのガイダンス表示を行う。なお、図78においては、第3判定領域Jtについて、図74の第3判定領域Jtの色調との違いを、異なるハッチング(ハッチングの傾きが異なる)で表現している。
【0170】
図83に示すように、内視鏡画像で、マーク407aだけでなく、マーク407bが写り込んでいるような場合、第1判定領域Jm1~Jm4の明るさが第1閾値未満であり、また、第2判定領域Jn7、Jn8の明るさが第2閾値以上となるため、エラーと判定される。また、図84に示すように、マーク407aの形状が楕円状に変形して、ガイド領域の外側円GAyを超えている場合には、第1判定領域Jm1~Jm4の明るさが第1閾値以上であるものの、第2判定領域Jn2~Jn4の明るさが第2閾値以上となるため、エラーと判定される。
【0171】
次に、ホワイトバランスモードにおける一連の流れについて、図79のフローチャートに沿って、説明を行う。ユーザーは、内視鏡の先端部12d(スコープ先端部)を調整治具400に挿入する。この場合、調整治具400の挿入孔405のうち、内視鏡の先端部12dの径に対応する挿入孔に挿入する。モード切替スイッチ12fを操作してホワイトバランスモードに切り替える。これにより、調整治具400の内部空間406の状態の内視鏡画像が、ディスプレイ15に表示される。ユーザーは、内視鏡画像上にチャート408上のマークが表示されるマーク表示位置に達するまで、内視鏡の先端部12dを挿入方向Xに挿入させる。
【0172】
内視鏡の先端部12dがマーク表示位置まで挿入されると、チャート408上のマーク407a~407dのうち内視鏡の先端部12dを挿入した挿入孔の位置、及び、内視鏡12の種類に対応するマークを含むチャート408を撮像して得られる内視鏡画像が、ディスプレイ15に表示される。エラー判定部421は、内視鏡画像から、3つの第1判定領域Jm1~Jm3を含む第1判定領域群の情報と、第1判定領域群の外側に設けられ、少なくとも3つの第2判定領域Jn1~Jn3を含む第2判定領域群の情報を取得し、第1領域判定群の情報と第2領域判定群の情報とに基づいて、チャート408と内視鏡の先端部12dとの位置関係に関するエラーが発生しているか否かのエラー判定を行う。
【0173】
エラー判定されない場合には、プロセッサ装置14のホワイトがランス処理部(図示しない)において、エラー判定されなかったときの内視鏡画像に基づくホワイトバランス調整が行われる。一方、エラー判定された場合には、ユーザーは、ガイド領域GAを手掛かりにして、マークが適正な位置に表示されるように、内視鏡の先端部12dを操作する。内視鏡の先端部12dが適正な位置に表示された場合には、エラー判定が解消される。プロセッサ装置14のホワイトがランス処理部において、エラー判定が解消されたときの内視鏡画像に基づくホワイトバランス調整が行われる。
【0174】
なお、図80に示すように、エラー判定部421は、内視鏡画像から、第1判定領域群に含まれる4つの第1判定領域Jm1~Jm4の情報と、第2判定領域群に含まれる8つの第2判定領域Jn1~Jn8の情報とを取得し、エラー判定を行ってもよい。第1判定領域Jm1~Jm4の情報、又は、第2判定領域Jn1~Jn8の情報については、上記実施形態と同様に、明るさであることが好ましい。4つの第1判定領域Jm1~Jm4は、ガイド領域の内側円GAxの内側に、略90°間隔で設けられている。8つの第2判定領域Jn1~Jn8については、ガイド領域の外側円GAyの外側のうち、左半分に所定間隔で4つの第2判定領域Jn1~Jn4が設けられており、右半分に所定間隔で4つの第2判定領域Jn5~Jn8が設けられている。
【0175】
また、第1判定領域Jm1~Jm4の明るさ、又は、第2判定領域Jn1~Jn8の明るさについては、規格化用領域Juの明るさで規格化することが好ましい。これにより、図81に示すように、自動露光制御の直後など、画像全体の明るさが変化して全体的明るさが基準範囲外となった場合であっても、規格化した第1判定領域又は第2判定領域の明るさを用いることで、画像全体の明るさの変化に関わらず、正確に、エラー判定を行うことができる。
【0176】
なお、規格化は、例えば、第1判定領域又は第2判定領域の明るさを規格化用領域の明るさで除することが好ましい。また、規格化用領域Juは、第1判定領域Jm1~Jm4を含む第1判定領域群の内側に設けることが好ましい。また、図74の場合においても、規格化用領域の明るさを用いて、第1判定領域Jm1~Jm3の明るさ、又は、第2判定領域Jn1~Jn3の明るさの規格化を行ってよい。
【0177】
また、エラー判定部421は、複数の第2判定領域の中に、明るさが第2閾値以上の第2判定領域が、予め定められた規定数以上ある場合には、エラーと判定することが好ましい。例えば、エラー判定部421は、明るさが第2閾値以上の第2判定領域の数が、明るさが第2閾値未満の第2判定領域の数よりも大きい場合には、エラーと判定することが好ましい。図81のように、第2判定領域の数が8の場合において、多数決によりエラー判定を行う場合には、規定数は、例えば、6に定められる。このように多数決によりエラー判定を行うことで、例えば、マーク407aがガイド領域の内側円GAxと外側円GAyとの間に入っているにも関わらず、内視鏡画像中に写り込んだフレアFLAによって、第2判定領域Jm3の明るさのみが第2閾値以上となった場合であっても、多数決によるエラー判定を用いることで、エラーでは無いとと判定することができる。
【0178】
