IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アプライド マテリアルズ インコーポレイテッドの特許一覧

特開2024-96717パターニング応用のための高密度炭素膜
<>
  • 特開-パターニング応用のための高密度炭素膜 図1A
  • 特開-パターニング応用のための高密度炭素膜 図1B
  • 特開-パターニング応用のための高密度炭素膜 図2
  • 特開-パターニング応用のための高密度炭素膜 図3
  • 特開-パターニング応用のための高密度炭素膜 図4A
  • 特開-パターニング応用のための高密度炭素膜 図4B
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024096717
(43)【公開日】2024-07-17
(54)【発明の名称】パターニング応用のための高密度炭素膜
(51)【国際特許分類】
   H01L 21/205 20060101AFI20240709BHJP
【FI】
H01L21/205
【審査請求】有
【請求項の数】20
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2024049050
(22)【出願日】2024-03-26
(62)【分割の表示】P 2021521399の分割
【原出願日】2019-10-04
(31)【優先権主張番号】62/751,213
(32)【優先日】2018-10-26
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】390040660
【氏名又は名称】アプライド マテリアルズ インコーポレイテッド
【氏名又は名称原語表記】APPLIED MATERIALS,INCORPORATED
【住所又は居所原語表記】3050 Bowers Avenue Santa Clara CA 95054 U.S.A.
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林弁理士法人
(72)【発明者】
【氏名】ベンカタサブラマニアン, エスワラナンド
(72)【発明者】
【氏名】ゴットハイム, サミュエル イー.
(72)【発明者】
【氏名】マンナ, プラミット
(72)【発明者】
【氏名】マリック, アビジット ビー.
(57)【要約】      (修正有)
【課題】パターニング応用のための高透明、高密度の炭素膜を堆積する方法を提供する。
【解決手段】基板処理システムにおける方法は、静電チャック上に基板が位置づけられている処理チャンバに炭化水素含有ガス混合物を流すことを含む。基板は、約-10℃から約20℃の温度及び約0.5mTorrから約10Torrのチャンバ圧力で維持される。方法はまた、静電チャックに第1のRFバイアスを印加して、基板上に約60%以上の混成sp原子を含むダイヤモンドライクカーボン膜を堆積させることによってプラズマを生成することを含む。第1のRFバイアスは、約1800ワットから約2200ワットの電力及び約40MHzから約162MHzの周波数で提供される。
【選択図】図3
【特許請求の範囲】
【請求項1】
基板上に炭素膜を形成する方法において、
静電チャック上に位置づけられた基板を有する処理チャンバ内に炭化水素含有ガス混合物を流すことであって、基板が約-10℃から約20℃の温度及び約0.5mTorrから約10Torrのチャンバ圧力で維持される、流すこと;及び
静電チャックに第1のRFバイアスを印加して、基板上に約60%以上の混成sp原子を含むダイヤモンドライクカーボン膜を堆積させることによってプラズマを生成することであって、第1のRFバイアスが約1800ワットから約2200ワットの電力及び約40MHzから約162MHzの周波数で提供される、生成すること
を含む、方法。
【請求項2】
プラズマを生成することが、静電チャックに第2のRFバイアスを印加することをさらに含む、請求項1に記載の方法。
【請求項3】
第2のRFバイアスが、約800ワットから約1200ワットの電力及び約350KHzから約13.56MHzの周波数で提供される、請求項2に記載の方法。
【請求項4】
第1のRFバイアスが約2000ワットの電力及び約60MHzの周波数で提供され、第2のRFバイアスが約1000ワットの電力及び約2MHzの周波数で提供される、請求項2に記載の方法。
【請求項5】
基板が約10℃の温度で維持される、請求項1に記載の方法。
【請求項6】
基板上に炭素膜を形成する方法であって、
静電チャック上に位置づけられた基板を有する処理チャンバに炭化水素含有ガス混合物を流すこと;及び
静電チャックに第1のRFバイアスを印加し、かつ静電チャックの上に配置された、静電チャックに対向する電極に第2のRFバイアスを印加することによってプラズマを生成し、基板上にダイヤモンドライクカーボン膜を堆積させること
