(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024069443
(43)【公開日】2024-05-21
(54)【発明の名称】基板処理システムにおける基板支持体の動的温度制御
(51)【国際特許分類】
H01L 21/683 20060101AFI20240514BHJP
H05B 3/00 20060101ALI20240514BHJP
C23C 16/46 20060101ALI20240514BHJP
H01L 21/31 20060101ALN20240514BHJP
H01L 21/3065 20060101ALN20240514BHJP
【FI】
H01L21/68 N
H05B3/00 310D
C23C16/46
H01L21/31 F
H01L21/302 101G
【審査請求】有
【請求項の数】15
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2024039540
(22)【出願日】2024-03-14
(62)【分割の表示】P 2020573317の分割
【原出願日】2019-07-02
(31)【優先権主張番号】62/694,171
(32)【優先日】2018-07-05
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】592010081
【氏名又は名称】ラム リサーチ コーポレーション
【氏名又は名称原語表記】LAM RESEARCH CORPORATION
(74)【代理人】
【識別番号】110000028
【氏名又は名称】弁理士法人明成国際特許事務所
(72)【発明者】
【氏名】サンダラム・サイラム
(72)【発明者】
【氏名】ダービン・アーロン
(72)【発明者】
【氏名】チャンドラセカーラン・ラメシュ
(57)【要約】 (修正有)
【課題】基板支持体の動的温度制御を備える基板処理システムを提供する。
【解決手段】基板処理システム120のための温度制御式基板支持体は、処理チャンバ122に設置された基板支持体126を備える。基板支持体は、N(Nは1より大きい整数)のゾーン及びNの抵抗発熱体164を夫々備える。温度センサである熱電対165は、Nのゾーンの1つに設置されている。動的温度コントローラ163は、動作中のNの抵抗発熱体のNの抵抗を算出し、温度センサにが測定したNのゾーンの1つにおける温度、Nの抵抗発熱体のNの抵抗及びN-1の抵抗比に応答して、基板処理システムの動作中にNの抵抗発熱体のN-1への電力を調節する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
基板処理システムのための温度制御式基板支持体であって、
NのゾーンおよびNの抵抗発熱体をそれぞれ備える基板支持体であって、Nは1より大きい整数であり、前記Nのゾーンの1つには温度センサが設置されている、基板支持体と、
コントローラであって、
動作中の前記Nの抵抗発熱体のNの抵抗を算出し、
前記基板処理システムの動作中に、
前記温度センサによって測定された前記Nのゾーンの前記1つにおける前記温度と、
前記Nの抵抗発熱体の前記Nの抵抗と、
N-1の抵抗比と、
に応答して、前記Nの抵抗発熱体のN-1への電力を調節するように構成された、コントローラと、
を備える、温度制御式基板支持体。
【請求項2】
請求項1に記載の温度制御式基板支持体であって、
前記N-1の抵抗比は、前記基板支持体が均一な温度にあるときに、前記Nのゾーンにおける前記Nの抵抗発熱体の前記Nの抵抗をそれぞれ測定し、前記NのゾーンのN-1の前記Nの抵抗のN-1を、前記Nのゾーンの前記1つに対応する前記Nの抵抗の1つで割ることによって決定される、温度制御式基板支持体。
【請求項3】
請求項2に記載の温度制御式基板支持体であって、
前記均一な温度は、大気温度に相当する、温度制御式基板支持体。
【請求項4】
請求項1に記載の温度制御式基板支持体であって、
前記N-1のゾーンは、温度センサを備えない、温度制御式基板支持体。
【請求項5】
請求項1に記載の温度制御式基板支持体であって、
前記コントローラは、
前記Nの抵抗発熱体に供給されるNの電圧をそれぞれ監視することと、
前記Nの抵抗発熱体に供給された前記Nの電圧に基づいて前記Nの抵抗をそれぞれ算出することと、
によって、動作中の前記Nの抵抗発熱体の前記Nの抵抗を算出する、温度制御式基板支持体。
【請求項6】
請求項1に記載の温度制御式基板支持体であって、
前記コントローラは、
前記Nの抵抗発熱体に供給されるNの電流をそれぞれ監視することと、
前記Nの抵抗発熱体に供給された前記Nの電流に基づいて前記Nの抵抗をそれぞれ算出することと、
によって、動作中の前記Nの抵抗発熱体の前記Nの抵抗を算出する、温度制御式基板支持体。
【請求項7】
請求項1に記載の温度制御式基板支持体であって、
前記コントローラは、
前記Nの抵抗発熱体に供給されるNの電流およびNの電圧をそれぞれ監視することと、
前記Nの抵抗発熱体に供給された前記Nの電流および前記Nの電圧に基づいて前記Nの抵抗をそれぞれ算出することと、
によって、動作中の前記Nの抵抗発熱体の前記Nの抵抗を算出する、温度制御式基板支持体。
【請求項8】
請求項1に記載の温度制御式基板支持体であって、
前記コントローラは、前記温度センサによって測定された前記温度に基づいて、前記Nのゾーンの前記1つへの電力を制御するように構成されている、温度制御式基板支持体。
【請求項9】
基板処理システムのための温度制御式基板支持体を製造する方法であって、
基板支持体のNのゾーンにNの抵抗発熱体を埋め込む工程と、
前記基板支持体の前記Nのゾーンの1つに温度センサを埋め込む工程と、
前記基板支持体の前記Nのゾーンにおける前記Nの抵抗発熱体のNの抵抗を測定する工程と、
前記Nの抵抗に基づいてN-1の抵抗比を決定する工程と、
前記Nの抵抗発熱体および前記温度センサにコントローラを接続する工程と、
前記基板処理システムの動作中に、
前記Nのゾーンの前記1つにおける測定された温度と、
前記Nの抵抗発熱体の前記Nの抵抗と、
前記N-1の抵抗比と、
に応答して、前記NのゾーンのN-1における前記Nの抵抗発熱体のN-1の温度をそれぞれ制御するように前記コントローラをプログラミングする工程と、
を含む、方法。
【請求項10】
請求項9に記載の方法であって、
前記N-1の抵抗比は、
前記基板支持体が均一の温度であるときの前記抵抗発熱体の前記Nの抵抗をそれぞれ決定することと、
前記Nのゾーンの前記N-1の前記Nの抵抗の前記N-1を、前記Nのゾーンの前記1つに対応する前記Nの抵抗の1つで割ることと、
によって算出される、方法。
【請求項11】
請求項9に記載の方法であって、
前記均一な温度は、大気温度に相当する、方法。
【請求項12】
請求項9に記載の方法であって、
前記Nのゾーンの前記N-1は、温度センサを備えない、方法。
【請求項13】
請求項9に記載の方法であって、
前記Nの抵抗発熱体の前記Nの抵抗を測定する工程は、
前記Nの抵抗発熱体に供給されるNの電圧をそれぞれ監視する工程と、
前記Nの抵抗発熱体に供給された前記Nの電圧に基づいて前記Nの抵抗をそれぞれ算出する工程と、
を含む、方法。
【請求項14】
請求項9に記載の方法であって、
前記Nのゾーンの前記Nの抵抗を測定する工程は、
