IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エスケーハイニックス株式会社の特許一覧

特開2024-80560イメージにボケ効果を適用する方法及び装置
<>
  • 特開-イメージにボケ効果を適用する方法及び装置 図1
  • 特開-イメージにボケ効果を適用する方法及び装置 図2
  • 特開-イメージにボケ効果を適用する方法及び装置 図3
  • 特開-イメージにボケ効果を適用する方法及び装置 図4
  • 特開-イメージにボケ効果を適用する方法及び装置 図5
  • 特開-イメージにボケ効果を適用する方法及び装置 図6
  • 特開-イメージにボケ効果を適用する方法及び装置 図7
  • 特開-イメージにボケ効果を適用する方法及び装置 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024080560
(43)【公開日】2024-06-13
(54)【発明の名称】イメージにボケ効果を適用する方法及び装置
(51)【国際特許分類】
   H04N 23/60 20230101AFI20240606BHJP
   G06T 5/20 20060101ALI20240606BHJP
【FI】
H04N23/60 500
G06T5/20
【審査請求】未請求
【請求項の数】20
【出願形態】OL
(21)【出願番号】P 2023001635
(22)【出願日】2023-01-10
(31)【優先権主張番号】10-2022-0165871
(32)【優先日】2022-12-01
(33)【優先権主張国・地域又は機関】KR
(71)【出願人】
【識別番号】310024033
【氏名又は名称】エスケーハイニックス株式会社
【氏名又は名称原語表記】SK hynix Inc.
【住所又は居所原語表記】2091, Gyeongchung-daero,Bubal-eub,Icheon-si,Gyeonggi-do,Korea
(74)【代理人】
【識別番号】110000796
【氏名又は名称】弁理士法人三枝国際特許事務所
(72)【発明者】
【氏名】足立 裕樹
【テーマコード(参考)】
5B057
5C122
【Fターム(参考)】
5B057CA01
5B057CA08
5B057CA12
5B057CA16
5B057CB01
5B057CB08
5B057CB12
5B057CB16
5B057CE04
5B057DA16
5B057DB02
5B057DB06
5B057DB09
5B057DC03
5B057DC40
5C122FH09
5C122FH11
5C122FH14
5C122FH21
5C122FH22
5C122FH23
5C122HA75
5C122HA88
5C122HB01
5C122HB05
5C122HB06
5C122HB10
(57)【要約】
【課題】映像処理によりイメージにボケ効果を適用する。
【解決手段】イメージプロセッサは、距離情報または色情報のうち少なくとも1つに基づいてイメージに適用されるカーネルの形状を決め、カーネルを利用してイメージの少なくとも一部領域がブラー処理されたボケイメージを生成する。
【選択図】図5
【特許請求の範囲】
【請求項1】
距離情報または色情報のうち少なくとも1つに基づいてイメージに適用されるカーネルの形状を決めるカーネル決定部と、
上記カーネルを利用して上記イメージの少なくとも一部領域をブラー処理したボケイメージを出力するカーネル適用部と、を含むことを特徴とするイメージプロセッサ。
【請求項2】
上記カーネル決定部は、
上記イメージに対応する場面のうち焦点の設定された被写体との距離に基づいて決められる第1パラメータを利用して上記カーネルの形状を決めることを特徴とする請求項1に記載のイメージプロセッサ。
【請求項3】
上記カーネル決定部は、
上記イメージに含まれた画素データに対応する色に基づいて決められる第2パラメータを利用して上記カーネルの形状を決めることを特徴とする請求項1に記載のイメージプロセッサ。
【請求項4】
上記カーネル決定部は、
上記色の波長に基づいて上記第2パラメータを決めることを特徴とする請求項3に記載のイメージプロセッサ。
【請求項5】
上記カーネル決定部は、
上記イメージに含まれた画素データに対応する色に基づいて決められる第3パラメータに基づいて上記カーネルの外郭部のサイズを決めることを特徴とする請求項1に記載のイメージプロセッサ。
【請求項6】
上記カーネル決定部は、
上記イメージに対応する場面との距離に基づいて決められる第4パラメータを利用して上記カーネルの中央部のサイズを決めることを特徴とする請求項1に記載のイメージプロセッサ。
【請求項7】
上記カーネルは、
フレネル(Fresnel)カーネルであることを特徴とする請求項1に記載のイメージプロセッサ。
【請求項8】
上記イメージを顔に該当する顔領域とその他の領域に該当する背景領域とに区分する顔検出部をさらに含むことを特徴とする請求項1に記載のイメージプロセッサ。
【請求項9】
上記顔検出部は、
上記イメージに対する顔検出を行って顔検出領域を識別し、
上記顔検出領域に含まれた画素のうち画素間の色差が閾値未満である少なくとも一部の画素を含む上記顔領域を決めることを特徴とする請求項8に記載のイメージプロセッサ。
【請求項10】
上記カーネル適用部は、
上記カーネルを利用して上記背景領域をブラー処理して上記ボケイメージを生成することを特徴とする請求項8に記載のイメージプロセッサ。
【請求項11】
撮影される場面の距離情報を取得する距離センサと、