を含み、
第1のRFバイアスが約13.56MHz以下の周波数で提供され、第2のRFバイアスが約40MHz以上の周波数で提供され、基板が約-10℃から約20℃の温度及び約0.5mTorrから約10Torrのチャンバ圧力で維持される、
方法。
【請求項7】
第1のRFバイアスが、約2MHzの周波数及び約800ワットから約1200ワットの電力で提供される、請求項6に記載の方法。
【請求項8】
第2のRFバイアスが、約60MHzの周波数及び約1500ワットから約2500ワットの電力で提供される、請求項6に記載の方法。
【請求項9】
プラズマを生成することが、静電チャック上に配置された、静電チャックに対向する電極に第3のRFバイアスを印加することをさらに含む、請求項6に記載の方法。
【請求項10】
第3のRFバイアスが、約10ワット及び約3000ワットの電力並びに約350KHzから約162MHzの周波数で提供される、請求項6に記載の方法。
【請求項11】
基板を処理する方法であって、
静電チャック上に位置づけられた基板を有する処理チャンバの処理容積内に炭化水素含有ガス混合物を流すことであって、基板が約5mTorrの間の圧力で維持され、炭化水素含有ガス混合物がアセチレン(C)を含む、流すこと;
約2000ワットの電力及び約60MHzの周波数で提供される第1のRFバイアスを静電チャックに印加して、基板上にダイヤモンドライクカーボン膜を堆積させることによって、基板レベルでプラズマを生成すること;
ダイヤモンドライクカーボン膜の上にパターン化されたフォトレジスト層を形成すること;
パターン化されたフォトレジスト層に対応するパターンでダイヤモンドライクカーボンをエッチングすること;並びに
ダイヤモンドライクカーボン膜のエッチングされた部分に材料を堆積させること
を含む、方法。
【請求項12】
プラズマを生成することが、約1000ワットの電力及び約2MHzの周波数で提供される第2のRFバイアスを静電チャックに印加することをさらに含む、請求項11に記載の方法。
【請求項13】
ダイヤモンドライクカーボン膜が、極端紫外線(「EUV」)リソグラフィプロセスにおける下層として用いられる、請求項11に記載の方法。
【請求項14】
炭化水素含有ガス混合物が、He、Ar、Xe、N、H、又はそれらのいずれかの組合せを含む希釈ガスをさらに含む、請求項11に記載の方法。
【請求項15】
炭化水素含有ガス混合物が、処理チャンバの側壁に配置されたガスパネルを通ってプロセスチャンバ内に流れ込む、請求項14に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示の実施形態は、概して、集積回路の製造に関する。より詳細には、本明細書に記載される実施形態は、パターニング応用のための高密度炭素膜の堆積のための技術を提供する。
【背景技術】
【0002】
集積回路は、単一チップ上に数百万個ものトランジスタ、コンデンサ、及び抵抗を搭載することができる複雑なデバイスへと進化を遂げている。チップ設計の進化には、より高速な回路及びより高い回路密度が継続的に必要とされる。より高い回路密度を有する、より高速な回路に対する要求は、集積回路部品の製造に用いられるプロセスシーケンスに対しても対応する要求を課している。例えば、従来のフォトリソグラフィ技術を使用するプロセスシーケンスでは、エネルギーに敏感なレジストの層が、基板上に配置された材料層のスタック上に形成される。このエネルギーに敏感なレジスト層は、パターンの画像へと露光されて、フォトレジストマスクを形成する。その後、マスクパターンは、エッチングプロセスを使用して、スタックの1つ以上の材料層に転写される。
【0003】
パターンの寸法が縮小されると、それに応じて、パターンの解像度を制御するために、エネルギーに敏感なレジストの厚さが薄くなる。このような薄いレジスト層は、化学エッチング液による攻撃に起因して、パターン転写動作中に、下地材料層をマスクするには不十分になる可能性がある。ハードマスクは、化学エッチング液に対する耐性が高いことから、パターン転写を容易にするために、エネルギーに敏感なレジスト層と下地材料層との間によく用いられる。限界寸法(CD)が減少するにつれて、現在のハードマスク材料は、下地材料(例えば、酸化物及び窒化物)と比較して所望のエッチング選択性を欠き、堆積させるのが困難であることが多い。
【0004】
したがって、当技術分野では、改良されたハードマスク層、並びに該改良されたハードマスク層を堆積させるための方法が必要とされている。
【発明の概要】
【0005】