前記Nの抵抗発熱体に供給されるNの電流をそれぞれ監視する工程と、
前記Nの抵抗発熱体に供給された前記Nの電流に基づいて前記Nの抵抗をそれぞれ算出する工程と、
を含む、方法。
【請求項15】
請求項9に記載の方法であって、
動作中の前記Nのゾーンの前記Nの抵抗を測定する工程は、
Nの抵抗発熱体に供給されるNの電流およびNの電圧をそれぞれ監視する工程と、
前記Nの抵抗発熱体に供給された前記Nの電流および前記Nの電圧に基づいて前記Nの抵抗をそれぞれ算出する工程と、
を含む、方法。
【請求項16】
基板処理システムの基板支持体におけるゾーンの温度を制御するための方法であって、
前記基板処理システムの動作中に、Nのゾーンの1つに設置された温度センサを用いて、基板支持体の前記Nのゾーンの前記1つにおける温度を測定する工程であって、Nは1より大きい整数である、工程と、
前記基板処理システムの動作中に、前記Nのゾーンに設置されたNの抵抗発熱体のNの抵抗をそれぞれ測定する工程と、
前記基板処理システムの動作中に、
前記Nのゾーンの前記1つにおける前記測定された温度と、
前記Nの抵抗発熱体の前記Nの抵抗と、
N-1の抵抗比と、
に応答して前記NのゾーンのN-1における温度を制御するように、前記NのゾーンのN-1における前記Nの抵抗発熱体のN-1への電力をそれぞれ調節する工程と、
を含む、方法。
【請求項17】
請求項16に記載の方法であって、
前記N-1の抵抗比は、
前記基板支持体が均一の温度であるときの前記Nの抵抗発熱体の前記Nの抵抗をそれぞれ決定することと、
前記NのゾーンのN-1の前記Nの抵抗のN-1を、前記Nのゾーンの前記1つに対応する前記Nの抵抗の1つで割ることと、
によって算出される、方法。
【請求項18】
請求項17に記載の方法であって、
前記均一な温度は、大気温度に相当する、方法。
【請求項19】
請求項16に記載の方法であって、
前記Nのゾーンの前記N-1は、温度センサを備えない、方法。
【請求項20】
請求項16に記載の方法であって、
前記Nの抵抗発熱体の前記Nの抵抗を測定する工程は、
前記Nの抵抗発熱体に供給されるNの電圧をそれぞれ監視する工程と、
前記Nの抵抗発熱体に供給された前記Nの電圧に基づいて前記Nの抵抗をそれぞれ算出する工程と、
を含む、方法。
【請求項21】
請求項16に記載の方法であって、
前記Nのゾーンの前記Nの抵抗を測定する工程は、
前記Nの抵抗発熱体に供給されるNの電流をそれぞれ監視する工程と、
前記Nの抵抗発熱体に供給された前記Nの電流に基づいて前記Nの抵抗をそれぞれ算出する工程と、
を含む、方法。
【請求項22】
請求項16に記載の方法であって、
動作中の前記Nのゾーンの前記Nの抵抗を測定する工程は、
Nの抵抗発熱体に供給されるNの電流およびNの電圧をそれぞれ監視する工程と、
前記Nの抵抗発熱体に供給された前記Nの電流および前記Nの電圧に基づいて前記Nの抵抗をそれぞれ算出する工程と、
を含む、方法。
【請求項23】
請求項16に記載の方法であって、さらに、
前記温度センサによって測定された前記温度に基づいて、前記Nのゾーンの前記1つへの電力を制御する工程を含む、方法。
【発明の詳細な説明】
【技術分野】
【0001】
[関連出願の相互参照]
本願は、2018年7月5日出願の米国仮出願第62/694,171号の利益を主張する。上記出願の全ての開示は、本明細書に参照として援用される。
【0002】
本開示は、基板処理システムに関し、特に、基板支持体の動的温度制御を備える基板処理システムに関する。
【背景技術】
【0003】
本明細書に記載の背景技術の説明は、本開示の内容を一般的に提示するためである。現在名前が挙げられている発明者の発明は、本背景技術欄、および出願時の先行技術に該当しない説明の態様において記載される範囲で、本開示に対する先行技術として明示的にも黙示的にも認められない。
【0004】
基板処理システムは、半導体ウエハなどの基板のエッチング、堆積、および/または、他の処理を実施するのに用いられてよい。基板上で実施されうる例示的プロセスは、化学気相堆積(CVD)、プラズマ強化化学気相堆積(PECVD)、原子層堆積(ALD)、原子層エッチング(ALE)、プラズマ強化原子層堆積(PEALD)、ならびに/または、他のエッチングプロセス、堆積プロセス、および洗浄プロセスを含むが、それらに限定されない。処理の間、基板は、基板処理システムの処理チャンバにおいて台座や静電チャック(ESC)などの基板支持体上に配置される。基板を処理するために、プロセスガス混合物が処理チャンバに導入される。いくつかの例では、プラズマは、処理チャンバ内の化学反応を高めるために発生されてよい。
【0005】
基板処理の間、基板の温度は、基板支持体に配置されている抵抗発熱体によって制御されてよい。いくつかの例では、抵抗発熱体は、別々に制御される2つ以上のゾーンに配置される。抵抗発熱体によって加熱されるゾーンの熱均一性を維持することは、通常、各ゾーンにおける直接的な温度測定、または、個々に較正された間接的な温度測定(例えば、温度との発熱体抵抗の既知の依存性)を必要とする。
【発明の概要】
【0006】
基板処理システムのための温度制御式基板支持体は、処理チャンバに設置された基板支持体を備える。基板支持体は、NのゾーンおよびNの抵抗発熱体をそれぞれ備える(Nは1より大きい整数)。温度センサは、Nのゾーンの1つに設置される。コントローラは、動作中のNの抵抗発熱体のNの抵抗を算出するように構成され、温度センサよって測定されたNのゾーンの1つにおける温度、Nの抵抗発熱体のNの抵抗、およびN-1の抵抗比に応答して、基板処理システムの動作中にNの抵抗発熱体のN-1への電力を調節するように構成されている。
【0007】
他の特徴では、N-1の抵抗比は、基板支持体が均一な温度にあるときのNのゾーンにおけるNの抵抗発熱体のNの抵抗をそれぞれ測定し、NのゾーンのN-1のNの抵抗のN-1を、Nのゾーンの1つに対応するNの抵抗の1つで割ることによって決定される。
【0008】
他の特徴では、均一な温度は、大気温度に相当する。N-1のゾーンは、温度センサを備えない。コントローラは、Nの抵抗発熱体に供給されるNの電圧をそれぞれ監視し、Nの抵抗発熱体に供給されたNの電圧に基づいてNの抵抗をそれぞれ算出することによって、動作中のNの抵抗発熱体のNの抵抗を算出する。
【0009】
他の特徴では、コントローラは、Nの抵抗発熱体に供給されるNの電流をそれぞれ監視し、Nの抵抗発熱体に供給されたNの電流に基づいてNの抵抗をそれぞれ算出することによって、動作中のNの抵抗発熱体のNの抵抗を算出する。
【0010】
他の特徴では、コントローラは、Nの抵抗発熱体に供給されるNの電流およびNの電圧をそれぞれ監視し、Nの抵抗発熱体に供給されたNの電流およびNの電圧に基づいてNの抵抗をそれぞれ算出することによって、動作中のNの抵抗発熱体のNの抵抗を算出する。
【0011】
他の特徴では、コントローラは、温度センサによって測定された温度に基づいて、Nのゾーンの1つへの電力を制御するように構成されている。
【0012】
