IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 新日鉄住金化学株式会社の特許一覧

<>
  • 特開-金属張積層板の製造方法 図1
  • 特開-金属張積層板の製造方法 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024059887
(43)【公開日】2024-05-01
(54)【発明の名称】金属張積層板の製造方法
(51)【国際特許分類】
   B29C 65/48 20060101AFI20240423BHJP
   H05K 1/03 20060101ALI20240423BHJP
【FI】
B29C65/48
H05K1/03 630H
H05K1/03 650
H05K1/03 610N
【審査請求】有
【請求項の数】3
【出願形態】OL
(21)【出願番号】P 2024028501
(22)【出願日】2024-02-28
(62)【分割の表示】P 2019153731の分割
【原出願日】2019-08-26
(31)【優先権主張番号】P 2018185878
(32)【優先日】2018-09-28
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000006644
【氏名又は名称】日鉄ケミカル&マテリアル株式会社
(74)【代理人】
【識別番号】100115118
【弁理士】
【氏名又は名称】渡邊 和浩
(74)【代理人】
【識別番号】100095588
【弁理士】
【氏名又は名称】田治米 登
(74)【代理人】
【識別番号】100094422
【弁理士】
【氏名又は名称】田治米 惠子
(74)【代理人】
【識別番号】110000224
【氏名又は名称】弁理士法人田治米国際特許事務所
(72)【発明者】
【氏名】安藤 智典
(72)【発明者】
【氏名】西山 哲平
(72)【発明者】
【氏名】實森 詠司
(57)【要約】
【課題】高周波伝送においても伝送損失の低減が可能で、寸法安定性に優れた金属張積層板を提供する。
【解決手段】第1の金属層と第1の絶縁樹脂層を有する第1の片面金属張積層板と、第2の金属層と第2の絶縁樹脂層を有する第2の片面金属張積層板と、第1の絶縁樹脂層及び第2の絶縁樹脂層に当接配置された接着層とを備えた金属張積層板の製造方法であって、第1の片面金属張積層板及び第2の片面金属張積層板を準備する工程、第1の絶縁樹脂層又は第2の絶縁樹脂層のいずれか片方又は両方に、熱可塑性樹脂又は熱硬化性樹脂で構成された接着層となる樹脂層を積層する工程、第1の片面金属張積層板及び第2の片面金属張積層板をそれぞれの絶縁樹脂層が対向するようにして接着層を介して貼り合わせて熱圧着する工程を備えている。接着層は、熱可塑性樹脂又は熱硬化性樹脂で構成され、(i)50℃での貯蔵弾性率が1800MPa以下、(ii)180℃から260℃の温度領域での貯蔵弾性率の最大値が800MPa以下、(iii)ガラス転移温度(Tg)が180℃以下を満たす。
【選択図】なし

【特許請求の範囲】
【請求項1】
第1の金属層と、前記第1の金属層の少なくとも片側の面に積層された第1の絶縁樹脂層と、を有する第1の片面金属張積層板と、
第2の金属層と、前記第2の金属層の少なくとも片側の面に積層された第2の絶縁樹脂層と、を有する第2の片面金属張積層板と、
前記第1の絶縁樹脂層及び前記第2の絶縁樹脂層に当接するように配置されて、前記第1の片面金属張積層板と前記第2の片面金属張積層板との間に積層された接着層と、を備えた金属張積層板の製造方法であって、下記の工程1~3;
工程1:
前記第1の片面金属張積層板及び前記第2の片面金属張積層板を準備する工程、
工程2:
前記第1の絶縁樹脂層又は前記第2の絶縁樹脂層のいずれか片方、又は両方に、熱可塑性樹脂又は熱硬化性樹脂で構成された接着層となる樹脂層を積層する工程、
工程3:
前記工程2の後に、
前記第1の片面金属張積層板及び前記第2の片面金属張積層板を、それぞれの絶縁樹脂層が対向するようにして、前記接着層を介して貼り合わせて熱圧着する工程、
を備え、
前記接着層が、熱可塑性樹脂又は熱硬化性樹脂で構成され、下記の条件(i)~(iii);
(i)50℃での貯蔵弾性率が1800MPa以下であること;
(ii)180℃から260℃の温度領域での貯蔵弾性率の最大値が800MPa以下であること;
(iii)ガラス転移温度(Tg)が180℃以下であること;
を満たすことを特徴とする金属張積層板の製造方法。
【請求項2】
前記工程2における前記樹脂層が、熱可塑性樹脂もしくは熱硬化性樹脂又はその樹脂溶液を塗布・乾燥した後の塗布膜であることを特徴とする請求項1に記載の金属張積層板の製造方法。
【請求項3】
前記第1の絶縁樹脂層及び前記第2の絶縁樹脂層は、共に、熱可塑性ポリイミド層、非熱可塑性ポリイミド層及び熱可塑性ポリイミド層がこの順に積層された多層構造を有し、
前記接着層は、2つの前記熱可塑性ポリイミド層に接して設けられている請求項1に記載の金属張積層板の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子部品として有用な金属張積層板及び回路基板に関する。
【背景技術】
【0002】
近年、電子機器の小型化、軽量化、省スペース化の進展に伴い、薄く軽量で、可撓性を有し、屈曲を繰り返しても優れた耐久性を持つフレキシブルプリント配線板(FPC;Flexible Printed Circuits)の需要が増大している。FPCは、限られたスペースでも立体的かつ高密度の実装が可能であるため、例えば、HDD、DVD、スマートフォン等の電子機器の可動部分の配線や、ケーブル、コネクター等の部品にその用途が拡大しつつある。
【0003】
上述した高密度化に加えて、機器の高性能化が進んだことから、伝送信号の高周波化への対応も必要とされている。高周波信号を伝送する際に、伝送経路における伝送損失が大きい場合、電気信号のロスや信号の遅延時間が長くなるなどの不都合が生じる。そのため、今後はFPCにおいても、伝送損失の低減が重要となる。高周波信号伝送に対応するために、FPC材料として汎用されているポリイミドの代わりに、より低誘電率、低誘電正接の液晶ポリマーを誘電体層とするものが用いられている。しかしながら、液晶ポリマーは、誘電特性に優れているものの、耐熱性や金属層との接着性に改善の余地がある。
【0004】
また、フッ素系樹脂も低誘電率、低誘電正接を示すポリマーとして知られている。例えば、高周波信号伝送への対応が可能で接着性に優れたFPC材料として、フッ素系樹脂層の両面に、それぞれ、熱可塑性ポリイミド層と高耐熱性ポリイミド層とを有するポリイミド接着フィルムを貼り合わせてなる絶縁フィルムが提案されている(特許文献1)。特許文献1の絶縁フィルムは、フッ素系樹脂を使用しているため、誘電特性の点では優れているが、寸法安定性に課題があり、特に、FPCに適用した場合、エッチングによる回路加工の前後の寸法変化が大きくなることが懸念される。そのため、フッ素系樹脂の厚みを厚くすること及び厚み比率を高くすることが困難となる。
【0005】
ところで、電子材料に使用される接着層に関する技術として、エポキシ樹脂及びフェノキシ樹脂を含む樹脂組成物や熱可塑性ポリイミドとマレイミド化合物等を含む樹脂組成物の接着シートへの適用が提案されている(特許文献2、特許文献3)。特許文献2及び3のフィルム状接着シートは、ガラス転移温度が低く、積層材料に対して高接着性を示すという利点を有するものである。しかしながら、特許文献2及び3では、高周波信号伝送への適用の可能性や、金属張積層板における接着層への適用については検討されていない。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2017-24265号公報
【特許文献2】特許第6191800号公報
【特許文献3】特許第5553108号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の目的は、高周波伝送においても伝送損失の低減が可能で、寸法安定性に優れた金属張積層板及び回路基板を提供することである。
【課題を解決するための手段】
【0008】
本発明者らは、鋭意研究の結果、金属張積層板に、ガラス転移温度が低く、低弾性率である接着層を用いることで、上記課題を解決できることを見出し、本発明を完成した。
【0009】
本発明の金属張積層板は、第1の金属層と、前記第1の金属層の少なくとも片側の面に積層された第1の絶縁樹脂層と、を有する第1の片面金属張積層板と、
第2の金属層と、前記第2の金属層の少なくとも片側の面に積層された第2の絶縁樹脂層と、を有する第2の片面金属張積層板と、
前記第1の絶縁樹脂層及び前記第2の絶縁樹脂層に当接するように配置されて、前記第1の片面金属張積層板と前記第2の片面金属張積層板との間に積層された接着層と、を備えた金属張積層板である。
本発明の金属張積層板は、前記接着層が、熱可塑性樹脂又は熱硬化性樹脂で構成され、下記の条件(i)~(iii);
(i)50℃での貯蔵弾性率が1800MPa以下であること;
(ii)180℃から260℃の温度領域での貯蔵弾性率の最大値が800MPa以下であること;
(iii)ガラス転移温度(Tg)が180℃以下であること;
を満たす。
【0010】
本発明の金属張積層板は、前記第1の絶縁樹脂層と前記接着層と前記第2の絶縁樹脂層の合計厚みT1が70~500μmの範囲内であってもよく、かつ、前記合計厚みT1に対する前記接着層の厚みT2の比率(T2/T1)が0.5~0.8の範囲内であってもよい。
【0011】
本発明の金属張積層板において、前記第1の絶縁樹脂層及び前記第2の絶縁樹脂層は、共に、熱可塑性ポリイミド層、非熱可塑性ポリイミド層及び熱可塑性ポリイミド層がこの順に積層された多層構造を有していてもよく、
前記接着層は、2つの前記熱可塑性ポリイミド層に接して設けられていてもよい。
【0012】
本発明の金属張積層板において、前記非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドは、テトラカルボン酸残基及びジアミン残基を含み、全ジアミン残基の100モル部に対して、下記一般式(1)で表されるジアミン化合物から誘導されるジアミン残基の含有量が80モル部以上であってもよい。
【0013】
【化1】
【0014】
式(1)において、連結基Zは単結合又は-COO-を示し、Yは独立に、ハロゲン原子若しくはフェニル基で置換されてもよい炭素数1~3の1価の炭化水素、又は炭素数1~3のアルコキシ基、又は炭素数1~3のパーフルオロアルキル基、又はアルケニル基を示し、nは0~2の整数を示し、p及びqは独立に0~4の整数を示す。