上記場面のイメージを取得するイメージセンサと、
上記距離情報及び上記イメージの色情報に基づいて上記イメージに適用されるカーネルの形状を決め、
上記カーネルを利用して上記イメージの少なくとも一部領域をブラー処理したボケイメージを生成し、上記生成されたボケイメージを出力するイメージプロセッサと、を含むことを特徴とするイメージ処理装置。
【請求項12】
上記イメージプロセッサは、
上記場面のうち焦点の設定された被写体との距離に基づいて決められる第1パラメータを利用して上記カーネルの形状を決めることを特徴とする請求項11に記載のイメージ処理装置。
【請求項13】
上記イメージプロセッサは、
上記イメージに含まれた画素データに対応する色に基づいて決められる第2パラメータを利用して上記カーネルの形状を決めることを特徴とする請求項11に記載のイメージ処理装置。
【請求項14】
上記イメージプロセッサは、
上記イメージに含まれた画素データに対応する色に基づいて決められる第3パラメータに基づいて上記カーネルの外郭部のサイズを決めることを特徴とする請求項11に記載のイメージ処理装置。
【請求項15】
上記カーネルは、
フレネル(Fresnel)カーネルであることを特徴とする請求項11に記載のイメージ処理装置。
【請求項16】
距離センサを介して撮影される場面の距離情報を取得する段階と、
イメージセンサを介して上記場面のイメージを取得する段階と、
上記距離情報及び上記イメージの色情報に基づいて上記イメージに適用されるカーネルの形状を決める段階と、
上記決められたカーネルを利用して上記イメージの少なくとも一部領域がブラー処理されたボケイメージを生成する段階と、を含むことを特徴とするイメージ処理方法。
【請求項17】
上記カーネルの形状を決める段階は、
上記場面のうち焦点の設定された被写体との距離に基づいて決められる第1パラメータを利用して上記カーネルの形状を決める段階を含むことを特徴とする請求項16に記載のイメージ処理方法。
【請求項18】
上記カーネルの形状を決める段階は、
上記イメージに含まれた画素データに対応する色に基づいて決められる第2パラメータを利用して上記カーネルの形状を決める段階を含むことを特徴とする請求項16に記載のイメージ処理方法。
【請求項19】
上記イメージに含まれた画素データに対応する色に基づいて決められる第3パラメータに基づいて上記カーネルの外郭部のサイズを決める段階をさらに含むことを特徴とする請求項16に記載のイメージ処理方法。
【請求項20】
上記場面との距離に基づいて決められる第4パラメータを利用して上記カーネルの中央部のサイズを決める段階をさらに含むことを特徴とする請求項16に記載のイメージ処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は映像処理によりイメージにボケ効果を適用する技術に関する。
【背景技術】
【0002】
DSLRなどのカメラは焦点深度(depth of field)を調整して主な被写体以外の背景をぼかすことで、主な被写体を目立たせるアウトフォーカス(out focus)という撮影手法を利用する。ただし、最近ではモバイル装置などに搭載されるカメラモジュールが小型化するに伴って焦点深度の調整が難しくなり、電子装置は撮影されたイメージに対する映像処理によりアウトフォーカスイメージと類似するイメージを取得している。
【0003】
電子装置は撮影されたイメージに対する映像処理としてボケ(bokeh)効果を適用する。電子装置は撮影されたイメージのうち焦点が設定された主な被写体は鮮明に保持し、主な被写体以外の背景はブラー(blur)処理してボケ効果が適用されたイメージ(以下、ボケイメージ)を生成する。例えば、電子装置はイメージのうち背景領域に対して指定されたカーネル(kernel)を通じて畳み込み演算(convolution)を行うことで、背景をブラー処理することができる。
【発明の概要】
【発明が解決しようとする課題】
【0004】
電子装置は映像処理によりボケ効果を適用するために、通常、ガウスカーネル(Gaussian kernel)で畳み込み演算を行う。ただし、レンズの回折によって実際のレンズを通じたPSF(point spread function)は、ガウス関数(Gaussian function)と異なる分布を有するため、ガウスカーネルを利用したボケ効果は実際のレンズを用いて撮影されたアウトフォーカスイメージとは違いがある。
【課題を解決するための手段】
【0005】
本開示の実施例によるイメージプロセッサは、距離情報または色情報のうち少なくとも1つに基づいてイメージに適用されるカーネルの形状を決めるカーネル決定部と、上記カーネルを利用して上記イメージの少なくとも一部領域をブラー処理したボケイメージを出力するカーネル適用部と、を含むことができる。
【0006】
本開示の実施例によるイメージ処理装置は、撮影される場面の距離情報を取得する距離センサと、上記場面のイメージを取得するイメージセンサと、上記距離情報及び上記イメージの色情報に基づいて上記イメージに適用されるカーネルの形状を決め、上記カーネルを利用して上記イメージの少なくとも一部領域がブラー処理されたボケイメージを生成するイメージプロセッサと、を含むことができる。
【0007】
本開示の実施例によるイメージ処理方法は、距離センサを介して撮影される場面の距離情報を取得する段階と、イメージセンサを介して上記場面のイメージを取得する段階と、上記距離情報及び上記イメージの色情報に基づいて上記イメージに適用されるカーネルの形状を決める段階と、上記決められたカーネルを利用して上記イメージの少なくとも一部領域がブラー処理されたボケイメージを生成する段階と、を含むことができる。