基板処理システムの基板支持体を製造する方法は、基板支持体のNのゾーンにNの抵抗発熱体を埋め込む工程と、基板支持体のNのゾーンの1つに温度センサを埋め込む工程と、基板支持体のNのゾーンにおけるNの抵抗発熱体のNの抵抗を測定する工程と、Nの抵抗に基づいてN-1の抵抗比を決定する工程と、Nの抵抗発熱体および温度センサにコントローラを接続する工程と、Nのゾーンの1つにおいて測定された温度、Nの抵抗発熱体のNの抵抗、およびN-1の抵抗比に応答して、基板処理システムの動作中にNのゾーンのN-1におけるNの抵抗発熱体のN-1の温度をそれぞれ制御するようにコントローラをプログラミングする工程と、を含む。
【0013】
他の特徴では、N-1の抵抗比は、基板支持体が均一な温度にあるときのNの抵抗発熱体のNの抵抗をそれぞれ決定し、NのゾーンのN-1のNの抵抗のN-1を、Nのゾーンの1つに対応するNの抵抗の1つで割ることによって算出される。
【0014】
他の特徴では、均一な温度は、大気温度に相当する。NのゾーンのN-1は、温度センサを備えない。Nの抵抗発熱体のNの抵抗を測定する工程は、Nの抵抗発熱体に供給されるNの電圧をそれぞれ監視する工程と、Nの抵抗発熱体に供給されたNの電圧に基づいてNの抵抗をそれぞれ算出する工程と、を含む。
【0015】
他の特徴では、NのゾーンのNの抵抗を測定する工程は、Nの抵抗発熱体に供給されるNの電流をそれぞれ監視する工程と、Nの抵抗発熱体に供給されたNの電流に基づいてNの抵抗をそれぞれ算出する工程と、を含む。
【0016】
他の特徴では、動作中のNのゾーンのNの抵抗を測定する工程は、Nの抵抗発熱体に供給されるNの電流およびNの電圧をそれぞれ監視する工程と、Nの抵抗発熱体に供給されたNの電流およびNの電圧に基づいてNの抵抗をそれぞれ算出する工程と、を含む。
【0017】
基板処理システムの基板支持体におけるゾーンの温度を制御するための方法は、Nのゾーンの1つに設置された温度センサを用いて、基板処理システムの動作中に、基板支持体のNのゾーンの1つの温度を測定する工程と(Nは1より大きい整数)、基板処理システムの動作中に、Nのゾーンに設置されたNの抵抗発熱体のNの抵抗をそれぞれ測定する工程と、Nのゾーンの1つにおいて測定された温度、Nの抵抗発熱体のNの抵抗、およびN-1の抵抗比に応答してNのゾーンのN-1における温度を制御するために、基板処理システムの動作中に、NのゾーンのN-1におけるNの抵抗発熱体のN-1への電力をそれぞれ調節する工程と、を含む。
【0018】
他の特徴では、N-1の抵抗比は、基板支持体が均一な温度にあるときのNの抵抗発熱体のNの抵抗をそれぞれ決定し、NのゾーンのN-1のNの抵抗のN-1を、Nのゾーンの1つに対応するNの抵抗の1つで割ることによって算出される。
【0019】
他の特徴では、均一な温度は、大気温度に相当する。NのゾーンのN-1は、温度センサを備えない。Nの抵抗発熱体のNの抵抗を測定する工程は、Nの抵抗発熱体に供給されるNの電圧をそれぞれ監視する工程と、Nの抵抗発熱体に供給されたNの電圧に基づいてNの抵抗をそれぞれ算出する工程と、を含む。
【0020】
他の特徴では、NのゾーンのNの抵抗を測定する工程は、Nの抵抗発熱体に供給されるNの電流をそれぞれ監視する工程と、Nの抵抗発熱体に供給されたNの電流に基づいてNの抵抗をそれぞれ算出する工程と、を含む。
【0021】
他の特徴では、動作中のNのゾーンのNの抵抗を測定する工程は、Nの抵抗発熱体に供給されるNの電流およびNの電圧をそれぞれ監視する工程と、Nの抵抗発熱体に供給されたNの電流およびNの電圧に基づいてNの抵抗をそれぞれ算出する工程と、を含む。
【0022】
他の特徴では、この方法は、温度センサによって測定された温度に基づいて、Nのゾーンの1つへの電力を制御する工程を含む。
【0023】
本開示のさらなる適用範囲は、発明を実施するための形態、特許請求の範囲、および図面から明らかになるだろう。発明を実施するための形態および特定の例は、説明の目的のみを意図し、本開示の範囲を限定することを意図しない。
【図面の簡単な説明】
【0024】
本開示は、発明を実施するための形態および添付の図面からより深く理解されるだろう。
【0025】
【
図1】本開示による、基板支持体などのゾーン分けされた温度制御式構成部品のための動的温度コントローラを備える例示的基板処理システムの機能ブロック図。
【0026】
【
図2】本開示による抵抗発熱体ゾーンを備える構成部品のための例示的動的温度制御システムの機能ブロック図。
【0027】
【
図3A】本開示による複数の発熱体ゾーンを備える例示的台座。
【
図3B】本開示による複数の発熱体ゾーンを備える例示的台座。
【
図3C】本開示による複数の発熱体ゾーンを備える例示的台座。
【0028】
【
図4A】本開示による2つのゾーンの発熱体の温度を関数とする抵抗および抵抗比を表すグラフ。
【
図4B】本開示による2つのゾーンの発熱体の温度を関数とする抵抗および抵抗比を表すグラフ。
【0029】
【
図5】本開示による動的温度制御を実施するための例示的方法を示すフローチャート。
【0030】
【
図6】先行技術による温度コントローラの時間を関数とする台座温度の制御を表す図。
【0031】
【
図7】本開示による動的温度コントローラの時間を関数とする台座温度の制御を表す図。
【0032】
図面では、類似および/または同一の要素を特定するために、参照番号は繰り返し用いられてよい。
【発明を実施するための形態】
【0033】
本開示は、基板処理システムの基板支持体における複数ゾーンの温度制御に関する特定の例を含むが、本明細書に記載のシステムおよび方法は、ゾーン分けされた抵抗発熱体を備える他の種類の構成部品における温度制御にも適用されうる。
【0034】
いくつかの適用では、温度の均一性は、基板処理中の基板全体に望まれる。これらの適用では、電力は、各抵抗発熱体に独立して供給されてよい。しかし、マルチゾーン発熱体システムは、基板支持体の温度を測定するために、ゾーンの1つに設置された1つの熱電対のみを有することが多い。電力は、全てのゾーンで均一な温度を維持するために、熱電対を備えるゾーンに供給された電力の既定比(または、電力比)(または、デューティサイクルの既定比)で残りのゾーンに供給される。電力比またはデューティサイクル比は、通常、特定のプロセス条件のために決定され、一般に変動しない。残りのゾーンにおける実際の温度は、未知であるが、熱電対を備えるゾーンの既定範囲内であることが見込まれる。
【0035】
しかし、いくつかの適用では、特定のプロセス条件の間に著しい熱負荷変動が起こり、熱電対を備えるゾーンに対して1または複数のゾーンの温度が変化させられる可能性がある。温度変化は、望ましくないプロセス制御をもたらす。温度変化が十分に大きいときは、基板支持体の欠陥が生じうる。
【0036】
いくつかの加熱システムは、温度(または、抵抗温度係数(TCR))による発熱体コイルの抵抗率の依存性に依存する。これらのシステムは、一般に、個々のゾーンの温度を独立して制御し、通常、各ゾーンに温度センサまたは熱電対を必要とする。あるいは、各発熱素子についての抵抗に対する温度の個々の較正/特徴付け、およびそれらのゾーン温度との関係が決定されうる。
【0037】
本開示は、ゾーンにおける温度の均一性を提供しながら上記要件を回避する方法を提供する。本開示は、各ゾーンにおける熱電対、または上記のような個々の較正/特徴付けを必要とせずに、全てのゾーンにわたる熱均一性を維持する。
【0038】