上記実施形態において、酸素飽和度画像生成部61、特定色素濃度算出部62、テーブル補正部63、モード切替部64、表示態様制御部65、信頼度算出部66、第1補正判定部67、第2補正判定部68、判定報知部69、ベース画像生成部70、演算値算出部71、酸素飽和度算出部72、色調調整部74、画像取得部420、エラー判定部421といった各種の処理を実行する処理部(processing unit)のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウエア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、GPU(Graphical Processing Unit)、FPGA (Field Programmable Gate Array) などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、各種の処理を実行するために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。
【0179】
1つの処理部は、これら各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合せ(例えば、複数のFPGA、CPUとFPGAの組み合わせ、またはCPUとGPUの組み合わせ等)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントやサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウエアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。
【0180】
さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた形態の電気回路(circuitry)である。また、記憶部のハードウェア的な構造はHDD(hard disc drive)やSSD(solid state drive)等の記憶装置である。
【符号の説明】
【0181】
10、100 内視鏡システム
12 内視鏡
12a 挿入部
12b 操作部
12c 湾曲部
12d 先端部
12e アングルノブ
12f モード切替スイッチ
12h 静止画像取得指示スイッチ
12i ズーム操作部
12j 鉗子口
13 光源装置
14 プロセッサ装置
15 ディスプレイ
16 プロセッサ側ユーザーインターフェース
17 拡張プロセッサ装置
18 拡張ディスプレイ
19 スコープ側ユーザーインターフェース
20 光源部
20a V-LED
20b BS-LED
20c BL―ELD
20d G-LED
20e R-LED
21 光源用プロセッサ
23 光路結合部
25 ライトガイド
30 照明光学系
31 撮像光学系
32 照明レンズ
35 対物レンズ
36、106 撮像センサ
37 撮像用プロセッサ
40 CDS/AGD回路
41 A/Dコンバータ
50 画像処理部
51 画像通信部
52 表示制御部
53 中央制御部
55a、55b、55c 曲線
56a、55b 曲線
61 酸素飽和度画像生成部
62 特定色素濃度算出部
62a 特定色素濃度算出用テーブル
63 テーブル補正部
64 モード切替部
65 表示態様制御部
66 信頼度算出部
67 第1補正判定部
68 第2補正判定部
69 判定報知部
70 ベース画像生成部
71 演算値算出部
72 酸素飽和度算出部
73 酸素飽和度算出用テーブル
74 色調調整部
75、76 等高線
80 補正用画像
81 特定領域
82a 低信頼度領域
82b 高信頼度領域
90 2次元座標
91 基準線
92 実測線
102 広帯域光源
104 回転フィルタ
105 フィルタ切替部
108 内側フィルタ
108a B1フィルタ
108b Gフィルタ
108c Rフィルタ
109 外側フィルタ
109a B1フィルタ
109b B2フィルタ
109c Gフィルタ
109d Rフィルタ
109e B3フィルタ
200 内視鏡システム
201 内視鏡
202 ライトガイド
203 カメラヘッド
205~207 ダイクロイックミラー
210~213 撮像センサ
300 内視鏡
301 カラー撮像センサ
302 モノクロ撮像センサ
303 カメラヘッド
305 ダイクロイックミラー
400 調整治具
401 挿入部
401a、401b ガイド部
402 蓋部
402a 外面
402b 内面
402c 凸部
402e 蓋部部材
403 外周部
403e 仕切り
403f 磁石挿入部
403g 凹部
405 挿入孔
405a、405b 挿入孔
406 内部空間
406a、406b 内部空間
407a~407d マーク
408 チャート
411 斜視鏡
412 直視鏡
420 画像取得部
421 エラー判定部
AR0~AR4 領域
DFX、DFY 定義線
BF Bカラーフィルタ
GD 操作ガイダンス
GF Gカラーフィルタ
FLA フレア
MS0、MS1、MS2 メッセージ
RF Rカラーフィルタ
CV0~CV4 曲面
EL、ELL、ELH 等高線
Jm1~Jm8 第1判定領域
Jn1~Jn8 第2判定領域
Jt 第3判定領域
Ju 規格化用領域
GAx 内側円
GAy 外側円
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33
図34
図35
図36
図37
図38
図39
図40
図41
図42
図43
図44
図45
図46
図47
図48
図49
図50
図51
図52
図53
図54
図55
図56
図57
図58
図59
図60
図61
図62
図63
図64
図65
図66
図67
図68
図69
図70
図71
図72
図73
図74
図75
図76
図77
図78
図79
図80
図81
図82
図83
図84