【発明の効果】
【0008】
本開示によると、電子装置はボケ効果を適用することによって実際のレンズの回折を再現することができるため、実際のレンズを用いて撮影されたアウトフォーカスイメージとさらに類似するボケイメージを取得することができる。
【図面の簡単な説明】
【0009】
図1】本発明の実施例による装置を説明するための図である。
図2】本発明の実施例によるイメージセンサを説明するための図である。
図3】本発明の実施例による装置に含まれる構成を説明するための図である。
図4】本発明の実施例によるフレネルカーネル(Fresnel kernel)を説明するための図である。
図5】本発明の実施例によるフレネルカーネルの断面を説明するための図である。
図6】本発明の実施例によって生成されたボケイメージの例示を説明するための図である。
図7】本発明の実施例によって顔領域と背景領域を区分する方法を説明するための図である。
図8】本発明の実施例によってボケイメージを生成する方法の流れを説明するための図である。
【発明を実施するための形態】
【0010】
本明細書または出願に開示されている本発明の概念による実施例の特定の構造的または機能的説明は、本発明の概念による実施例を説明するためだけに例示されており、本発明の概念による実施例は様々な形態で実施されてもよく、本明細書または出願に説明されている実施例に限定されると解釈すべきではない。
【0011】
本開示において、「AまたはB」、「AまたはBのうち少なくとも1つ」、「A及びBのうち少なくとも1つ」、「A、BまたはC」、「A、BまたはCのうち少なくとも1つ」、及び「A、B、及びCのうち少なくとも1つ」などの表現のそれぞれは、その表現が該当する表現に羅列されている項目の何れか1つ、またはそれらのすべての可能な組み合わせを含むことができる。
【0012】
以下では、本発明が属する技術分野で通常の知識を有する者が本発明の技術的思想を容易に実施できるほど詳細に説明するために、本発明の実施例を添付の図面を参照して説明する。
【0013】
図1は本発明の実施例による装置を説明するための図である。
【0014】
図1を参照すると、装置10はイメージセンサ100、イメージプロセッサ200、及び距離センサ300を含んでもよい。例えば、装置10はデジタルカメラ、モバイル機器、スマートフォン、タブレットPC、PDA(personal digital assistant)、EDA(enterprise digital assistant)、デジタルスチルカメラ(digital still camera)、デジタルビデオカメラ(digital video camera)、PMP(portable multimedia player)、モバイルインターネットデバイス(mobile internet device(MID))、PC(Personal Computer)、ウェアラブルデバイス(wearable device)、または様々な目的のカメラを含む装置であってもよい。また、図1の装置10は、他の電子装置内に実装される部品やモジュール(例えば、カメラモジュール)であってもよい。装置10はイメージ処理装置と称することができる。
【0015】
イメージセンサ100はCCD(charge coupled device)イメージセンサまたはCMOS(complementary metal oxide semiconductor)イメージセンサで具現されてもよい。イメージセンサ100はレンズ(不図示)を介して入射した光に対するイメージデータを生成することができる。例えば、イメージセンサ100はレンズを介して入射した被写体の光情報を電気的信号に変換してイメージプロセッサ200に提供することができる。上記レンズは光学系を形成する少なくとも1つのレンズを含んでもよい。
【0016】
イメージセンサ100は複数の画素を含んでもよい。イメージセンサ100は複数の画素により撮影された場面に対応する複数の画素値DPXsを生成することができる。イメージセンサ100は上記生成された複数の画素値DPXsをイメージプロセッサ200に伝送することができる。即ち、イメージセンサ100は複数の画素により取得したイメージデータをイメージプロセッサ200に提供することができる。
【0017】
イメージプロセッサ200はイメージセンサ100から受信したイメージデータに対してイメージ処理を行うことができる。例えば、イメージプロセッサ200は上記イメージデータに対して補間、EIS(Electronic Image Stabilization)、色調補正、画質補正、またはサイズ調整のうち少なくとも1つを行うことができる。イメージプロセッサ200は上記イメージ処理によって品質が改善されたイメージデータ、またはイメージ効果が付与されたイメージデータを取得することができる。
【0018】
距離センサ300は外部物体との距離を測定することができる。例えば、距離センサ300はTOF(time-of-flight)センサであって、出力された変調光が外部物体によって反射された反射光を利用して外部物体の距離を識別することができる。装置10は距離センサ300を利用して撮影中の場面に含まれた少なくとも1つの客体の距離を識別し、各画素ごとの距離情報を含む深度イメージを生成することができる。他の例として、距離センサ300はステレオビジョンセンサ(stereo vision sensor)であり、2つのカメラを用いて撮影された場面間の視差(disparity)を利用して外部物体との距離を識別することができる。さらに他の例として、距離センサ300は単眼イメージを介して深度を推定するディープラーニングモジュールであってもよい。単眼深度推定モジュールは1枚の2次元イメージから該当場面の深度を推定して外部物体との距離情報または距離に相応する情報を取得することができる。その他にも、距離センサ300は外部物体との距離情報または距離に関する情報を取得することができるように多様に構成されてもよい。