【0015】
本発明の金属張積層板は、前記第1の絶縁樹脂層と前記接着層と前記第2の絶縁樹脂層の全体の熱膨張係数が10ppm/K以上30ppm/K以下の範囲内であってもよい。
【0016】
本発明の金属張積層板は、前記第1の金属層及び前記第2の金属層が、共に、銅箔からなるものであってもよい。
【0017】
本発明の回路基板は、上記いずれかの金属張積層板における前記第1の金属層及び/又は前記第2の金属層を配線に加工してなるものである。
【発明の効果】
【0018】
本発明の金属張積層板は、特定のパラメータを有する接着層を介在させて2つの片面金属張積層板を貼り合わせた構造によって、絶縁樹脂層の厚みを厚くすることを可能とし、且つ寸法安定性の確保が可能である。また、10GHz以上という高周波信号を伝送する回路基板等へ適用した際に、伝送損失を低減することが可能となる。従って、回路基板において信頼性と歩留まりの向上を図ることができる。
【図面の簡単な説明】
【0019】
図1】本発明の一実施の形態の金属張積層板の構成を示す模式図である。
図2】本発明の好ましい実施の形態の金属張積層板の構成を示す模式的断面図である。
【発明を実施するための形態】
【0020】
本発明の実施の形態について、適宜図面を参照して説明する。
【0021】
[金属張積層板]
図1は、本発明の一実施の形態の金属張積層板の構成を示す模式図である。本実施の形態の金属張積層板(C)は、一対の片面金属張積層板を、接着層(B)で貼り合わせた構造を有している。すなわち、金属張積層板(C)は、第1の片面金属張積層板(C1)と、第2の片面金属張積層板(C2)と、これら第1の片面金属張積層板(C1)及び第2の片面金属張積層板(C2)の間に積層された接着層(B)を備えている。ここで、第1の片面金属張積層板(C1)は、第1の金属層(M1)と、この第1の金属層(M1)の少なくとも片側の面に積層された第1の絶縁樹脂層(P1)と、を有する。第2の片面金属張積層板(C2)は、第2の金属層(M2)と、この第2の金属層(M2)の少なくとも片側の面に積層された第2の絶縁樹脂層(P2)と、を有する。そして、接着層(B)は、第1の絶縁樹脂層(P1)及び第2の絶縁樹脂層(P2)に当接するように配置されている。つまり、金属張積層板(C)は、第1の金属層(M1)/第1の絶縁樹脂層(P1)/接着層(B)/第2の絶縁樹脂層(P2)/第2の金属層(M2)がこの順に積層された構造を有する。第1の金属層(M1)と第2の金属層(M2)は、それぞれ最も外側に位置し、それらの内側に第1の絶縁樹脂層(P1)及び第2の絶縁樹脂層(P2)が配置され、さらに第1の絶縁樹脂層(P1)と第2の絶縁樹脂層(P2)の間には、接着層(B)が介在配置されている。
【0022】
<片面金属張積層板>
一対の片面金属張積層板(C1,C2)の構成は、特に限定されず、FPC材料として一般的なものを使用可能であり、市販の銅張積層板などであってもよい。なお、第1の片面金属張積層板(C1)と第2の片面金属張積層板(C2)の構成は同じであってもよいし、異なっていてもよい。
【0023】
(金属層)
第1の金属層(M1)及び第2の金属層(M2)の材質としては、特に制限はないが、例えば、銅、ステンレス、鉄、ニッケル、ベリリウム、アルミニウム、亜鉛、インジウム、銀、金、スズ、ジルコニウム、タンタル、チタン、鉛、マグネシウム、マンガン及びこれらの合金等が挙げられる。この中でも、特に銅又は銅合金が好ましい。なお、後述する本実施の形態の回路基板における配線層の材質も第1の金属層(M1)及び第2の金属層(M2)と同様である。
【0024】
第1の金属層(M1)及び第2の金属層(M2)の厚みは特に限定されるものではないが、例えば銅箔等の金属箔を用いる場合、好ましくは35μm以下であり、より好ましくは5~25μmの範囲内がよい。生産安定性及びハンドリング性の観点から金属箔の厚みの下限値は5μmとすることが好ましい。なお、銅箔を用いる場合は、圧延銅箔でも電解銅箔でもよい。また、銅箔としては、市販されている銅箔を用いることができる。
【0025】
また、金属箔は、例えば、防錆処理や、接着力の向上を目的として、例えばサイディング、アルミニウムアルコラート、アルミニウムキレート、シランカップリング剤等による表面処理を施してもよい。
【0026】
(絶縁樹脂層)
第1の絶縁樹脂層(P1)及び第2の絶縁樹脂層(P2)としては、電気的絶縁性を有する樹脂により構成されるものであれば特に限定はなく、例えばポリイミド、エポキシ樹脂、フェノール樹脂、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、シリコーン、ETFEなどを挙げることができるが、ポリイミドによって構成されることが好ましい。また、第1の絶縁樹脂層(P1)及び第2の絶縁樹脂層(P2)は、単層に限らず、複数の樹脂層が積層されたものであってもよい。なお、本発明でポリイミドという場合、ポリイミドの他、ポリアミドイミド、ポリエーテルイミド、ポリエステルイミド、
ポリシロキサンイミド、ポリベンズイミダゾールイミドなど、分子構造中にイミド基を有するポリマーからなる樹脂を意味する。
【0027】
<接着層>
接着層(B)は、熱可塑性樹脂又は熱硬化性樹脂で構成され、(i)50℃での貯蔵弾性率が1800MPa以下であること、(ii)180℃から260℃の貯蔵弾性率の最大値が800MPa以下であること、及び(iii)ガラス転移温度(Tg)が180℃以下であることを満たすものである。このような樹脂としては、例えばポリイミド樹脂、ポリアミド樹脂、エポキシ樹脂、フェノキシ樹脂、アクリル樹脂、ポリウレタン樹脂、スチレン樹脂、ポリエステル樹脂、フェノール樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンサルファイド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、シリコーン樹脂、ポリエーテルケトン樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、スチレン-マレイミド共重合体、マレイミド-ビニル化合物共重合体、又は(メタ)アクリル共重合体、ベンゾオキサジン樹脂、ビスマレイミド樹脂及びシアネートエステル樹脂等の樹脂が挙げられ、これらの中から、条件(i)~(iii)を満たすものを選択したり、あるいは、条件(i)~(iii)を満たすように設計したりして、接着層(B)に使用することができる。
【0028】
接着層(B)が熱硬化性樹脂である場合、有機過酸化物、硬化剤、硬化促進剤等を含有してもよく、必要に応じて、硬化剤と硬化促進剤、又は触媒と助触媒を併用してもよい。上記条件(i)~(iii)を確保できる範囲で、硬化剤、硬化促進剤、触媒、助触媒、及び有機過酸化物の添加量、及び添加の有無を判断すればよい。
【0029】
<層厚>
金属張積層板(C)は、第1の絶縁樹脂層(P1)と接着層(B)と第2の絶縁樹脂層(P2)の合計厚みをT1としたとき、該合計厚みT1が70~500μmの範囲内であり、100~300μmの範囲内であることが好ましい。合計厚みT1が70μm未満では、回路基板とした際の伝送損失を低下させる効果が不十分となり、500μmを超えると、生産性低下の恐れがある。
【0030】
また、接着層(B)の厚みT2は、例えば50~450μmの範囲内にあることが好ましく、50~250μmの範囲内がより好ましい。接着層(B)の厚みT2が上記下限値に満たないと、高周波基板として伝送損失が大きくなることがある。一方、接着層(B)の厚みが上記上限値を超えると、寸法安定性が低下するなどの不具合が生じることがある。
【0031】
また、合計厚みT1に対する接着層(B)の厚みT2の比率(T2/T1)は、0.5~0.8の範囲内であり、0.5~0.7の範囲内であることが好ましい。比率(T2/T1)が0.5未満では、T1を70μm以上とすることが困難となり、0.8を超えると寸法安定性が低下するなどの不具合が生じる。
【0032】
第1の絶縁樹脂層(P1)及び第2の絶縁樹脂層(P2)の厚みT3は、共に、例えば、12~100μmの範囲内にあることが好ましく、12~50μmの範囲内がより好ましい。第1の絶縁樹脂層(P1)及び第2の絶縁樹脂層(P2)の厚みT3が上記の下限値に満たないと、金属張積層板(C)の反りなどの問題が生じることがある。第1の絶縁樹脂層(P1)及び第2の絶縁樹脂層(P2)の厚みT3が上記の上限値を超えると、生産性が低下するなどの不具合が生じる。なお、第1の絶縁樹脂層(P1)と第2の絶縁樹脂層(P2)は、必ずしも同じ厚みでなくてもよい。
【0033】
<熱膨張係数>
第1の絶縁樹脂層(P1)及び第2の絶縁樹脂層(P2)は、熱膨張係数(CTE)が10ppm/K以上がよく、好ましくは10ppm/K以上30ppm/K以下の範囲内、より好ましくは15ppm/K以上25ppm/K以下の範囲内である。CTEが10ppm/K未満であるか、又は30ppm/Kを超えると、反りが発生したり、寸法安定性が低下したりする。使用する原料の組合せ、厚み、乾燥・硬化条件を適宜変更することで所望のCTEを有するポリイミド層とすることができる。
【0034】
接着層(B)は高熱膨張性であるが低弾性であり、ガラス転移温度が低いため、CTEが30ppm/Kを超えても、積層時に発生する内部応力を緩和することができる。
また、第1の絶縁樹脂層(P1)、接着層(B)及び第2の絶縁樹脂層(P2)の全体の熱膨張係数(CTE)は、10ppm/K以上がよく、好ましくは10ppm/K以上30ppm/K以下の範囲内、より好ましくは15ppm/K以上25ppm/K以下の範囲内である。これらの樹脂層全体のCTEが10ppm/K未満であるか、又は30ppm/Kを超えると、反りが発生したり、寸法安定性が低下したりする。
【0035】
<ガラス転移温度(Tg)>
接着層(B)は、ガラス転移温度(Tg)が180℃以下であり、好ましくは160℃以下の範囲内であることがよい。接着層(B)のガラス転移温度を180℃以下とすることによって、低温での熱圧着が可能になるため、積層時に発生する内部応力を緩和し、回路加工後の寸法変化を抑制できる。接着層(B)のTgが180℃を超えると、第1の絶縁樹脂層(P1)と第2の絶縁樹脂層(P2)との間に介在させて接着する際の温度が高くなり、回路加工後の寸法安定性を損なう恐れがある。
【0036】
<貯蔵弾性率>