本開示の実施形態は、概して、集積回路の製造に関する。より詳細には、本明細書に記載される実施形態は、パターニング応用のための高密度膜の堆積のための技術を提供する。一実施形態では、基板上に炭素膜を形成する方法が提供される。該方法は、静電チャック上に位置づけられた基板を有する処理チャンバに炭化水素含有ガス混合物を流すことであって、基板が約-10℃から約20℃の温度及び約0.5mTorrから約10Torrのチャンバ圧力で維持される、流すこと、並びに、静電チャックに第1のRFバイアスを印加して、基板上に約60%以上の混成sp原子を含むダイヤモンドライクカーボン膜を堆積させることによってプラズマを生成することであって、第1のRFバイアスが、300mmの基板で約1800ワットから約2200ワットの電力及び約40MHzから約162MHzの周波数で提供される、生成することを含む。
【0006】
別の実施形態では、該方法は、静電チャック上に位置づけられた基板を有する処理チャンバの処理容積内に炭化水素含有ガス混合物を流すこと、並びに、静電チャックに第1のRFバイアスを印加し、かつ静電チャックの上に配置された、静電チャックに対向する電極に第2のRFバイアスを印加することによってプラズマを生成し、基板上にダイヤモンドライクカーボン膜を堆積させることであって、第1のRFバイアスが約13.56MHz以下の周波数で提供され、第2のRFバイアスが約40MHz以上の周波数で提供され、基板が約-10℃から約20℃の温度及び約0.5mTorrから約10Torrのチャンバ圧力で維持される、堆積させることを含む。
【0007】
さらに別の実施形態では、該方法は、静電チャック上に位置づけられた基板を有する処理チャンバの処理容積内に炭化水素含有ガス混合物を流すことであって、基板が約5mTorrの間の圧力で維持され、炭化水素含有ガス混合物がアセチレン(C)を含む、流すこと、約2000ワットの間の電力及び約60MHzの周波数で提供される第1のRFバイアスを静電チャックに印加して、基板上にダイヤモンドライクカーボン膜を堆積させることによって、基板レベルでプラズマを生成すること、ダイヤモンドライクカーボン膜の上にパターン化されたフォトレジスト層を形成すること、パターン化されたフォトレジスト層に対応するパターンでダイヤモンドライクカーボンをエッチングすること、基板にパターンをエッチングすること、並びにダイヤモンドライクカーボン膜のエッチングされた部分に材料を堆積させることを含む。
【0008】
本開示の上記の特徴を詳細に理解できるように、その一部が添付の図面に示されている実施形態を参照することにより、上に簡単に要約されている本開示のより詳細な説明を得ることができる。しかしながら、本開示は他の等しく有効な実施形態も許容可能であるため、付随する図面はこの開示の典型的な実施形態のみを示しており、したがって、本開示の範囲を限定すると見なされるべきではないことに留意されたい。
【図面の簡単な説明】
【0009】
図1A】本明細書に記載される実施形態の実施に用いることができる堆積システムの概略的な断面図
図1B】本明細書に記載される実施形態の実施に用いることができる別の堆積システムの概略的な断面図
図2】本明細書に記載される実施形態の実施のための図1A及び図1Bの装置に用いることができる静電チャックの概略的な断面図
図3】本開示の1つ以上の実施形態による基板上に配置された膜スタック上にダイヤモンドライクカーボン層を形成する方法のフロー図
図4A】本開示の1つ以上の実施形態による基板上に形成された膜スタック上にダイヤモンドライクカーボン層を形成するためのシーケンスの一実施形態を示す図
図4B】本開示の1つ以上の実施形態による基板上に形成された膜スタック上にダイヤモンドライクカーボン層を形成するためのシーケンスの一実施形態を示す図
【発明を実施するための形態】
【0010】
理解を容易にするため、可能な場合には、図面に共通する同一の要素を示すために同一の参照番号が用いられる。一実施形態の要素及び特徴は、さらなる記載がなくとも、他の実施形態に有益に組み込むことができることが企図されている。
【0011】
以下の開示は、基板上にダイヤモンドライクカーボン膜を堆積させるための技術を説明するものである。任意の適切な薄膜堆積システムを使用して実行することができるPECVDプロセスを参照して、本明細書に記載される実施形態を以下に説明する。適切なシステムの例には、CENTURA(登録商標)システム(DXZ(登録商標)処理チャンバを使用することができる)、PRECISION 5000(登録商標)システム、PRODUCE(登録商標)システム、PRODUCE(登録商標)GT(商標)システム、PRODUCE(登録商標)XP Precision(商標)システム、PRODUCE(登録商標)SE(商標)システム、Sym3(登録商標)処理チャンバ、及びMesa(商標)処理チャンバが含まれ、これらはすべて、米国カリフォルニア州サンタクララ所在のApplied Materials,Inc.社から市販されている。PECVDプロセスを実行可能な他のツールもまた、本明細書に記載される実施形態から利益を得るように適合させることができる。加えて、本明細書に記載されるPECVDプロセスを可能にする任意のシステムを有利に使用することができる。本明細書に記載される装置の説明は例示的なものであり、本明細書に記載される実施形態の範囲を限定するものとして理解又は解釈されるべきではない。