【0019】
イメージプロセッサ200は距離センサ300から撮影される場面の距離情報を取得することができる。イメージプロセッサ200は上記距離情報を利用してイメージセンサ100から受信したイメージに対してボケ効果を適用することができる。ボケ効果を適用する方法については、図3図5を参照して後述する。
【0020】
図1を参照すると、イメージプロセッサ200はイメージセンサ100とは独立したチップで具現されてもよい。この場合、イメージセンサ100のチップとイメージプロセッサ200のチップは1つのパッケージ、例えば、マルチチップパッケージ(multi-chip package)で具現されることができる。ただし、これに限定されず、本発明の他の実施例によると、イメージプロセッサ200はイメージセンサ100の一部として含まれて1つのチップで具現されてもよい。
【0021】
図2は本発明の実施例によるイメージセンサを説明するための図である。
【0022】
図2を参照すると、イメージセンサ100は画素アレイ110、行デコーダ120、タイミング生成器130、及び信号変換器140を含んでもよい。また、イメージセンサ100は出力バッファ150をさらに含んでもよい。
【0023】
画素アレイ110は行(row)方向と列(column)方向に配列された複数の画素を含んでもよい。それぞれの画素は該当画素に入射した光の強さに対応する画素信号VPXsを生成することができる。イメージセンサ100は画素アレイ110の行ごとに複数の画素信号VPXsをリードアウトすることができる。複数の画素信号VPXsはそれぞれアナログタイプの画素信号であってもよい。
【0024】
画素アレイ110はカラーフィルタアレイ111を含んでもよい。複数の画素のそれぞれは対応するカラーフィルタアレイ111を通過した入射光に相応する画素信号を出力することができる。
【0025】
カラーフィルタアレイ111は各画素に入射する光の特定波長(例えば、赤、緑、青)のみを通過させるカラーフィルタを含んでもよい。カラーフィルタアレイ111により、各画素の画素信号は特定波長の光の強さに対応する値を示すことができる。
【0026】
画素アレイ110は、カラーフィルタアレイ111の下部に形成された複数の光電変換素子(photoelectric conversion element)を含む光電変換層113を含んでもよい。複数の画素のそれぞれは光電変換層113を介して入射光に対応する光電荷を生成することができる。複数の画素は上記生成された光電荷を蓄積し、蓄積された光電荷に相応する画素信号VPXsを生成することができる。
【0027】
光電変換層113はそれぞれの画素に対応する光電変換素子を含んでもよい。例えば、光電変換素子はフォトダイオード(photo diode)、フォトトランジスタ(photo transistor)、フォトゲート(photogate)、またはピン留めフォトダイオード(pinned photo diode)のうち少なくとも1つであってもよい。複数の画素は光電変換層113を介して各画素に入射した光に対応する光電荷を生成することができ、少なくとも1つのトランジスタを介して上記光電荷に対応する電気的信号を取得することができる。
【0028】
行デコーダ120はタイミング生成器130から出力されたアドレスと制御信号に応答して画素アレイ110において複数の画素が配列された複数の行のうち1つの行(row)を選択することができる。イメージセンサ100は行デコーダ120の制御に応じて画素アレイ110に含まれた複数の画素のうち特定行に含まれた行の画素をリードアウトすることができる。
【0029】
信号変換器140はアナログタイプの複数の画素信号VPXsをデジタルタイプの複数の画素値DPXsに変換することができる。信号変換器140はタイミング生成器130から出力された制御信号に応答して画素アレイ110から出力された信号のそれぞれに対してCDS(correlated double sampling)を行い、CDSした信号のそれぞれをアナログ-デジタル変換してデジタル信号のそれぞれを出力することができる。デジタル信号のそれぞれは対応するカラーフィルタアレイ111を通過した入射光の強さに対応する信号であってもよい。
【0030】
信号変換器140はCDS(correlated double sampling)ブロックと、ADC(analog to digital converter)ブロックと、を含んでもよい。CDSブロックは、画素アレイ110に含まれた列ラインから提供される基準信号と映像信号のセットを順にサンプリング及びホールディング(sampling and holding)することができる。即ち、CDSブロックは、列のそれぞれに対応する基準信号と映像信号のレベル差を利用してリードアウトノイズが減少した信号を取得することができる。ADCブロックは、CDSブロックから出力されるそれぞれの列に対するアナログ信号をデジタル信号に変換して画素データを出力することができる。そのために、ADCブロックは各列に対応する比較器及びカウンタを含んでもよい。