接着層(B)は、50℃での貯蔵弾性率が1800MPa以下であり、180℃から260℃の温度領域での貯蔵弾性率の最大値が800MPa以下である。このような接着層(B)の特性が、熱圧着時の内部応力を緩和し、回路加工後の寸法安定性を保持する要因であると考えられる。また、接着層(B)は、前記温度領域の上限温度(260℃)での貯蔵弾性率が、800MPa以下であることが好ましく、500MPa以下の範囲内であることがより好ましい。このような貯蔵弾性率とすることによって、回路加工後の半田リフロー工程を経由した後においても、反りが生じにくい。
【0037】
<誘電正接>
第1の絶縁樹脂層(P1)及び第2の絶縁樹脂層(P2)は、例えば回路基板に適用する場合において、誘電損失の悪化を抑制するために、10GHzにおける誘電正接(Tanδ)が、好ましくは0.02以下、より好ましくは0.0005以上0.01以下の範囲内、更に好ましくは0.001以上0.008以下の範囲内がよい。第1の絶縁樹脂層(P1)及び第2の絶縁樹脂層(P2)の10GHzにおける誘電正接が0.02を超えると、回路基板に適用した際に、高周波信号の伝送経路上で電気信号のロスなどの不都合が生じやすくなる。一方、第1の絶縁樹脂層(P1)及び第2の絶縁樹脂層(P2)の10GHzにおける誘電正接の下限値は特に制限されないが、回路基板の絶縁樹脂層としての物性制御を考慮している。
【0038】
接着層(B)は、例えば回路基板に適用する場合において、誘電損失の悪化を抑制するために、10GHzにおける誘電正接(Tanδ)が、好ましくは0.015以下、より好ましくは0.01以下、更に好ましくは0.006以下がよい。接着層(B)の10GHzにおける誘電正接が0.015を超えると、回路基板に適用した際に、高周波信号の伝送経路上で電気信号のロスなどの不都合が生じやすくなる。一方、接着層(B)の10GHzにおける誘電正接の下限値は特に制限されない。
【0039】
<誘電率>
第1の絶縁樹脂層(P1)及び第2の絶縁樹脂層(P2)は、例えば回路基板の絶縁樹脂層として適用する場合において、インピーダンス整合性を確保するために、絶縁樹脂層全体として、10GHzにおける誘電率が4.0以下であることが好ましい。第1の絶縁樹脂層(P1)及び第2の絶縁樹脂層(P2)の10GHzにおける誘電率が4.0を超えると、回路基板に適用した際に、第1の絶縁樹脂層(P1)及び第2の絶縁樹脂層(P2)の誘電損失の悪化に繋がり、高周波信号の伝送経路上で電気信号のロスなどの不都合が生じやすくなる。
【0040】
接着層(B)は、例えば回路基板に適用する場合において、インピーダンス整合性を確保するために、10GHzにおける誘電率が4.0以下であることが好ましい。接着層(B)の10GHzにおける誘電率が4.0を超えると、回路基板に適用した際に、接着層(B)の誘電損失の悪化に繋がり、高周波信号の伝送経路上で電気信号のロスなどの不都合が生じやすくなる。
【0041】
<作用>
本実施の形態の金属張積層板(C)では、絶縁樹脂層全体の低誘電正接化を図り、高周波伝送への対応を可能にするため、接着層(B)の厚み自体を大きくしている。しかし、一般に接着層(B)のように弾性率が低い材料は高い熱膨張係数を示すため、層厚を大きくすることは、寸法安定性の低下を招く恐れがある。ここで、金属張積層板(C)を回路加工した場合に発生する寸法変化は、主に、下記のa)~c)のメカニズムによって発生し、b)とc)の合計量がエッチング後の寸法法変化となって発現する、と考えられる。
a)金属張積層板(C)の製造時に、樹脂層に内部応力が蓄積される。
b)回路加工時に、金属層をエッチングすることによって、a)で蓄積した内部応力が開放され、樹脂層が膨張もしくは収縮する。
c)回路加工時に、金属層をエッチングすることによって、露出した樹脂が吸湿し、膨張する。
【0042】
上記a)の内部応力の要因は、ア)金属層と樹脂層との熱膨張係数の差、イ)フィルム化によって生じる樹脂内部歪み、である。ここで、ア)に起因する内部応力の大きさは、熱膨張係数の差だけでなく、接着時の温度(加熱温度)から冷却固化の温度までの温度差ΔTも影響する。つまり、内部応力は、温度差ΔTに比例して大きくなるため、金属層と樹脂層との熱膨張係数の差が小さくても、接着に高温が必要な樹脂であるほど、内部応力は大きくなる。本実施の形態の金属張積層板(C)では、接着層(B)として、上記条件(i)~(iii)を満たすものを採用することによって、内部応力を小さくして寸法安定性を確保している。
【0043】
また、接着層(B)は、第1の絶縁樹脂層(P1)と第2の絶縁樹脂層(P2)との間に積層されているので、中間層としての機能を果たし、反りと寸法変化を抑制する。更に、例えば半導体チップの実装時における半田リフロー等の加熱工程においても、第1の絶縁樹脂層(P1)又は第2の絶縁樹脂層(P2)によって直接的な熱や酸素との接触が遮られるので、酸化劣化の影響を受けにくく寸法変化は生じにくい。このように、第1の絶縁樹脂層(P1)、接着層(B)及び第2の絶縁樹脂層(P2)という層構成の特徴による利点も有する。
【0044】
[金属張積層板の製造]
金属張積層板(C)は、例えば以下の方法1、又は方法2で製造できる。
[方法1]
接着層(B)となる樹脂組成物をシート状に成形して接着シートとなし、該接着シートを、第1の片面金属張積層板(C1)の第1の絶縁樹脂層(P1)と、第2の片面金属張積層板(C2)の第2の絶縁樹脂層(P2)との間に配置して貼り合わせ、熱圧着させる方法。
[方法2]
接着層(B)となる樹脂組成物の溶液を、第1の片面金属張積層板(C1)の第1の絶縁樹脂層(P1)、又は第2の片面金属張積層板(C2)の第2の絶縁樹脂層(P2)のいずれか片方、または両方に、所定の厚みで塗布・乾燥した後、塗布膜の側を貼り合わせて熱圧着させる方法。
【0045】
方法1で用いる接着シートは、例えば、任意の支持基材に、接着層(B)となる樹脂組成物の溶液を塗布・乾燥した後、支持基材から剥がして接着シートとする方法よって製造できる。
また、上記において、接着層(B)となる樹脂組成物の溶液を支持基材や絶縁樹脂層(P1、P2)上に塗布する方法としては、特に制限されず、例えばコンマ、ダイ、ナイフ、リップ等のコーターにて塗布することが可能である。
【0046】
以上のようにして得られる本実施の形態の金属張積層板(C)は、第1の金属層(M1)及び/又は第2の金属層(M2)をエッチングするなどして配線回路加工することによって、片面FPC又は両面FPCなどの回路基板を製造することができる。
【0047】
[金属張積層板の好ましい構成例]
次に、本実施の形態の金属張積層板(C)における第1の絶縁樹脂層(P1)、第2の絶縁樹脂層(P2)、接着層(B)、第1の金属層(M1)及び第2の金属層(M2)をより具体的に説明する。
【0048】
図2は、本実施の形態の金属張積層板100の構造を示す模式的断面図である。金属張積層板100は、図2に示すように、第1の金属層(M1)及び第2の金属層(M2)としての金属層101,101と、第1の絶縁樹脂層(P1)及び第2の絶縁樹脂層(P2)としてのポリイミド層110,110と、接着層(B)としての接着性ポリイミド層120を備えている。ここで、金属層101およびポリイミド層110によって、第1の片面金属張積層板(C1)又は第2の片面金属張積層板(C2)としての片面金属張積層板130が形成されている。本態様では、第1の片面金属張積層板(C1)と第2の片面金属張積層板(C2)の構成は同じである。
【0049】
ポリイミド層110,110は、いずれも、複数のポリイミド層が積層された構造であってもよい。例えば、図2に示す態様では、ベース層として、非熱可塑性ポリイミドからなる非熱可塑性ポリイミド層111,111と、非熱可塑性ポリイミド層111,111の両側にそれぞれ設けられた、熱可塑性ポリイミドからなる熱可塑性ポリイミド層112,112とを備えた3層構造をなしている。なお、ポリイミド層110,110は、それぞれ3層構造に限らない。
【0050】
図2に示す金属張積層板100において、2つの片面金属張積層板130,130における外側の熱可塑性ポリイミド層112,112は、それぞれ接着性ポリイミド層120に貼り合わされ、金属張積層板100を形成している。接着性ポリイミド層120は、金属張積層板100において、2つの片面金属張積層板130,130を貼り合わせるための接着層であり、かつ、寸法安定性を確保しつつ、金属張積層板100の絶縁樹脂層を厚くするためのものである。接着性ポリイミド層120については、上記接着層(B)について説明したとおりである。
【0051】
次に、ポリイミド層110,110を構成する非熱可塑性ポリイミド層111と、熱可塑性ポリイミド層112について説明する。なお、「非熱可塑性ポリイミド」とは、一般に加熱しても軟化、接着性を示さないポリイミドのことであるが、本発明では、動的粘弾性測定装置(DMA)を用いて測定した、30℃における貯蔵弾性率が1.0×10Pa以上であり、350℃における貯蔵弾性率が1.0×10Pa以上であるポリイミドをいう。また、「熱可塑性ポリイミド」とは、一般にガラス転移温度(Tg)が明確に確認できるポリイミドのことであるが、本発明では、DMAを用いて測定した、30℃における貯蔵弾性率が1.0×10Pa以上であり、350℃における貯蔵弾性率が1.0×10Pa未満であるポリイミドをいう。
【0052】
非熱可塑性ポリイミド層:
非熱可塑性ポリイミド層111を構成する非熱可塑性ポリイミドは、テトラカルボン酸残基及びジアミン残基を含むものである。なお、本発明において、テトラカルボン酸残基とは、テトラカルボン酸二無水物から誘導された4価の基のことを表し、ジアミン残基とは、ジアミン化合物から誘導された2価の基のことを表す。ポリイミドは、芳香族テトラカルボン酸二無水物から誘導される芳香族テトラカルボン酸残基及び芳香族ジアミンから誘導される芳香族ジアミン残基を含むことが好ましい。
【0053】
(テトラカルボン酸残基)
非熱可塑性ポリイミド層111を構成する非熱可塑性ポリイミドは、テトラカルボン酸残基として、3,3’、4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)及び1,4-フェニレンビス(トリメリット酸モノエステル)二無水物(TAHQ)の少なくとも1種から誘導されるテトラカルボン酸残基並びにピロメリット酸二無水物(PMDA)及び2,3,6,7-ナフタレンテトラカルボン酸二無水物(NTCDA)の少なくとも1種から誘導されるテトラカルボン酸残基を含有することが好ましい。
【0054】
BPDAから誘導されるテトラカルボン酸残基(以下、「BPDA残基」ともいう。)及びTAHQから誘導されるテトラカルボン酸残基(以下、「TAHQ残基」ともいう。)は、ポリマーの秩序構造を形成しやすく、分子の運動抑制により誘電正接や吸湿性を低下させることができる。BPDA残基は、ポリイミド前駆体のポリアミド酸としてのゲル膜の自己支持性を付与できるが、その一方で、イミド化後のCTEを増大させるとともに、ガラス転移温度を低くして耐熱性を低下させる傾向になる。