TCRは、抵抗発熱体の材料の微細構造に関する材料特性である。同じ処理条件下で製造された同じ材料で作られた構成部品は、同一のまたは非常に近いTCR値を有することが見込まれる。つまり、マルチゾーン基板支持体の異なるゾーンに設置され、一緒に処理された抵抗発熱体で用いられる発熱コイル素子は、同一のまたは非常に近いTCR値を有することが見込まれる。発熱素子の抵抗は所定温度で異なる可能性があるが、発熱素子の抵抗は、温度と類似して推移する。つまり、熱電対(RZN)を備えるゾーンに対する熱電対(例えば、RZ1、RZ2、・・・RZN-1)なしのゾーンにおける抵抗発熱体の各抵抗比(RZ1/RZN、RZ2/RZN、・・・、およびRZN-1/RZN)は、抵抗発熱体が熱電対を備える抵抗発熱体と同じ温度であるときは同一に留まるだろう。よって、ゾーンの抵抗は、大気温度などの1つの温度において決定される場合は、ゾーンの対応する抵抗比は、熱電対なしの他のゾーンの所望の抵抗を決定するために、他の温度(例えば、大気温度から700℃までのプロセス温度)で用いられうる。所望の抵抗および測定された抵抗は、他のゾーンにおいて電力を制御し、均一な温度を提供するのに用いられる。
【0039】
具体的には、本開示による動的温度コントローラは、既定温度の熱電対(RZN)を備えるゾーンに対する、熱電対(RZ1、RZ2、・・・RZN-1)なしのゾーンにおける抵抗発熱体のN-1の抵抗比(RZ1/RZN、RZ2/RZN、・・・、およびRZN-1/RZN)を決定する。例えば、抵抗比は、室温において決定され、他のプロセス温度に適用されることができる。次に、熱電対(RZ1、RZ2、・・・RZN-1)なしのゾーンにおける所望の抵抗を決定するために、熱電対を備えるゾーンZNのN-1の抵抗比(RZ1/RZN、RZ2/RZN、・・・、およびRZN-1/RZN)ならびに温度が用いられる。
【0040】
例えば、第1のゾーンZ1の抵抗比がRZ1/RZN=1.102に等しい場合は、所定温度で測定された抵抗は、ゾーンZNにおける所望温度で10Ωであり、ゾーンRZ1の所望の抵抗=1.102×10Ω=11.02Ωである。例えば、第2のゾーンZ2の抵抗比がRZ2/RZN=1.08に等しい場合は、所定温度で測定された抵抗は、熱電対を備えるゾーンZNの所望温度において10Ωであり、第2のゾーンの所望の抵抗RZ1=1.08×10Ω=10.8Ωである。
【0041】
本開示によるシステムおよび方法は、熱電対を備えるゾーンに対する熱電対なしのゾーンにおける抵抗発熱体の抵抗比を維持することによって、複数ゾーンの温度を制御する。つまり、熱電対を備えるゾーンの温度は、熱電対からの温度フィードバックに基づいて所望の温度に制御される。熱電対を備えるゾーンの抵抗は、所望の温度で測定される。抵抗比は、対応するゾーンにおいて所望の温度を実現するために、残りのゾーンにおける所望の抵抗を決定するのに用いられる。発熱体電力は、対応するゾーンの測定された抵抗が所望の抵抗にそれぞれ一致するように、対応するゾーンにおいて増加または減少される。
【0042】
基板支持体の1つのゾーンにおいて1度の温度測定を用いることで、基板支持体の残りの全てのゾーンは、均一な温度に動的に制御されうる。その結果、基板支持体温度の均一性は、残りのゾーンにおいて熱電対を用いることなく、または、各ゾーンの抵抗対温度の事前較正なしで実現される。
【0043】
ここで
図1を参照すると、例示的基板処理システム120が示されている。容量結合プラズマ(CCP)を用いる化学気相堆積(CVD)または原子層堆積(ALD)用の処理チャンバが説明の目的で示されているが、他の種類の基板処理システムも用いられうる。
【0044】
基板処理システム120は、基板処理システム120の他の構成部品を取り囲み、(用いられる場合は)RFプラズマを含む処理チャンバ122を備える。基板処理システム120は、上部電極124と、静電チャック(ESC)や台座などの基板支持体126とを備える。動作の間、基板128は、基板支持体126の上に配置される。
【0045】
例えのみでは、上部電極124は、プロセスガスを導入し分配する、シャワーヘッドなどのガス分配装置129を備えてよい。ガス分配装置129は、処理チャンバの上面に接続された一端を有するステム部を備えてよい。ベース部は、一般に円筒状であり、処理チャンバの上面から離れた位置でステム部のもう一端から径方向外向きに伸びる。シャワーヘッドのベース部の基板対向面またはフェースプレートは、前駆体、反応剤、エッチングガス、不活性ガス、キャリアガス、他のプロセスガス、またはパージガスが流れる複数の穴を備える。あるいは、上部電極124は導電性プレートを備えてよく、プロセスガスは別の方法で導入されてよい。
【0046】
基板支持体126は、下部電極として機能するベースプレート130を備える。ベースプレート130は、セラミック製マルチゾーン加熱プレートに相当しうる加熱プレート132を支持する。加熱プレート132とベースプレート130との間に、熱抵抗層134が配置されてよい。ベースプレート130は、ベースプレート130を通じて冷媒を流すための1または複数の流路136を備えてよい。
【0047】
プラズマが用いられる場合は、RF発生システム140は、RF電圧を生成して、上部電極124および下部電極(例えば、基板支持体126のベースプレート130)のいずれかに出力する。上部電極124およびベースプレート130のもう一方は、DC接地されてよい、AC接地されてよい、または浮遊状態であってよい。例えのみでは、RF発生システム140は、整合分配ネットワーク144によって上部電極124またはベースプレート130に供給されるRF電圧を生成するRF電圧発生器142を備えてよい。他の例では、プラズマは誘導的にまたは遠隔的に生成されてよい。
【0048】
ガス供給システム150は、1または複数のガス源、ガス源152-1、ガス源152-2、・・・、およびガス源152-N(総称して、ガス源152)(Nはゼロより大きい整数)を備える。ガス源152は、バルブ154-1、バルブ154-2、・・・、およびバルブ154-N(総称して、バルブ154)、ならびに、MFC156-1、MFC156-2、・・・、およびMFC156-N(総称して、MFC156)によってマニホルド160に接続されている。1つのガス供給システム150が示されているが、2つ以上のガス供給システムも用いられうる。
【0049】
動的温度コントローラ163は、加熱プレート132に配置された複数の抵抗発熱体164に接続されている。動的温度コントローラ163は、加熱プレート132の複数の加熱ゾーンの1つに配置された熱電対165にも接続されている。残りの加熱ゾーンは、熱電対を備えない。動的温度コントローラ163は、基板支持体126および基板128の温度を調節し制御するよう複数の抵抗発熱体164を制御するために用いられてよい。
【0050】
いくつかの例では、動的温度コントローラ163および/または別のコントローラは、流路136を通る冷媒流を制御するために、冷媒アセンブリ166とも連通してよい。例えば、冷媒アセンブリ166は、冷媒ポンプ、貯留槽、および/または、1もしくは複数の熱電対を備えてよい。いくつかの例では、動的温度コントローラ163は、基板支持体126を冷却するために流路136を通じて冷媒を選択的に流すよう冷媒アセンブリ166を操作する。
【0051】