【0031】
出力バッファ150は信号変換器140から出力されたデジタル信号を保存する複数のバッファで具現されてもよい。具体的には、出力バッファ150は信号変換器140から提供されるそれぞれの列単位の画素データをラッチ(latch)して出力することができる。出力バッファ150は信号変換器140から出力される画素データを一時保存し、タイミング生成器130の制御に応じて画素データを順に出力することができる。本発明の実施例によって、出力バッファ150は省略されてもよい。
【0032】
図3は本発明の実施例による装置に含まれる構成を説明するための図である。
【0033】
図3を参照すると、装置10は、イメージセンサ100、距離センサ300、イメージプロセッサ200、及びディスプレイ390を含んでもよい。イメージプロセッサ200は、顔検出器210、マスク生成器220、及びフレネルカーネル演算器230を含んでもよい。
【0034】
イメージセンサ100は画素アレイ110を介してイメージIを取得することができ、取得したイメージIをイメージプロセッサ200に提供することができる。上記イメージIは、図1及び図2で説明した複数の画素値DPXsを含むイメージデータを示すことができる。
【0035】
距離センサ300は撮影される場面に対する距離情報dを取得することができ、取得した距離情報dをイメージプロセッサ200に提供することができる。本開示における距離情報dは、イメージIに含まれた少なくとも1つの被写体と装置10の間の距離に対する情報を示すことができる。
【0036】
イメージプロセッサ200は、イメージセンサ100から取得したイメージI及び距離センサ300から取得した距離情報dに基づいてボケイメージI’を生成することができる。イメージプロセッサ200はフレネルカーネル演算器230を介してイメージIにボケ効果を適用することができ、ボケ効果が適用されたボケイメージI’を取得することができる。フレネルカーネル演算器230はイメージIに対してフレネルカーネルFを利用した畳み込み演算を行ってボケイメージI’を生成することができる。フレネルカーネルFに対しては図4及び図5を参照して後述する。
【0037】
フレネルカーネル演算器230はカーネル決定部231及びカーネル適用部232を含んでもよい。イメージプロセッサ200はイメージIに適用されるカーネルを決めるカーネル決定部231と、上記カーネルを利用してイメージIの少なくとも一部領域をブラー処理してボケイメージI’を生成及び出力するカーネル適用部232と、を含んでもよい。例えば、カーネル決定部231は、イメージIの色情報または距離センサ300から取得した距離情報dのうち少なくとも1つを用いてフレネルカーネルFの形状、外郭部のサイズ、または中央部のサイズのうち少なくとも1つを決めることができる。また、カーネル適用部232はカーネル決定部231で決められたカーネルをイメージIに適用してボケイメージI’を生成することができる。
【0038】
イメージプロセッサ200は顔検出器210を介してイメージIに含まれた顔を検出することができる。顔検出器210はイメージIに基づいて顔の位置を検出することができる。例えば、顔検出器210はイメージIに対してHaar機能またはCascade分類器を利用して顔に該当する領域を検出することができる。本開示における顔検出器210は顔検出部と称することもできる。
【0039】
イメージプロセッサ200はマスク生成器220を介してイメージIを顔に該当する顔領域とその他の領域に該当する背景領域に分けることができる。例えば、マスク生成器220は、顔検出器210を介して検出された顔の位置に基づいて顔領域を決めることができる。本開示において、顔領域はマスクmと称し、マスク生成器220はマスク生成部と称することもできる。
【0040】
ディスプレイ390はイメージプロセッサ200から受信したボケイメージI’を表示することができる。装置10はディスプレイ390を介してボケイメージI’を表示及び/または出力することができる。これにより、装置10はディスプレイ390を利用してボケイメージI’をユーザに提供することができる。ただし、装置10に含まれたディスプレイ390に対する説明は例示的なものであり、本開示の権利範囲を限定するものではない。例えば、図3では、ボケイメージI’がディスプレイ390に伝達されることが示されているが、イメージプロセッサ200は、ボケイメージI’をディスプレイ390の他にもメモリまたはAP(application processor)などの多様な構成に提供することができる。
【0041】
図4は本発明の実施例によるフレネルカーネル(Fresnel kernel)を説明するための図である。図5は本発明の実施例によるフレネルカーネルの断面を説明するための図である。
【0042】
本開示によると、装置10はガウスカーネル(Gaussian kernel)と区別されるフレネルカーネル(Fresnel kernel)Fを利用してボケイメージI’を生成することができる。イメージプロセッサ200はカーネル決定部231を介してフレネルカーネルFを決め、カーネル適用部232を介してイメージIをフレネルカーネルFで畳み込み演算してボケイメージI’を生成することができる。図4のグラフ400はカーネル決定部231で決められたフレネルカーネルFの一例を示す。図5のグラフ500は図4に示すフレネルカーネルFの断面を示す。
【0043】
本開示のフレネルカーネルFは数式1によって定義されることができる。
【0044】
【数1】
【0045】