【0055】
このような観点から、非熱可塑性ポリイミド層111を構成する非熱可塑性ポリイミドが、全テトラカルボン酸残基の100モル部に対して、BPDA残基及びTAHQ残基の合計を好ましくは30モル部以上60モル部以下の範囲内、より好ましくは40モル部以上50モル部以下の範囲内で含有するように制御する。BPDA残基及びTAHQ残基の合計が30モル部未満では、ポリマーの秩序構造の形成が不十分となって、耐吸湿性が低下したり、誘電正接の低減が不十分となり、60モル部を超えると、CTEの増加や面内リタデーション(RO)の変化量の増大のほか、耐熱性が低下したりするおそれがある。
【0056】
また、ピロメリット酸二無水物から誘導されるテトラカルボン酸残基(以下、「PMDA残基」ともいう。)及び2,3,6,7-ナフタレンテトラカルボン酸二無水物から誘導されるテトラカルボン酸残基(以下、「NTCDA残基」ともいう。)は、剛直性を有するため、面内配向性を高め、CTEを低く抑えるとともに、面内リタデーション(RO)の制御や、ガラス転移温度の制御の役割を担う残基である。一方で、PMDA残基は、分子量が小さいため、その量が多くなり過ぎると、ポリマーのイミド基濃度が高くなり、極性基が増加して吸湿性が大きくなってしまい、分子鎖内部の水分の影響により誘電正接が増加する。また、NTCDA残基は、剛直性が高いナフタレン骨格によりフィルムが脆くなりやすく、弾性率を増大させる傾向になる。
そのため、非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドは、全テトラカルボン酸残基の100モル部に対して、PMDA残基及びNTCDA残基の合計を好ましくは40モル部以上70モル部以下の範囲内、より好ましくは50モル部以上60モル部以下の範囲内、さらに好ましくは50~55モル部の範囲内で含有する。PMDA残基及びNTCDA残基の合計が40モル部未満では、CTEが増加したり、耐熱性が低下したりするおそれがあり、70モル部を超えると、ポリマーのイミド基濃度が高くなり、極性基が増加して低吸湿性が損なわれ、誘電正接が増加するおそれやフィルムが脆くなりフィルムの自己支持性が低下するおそれがある。
【0057】
また、BPDA残基及びTAHQ残基の少なくとも1種並びにPMDA残基及びNTCDA残基の少なくとも1種の合計が、全テトラカルボン酸残基の100モル部に対して80モル部以上、好ましくは90モル部以上であることがよい。
【0058】
また、BPDA残基及びTAHQ残基の少なくとも1種と、PMDA残基及びNTCDA残基少なくとも1種のモル比{(BPDA残基+TAHQ残基)/(PMDA残基+NTCDA残基)}を0.4以上1.5以下の範囲内、好ましくは0.6以上1.3以下の範囲内、より好ましくは0.8以上1.2以下の範囲内とし、CTEとポリマーの秩序構造の形成を制御することがよい。
【0059】
PMDA及びNTCDAは、剛直骨格を有するため、他の一般的な酸無水物成分に比べて、ポリイミド中の分子の面内配向性の制御が可能であり、熱膨張係数(CTE)の抑制とガラス転移温度(Tg)の向上効果がある。また、BPDA及びTAHQは、PMDAと比較し分子量が大きいため、仕込み比率の増加によりイミド基濃度が低下することで、誘電正接の低下や吸湿率の低下に効果がある。一方でBPDA及びTAHQの仕込み比率が増加すると、ポリイミド中の分子の面内配向性が低下し、CTEの増加に繋がる。さらに分子内の秩序構造の形成が進み、ヘイズ値が増加する。このような観点から、PMDA及びNTCDAの合計の仕込み量は、原料の全酸無水物成分の100モル部に対し、40~70モル部の範囲内、好ましくは50~60モル部の範囲内、より好ましくは50~55モル部の範囲内がよい。原料の全酸無水物成分の100モル部に対し、PMDA及びNTCDAの合計の仕込み量が40モル部未満であると、分子の面内配向性が低下し、低CTE化が困難となり、またTgの低下による加熱時におけるフィルムの耐熱性や寸法安定性が低下する。一方、PMDA及びNTCDAの合計の仕込み量が70モル部を超えると、イミド基濃度の増加により吸湿率が悪化したり、弾性率を増大させる傾向になる。
【0060】
また、BPDA及びTAHQは、分子運動の抑制やイミド基濃度の低下による低誘電正接化、吸湿率低下に効果があるが、イミド化後のポリイミドフィルムとしてのCTEを増大させる。このような観点から、BPDA及びTAHQの合計の仕込み量は、原料の全酸無水物成分の100モル部に対し、30~60モル部の範囲内、好ましくは40~50モル部の範囲内、より好ましくは40~45モル部の範囲内がよい。
【0061】
非熱可塑性ポリイミド層111を構成する非熱可塑性ポリイミドに含まれる、上記BPDA残基、TAHQ残基、PMDA残基、NTCDA残基以外のテトラカルボン酸残基としては、例えば、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、2,3',3,4'-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-、2,3,3',4'-又は3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,3',3,4'-ジフェニルエーテルテトラカルボン酸二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、3,3'',4,4''-、2,3,3'',4''-又は2,2'',3,3''-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-又は3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-又は3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-又は3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-又は3,4-ジカルボキシフェニル)エタン二無水物、1,2,7,8-、1,2,6,7-又は1,2,9,10-フェナンスレン-テトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)テトラフルオロプロパン二無水物、2,3,5,6-シクロヘキサン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、2,6-又は2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-(又は1,4,5,8-)テトラクロロナフタレン-1,4,5,8-(又は2,3,6,7-)テトラカルボン酸二無水物、2,3,8,9-、3,4,9,10-、4,5,10,11-又は5,6,11,12-ペリレン-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物、4,4’-ビス(2,3-ジカルボキシフェノキシ)ジフェニルメタン二無水物、エチレングリコール ビスアンヒドロトリメリテート等の芳香族テトラカルボン酸二無水物から誘導されるテトラカルボン酸残基が挙げられる。
【0062】
(ジアミン残基)
非熱可塑性ポリイミド層111を構成する非熱可塑性ポリイミドに含まれるジアミン残基としては、一般式(1)で表されるジアミン化合物から誘導されるジアミン残基が好ましい。
【0063】
【化2】
【0064】
式(1)において、連結基Zは単結合又は-COO-を示し、Yは独立に、ハロゲン原子若しくはフェニル基で置換されてもよい炭素数1~3の1価の炭化水素、又は炭素数1~3のアルコキシ基、又は炭素数1~3のパーフルオロアルキル基、又はアルケニル基を示し、nは0~2の整数を示し、p及びqは独立に0~4の整数を示す。ここで、「独立に」とは、上記式(1)において、複数の置換基Y、さらに整数p、qが、同一でもよいし、異なっていてもよいことを意味する。なお、上記式(1)において、末端の二つのアミノ基における水素原子は置換されていてもよく、例えば-NR(ここで、R,Rは、独立してアルキル基などの任意の置換基を意味する)であってもよい。
【0065】
一般式(1)で表されるジアミン化合物(以下、「ジアミン(1)」と記すことがある)は、1ないし3つのベンゼン環を有する芳香族ジアミンである。ジアミン(1)は、剛直構造を有しているため、ポリマー全体に秩序構造を付与する作用を有している。そのため、ガス透過性が低く、低吸湿性のポリイミドが得られ、分子鎖内部の水分を低減できるため、誘電正接を下げることができる。ここで、連結基Zとしては、単結合が好ましい。
【0066】
ジアミン(1)としては、例えば、1,4-ジアミノベンゼン(p-PDA;パラフェニレンジアミン)、2,2’-ジメチル-4,4’-ジアミノビフェニル(m-TB)、2,2’-n-プロピル-4,4’-ジアミノビフェニル(m-NPB)、4-アミノフェニル-4’-アミノベンゾエート(APAB)等を挙げることができる。
【0067】
非熱可塑性ポリイミド層111を構成する非熱可塑性ポリイミドは、ジアミン(1)から誘導されるジアミン残基を、全ジアミン残基の100モル部に対して、好ましくは80モル部以上、より好ましくは85モル部以上含有することがよい。ジアミン(1)を上記範囲内の量で使用することによって、モノマー由来の剛直構造により、ポリマー全体に秩序構造が形成されやすくなり、ガス透過性が低く、低吸湿性、かつ低誘電正接である非熱可塑性ポリイミドが得られやすい。
【0068】
また、非熱可塑性ポリイミドにおける全ジアミン残基の100モル部に対して、ジアミン(1)から誘導されるジアミン残基が80モル部以上85モル部以下の範囲内である場合は、より剛直であり、面内配向性に優れる構造であるという観点から、ジアミン(1)として、1,4-ジアミノベンゼンを用いることが好ましい。
【0069】