バルブ170およびポンプ172は、処理チャンバ122から反応剤を排出するのに用いられてよい。システムコントローラ180は、基板処理システム120の構成部品を制御するのに用いられてよい。
【0052】
次に
図2を参照すると、本開示による動的温度制御システム200が示されている。動的温度制御システム200は、駆動回路224-1、駆動回路224-2、・・・、および駆動回路224-N(総称して、駆動回路224)を有する電源220を備える(Nは、1より大きい整数)。駆動回路224は、以下にさらに説明されるように、抵抗発熱体への電力を制御する。
【0053】
駆動回路224-1、駆動回路224-2、・・・、および駆動回路224-Nによって各ゾーンに出力される電流は、電流センサ228-1、電流センサ228-2、・・・、および電流センサ228-N(総称して、電流センサ228)によって監視される。駆動回路224-1、駆動回路224-2、・・・、および駆動回路224-Nによって各ゾーンに出力される電圧は、電圧センサ230-1、電圧センサ230-2、・・・、および電圧センサ230-N(総称して、電圧センサ230)によって監視される。
【0054】
構成部品231は、加熱ゾーン232-1、加熱ゾーン232-2、・・・、および加熱ゾーン232-N(総称して、ゾーン232)を備える。以下の説明では、構成部品231は基板支持体を含むが、抵抗発熱体を有する複数ゾーンを備える任意の加熱構成部品が用いられうる。ゾーン232-1、ゾーン232-2、・・・、およびゾーン232-Nの各々は、そこに埋め込まれた抵抗発熱体236-1、抵抗発熱体232-2、・・・、および抵抗発熱体232-N(総称して、抵抗発熱体236)を備える。いくつかの例では、抵抗発熱体236は、対応する抵抗を有する発熱素子または発熱コイルを備える。ゾーン232-1、ゾーン232-2、・・・、およびゾーン232-Nの1つは、その温度を検出するための熱電対240を備える。ゾーン232-1、ゾーン232-2、・・・、およびゾーン232-Nの残りのゾーンは、熱電対を備えない。
【0055】
コントローラ250は、電流センサ228および/または電圧センサ230、熱電対240、ならびに駆動回路224と連通する。コントローラ250は、発熱体制御モジュール254を備える。発熱体制御モジュール254は、電流センサ228および/または電圧センサ230からのそれぞれの電流測定値および/または電圧測定値に基づいて、抵抗発熱体236の各々の抵抗を決定する。いくつかの例では、電源220によって電流が十分に一定に保持されるとき、および、RF電力を制御するために電圧が変更されるときは、電流センサ228は省かれうる。他の例では、電源220によって電圧が十分に一定に保持されるとき、および、RF電力を制御するために電流が変更されるときは、電圧センサ230は省かれうる。
【0056】
発熱体制御モジュール254は、熱電対240を備えるゾーン232の1つ(例えば、ゾーン232-1)の温度を監視し、熱電対240からの温度フィードバックに基づいてそのゾーンへの電力を制御する。発熱体制御モジュール254は、ゾーンの抵抗を測定し、抵抗比を用いて残りのゾーン232の所望の抵抗を決定する。発熱体制御モジュール254は、所望の抵抗を実現するために電力を増加または減少させるように残りのゾーン232の駆動回路224を制御することで、全ての残りのゾーン232において均一な温度をもたらす。
【0057】
次に
図3Aから
図3Cを参照すると、基板支持体のゾーンの様々な例が示されている。特定の例が示されているが、他のゾーンレイアウトも用いられうる。
図3Aでは、基板支持体310は、ゾーン1、ゾーン2、およびゾーン3を含む同心ゾーンを備える。各ゾーンは、抵抗発熱体を備える。
図3Bでは、基板支持体350は、内側ゾーン360および外側ゾーン362を規定する抵抗発熱体コイルを備える。
図3Cでは、内側ゾーン1は、周囲の外側ゾーン2、外側ゾーン3、外側ゾーン4、および外側ゾーン5によって囲まれている。各ゾーンは、抵抗発熱体を備える。理解されうるように、他のゾーンレイアウトも用いられうる。
【0058】
次に
図4Aおよび
図4Bを参照すると、2つのゾーンの発熱体について温度を関数とした抵抗を表すグラフが示されている。
図4Aでは、台座上のTC搭載ウエハに基づいて内側台座温度および外側台座温度を均一にするために駆動される動的温度コントローラを用いて、台座加熱中の内側発熱体の抵抗および外側発熱体の抵抗が記録されている。
図4Bでは、内側抵抗および外側抵抗は、共に、0℃において1の抵抗に調整される。認められうるように、傾斜はほぼ一致している。内側抵抗/外側抵抗比は、温度範囲にわたって0.05%未満の変化を示している。これらの試験は、内側TCR値および外側TCR値が互いに非常に近く、較正なしで台座を均一に加熱するのに抵抗比が用いられうるという思想を支持するものである。
【0059】
次に
図5を参照すると、構成部品のゾーンの温度をそれぞれ制御するための方法400が示されている。方法400は、1つのゾーンのみに関連付けられた熱電対を用いて、構成部品の複数ゾーンの温度を均一な温度に制御するために用いられる。方法400は、410において、単一温度で構成部品の各ゾーンにおける抵抗発熱体の抵抗を決定する工程を含む。いくつかの例では、単一温度は大気温度であるが、他の温度も用いられうる。
【0060】
414では、この方法は、(熱電対のない)残りのゾーンと熱電対を備えるゾーンとの間の抵抗比を決定する。418では、熱電対を備えるゾーンの温度が動作中に検出され、測定された温度に基づいて電力が制御され、熱電対を備えるゾーンの抵抗が測定される。422では、残りのゾーンにおける抵抗発熱体の抵抗が動作中に測定される。426では、対応する抵抗比を用いて残りのゾーンの所望の抵抗が算出される。430では、残りのゾーンに出力された電力は、測定された抵抗と所望の抵抗との間の差に基づいて制御される。
【0061】
次に
図5~
図6を参照すると、それぞれ、従来の温度制御システムおよび本開示による動的温度制御システムについての、時間を関数とする温度が示されている。
図5では、従来の温度制御システムを用いる
図3Bの基板支持体350についての、時間を関数とする温度が示されている。図からわかるように、内側ゾーンと外側ゾーンとの間の温度差は20℃より大きく、プロセスの不均一性、欠陥、および/または基板支持体への損傷をもたらす傾向がある。
図6では、本明細書に記載の温度制御システムを用いてより厳格な温度制御が実現され、プロセスの不均一性および欠陥が低減され、基板支持体への損傷が排除されている。
【0062】
基板処理システムの基板支持体を製造する方法は、基板支持体のNのゾーンにNの抵抗発熱体を埋め込む工程を含む。温度センサは、基板支持体のNのゾーンの1つに埋め込まれる。基板支持体のNのゾーンにおけるNの抵抗発熱体のNの抵抗が測定される。Nの抵抗に基づいてN-1の抵抗比が決定される。コントローラは、Nの抵抗発熱体および温度センサに接続される。コントローラは、Nのゾーンの1つにおける測定された温度、Nの抵抗発熱体のNの抵抗、およびN-1の抵抗比に応答して、基板処理システムの動作中に、NのゾーンのN-1におけるNの抵抗発熱体のN-1の温度をそれぞれ制御するようにプログラムされる。
【0063】