数式1において、C(x)及びS(x)はフレネル積分関数であり、数式2により定義されることができる。本開示におけるカーネルFi,jはフレネル積分関数を利用して定義された関数であるため、フレネルカーネルと称することができる。
【0046】
【数2】
【0047】
数式1を参照すると、フレネルカーネルFi,jは、第1パラメータz、第2パラメータλ、第3パラメータe、及び第4パラメータrを含んでもよい。イメージプロセッサ200(例えば、カーネル決定部231)は、第1パラメータz、第2パラメータλ、第3パラメータe、及び第4パラメータrを決め、決められたパラメータに基づいてフレネルカーネルFi,jを決めることができる。イメージプロセッサ200(例えば、カーネル適用部232)は、上記決められたフレネルカーネルFi,jを利用してボケイメージI’を生成することができる。
【0048】
第1パラメータzは撮影された場面のうち焦点の設定された被写体との距離に基づいて決められたパラメータであってもよい。イメージプロセッサ200は焦点の設定された被写体との距離(または焦点距離)に基づいて第1パラメータzを決めることができる。イメージプロセッサ200は焦点の設定された位置までの距離をzとすると、zを10mmに規格化して第1パラメータzを決めることができる。即ち、第1パラメータzは、z=z[mm]/10[mm]という数式によって計算されることができる。例えば、焦点の設定された被写体と装置10との間の距離が500mmである場合、イメージプロセッサ200は第1パラメータz=500/10=50であると決めることができる。一実施例において、イメージプロセッサ200は距離センサ300から撮影される場面の距離情報を取得し、上記距離情報に基づいて第1パラメータzを決めることができる。
【0049】
第2パラメータλはイメージに含まれた画素データに対応する色に基づいて決められるパラメータであってもよい。例えば、第2パラメータλはフレネルカーネルFi,jが適用される画素の色に基づいて決められたパラメータであってもよい。イメージプロセッサ200はボケ効果が適用される画素の色の波長に基づいて第2パラメータλを決めることができる。イメージプロセッサ200はブラー対象となる画素の色の波長をλとすると、λを1000nmに規格化して第2パラメータλを決めることができる。即ち、第2パラメータλはλ=λ[nm]/1000[nm]という数式によって計算されることができる。例えば、フレネルカーネルを適用する画素の色が緑(G)である場合、λ=550nmであるため、イメージプロセッサ200は第2パラメータλ=550/1000=0.55と決めることができる。
【0050】
第3パラメータeはイメージに含まれた画素データに対応する色に基づいて決められるパラメータであってもよい。例えば、第3パラメータeはフレネルカーネルFi,jが適用される画素の色に基づいて決められたパラメータであってもよい。イメージプロセッサ200はボケ効果が適用される画素の色の波長に基づいて第3パラメータeを決めることができる。イメージプロセッサ200はブラー対象となる画素の色の波長の4倍を1000nmで割った値が第4パラメータeであると決めることができる。例えば、フレネルカーネルを適用する画素の色が緑である場合、イメージプロセッサ200は第3パラメータe=4×550/1000≒2と決めることができる。
【0051】
第4パラメータrは撮影された場面との距離に基づいて決められたパラメータであってもよい。例えば、装置10が撮影したイメージの中には焦点の設定された第1被写体及び焦点の設定されていない第2被写体が含まれていることがある。第1被写体には焦点が設定されているため、第1被写体と装置10との距離は装置10が焦点を設定した距離(または焦点距離)と一致することができる。イメージプロセッサ200は第2被写体に対応するイメージ領域にフレネルカーネルFi,jを適用する場合、第1被写体と第2被写体との距離差に基づいてrを決めることができる。即ち、イメージプロセッサ200はボケ効果の適用対象である被写体と焦点距離の間の距離dに基づいてrを計算することができる。例えば、イメージプロセッサ200は、被写体と焦点距離の間の距離がdの場合、r=d[mm]/10[mm]という数式によって第4パラメータrを決めることができる。一実施例では、イメージプロセッサ200は距離センサ300から撮影される場面の距離情報を取得し、上記距離情報に基づいて第4パラメータrを決めることができる。
【0052】
イメージプロセッサ200(例えば、カーネル適用部232)は、数式3を通じてイメージIijに基づいてボケイメージI’x,yを取得することができる。イメージプロセッサ200(例えば、カーネル適用部232)はボケ効果が適用されるそれぞれの画素位置ごとにフレネルカーネルFi,jを適用してボケイメージI’x,yを取得することができる。
【0053】
【数3】
【0054】
イメージプロセッサ200は数式4を通じてボケ強度を調整することができる。例えば、イメージプロセッサ200はボケイメージI’x,yに対して重み付けwをかけてボケ強度が調整されたイメージI’’x,yを取得することができる。
【0055】
【数4】
【0056】
数式1及び図5のグラフ500をともに参照すると、フレネルカーネルFi,jは、第1パラメータz、第2パラメータλ、第3パラメータe、及び第4パラメータrによって決められてもよい。例えば、イメージプロセッサ200(例えば、カーネル決定部231)は、第1パラメータz、第2パラメータλ、第3パラメータe、及び第4パラメータrに基づいてフレネルカーネルFi,jのサイズ及び形状を決めることができる。