非熱可塑性ポリイミド層111を構成する非熱可塑性ポリイミドに含まれるその他のジアミン残基としては、例えば、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)ビフェニル、ビス[1-(3-アミノフェノキシ)]ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、9,9-ビス[4-(3-アミノフェノキシ)フェニル]フルオレン、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-メチレンジ-o-トルイジン、4,4’-メチレンジ-2,6-キシリジン、4,4’-メチレン-2,6-ジエチルアニリン、3,3’-ジアミノジフェニルエタン、3,3’-ジアミノビフェニル、3,3’-ジメトキシベンジジン、3,3''-ジアミノ-p-テルフェニル、4,4'-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4'-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジン、2'-メトキシ-4,4'-ジアミノベンズアニリド、4,4'-ジアミノベンズアニリド、1,3-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、6-アミノ-2-(4-アミノフェノキシ)ベンゾオキサゾール等の芳香族ジアミン化合物から誘導されるジアミン残基、ダイマー酸の二つの末端カルボン酸基が1級のアミノメチル基又はアミノ基に置換されてなるダイマー酸型ジアミン等の脂肪族ジアミン化合物から誘導されるジアミン残基が挙げられる。
【0070】
非熱可塑性ポリイミドにおいて、上記テトラカルボン酸残基及びジアミン残基の種類や、2種以上のテトラカルボン酸残基又はジアミン残基を適用する場合のそれぞれのモル比を選定することにより、熱膨張係数、貯蔵弾性率、引張弾性率等を制御することができる。また、非熱可塑性ポリイミドにおいて、ポリイミドの構造単位を複数有する場合は、ブロックとして存在しても、ランダムに存在していてもよいが、面内リタデーション(RO)のばらつきを抑制する観点から、ランダムに存在することが好ましい。
【0071】
なお、非熱可塑性ポリイミドに含まれるテトラカルボン酸残基及びジアミン残基を、いずれも芳香族基とすることで、ポリイミドフィルムの高温環境下での寸法精度を向上させ、面内リタデーション(RO)の変化量を小さくすることができるため好ましい。
【0072】
非熱可塑性ポリイミドのイミド基濃度は、33%以下であることが好ましく、32%以下であることがより好ましい。ここで、「イミド基濃度」は、ポリイミド中のイミド基部(-(CO)-N-)の分子量を、ポリイミドの構造全体の分子量で除した値を意味する。イミド基濃度が33%を超えると、樹脂自体の分子量が小さくなるとともに、極性基の増加によって低吸湿性も悪化する。上記酸無水物とジアミン化合物の組み合わせを選択することによって、非熱可塑性ポリイミド中の分子の配向性を制御することで、イミド基濃度低下に伴うCTEの増加を抑制し、低吸湿性を担保している。
【0073】
非熱可塑性ポリイミドの重量平均分子量は、例えば10,000~400,000の範囲内が好ましく、50,000~350,000の範囲内がより好ましい。重量平均分子量が10,000未満であると、フィルムの強度が低下して脆化しやすい傾向となる。一方、重量平均分子量が400,000を超えると、過度に粘度が増加して塗工作業の際にフィルム厚みムラ、スジ等の不良が発生しやすい傾向になる。
【0074】
非熱可塑性ポリイミド層111の厚みは、ベース層としての機能を確保し、且つ製造時および熱可塑性ポリイミド塗工時の搬送性の観点から、6μm以上100μm以下の範囲内であることが好ましく、9μm以上50μm以下の範囲内がより好ましい。非熱可塑性ポリイミド層111の厚みが上記の下限値未満である場合、電気絶縁性やハンドリング性が不十分となり、上限値を超えると、生産性が低下する。
【0075】
非熱可塑性ポリイミド層111は、耐熱性の観点から、ガラス転移温度(Tg)が280℃以上であることが好ましい。
【0076】
また、反りを抑制する観点から、非熱可塑性ポリイミド層111の熱膨張係数は、1ppm/K以上30ppm/K以下の範囲内、好ましくは1ppm/K以上25ppm/K以下の範囲内、より好ましくは15ppm/K以上25ppm/K以下の範囲内にあることがよい。
【0077】
また、非熱可塑性ポリイミド層111を構成する非熱可塑性ポリイミドには、任意成分として、例えば可塑剤、エポキシ樹脂などの他の硬化樹脂成分、硬化剤、硬化促進剤、カップリング剤、充填剤、溶剤、難燃剤などを適宜配合することができる。ただし、可塑剤には、極性基を多く含有するものがあり、それが銅配線からの銅の拡散を助長する懸念があるため、可塑剤は極力使用しないことが好ましい。
【0078】
熱可塑性ポリイミド層:
熱可塑性ポリイミド層112を構成する熱可塑性ポリイミドは、テトラカルボン酸残基及びジアミン残基を含むものであり、芳香族テトラカルボン酸二無水物から誘導される芳香族テトラカルボン酸残基及び芳香族ジアミンから誘導される芳香族ジアミン残基を含むことが好ましい。
【0079】
(テトラカルボン酸残基)
熱可塑性ポリイミド層112を構成する熱可塑性ポリイミドに用いるテトラカルボン酸残基としては、上記非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドにおけるテトラカルボン酸残基として例示したものと同様のものを用いることができる。
【0080】
(ジアミン残基)
熱可塑性ポリイミド層112を構成する熱可塑性ポリイミドに含まれるジアミン残基としては、一般式(B1)~(B7)で表されるジアミン化合物から誘導されるジアミン残基が好ましい。
【0081】
【化3】
【0082】
式(B1)~(B7)において、Rは独立に炭素数1~6の1価の炭化水素基又はアルコキシ基を示し、連結基Aは独立に-O-、-S-、-CO-、-SO-、-SO-、-COO-、-CH-、-C(CH-、-NH-若しくは-CONH-から選ばれる2価の基を示し、nは独立に0~4の整数を示す。ただし、式(B3)中から式(B2)と重複するものは除き、式(B5)中から式(B4)と重複するものは除くものとする。ここで、「独立に」とは、上記式(B1)~(B7)の内の一つにおいて、または二つ以上において、複数の連結基A、複数のR若しくは複数のnが、同一でもよいし、異なっていてもよいことを意味する。なお、上記式(B1)~(B7)において、末端の二つのアミノ基における水素原子は置換されていてもよく、例えば-NR(ここで、R,Rは、独立してアルキル基などの任意の置換基を意味する)であってもよい。
【0083】
式(B1)で表されるジアミン(以下、「ジアミン(B1)」と記すことがある)は、2つのベンゼン環を有する芳香族ジアミンである。このジアミン(B1)は、少なくとも1つのベンゼン環に直結したアミノ基と2価の連結基Aとがメタ位にあることで、ポリイミド分子鎖が有する自由度が増加して高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(B1)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-、-CH-、-C(CH-、-CO-、-SO-、-S-が好ましい。
【0084】
ジアミン(B1)としては、例えば、3,3’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルプロパン、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノベンゾフェノン、(3,3’-ビスアミノ)ジフェニルアミン等を挙げることができる。
【0085】
式(B2)で表されるジアミン(以下、「ジアミン(B2)」と記すことがある)は、3つのベンゼン環を有する芳香族ジアミンである。このジアミン(B2)は、少なくとも1つのベンゼン環に直結したアミノ基と2価の連結基Aとがメタ位にあることで、ポリイミド分子鎖が有する自由度が増加して高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(B2)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-が好ましい。
【0086】
ジアミン(B2)としては、例えば1,4-ビス(3-アミノフェノキシ)ベンゼン、3-[4-(4-アミノフェノキシ)フェノキシ]ベンゼンアミン、3-[3-(4-アミノフェノキシ)フェノキシ]ベンゼンアミン等を挙げることができる。
【0087】
式(B3)で表されるジアミン(以下、「ジアミン(B3)」と記すことがある)は、3つのベンゼン環を有する芳香族ジアミンである。このジアミン(B3)は、1つのベンゼン環に直結した、2つの2価の連結基Aが互いにメタ位にあることで、ポリイミド分子鎖が有する自由度が増加して高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(B3)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-が好ましい。
【0088】
ジアミン(B3)としては、例えば1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、4,4'-[2-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、4,4'-[4-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、4,4'-[5-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン等を挙げることができる。
【0089】
式(B4)で表されるジアミン(以下、「ジアミン(B4)」と記すことがある)は、4つのベンゼン環を有する芳香族ジアミンである。このジアミン(B4)は、少なくとも1つのベンゼン環に直結したアミノ基と2価の連結基Aとがメタ位にあることで高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(B4)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-、-CH-、-C(CH-、-SO-、-CO-、-CONH-が好ましい。
【0090】
ジアミン(B4)としては、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、ビス[4,4'-(3-アミノフェノキシ)]ベンズアニリド等を挙げることができる。
【0091】
式(B5)で表されるジアミン(以下、「ジアミン(B5)」と記すことがある)は、4つのベンゼン環を有する芳香族ジアミンである。このジアミン(B5)は、少なくとも1つのベンゼン環に直結した、2つの2価の連結基Aが互いにメタ位にあることで、ポリイミド分子鎖が有する自由度が増加して高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(B5)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-が好ましい。