前述の説明は、本質的に単なる例示であり、本開示、その適用、または使用を限定する意図はない。本開示の広義の教示は、様々な形態で実施されうる。よって、本開示は特定の例を含むが、図面、明細書、および以下の特許請求の範囲を考察すると他の変更点が明らかになるため、本開示の真の範囲は、それほど限定されるべきでない。方法内の1または複数の工程は、本開示の原理を変更することなく異なる順序で(または、同時に)実行されてよいことを理解されたい。さらに、各実施形態は特定の特徴を有すると上述されているが、本開示の実施形態に関して記載されたそれらの1または複数の特徴は、他の実施形態において、および/または、他の実施形態の特徴と組み合わせて(その組み合わせが明記されていなくても)実施されうる。つまり、記載の実施形態は、相互に排他的でなく、1または複数の実施形態の互いの並べ替えは、本開示の範囲内に留まる。
【0064】
要素間(例えば、モジュール間、回路素子間、半導体層間など)の空間的および機能的関係は、「接続された」、「係合された」、「結合された」、「隣接する」、「近接する」、「上に」、「上方」、「下方」、および「配置された」を含む様々な用語を用いて説明される。上記の開示で第1の要素と第2の要素との関係が説明されるときは、「直接的」であると明記されない限り、その関係は、第1の要素と第2の要素との間に他の要素が介在しない直接的関係でありうるが、第1の要素と第2の要素との間に1または複数の介在要素が(空間的または機能的に)存在する間接的関係でもありうる。本明細書では、A、B、およびCのうちの少なくとも1つという表現は、非排他的論理のORを用いる論理(A OR B OR C)を意味すると解釈されるべきであり、「Aのうちの少なくとも1つ、Bのうちの少なくとも1つ、およびCのうちの少なくとも1つ」を意味すると解釈されるべきではない。
【0065】
いくつかの実施形態では、コントローラは、上記の例の一部でありうるシステムの一部である。かかるシステムは、処理ツール、チャンバ、処理用プラットフォーム、および/または、特定の処理構成部品(ウエハ台座、ガス流システムなど)を含む半導体処理装置を含みうる。これらのシステムは、半導体ウエハまたは基板の処理前、処理中、および処理後のそれらの動作を制御するための電子機器と統合されてよい。この電子機器は、システムの様々な構成部品または副構成部品を制御しうる「コントローラ」を意味してよい。コントローラは、処理条件および/またはシステムの種類に応じて、処理ガスの供給、温度設定(例えば、加熱および/または冷却)、圧力設定、真空設定、電力設定、無線周波数(RF)発生器の設定、RF整合回路設定、周波数設定、流量設定、流体供給設定、位置動作設定、ツールおよび他の搬送ツールに対するウエハ搬入出、ならびに/または、特定のシステムに接続もしくは結合されたロードロックに対するウエハ搬入出など、本明細書に開示されたプロセスを制御するようにプログラムされてよい。
【0066】
概して、コントローラは、命令を受信し、命令を発行し、動作を制御し、洗浄動作を可能にし、エンドポイント測定を可能にするなどの、様々な集積回路、ロジック、メモリ、および/または、ソフトウェアを有する電子機器として定義されてよい。集積回路は、プログラム命令を記憶するファームウェア形式のチップ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)として定義されるチップ、および/または、プログラム命令(例えば、ソフトウェア)を実行する1または複数のマイクロプロセッサもしくはマイクロコントローラを含んでよい。プログラム命令は、様々な個別設定(または、プログラムファイル)の形式でコントローラに伝達される命令であって、特定のプロセスを半導体ウエハ上でもしくは半導体ウエハ向けに、またはシステムに対して実行するための動作パラメータを定義してよい。いくつかの実施形態では、動作パラメータは、1または複数の層、材料、金属、酸化物、シリコン、二酸化シリコン、表面、回路、および/または、ウエハダイの製造中における1または複数の処理工程を実現するために、プロセスエンジニアによって定義されるレシピの一部であってよい。
【0067】
いくつかの実施形態では、コントローラは、システムと統合または結合された、そうでなければシステムにネットワーク接続された、もしくはこれらが組み合わされたコンピュータの一部であってよく、またはそのコンピュータに結合されてよい。例えば、コントローラは、ウエハ処理のリモートアクセスを可能にする「クラウド」内にあってよい、または、ファブホストコンピュータシステムの全てもしくは一部であってよい。コンピュータは、システムへのリモートアクセスを可能にして、製造動作の進捗状況を監視し、過去の製造動作の経歴を調査し、複数の製造動作から傾向または実施の基準を調査し、現在の処理のパラメータを変更し、現在の処理に続く処理工程を設定し、または、新しいプロセスを開始してよい。いくつかの例では、リモートコンピュータ(例えば、サーバ)は、ローカルネットワークまたはインターネットを含みうるネットワークを通じて、プロセスレシピをシステムに提供できる。リモートコンピュータは、次にリモートコンピュータからシステムに伝達されるパラメータおよび/もしくは設定のエントリまたはプログラミングを可能にするユーザインタフェースを含んでよい。いくつかの例では、コントローラは、1または複数の動作中に実施される各処理工程のパラメータを特定するデータ形式の命令を受信する。パラメータは、実施されるプロセスの種類、および、コントローラが接続するまたは制御するように構成されたツールの種類に固有であってよいことを理解されたい。よって、上述のように、コントローラは、例えば、互いにネットワーク接続される1または複数の個別のコントローラを含むことや、本明細書に記載のプロセスおよび制御などの共通の目的のために協働することによって分散されてよい。かかる目的で分散されたコントローラの例は、遠隔に(例えば、プラットフォームレベルで、または、リモートコンピュータの一部として)設置され、協働してチャンバにおけるプロセスを制御する1または複数の集積回路と連通するチャンバの1または複数の集積回路であろう。
【0068】
制限するのではなく、例示のシステムは、プラズマエッチングチャンバまたはプラズマエッチングモジュール、堆積チャンバまたは堆積モジュール、スピンリンスチャンバまたはスピンリンスモジュール、金属めっきチャンバまたは金属めっきモジュール、クリーンチャンバまたはクリーンモジュール、ベベルエッジエッチングチャンバまたはベベルエッジエッチングモジュール、物理気相堆積(PVD)チャンバまたはPVDモジュール、化学気相堆積(CVD)チャンバまたはCVDモジュール、原子層堆積(ALD)チャンバまたはALDモジュール、原子層エッチング(ALE)チャンバまたはALEモジュール、イオン注入チャンバまたはイオン注入モジュール、トラックチャンバまたはトラックモジュール、ならびに、半導体ウエハの製作および/もしくは製造において関連もしくは使用しうる他の半導体処理システムを含んでよい。
【0069】
上述のように、ツールによって実施されるプロセス工程に応じて、コントローラは、他のツール回路もしくはツールモジュール、他のツール構成部品、クラスタツール、他のツールインタフェース、隣接するツール、近接するツール、工場全体に設置されたツール、メインコンピュータ、別のコントローラ、または、半導体製造工場においてツール位置および/もしくはロードポートに対してウエハ容器を搬入出する材料搬送に用いられるツール、のうちの1つまたは複数と連通しうる。