【0057】
イメージプロセッサ200(例えば、カーネル決定部231)は、第1パラメータz及び第2パラメータλに基づいてフレネルカーネルFi,jの形状を決めることができる。イメージプロセッサ200はフレネルカーネルの適用対象である画素(または、ボケ効果が適用される画素、ブラー処理される画素)に応じて決められる第1パラメータz及び第2パラメータλに基づいて、該当画素に適用されるフレネルカーネルFi,jの形状を決めることができる。
【0058】
例えば、イメージプロセッサ200(例えば、カーネル決定部231)は、第1パラメータz及び第2パラメータλに基づいてフレネルカーネルFi,jの突起部501の形状を決めることができる。イメージプロセッサ200は、第1パラメータzまたは第2パラメータλのうち少なくとも1つのパラメータを利用してフレネルカーネルFi,jの突起部501の形状を決めることができる。例えば、イメージプロセッサ200は、第1パラメータzまたは第2パラメータλに応じて突起部501の形状、位置、高さ、段差、または数のうち少なくとも1つを決めることができる。イメージプロセッサ200は、第1パラメータzまたは第2パラメータλのうち少なくとも1つを通じてフレネルカーネルFi,jの形状を調整/制御することができる。
【0059】
イメージプロセッサ200(例えば、カーネル決定部231)は、第3パラメータeに基づいてフレネルカーネルFi,jの外郭部のサイズを決めることができる。図5を参照すると、イメージプロセッサ200は、第3パラメータeに応じてフレネルカーネルFi,jのエンベロープ(envelope)部分のサイズを決めることができる。イメージプロセッサ200は、第3パラメータeが大きいほどカーネルの外郭部のサイズを増加させることができ、第3パラメータeが小さいほどカーネルの外郭部のサイズを減少させることができる。イメージプロセッサ200は第3パラメータeに応じてカーネルのエンベロープ部分の拡大を制御することができる。
【0060】
イメージプロセッサ200(例えば、カーネル決定部231)は、第4パラメータrに基づいてフレネルカーネルFi,jの中央部のサイズを決めることができる。図5を参照すると、イメージプロセッサ200は、第4パラメータrに応じてフレネルカーネルFi,jの中央部の直径を決めることができる。イメージプロセッサ200は、第4パラメータrが大きいほどカーネルの中央部分のサイズを増加させることができ、第4パラメータrが小さいほどカーネルの中央部分のサイズを減少させることができる。
【0061】
図5を参照すると、カーネルのサイズ(またはカーネルの直径)は第4パラメータrと第3パラメータeの和であるr+eであってもよい。
【0062】
図4及び図5で説明した内容によると、フレネルカーネルFi,jは実際のレンズの回折効果を反映して定義されたカーネルであるため、フレネルカーネルFi,jを利用して畳み込み演算されたボケイメージI’は実際のレンズの回折が再現されたイメージであることができる。装置10はフレネルカーネルFi,jを通じたボケ効果を適用することによって実際のレンズの回折を再現することができる。これにより、装置10は、実際のレンズを介してアウトフォーカスイメージを撮影することは困難であるが、アウトフォーカスイメージと類似するボケイメージI’を取得することができる。
【0063】
図6は本発明の実施例によって生成されたボケイメージの例示を説明するための図である。
【0064】
図6を参照すると、イメージ610は図3のイメージIの一部領域に対応し、ボケイメージ620は図3のボケイメージI’の一部領域に対応することができる。
【0065】
イメージプロセッサ200はイメージセンサ100からイメージIを取得し、距離センサ300から距離情報を取得することができる。上記イメージIには特定画素の色に対する色情報が含まれてもよい。イメージプロセッサ200は距離情報及び色情報に基づいてイメージIに適用されるカーネルFを決めることができる。例えば、イメージプロセッサ200は距離情報及び色情報に基づいてカーネルFの第1パラメータz及び第2パラメータλを決めることができ、第1パラメータz及び第2パラメータλに基づいてカーネルFの形状を決めることができる。他の例として、イメージプロセッサ200は距離情報及び色情報に基づいてカーネルFの第1パラメータz、第2パラメータλ、第3パラメータe、及び第4パラメータrを決めることができ、第1パラメータz、第2パラメータλ、第3パラメータe、及び第4パラメータrに基づいてカーネルFの形状及びサイズを決めることができる。イメージプロセッサ200は上記決められたカーネルFを利用してイメージIの一部領域(例えば、背景領域)がブラー処理されたボケイメージI’を生成することができる。
【0066】
図6を参照すると、イメージ610及びボケイメージ620は、図3のボケイメージI’のうちブラー処理された上記一部領域(例えば、背景領域)に該当することができる。イメージプロセッサ200はカーネルFを利用してイメージ610がブラー処理されたボケイメージ620を取得することができる。イメージプロセッサ200は撮影された場面のうち背景領域に該当するイメージ610にカーネルFを適用してブラー処理された背景領域に該当するボケイメージ620を取得することができる。
【0067】
フレネルカーネルFを利用して生成されたボケイメージ620は、実際のレンズによる回折効果は再現されたイメージであってもよい。従って、既存のガウスカーネルを利用して生成されたボケイメージと比較して、本開示によるボケイメージ620は焦点深度の調整によって撮影されたアウトフォーカスイメージとより一層類似することができる。