【0092】
ジアミン(B5)としては、4-[3-[4-(4-アミノフェノキシ)フェノキシ]フェノキシ]アニリン、4,4’-[オキシビス(3,1-フェニレンオキシ)]ビスアニリン等を挙げることができる。
【0093】
式(B6)で表されるジアミン(以下、「ジアミン(B6)」と記すことがある)は、4つのベンゼン環を有する芳香族ジアミンである。このジアミン(B6)は、少なくとも2つのエーテル結合を有することで高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(B6)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-C(CH-、-O-、-SO-、-CO-が好ましい。
【0094】
ジアミン(B6)としては、例えば、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、ビス[4-(4-アミノフェノキシ)フェニル]エーテル(BAPE)、ビス[4-(4-アミノフェノキシ)フェニル]スルホン(BAPS)、ビス[4-(4-アミノフェノキシ)フェニル]ケトン(BAPK)等を挙げることができる。
【0095】
式(B7)で表されるジアミン(以下、「ジアミン(B7)」と記すことがある)は、4つのベンゼン環を有する芳香族ジアミンである。このジアミン(B7)は、ジフェニル骨格の両側に、それぞれ屈曲性の高い2価の連結基Aを有するため、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(B7)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-が好ましい。
【0096】
ジアミン(B7)としては、例えば、ビス[4-(3-アミノフェノキシ)]ビフェニル、ビス[4-(4-アミノフェノキシ)]ビフェニル等を挙げることができる。
【0097】
熱可塑性ポリイミド層112を構成する熱可塑性ポリイミドは、全ジアミン残基の100モル部に対して、ジアミン(B1)~ジアミン(B7)から選ばれる少なくとも一種のジアミン化合物から誘導されるジアミン残基を60モル部以上、好ましくは60モル部以上99モル部以下の範囲内、より好ましくは70モル部以上95モル部以下の範囲内で含有することがよい。ジアミン(B1)~ジアミン(B7)は、屈曲性を有する分子構造を持つため、これらから選ばれる少なくとも一種のジアミン化合物を上記範囲内の量で使用することによって、ポリイミド分子鎖の柔軟性を向上させ、熱可塑性を付与することができる。原料中のジアミン(B1)~ジアミン(B7)の合計量が全ジアミン成分の100モル部に対して60モル部未満であるとポリイミド樹脂の柔軟性不足で十分な熱可塑性が得られない。
【0098】
また、熱可塑性ポリイミド層112を構成する熱可塑性ポリイミドに含まれるジアミン残基としては、一般式(1)で表されるジアミン化合物から誘導されるジアミン残基も好ましい。式(1)で表されるジアミン化合物[ジアミン(1)]については、非熱可塑性ポリイミドの説明で述べたとおりである。ジアミン(1)は、剛直構造を有し、ポリマー全体に秩序構造を付与する作用を有しているため、分子の運動抑制により誘電正接や吸湿性を低下させることができる。更に、熱可塑性ポリイミドの原料として使用することで、ガス透過性が低く、長期耐熱接着性に優れたポリイミドが得られる。
【0099】
熱可塑性ポリイミド層112を構成する熱可塑性ポリイミドは、ジアミン(1)から誘導されるジアミン残基を、好ましくは1モル部以上40モル部以下の範囲内、より好ましくは5モル部以上30モル部以下の範囲内で含有してもよい。ジアミン(1)を上記範囲内の量で使用することによって、モノマー由来の剛直構造により、ポリマー全体に秩序構造が形成されるので、熱可塑性でありながら、ガス透過性及び吸湿性が低く、長期耐熱接着性に優れたポリイミドが得られる。
【0100】
熱可塑性ポリイミド層112を構成する熱可塑性ポリイミドは、発明の効果を損なわない範囲で、ジアミン(1)、(B1)~(B7)以外のジアミン化合物から誘導されるジアミン残基を含むことができる。
【0101】
熱可塑性ポリイミドにおいて、上記テトラカルボン酸残基及びジアミン残基の種類や、2種以上のテトラカルボン酸残基又はジアミン残基を適用する場合のそれぞれのモル比を選定することにより、熱膨張係数、引張弾性率、ガラス転移温度等を制御することができる。また、熱可塑性ポリイミドにおいて、ポリイミドの構造単位を複数有する場合は、ブロックとして存在しても、ランダムに存在していてもよいが、ランダムに存在することが好ましい。
【0102】
なお、熱可塑性ポリイミドに含まれるテトラカルボン酸残基及びジアミン残基を、いずれも芳香族基とすることで、ポリイミドフィルムの高温環境下での寸法精度を向上させ、面内リタデーション(RO)の変化量を抑制することができる。
【0103】
熱可塑性ポリイミドのイミド基濃度は、33%以下であることが好ましく、32%以下であることがより好ましい。ここで、「イミド基濃度」は、ポリイミド中のイミド基部(-(CO)-N-)の分子量を、ポリイミドの構造全体の分子量で除した値を意味する。イミド基濃度が33%を超えると、樹脂自体の分子量が小さくなるとともに、極性基の増加によって低吸湿性も悪化する。上記ジアミン化合物の組み合わせを選択することによって、熱可塑性ポリイミド中の分子の配向性を制御することで、イミド基濃度低下に伴うCTEの増加を抑制し、低吸湿性を担保している。
【0104】
熱可塑性ポリイミドの重量平均分子量は、例えば10,000~400,000の範囲内が好ましく、50,000~350,000の範囲内がより好ましい。重量平均分子量が10,000未満であると、フィルムの強度が低下して脆化しやすい傾向となる。一方、重量平均分子量が400,000を超えると、過度に粘度が増加して塗工作業の際にフィルム厚みムラ、スジ等の不良が発生しやすい傾向になる。
【0105】
熱可塑性ポリイミド層112を構成する熱可塑性ポリイミドは、例えば回路基板の絶縁樹脂における接着層となるため、銅の拡散を抑制するために完全にイミド化された構造が最も好ましい。但し、ポリイミドの一部がアミド酸となっていてもよい。そのイミド化率は、フーリエ変換赤外分光光度計(市販品:日本分光製FT/IR620)を用い、1回反射ATR法にてポリイミド薄膜の赤外線吸収スペクトルを測定することによって、1015cm-1付近のベンゼン環吸収体を基準とし、1780cm-1のイミド基に由来するC=O伸縮の吸光度から算出される。
【0106】
熱可塑性ポリイミド層112の厚みは、接着機能を確保する観点から、1μm以上10μm以下の範囲内であることが好ましく、1μm以上5μm以下の範囲内がより好ましい。熱可塑性ポリイミド層112の厚みが上記の下限値未満である場合、接着性が不十分となり、上限値を超えると、寸法安定性が悪化する傾向となる。
【0107】
熱可塑性ポリイミド層112は、反りを抑制する観点から、熱膨張係数が、30ppm/K以上、好ましくは30ppm/K以上100ppm/K以下の範囲内、より好ましくは30ppm/K以上80ppm/K以下の範囲内にあることがよい。
【0108】
また、熱可塑性ポリイミド層112に用いる樹脂には、ポリイミドの他に、任意成分として、例えば可塑剤、エポキシ樹脂などの他の硬化樹脂成分、硬化剤、硬化促進剤、無機フィラー、カップリング剤、充填剤、溶剤、難燃剤などを適宜配合することができる。ただし、可塑剤には、極性基を多く含有するものがあり、それが銅配線からの銅の拡散を助長する懸念があるため、可塑剤は極力使用しないことが好ましい。
【0109】
金属張積層板100において、回路加工後の寸法安定性を確保するため、2つのポリイミド層110と接着性ポリイミド層120の全体の熱膨張係数は、10ppm/K以上がよく、好ましくは10ppm/K以上30ppm/K以下の範囲内、より好ましくは15ppm/K以上25ppm/K以下の範囲内にあることがよい。
なお、金属張積層板100において、2つのポリイミド層110と接着性ポリイミド層120の合計厚みT1、接着性ポリイミド層120の厚みT2、及び、合計厚みT1に対する接着性ポリイミド層120の厚みT2の比率(T2/T1)については、図1について説明したとおりである。
【0110】
(ポリイミドの合成)
ポリイミド層110を構成するポリイミドは、上記酸無水物及びジアミンを溶媒中で反応させ、前駆体樹脂を生成したのち加熱閉環させることにより製造できる。例えば、酸無水物成分とジアミン成分をほぼ等モルで有機溶媒中に溶解させて、0~100℃の範囲内の温度で30分~24時間撹拌し重合反応させることでポリイミドの前駆体であるポリアミド酸が得られる。反応にあたっては、生成する前駆体が有機溶媒中に5~30重量%の範囲内、好ましくは10~20重量%の範囲内となるように反応成分を溶解する。重合反応に用いる有機溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン、2-ブタノン、ジメチルスルホキシド、硫酸ジメチル、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム等が挙げられる。これらの溶媒を2種以上併用して使用することもでき、更にはキシレン、トルエンのような芳香族炭化水素の併用も可能である。また、このような有機溶媒の使用量としては特に制限されるものではないが、重合反応によって得られるポリアミド酸溶液(ポリイミド前駆体溶液)の濃度が5~30重量%程度になるような使用量に調整して用いることが好ましい。
【0111】
ポリイミドの合成において、上記酸無水物及びジアミンはそれぞれ、その1種のみを使用してもよく2種以上を併用して使用することもできる。酸無水物及びジアミンの種類や、2種以上の酸無水物又はジアミンを使用する場合のそれぞれのモル比を選定することにより、熱膨張性、接着性、ガラス転移温度等を制御することができる。
【0112】
合成された前駆体は、通常、反応溶媒溶液として使用することが有利であるが、必要により濃縮、希釈又は他の有機溶媒に置換することができる。また、前駆体は一般に溶媒可溶性に優れるので、有利に使用される。前駆体をイミド化させる方法は、特に制限されず、例えば前記溶媒中で、80~400℃の範囲内の温度条件で1~24時間かけて加熱するといった熱処理が好適に採用される。
【0113】
[回路基板]