【手続補正書】
【提出日】2024-04-08
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
基板処理システムのための温度制御式基板支持体であって、
N個のゾーンおよびN個の抵抗発熱体をそれぞれ備える基板支持体であって、Nは1より大きい整数であり、前記N個のゾーンの1個には温度センサが設置されている、基板支持体と、
コントローラであって、
動作中の前記N個の抵抗発熱体についてN個の抵抗を算出し、
前記基板処理システムの動作中に、
前記N個のゾーンの前記1個に設置された前記温度センサによって測定された温度と、
前記N個の抵抗発熱体についての前記N個の抵抗と、
に応答して、前記N個の抵抗発熱体のうちのN-1個への電力を調節するように構成された、コントローラと、
を備える、温度制御式基板支持体。
【請求項2】
請求項1に記載の温度制御式基板支持体であって、
前記コントローラは、(i)前記N個のゾーンの前記1個において測定された前記温度と、(ii)前記N個のゾーンにおける前記N個の抵抗発熱体の全ての前記抵抗と、に応答して、前記N個のゾーンのうちのN-1個のゾーンにおける前記N-1個の抵抗発熱体への電力を調節するように構成されている、温度制御式基板支持体。
【請求項3】
請求項1に記載の温度制御式基板支持体であって、
前記コントローラは、(i)前記N個のゾーンの前記1個において測定された前記温度と、(ii)前記N個のゾーンの前記1個における前記抵抗発熱体の前記抵抗およびそれぞれの前記ゾーンにおける前記抵抗発熱体の前記抵抗と、に応答して、前記N-1個の抵抗発熱体の各々への電力を調節するように構成されている、温度制御式基板支持体。
【請求項4】
請求項1に記載の温度制御式基板支持体であって、
前記コントローラは、前記N個のゾーンの前記1個に設置された前記温度センサによって測定された前記温度に基づいて、前記N個のゾーンの前記1個における前記N個の抵抗発熱体のうちの前記1個への電力を調節するように構成されている、温度制御式基板支持体。
【請求項5】
請求項1に記載の温度制御式基板支持体であって、
前記コントローラは、N-1個のゾーンの温度を測定することなく前記N個の抵抗発熱体の前記N個の抵抗を算出するように構成されている、温度制御式基板支持体。
【請求項6】
請求項1に記載の温度制御式基板支持体であって、
前記コントローラは、前記N-1個の抵抗発熱体のN-1個の抵抗を、前記N個のゾーンの前記1個の前記抵抗で割ることによって算出されたN-1個の抵抗比に応答して、前記N-1個の抵抗発熱体への電力を調節するように構成されている、温度制御式基板支持体。
【請求項7】
請求項6に記載の温度制御式基板支持体であって、
前記コントローラは、前記基板支持体が均一な温度にあるときに、前記N個のゾーンにおける前記N個の抵抗発熱体の前記N個の抵抗を測定することによって前記N-1個の抵抗比を決定するように構成されている、温度制御式基板支持体。
【請求項8】
請求項7に記載の温度制御式基板支持体であって、
前記均一な温度は、大気温度に相当する、温度制御式基板支持体。
【請求項9】
請求項1に記載の温度制御式基板支持体であって、
前記N個のゾーンのうちのN-1個は、温度センサを備えない、温度制御式基板支持体。
【請求項10】
請求項1に記載の温度制御式基板支持体であって、
前記コントローラは、
前記N個の抵抗発熱体に供給されるN個の電圧をそれぞれ監視することと、
前記N個の抵抗発熱体に供給された前記N個の電圧に基づいて前記N個の抵抗をそれぞれ算出することと、
によって、前記N個の抵抗発熱体について前記N個の抵抗を算出するように構成されている、温度制御式基板支持体。
【請求項11】
請求項1に記載の温度制御式基板支持体であって、
前記コントローラは、
前記N個の抵抗発熱体に供給されるN個の電流をそれぞれ監視することと、
前記N個の抵抗発熱体に供給された前記N個の電流に基づいて前記N個の抵抗をそれぞれ算出することと、
によって、前記N個の抵抗発熱体について前記N個の抵抗を算出するように構成されている、温度制御式基板支持体。
【請求項12】
請求項1に記載の温度制御式基板支持体であって、
前記コントローラは、
前記N個の抵抗発熱体に供給されるN個の電流およびN個の電圧をそれぞれ監視することと、
前記N個の抵抗発熱体に供給された前記N個の電流および前記N個の電圧に基づいて前記N個の抵抗をそれぞれ算出することと、
によって、前記N個の抵抗発熱体について前記N個の抵抗を算出するように構成されている、温度制御式基板支持体。
【請求項13】
基板処理システムのための温度制御式基板支持体を製造する方法であって、
基板支持体のN個のゾーンにN個の抵抗発熱体を埋め込む工程であって、Nは1より大きい整数である、工程と、
前記N個のゾーンのうちの1個に設置される温度センサを埋め込む工程と、
動作中に、前記N個の抵抗発熱体についてN個の抵抗を算出する工程と、
前記基板処理システムの動作中に、
前記N個のゾーンの前記1個に設置された前記温度センサによって測定された温度と、
前記N個の抵抗発熱体についての前記N個の抵抗と、
に応答して、前記N個の抵抗発熱体のうちのN-1個への電力を調節する工程と、
を含む、方法。
【請求項14】
請求項13に記載の方法であって、
(i)前記N個のゾーンの前記1個において測定された前記温度と、(ii)前記N個のゾーンにおける前記N個の抵抗発熱体の全ての前記抵抗と、に応答して、前記N個のゾーンのうちのN-1個のゾーンにおける前記N-1個の抵抗発熱体への電力を調節する工程を含む、方法。
【請求項15】
請求項13に記載の方法であって、
(i)前記N個のゾーンの前記1個において測定された前記温度と、(ii)前記N個のゾーンの前記1個における前記抵抗発熱体の前記抵抗およびそれぞれの前記ゾーンにおける前記抵抗発熱体の前記抵抗と、に応答して、前記N-1個の抵抗発熱体の各々への電力を調節する工程を含む、方法。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0069
【補正方法】変更
【補正の内容】
【0069】
上述のように、ツールによって実施されるプロセス工程に応じて、コントローラは、他のツール回路もしくはツールモジュール、他のツール構成部品、クラスタツール、他のツールインタフェース、隣接するツール、近接するツール、工場全体に設置されたツール、メインコンピュータ、別のコントローラ、または、半導体製造工場においてツール位置および/もしくはロードポートに対してウエハ容器を搬入出する材料搬送に用いられるツール、のうちの1つまたは複数と連通しうる。本開示は以下の適用例を含む。
[適用例1]
基板処理システムのための温度制御式基板支持体であって、
NのゾーンおよびNの抵抗発熱体をそれぞれ備える基板支持体であって、Nは1より大きい整数であり、前記Nのゾーンの1つには温度センサが設置されている、基板支持体と、
コントローラであって、
動作中の前記Nの抵抗発熱体のNの抵抗を算出し、
前記基板処理システムの動作中に、
前記温度センサによって測定された前記Nのゾーンの前記1つにおける前記温度と、