【0068】
図7は本発明の実施例によって顔領域及び背景領域を区分する方法を説明するための図である。
【0069】
図7を参照すると、イメージ710は、イメージプロセッサ200がイメージセンサ100から取得したイメージIの一例である。イメージプロセッサ200はイメージセンサ100から主な被写体が人物であるイメージ710を取得することができる。
【0070】
イメージプロセッサ200はイメージ710に対して顔検出(face detection)を行うことができる。例えば、イメージプロセッサ200はイメージ710に対してHaar機能及び/またはCascade分類器を利用した顔検出を行うことができる。
【0071】
イメージプロセッサ200(例えば、顔検出器210)は、イメージ710に対する顔検出を行って顔検出領域720を識別することができる。イメージプロセッサ200(例えば、顔検出器210)はイメージ710において顔が含まれていると判断される位置を顔検出領域720と決めることができる。
【0072】
イメージプロセッサ200(例えば、マスク生成器220)は顔検出領域720に含まれた画素のうち画素間の色の差が閾値未満である少なくとも一部の画素を含む顔領域731を決めることができる。例えば、イメージプロセッサ200は顔検出領域720に含まれた各画素の色値(例えば、RGB値)を3次元ベクトルと見なすことができ、3次元ベクトルとみなされた上記色値を利用して周辺画素との規格化されたコサイン類似度を計算することができる。イメージプロセッサ200は、装置10に予め設定された分散値または任意で設定された分散値を利用して上記コサイン類似度を判定するための閾値を算出することができる。上記閾値は輝度の影響を受けない値であってもよい。イメージプロセッサ200は上記色値が上記閾値以下の領域は同じ色と判断することができ、上記閾値を超える領域は異なる色であると判断することができる。イメージプロセッサ200(例えば、マスク生成器220)は顔検出領域720に含まれた画素のうち同じ色と判断される領域を顔領域731(またはマスクm)と決めることができる。即ち、イメージプロセッサ200は上記閾値を利用して顔検出領域720に含まれた画素を顔領域731に含まれた画素とその他の画素とに区分及び/または分類することができる。
【0073】
イメージプロセッサ200(例えば、マスク生成器220)は、上記決められた顔領域731ではない残りの領域を背景領域732と決めることができる。即ち、イメージプロセッサ200はイメージ710を顔に該当する顔領域731とその他の領域に該当する背景領域732とに区分することができる。
【0074】
イメージプロセッサ200(例えば、カーネル適用部232)はカーネルFを利用してイメージ710のうち背景領域732をブラー処理することができる。イメージプロセッサ200(例えば、カーネル適用部232)はイメージ710のうち主な被写体に該当する顔領域731にはカーネルFを適用せず、その他の背景領域732にカーネルFを適用することができる。
【0075】
図8は本発明の実施例によってボケイメージを生成する方法の流れを説明するための図である。
【0076】
段階S810では、装置10は距離センサ300を介して撮影される場面の距離情報dを取得することができる。上記距離情報dは撮影される場面に含まれるそれぞれの被写体と装置10との距離に対する情報を含んでもよい。
【0077】
段階S820では、装置10はイメージセンサ100を介して上記場面のイメージIを取得することができる。上記イメージIは焦点の設定された被写体(例えば、顔)が鮮明に現れ、焦点が設定されていない背景領域も比較的鮮明に現れるイメージであってもよい。
【0078】
段階S830では、装置10は上記距離情報d及び上記イメージIの色情報に基づいてイメージに適用されるカーネルFの形状を決めることができる。上記色情報はカーネルFが適用される画素の色の波長を示すことができる。例えば、装置10は距離情報dに基づいて焦点の設定された被写体との距離を識別することができ、焦点の設定された被写体との距離を利用して第1パラメータzを決めることができる。装置10は、第1パラメータzに基づいてカーネルFの形状を決めることができる。他の例として、装置10は色情報に基づいて上記イメージIに含まれた画素データの色を識別することができ、上記色の波長を利用して第2パラメータλを決めることができる。装置10は第2パラメータλに基づいてカーネルFの形状を決めることができる。
【0079】
段階S840では、装置10は上記決められたカーネルを利用してイメージIの少なくとも一部領域がブラー処理されたボケイメージI’を生成することができる。装置10は上記イメージIのうち主な被写体ではない背景領域がブラー処理されたボケイメージI’を生成することができる。例えば、装置10は図7で識別された顔領域731にはカーネルFを適用せず、背景領域732にはカーネルFを適用することができる。これにより、装置10はイメージ710のうち背景領域732がブラー処理されたボケイメージを取得することができる。
【符号の説明】
【0080】
10 装置
100 イメージセンサ
200 イメージプロセッサ
210 顔検出器
220 マスク生成器
230 フレネルカーネル演算器
231 カーネル決定部
232 カーネル適用部
300 距離センサ
390 ディスプレイ
図1
図2
図3
図4
図5
図6
図7
図8