金属張積層板100は、主にFPC、リジッド・フレックス回路基板などの回路基板材料として有用である。すなわち、金属張積層板100の2つの金属層101の片方又は両方を、常法によってパターン状に加工して配線層を形成することによって、本発明の一実施の形態であるFPCなどの回路基板を製造できる。この回路基板は、図示は省略するが、第1の絶縁樹脂層(P1)と、接着層(B)と、第2の絶縁樹脂層(P2)とがこの順に積層された樹脂積層体と、この樹脂積層体の片側又は両側の面に設けられた配線層と、を備えている。
【実施例0114】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。
【0115】
[誘電率および誘電正接の測定]
ベクトルネットワークアナライザ(Agilent社製、商品名E8363C)ならびにSPDR共振器を用いて、10GHzにおけるポリイミドフィルムの誘電率(Dk)および誘電正接(Df)を測定した。なお、測定に使用した材料は、温度;24~26℃、湿度45%~55%RHの条件下で、24時間放置したものである。
【0116】
[貯蔵弾性率及びガラス転移温度(Tg)の測定]
接着層の貯蔵弾性率は、前記接着層(厚み50m)を基材フィルムから剥離除去した後、5mm×20mmに切り出し、120℃のオーブンで2時間、170℃で3時間加熱した。得られたサンプルを動的粘弾性装置(DMA:ユー・ビー・エム社製、商品名;E4000F)を用いて、昇温速度4℃/分で30℃から400℃まで段階的に加熱し、周波数11Hzで測定を行った。また、測定中のTanδの値が最大となる最大温度をTgとして定義した。
【0117】
[寸法変化率の測定]
寸法変化率の測定は、以下の手順で行った。まず、150mm角の試験片を用い、100mm間隔にてドライフィルムレジストを露光、現像することによって、位置測定用ターゲットを形成する。温度23±2℃、相対湿度50±5%の雰囲気中にてエッチング前(常態)の寸法を測定した後に、試験片のターゲット以外の銅をエッチング(液温40℃以下、時間10分以内)により除去する。温度23±2℃、相対湿度50±5%の雰囲気中に24±4時間静置後、エッチング後の寸法を測定する。MD方向(長手方向)及びTD方向(幅方向)の各3箇所の常態に対する寸法変化率を算出し、各々の平均値をもってエッチング後の寸法変化率とする。エッチング後寸法変化率は下記数式により算出した。
【0118】
エッチング後寸法変化率(%)=(B-A)/A×100
A;エッチング前のターゲット間距離
B;エッチング後のターゲット間距離
【0119】
次に、本試験片を250℃のオーブンで1時間加熱処理し、その後の位置ターゲット間の距離を測定する。MD方向(長手方向)及びTD方向(幅方向)の各3箇所のエッチング後に対する寸法変化率を算出し、各々の平均値をもって加熱処理後の寸法変化率とする。加熱後寸法変化率は下記数式により算出した。
【0120】
加熱後寸法変化率(%)=(C―B)/B×100
B;エッチング後のターゲット間距離
C;加熱後のターゲット間距離
【0121】
本実施例で用いた略号は以下の化合物を示す。
BPDA:3,3',4,4'‐ビフェニルテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
BTDA:3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物
m‐TB:2,2'‐ジメチル‐4,4'‐ジアミノビフェニル
TPE-R:1,3-ビス(4‐アミノフェノキシ)ベンゼン
ビスアニリン-M:1,3-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン
DDA:クローダジャパン株式会社製(商品名;PRIAMINE1075)
N-12:ドデカン二酸ジヒドラジド
DMAc:N,N‐ジメチルアセトアミド
R710:(商品名、(株)プリンテック製、ビスフェノール型エポキシ樹脂、エポキシ当量:170、常温で液状、重量平均分子量:約340)
VG3101L:(商品名、(株)プリンテック製、多官能エポキシ樹脂、エポキシ当量:210、軟化点:39~46℃)
SR35K:(商品名、株式会社プリンテック製、エポキシ樹脂、エポキシ当量:930~940、軟化点:86~98℃)
YDCN-700-10:(商品名、新日鉄住金化学株式会社製、クレゾールノボラック型エポキシ樹脂、エポキシ当量210、軟化点75~85℃)
ミレックスXLC-LL:(商品名、三井化学(株)製、フェノール樹脂、水酸基当量:175、軟化点:77℃、吸水率:1質量%、加熱質量減少率:4質量%)
HE200C-10:(商品名、エア・ウォーター(株)製、フェノール樹脂、水酸基当量:200、軟化点:65~76℃、吸水率:1質量%、加熱質量減少率:4質量%)
HE910-10:(商品名、エア・ウォーター(株)製、フェノール樹脂、水酸基当量:101、軟化点:83℃、吸水率:1質量%、加熱質量減少率:3質量%)
SC1030-HJA:(商品名、アドマテックス(株)製、シリカフィラー分散液、平均粒径:0.25μm)
アエロジルR972:(商品名、日本アエロジル(株)製、シリカ、平均粒子径:0.016μm)
アクリルゴムHTR-860P-30B-CHN:(サンプル名、帝国化学産業(株)製、重量平均分子量:23万、グリシジル官能基モノマー比率:8%、Tg:-7℃)
アクリルゴムHTR-860P-3CSP:(サンプル名、帝国化学産業(株)製、重量平均分子量:80万、グリシジル官能基モノマー比率:3%、Tg:-7℃)
A-1160:(商品名、GE東芝(株)製、γ-ウレイドプロピルトリエトキシシラン)
A-189:(商品名、GE東芝(株)製、γ-メルカプトプロピルトリメトキシシラン)
キュアゾール2PZ-CN:(商品名、四国化成工業(株)製、1-シアノエチル-2-フェニルイミダゾール)
RE-810NM:(商品名、日本化薬株式会社製、ジアリルビスフェノールAジグリシジルエーテル、性状:液状)
フォレットSCS:(商品名、綜研化学株式会社製、スチリル基含有アクリルポリマー、Tg:70℃、重量平均分子量:15000)
BMI-1:(商品名、東京化成株式会社製、4,4’-ビスマレイミドジフェニルメタン)
TPPK:(商品名、東京化成株式会社製、テトラフェニルホスホニウムテトラフェニルボラート)
HP-P1:(商品名、水島合金鉄株式会社製、窒化ホウ素フィラー)
NMP:(関東化学株式会社製、N-メチル-2-ピロリドン)
【0122】
(合成例1)
<接着層用の樹脂溶液Aの調製>
表1に示す品名及び組成比(単位:質量部)の(a)熱硬化性樹脂としてのエポキシ樹脂及びフェノール樹脂、(c)無機フィラーからなる組成物にシクロヘキサノンを加え、撹拌混合した。これに、表1に示す、(b)高分子量成分としてのアクリルゴムを加えて撹拌し、更に表1に示す(e)カップリング剤及び(d)硬化促進剤を加えて各成分が均一になるまで撹拌して接着層用の樹脂溶液Aを得た。
【0123】
【表1】
【0124】
(合成例2)
<ポリイミド樹脂(PI-1)の合成および接着層用の樹脂溶液Bの調製>
温度計、攪拌機、冷却管、及び窒素流入管を装着した300mLフラスコ中に、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(信越化学工業株式会社製、商品名:LP-7100)15.53g、ポリオキシプロピレンジアミン(BASF株式会社製、商品名:D400、分子量:450)28.13g、及び、NMP100.0gを仕込んで攪拌して、反応液を調製した。ジアミンが溶解した後、フラスコを氷浴中で冷却しながら、予め無水酢酸からの再結晶により精製した4,4’-オキシジフタル酸二無水物32.30gを反応液に少量ずつ添加した。常温(25℃)で8時間反応させた後、キシレン67.0gを加え、窒素ガスを吹き込みながら180℃で加熱することにより、水と共にキシレンを共沸除去した。その反応液を大量の水中に注ぎ、沈澱した樹脂を濾過により採取し、乾燥してポリイミド樹脂(PI-1)を得た。得られたポリイミド樹脂(PI-1)の分子量をGPCにて測定したところ、ポリスチレン換算で、数平均分子量Mn=22400、重量平均分子量Mw=70200であった。
上記で得たポリイミド樹脂(PI-1)を用いて、表2に示す組成比(単位:質量部)で各成分を配合して、接着層用の樹脂溶液Bを得た。
【0125】
【表2】
【0126】
(合成例3)
<絶縁樹脂層用のポリアミド酸溶液の調製>
窒素気流下で、反応槽に、64.20gのm-TB(0.302モル)及び5.48gのビスアニリン-M(0.016モル)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、34.20gのPMDA(0.157モル)及び46.13gのBPDA(0.157モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液1(粘度;26,500cps)を調製した。
【0127】
(合成例4)
<絶縁樹脂層用のポリアミド酸溶液の調製>
69.56gのm-TB(0.328モル)、542.75gのTPE-R(1.857モル)、重合後の固形分濃度が12重量%となる量のDMAc、194.39gのPMDA(0.891モル)及び393.31gのBPDA(1.337モル)を原料組成とした以外は、合成例3と同様にしてポリアミド酸溶液2(粘度;2,650cps)を調製した。
【0128】
(作製例1)
<接着層用の樹脂シートAの調製>
接着層用の樹脂溶液Aを乾燥後厚みが50μmとなるように離型基材(縦×横×厚さ=320mm×240mm×25μm)のシリコーン処理面に塗工した後、80℃で15分間加熱乾燥し、さらに120℃で15分乾燥を行った後、離型基材上から剥離することで樹脂シートAを調製した。また、樹脂シートAについて、硬化後の物性を評価するため120℃のオーブンで2時間、170℃で3時間加熱した。その際、硬化後樹脂シートAは、Tg95℃であり、50℃での貯蔵弾性率が960MPa、180℃から260℃での貯蔵弾性率の最大値が7MPaであった。
【0129】
(作製例2)
<接着層用の樹脂シートBの調製>
接着層用の樹脂溶液Bを乾燥後厚みが50μmとなるように離型基材(縦×横×厚さ=320mm×240mm×25μm)のシリコーン処理面に塗工した後、80℃で15分間加熱乾燥し、さらに120℃で15分乾燥を行った後、離型基材上から剥離することで樹脂シートBを調製した。また、樹脂シートBについて、硬化後の物性を評価するため120℃のオーブンで2時間、170℃で3時間加熱した。その際、硬化後樹脂シートBは、Tg100℃以下であり、50℃での貯蔵弾性率が1800MPa以下、180℃から260℃での貯蔵弾性率の最大値が70MPaであった。