前記Nの抵抗発熱体の前記Nの抵抗と、
N-1の抵抗比と、
に応答して、前記Nの抵抗発熱体のN-1への電力を調節するように構成された、コントローラと、
を備える、温度制御式基板支持体。
[適用例2]
適用例1に記載の温度制御式基板支持体であって、
前記N-1の抵抗比は、前記基板支持体が均一な温度にあるときに、前記Nのゾーンにおける前記Nの抵抗発熱体の前記Nの抵抗をそれぞれ測定し、前記NのゾーンのN-1の前記Nの抵抗のN-1を、前記Nのゾーンの前記1つに対応する前記Nの抵抗の1つで割ることによって決定される、温度制御式基板支持体。
[適用例3]
適用例2に記載の温度制御式基板支持体であって、
前記均一な温度は、大気温度に相当する、温度制御式基板支持体。
[適用例4]
適用例1に記載の温度制御式基板支持体であって、
前記N-1のゾーンは、温度センサを備えない、温度制御式基板支持体。
[適用例5]
適用例1に記載の温度制御式基板支持体であって、
前記コントローラは、
前記Nの抵抗発熱体に供給されるNの電圧をそれぞれ監視することと、
前記Nの抵抗発熱体に供給された前記Nの電圧に基づいて前記Nの抵抗をそれぞれ算出することと、
によって、動作中の前記Nの抵抗発熱体の前記Nの抵抗を算出する、温度制御式基板支持体。
[適用例6]
適用例1に記載の温度制御式基板支持体であって、
前記コントローラは、
前記Nの抵抗発熱体に供給されるNの電流をそれぞれ監視することと、
前記Nの抵抗発熱体に供給された前記Nの電流に基づいて前記Nの抵抗をそれぞれ算出することと、
によって、動作中の前記Nの抵抗発熱体の前記Nの抵抗を算出する、温度制御式基板支持体。
[適用例7]
適用例1に記載の温度制御式基板支持体であって、
前記コントローラは、
前記Nの抵抗発熱体に供給されるNの電流およびNの電圧をそれぞれ監視することと、
前記Nの抵抗発熱体に供給された前記Nの電流および前記Nの電圧に基づいて前記Nの抵抗をそれぞれ算出することと、
によって、動作中の前記Nの抵抗発熱体の前記Nの抵抗を算出する、温度制御式基板支持体。
[適用例8]
適用例1に記載の温度制御式基板支持体であって、
前記コントローラは、前記温度センサによって測定された前記温度に基づいて、前記Nのゾーンの前記1つへの電力を制御するように構成されている、温度制御式基板支持体。
[適用例9]
基板処理システムのための温度制御式基板支持体を製造する方法であって、
基板支持体のNのゾーンにNの抵抗発熱体を埋め込む工程と、
前記基板支持体の前記Nのゾーンの1つに温度センサを埋め込む工程と、
前記基板支持体の前記Nのゾーンにおける前記Nの抵抗発熱体のNの抵抗を測定する工程と、
前記Nの抵抗に基づいてN-1の抵抗比を決定する工程と、
前記Nの抵抗発熱体および前記温度センサにコントローラを接続する工程と、
前記基板処理システムの動作中に、
前記Nのゾーンの前記1つにおける測定された温度と、
前記Nの抵抗発熱体の前記Nの抵抗と、
前記N-1の抵抗比と、
に応答して、前記NのゾーンのN-1における前記Nの抵抗発熱体のN-1の温度をそれぞれ制御するように前記コントローラをプログラミングする工程と、
を含む、方法。
[適用例10]
適用例9に記載の方法であって、
前記N-1の抵抗比は、
前記基板支持体が均一の温度であるときの前記抵抗発熱体の前記Nの抵抗をそれぞれ決定することと、
前記Nのゾーンの前記N-1の前記Nの抵抗の前記N-1を、前記Nのゾーンの前記1つに対応する前記Nの抵抗の1つで割ることと、
によって算出される、方法。
[適用例11]
適用例9に記載の方法であって、
前記均一な温度は、大気温度に相当する、方法。
[適用例12]
適用例9に記載の方法であって、
前記Nのゾーンの前記N-1は、温度センサを備えない、方法。
[適用例13]
適用例9に記載の方法であって、
前記Nの抵抗発熱体の前記Nの抵抗を測定する工程は、
前記Nの抵抗発熱体に供給されるNの電圧をそれぞれ監視する工程と、
前記Nの抵抗発熱体に供給された前記Nの電圧に基づいて前記Nの抵抗をそれぞれ算出する工程と、
を含む、方法。
[適用例14]
適用例9に記載の方法であって、
前記Nのゾーンの前記Nの抵抗を測定する工程は、
前記Nの抵抗発熱体に供給されるNの電流をそれぞれ監視する工程と、
前記Nの抵抗発熱体に供給された前記Nの電流に基づいて前記Nの抵抗をそれぞれ算出する工程と、
を含む、方法。
[適用例15]
適用例9に記載の方法であって、
動作中の前記Nのゾーンの前記Nの抵抗を測定する工程は、
Nの抵抗発熱体に供給されるNの電流およびNの電圧をそれぞれ監視する工程と、
前記Nの抵抗発熱体に供給された前記Nの電流および前記Nの電圧に基づいて前記Nの抵抗をそれぞれ算出する工程と、
を含む、方法。
[適用例16]
基板処理システムの基板支持体におけるゾーンの温度を制御するための方法であって、
前記基板処理システムの動作中に、Nのゾーンの1つに設置された温度センサを用いて、基板支持体の前記Nのゾーンの前記1つにおける温度を測定する工程であって、Nは1より大きい整数である、工程と、
前記基板処理システムの動作中に、前記Nのゾーンに設置されたNの抵抗発熱体のNの抵抗をそれぞれ測定する工程と、
前記基板処理システムの動作中に、
前記Nのゾーンの前記1つにおける前記測定された温度と、
前記Nの抵抗発熱体の前記Nの抵抗と、
N-1の抵抗比と、
に応答して前記NのゾーンのN-1における温度を制御するように、前記NのゾーンのN-1における前記Nの抵抗発熱体のN-1への電力をそれぞれ調節する工程と、
を含む、方法。
[適用例17]
適用例16に記載の方法であって、
前記N-1の抵抗比は、
前記基板支持体が均一の温度であるときの前記Nの抵抗発熱体の前記Nの抵抗をそれぞれ決定することと、
前記NのゾーンのN-1の前記Nの抵抗のN-1を、前記Nのゾーンの前記1つに対応する前記Nの抵抗の1つで割ることと、
によって算出される、方法。
[適用例18]
適用例17に記載の方法であって、
前記均一な温度は、大気温度に相当する、方法。
[適用例19]
適用例16に記載の方法であって、
前記Nのゾーンの前記N-1は、温度センサを備えない、方法。
[適用例20]
適用例16に記載の方法であって、
前記Nの抵抗発熱体の前記Nの抵抗を測定する工程は、
前記Nの抵抗発熱体に供給されるNの電圧をそれぞれ監視する工程と、
前記Nの抵抗発熱体に供給された前記Nの電圧に基づいて前記Nの抵抗をそれぞれ算出する工程と、
を含む、方法。
[適用例21]
適用例16に記載の方法であって、
前記Nのゾーンの前記Nの抵抗を測定する工程は、
前記Nの抵抗発熱体に供給されるNの電流をそれぞれ監視する工程と、
前記Nの抵抗発熱体に供給された前記Nの電流に基づいて前記Nの抵抗をそれぞれ算出する工程と、
を含む、方法。
[適用例22]
適用例16に記載の方法であって、
動作中の前記Nのゾーンの前記Nの抵抗を測定する工程は、
Nの抵抗発熱体に供給されるNの電流およびNの電圧をそれぞれ監視する工程と、
前記Nの抵抗発熱体に供給された前記Nの電流および前記Nの電圧に基づいて前記Nの抵抗をそれぞれ算出する工程と、
を含む、方法。
[適用例23]
適用例16に記載の方法であって、さらに、
前記温度センサによって測定された前記温度に基づいて、前記Nのゾーンの前記1つへの電力を制御する工程を含む、方法。
【外国語明細書】