【0130】
(作製例3)
<片面金属張積層板の調製>
銅箔1(電解銅箔、厚さ;12μm、樹脂層側の表面粗度Rz;0.6μm)の上に、ポリアミド酸溶液2を硬化後の厚みが約2~3μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。次にその上にポリアミド酸溶液1を硬化後の厚みが、約21μmとなるように均一に塗布し、120℃で加熱乾燥し溶媒を除去した。更に、その上にポリアミド酸溶液2を硬化後の厚みが約2~3μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を行い、イミド化を完結して、片面金属張積層板1を調製した。片面金属張積層板1の寸法変化率は、次のとおりである。
MD方向(長手方向)のエッチング後寸法変化率;0.01%
TD方向(幅方向)のエッチング後寸法変化率;-0.04%
MD方向(長手方向)の加熱後寸法変化率;-0.03%
TD方向(幅方向)の加熱後寸法変化率;-0.01%
【0131】
<ポリイミドフィルムの調製>
塩化第二鉄水溶液を用いて片面金属張積層板1の銅箔1をエッチング除去してポリイミドフィルム1(厚み;25μm、CTE;20ppm/K、Dk;3.40、Df;0.0029)を調製した。
【0132】
[実施例1]
2枚の片面金属張積層板1を準備し、それぞれの絶縁樹脂層側の面を樹脂シートAの両面に重ね合わせ、180℃で2時間、3.5MPaの圧力をかけて圧着して、金属張積層板1を調製した。金属張積層板1の評価結果は、次のとおりである。
MD方向のエッチング後寸法変化率;-0.02%
TD方向のエッチング後寸法変化率;-0.03%
MD方向の加熱後寸法変化率;-0.02%
TD方向の加熱後寸法変化率;-0.02%
金属張積層板1は反りがなく、寸法変化も問題はなかった。また、金属張積層板1における銅箔1をエッチング除去して調製した樹脂積層体1(厚み;100μm)におけるCTEは24.1ppm/Kであった。
【0133】
[実施例2]
2枚の片面金属張積層板1を準備し、それぞれの絶縁樹脂層側の面を樹脂シートBの両面に重ね合わせ、180℃で2時間、3.5MPaの圧力をかけて圧着して、金属張積層板2を調製した。金属張積層板2の評価結果は、次のとおりである。
MD方向のエッチング後寸法変化率;-0.05%
TD方向のエッチング後寸法変化率;-0.05%
MD方向の加熱後寸法変化率;-0.03%
TD方向の加熱後寸法変化率;-0.04%
金属張積層板2は反りがなく、寸法変化も問題はなかった。また、金属張積層板2における銅箔1をエッチング除去して調製した樹脂積層体2(厚み;100μm)におけるCTEは23.3ppm/Kであった。
【0134】
(比較例1)
樹脂シートAの代わりに、フッ素樹脂シート(旭硝子社製、商品名;接着パーフロロ樹脂EA-2000、厚み;50μm、Tm;303℃、Tg;なし)を使用し、320℃で5分間、3.5MPaの圧力をかけて圧着したこと以外、実施例1と同様にして、金属張積層板3を調製した。
金属張積層板3の評価結果は、次のとおりである。
MD方向のエッチング後寸法変化率;-0.11%
TD方向のエッチング後寸法変化率;-0.13%
MD方向の加熱後寸法変化率;-0.19%
TD方向の加熱後寸法変化率;-0.20%
金属張積層板3は反りがなく、寸法変化も問題はなかった。また、金属張積層板3における銅箔1をエッチング除去して調製した樹脂積層体3(厚み;100μm)におけるCTEは27.6ppm/Kであった。
【0135】
(参考例1)
銅箔1、樹脂シートA、ポリイミドフィルム1、樹脂シートA及び銅箔1の順に重ね合わせ、180℃で2時間、3.5MPaの圧力をかけて圧着して、金属張積層板4を調製した。
金属張積層板4の評価結果は、次のとおりである。
MD方向のエッチング後寸法変化率;-0.04%
TD方向のエッチング後寸法変化率;-0.05%
MD方向の加熱後寸法変化率;-0.12%
TD方向の加熱後寸法変化率;-0.14%
金属張積層板4は反りがなく、寸法変化も問題はなかった。また、金属張積層板4における銅箔1をエッチング除去して調製した樹脂積層体4(厚み;100μm)におけるCTEは23.9ppm/Kであった。
【0136】
実施例1および実施例2は、比較例1、参考例1とそれぞれ比較しても、エッチング後寸法変化率及び加熱後寸法変化率が低いことがわかる。なお、比較例1では、320℃での熱圧着による積層を行い密着性に問題はなかったが、実施例1および実施例2と同じ熱圧着条件(温度;180℃、時間;2時間、圧力;3.5MPa)での熱圧着では十分な密着力を得ることはできなかった。また、参考例1は、樹脂シートAの位置構成の検証のために行った。
【0137】
[実施例3]
片面金属張積層板1を準備し、絶縁樹脂層側の面に接着層用の樹脂溶液Aを乾燥後厚みが50μmとなるように塗工した後、80℃で15分間加熱乾燥し、さらに120℃で15分乾燥を行い、接着層付き片面金属張積層板1を調製した。
次に、接着層付き片面金属張積層板1の接着層面を他の片面金属張積層板1の絶縁樹脂層側の面と重ねた後に180℃で2時間、3.5MPaの圧力をかけて圧着して、金属張積層板1’を調製した。
金属張積層板1’の評価結果は、次のとおりである。
MD方向のエッチング後寸法変化率;-0.03%
TD方向のエッチング後寸法変化率;-0.03%
MD方向の加熱後寸法変化率;-0.02%
TD方向の加熱後寸法変化率;-0.02%
金属張積層板1’は反りがなく、寸法変化も問題はなかった。また、金属張積層板1’における銅箔1をエッチング除去して調製した樹脂積層体1’(厚み;100μm)におけるCTEは23.1ppm/Kであった。
【0138】
[実施例4]
接着層付き片面金属張積層板1を2枚準備し、接着層面同士を重ねた後に180℃で2時間、3.5MPaの圧力をかけて圧着して、金属張積層板5を調製した。
金属張積層板5の評価結果は、次のとおりである。
MD方向のエッチング後寸法変化率;-0.03%
TD方向のエッチング後寸法変化率;-0.03%
MD方向の加熱後寸法変化率;-0.03%
TD方向の加熱後寸法変化率;-0.03%
金属張積層板5は反りがなく、寸法変化も問題はなかった。また、金属張積層板5における銅箔1をエッチング除去して調製した樹脂積層体5(厚み;150μm)におけるCTEは23.8.ppm/Kであった。
【0139】
[実施例5]
片面金属張積層板1を準備し、絶縁樹脂層側の面に接着層用の樹脂溶液Aを乾燥後厚みが75μmとなるように塗工した後、80℃で15分間加熱乾燥し、さらに120℃で25分乾燥を行い、接着層付き片面金属張積層板2を調製した。
接着層付き片面金属張積層板2を2枚準備し、接着層面同士を重ねた後に180℃で2時間、3.5MPaの圧力をかけて圧着して、金属張積層板6を調製した。
金属張積層板6の評価結果は、次のとおりである。
MD方向のエッチング後寸法変化率;-0.01%
TD方向のエッチング後寸法変化率;-0.01%
MD方向の加熱後寸法変化率;0.01%
TD方向の加熱後寸法変化率;0.02%
金属張積層板6は反りがなく、寸法変化も問題はなかった。また、金属張積層板6における銅箔1をエッチング除去して調製した樹脂積層体6(厚み;200μm)におけるCTEは22.8.ppm/Kであった。
【0140】
(合成例5)
窒素気流下で、500mlのセパラブルフラスコに、44.98gのBTDA(0.139モル)、75.02gのDDA(0.140モル)、168gのNMP及び112gのキシレンを装入し、40℃で30分間良く混合して、ポリアミド酸溶液を調製した。このポリアミド酸溶液を190℃に昇温し、4.5時間加熱攪拌し、112gのキシレンを加えてイミド化を完結したポリイミド接着剤溶液1を調製した。得られたポリイミド接着剤溶液1における固形分は29.1重量%であり、粘度は7,800cpsであった。また、ポリイミドの重量平均分子量(Mw)は87,700であった。
【0141】
(合成例6)
合成例5で得られたポリイミド接着剤溶液1を34.4g(固形分として10g)と1.25gのN-12および2.5gのExolit OP935(クラリアントジャパン株式会社製)を配合し、1.297gのNMPと3.869gのキシレンを加えて希釈して接着層用の樹脂溶液Cを調製した。
【0142】
<接着層用の樹脂シートCの調製>
接着層用の樹脂溶液Cを乾燥後厚みが50μmとなるように離型基材(縦×横×厚さ=320mm×240mm×25μm)のシリコーン処理面に塗工した後、80℃で15分間加熱乾燥し、さらに120℃で15分乾燥を行った後、離型基材上から剥離することで樹脂シートCを調製した。また、樹脂シートCについて、硬化後の物性を評価するため120℃のオーブンで2時間、170℃で3時間加熱して、硬化後の樹脂シートDを調製した。硬化後の樹脂シートDは、Tgが95℃であり、50℃での貯蔵弾性率が1220MPa、180℃から260℃での貯蔵弾性率の最大値が26MPaであった。
【0143】
[実施例6]
片面金属張積層板1を準備し、絶縁樹脂層側の面に接着層用の樹脂溶液Cを乾燥後厚みが50μmとなるように塗工した後、80℃で15分間加熱乾燥し、さらに120℃で15分乾燥を行い、接着層付き片面金属張積層板3を調製した。
次に、接着層付き片面金属張積層板3の接着層面を片面金属張積層板1の絶縁樹脂層側の面と重ねた後に180℃で2時間、3.5MPaの圧力をかけて圧着して、金属張積層板7を調製した。
金属張積層板7の評価結果は、次のとおりである。
MD方向のエッチング後寸法変化率;-0.02%
TD方向のエッチング後寸法変化率;-0.02%
MD方向の加熱後寸法変化率;-0.03%
TD方向の加熱後寸法変化率;-0.03%
金属張積層板7は反りがなく、寸法変化も問題はなかった。また、金属張積層板7における銅箔1をエッチング除去して調製した樹脂積層体7(厚み;100μm)におけるCTEは23.4ppm/Kであった。
【0144】
また、実施例に記載のいずれの接着層付き片面金属張積層板も、多層回路基板の製造に適用することが可能である。また、その場合の接着層の厚みとしては100μm以下、絶縁樹脂層中の接着層の厚み比としては80%以下が好ましいと考えられる。
【0145】
以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはなく、種々の変形が可能である。
【符号の説明】
【0146】
100…金属張積層板、101…金属層、110…ポリイミド層、111…非熱可塑性ポリイミド層、112…熱可塑性ポリイミド層、120…接着性ポリイミド層、130…片面金属張積層板

図1
図2