【0012】
図1Aは、本明細書に記載される実施形態による、ダイヤモンドライクカーボン層の堆積を実行するために使用することができる基板処理システム132の概略図を示している。該基板処理システム132は、ガスパネル130及びコントローラ110に結合された処理チャンバ100を含む。処理チャンバ100は、概して、処理容積126を画成する頂壁124、側壁101、及び底壁122を含む。処理チャンバ100の処理容積126内には、基板支持アセンブリ146が設けられている。基板支持アセンブリ146は、概して、ステム160によって支持された静電チャック150を含む。静電チャック150は、典型的には、アルミニウム、セラミック、及びステンレス鋼などの他の適切な材料から製造することができる。静電チャック150は、変位機構(図示せず)を使用して、処理チャンバ100内で垂直方向に移動することができる。
【0013】
真空ポンプ102は、処理チャンバ100の底部に形成されたポートに結合される。真空ポンプ102は、処理チャンバ100内で所望のガス圧を維持するために用いられる。真空ポンプ102はまた、処理チャンバ100から、後処理ガス及び処理の副生成物を排出する。
【0014】
複数の開孔128を有するガス分配アセンブリ120が、静電チャック150の上方で処理チャンバ100の頂部に配置される。ガス分配アセンブリ120の開孔128は、処理チャンバ100内にプロセスガスを導入するために利用される。開孔128は、種々の処理要件のためのさまざまなプロセスガスの流れを促進するために、種々のサイズ、数量、分配仕様、形状、設計、及び直径を有しうる。ガス分配アセンブリ120は、ガスパネル130に接続されており、これは、処理中にさまざまなガスが処理容積126内に流れることを可能にする。プラズマは、ガス分配アセンブリ120を出るプロセスガス混合物から形成されて、プロセスガスの熱分解を促進し、静電チャック150上に位置づけられた基板190の上面191上に材料の堆積をもたらす。
【0015】
ガス分配アセンブリ120及び静電チャック150は、処理容積126内に一対の離間した電極を形成することができる。1つ以上のRF電源140は、ガス分配アセンブリ120と静電チャック150との間のプラズマの生成を容易にするために、任意選択的であるマッチングネットワーク138を介してガス分配アセンブリ120にバイアス電位を供給する。あるいは、RF電源140及びマッチングネットワーク138は、ガス分配アセンブリ120、静電チャック150に結合することができ、あるいはガス分配アセンブリ120及び静電チャック150の両方に結合することができ、あるいは処理チャンバ100の外部に配置されたアンテナ(図示せず)に結合することができる。幾つかの実施形態では、RF電源140は、350KHz、2MHz、13.56MHz、27MHz、40MHz、60MHz、100MHz、又は162MHzの周波数で電力を生成することができる。
【0016】
コントローラ110は、中央処理装置(CPU)112、メモリ116、及びプロセスシーケンスを制御し、ガスパネル130からのガス流を調整するために利用されるサポート回路114を含む。このCPU112は、産業用の設定で用いることができる任意の形態の汎用コンピュータプロセッサでありうる。ソフトウェアルーチンは、ランダムアクセスメモリ、読み出し専用メモリ、フロッピー、又はハードディスクドライブ、若しくは他の形態のデジタル記憶装置などのメモリ116に格納することができる。サポート回路114は、CPU112に結合され、キャッシュ、クロック回路、入出力システム、電源などを含みうる。コントローラ110と基板処理システム132のさまざまな構成要素との間の双方向通信は、その幾つかが図1Aに示されている、集合的に信号バス118と呼ばれる多数の信号ケーブルを介して処理される。
【0017】
図1Bは、本明細書に記載される実施形態の実施に用いることができる別の基板処理システム180の概略的な断面図を示している。基板処理システム180は、該基板処理システム180が、側壁101を介して基板190の上面191全体にわたってガスパネル130から処理ガスを放射状に流すように構成されていることを除き、図1Aの基板処理システム132と同様である。さらに、図1Aに示されるガス分配アセンブリ120が電極182に置き換えられている。この電極182は、二次電子生成のために構成されうる。一実施形態では、電極182はケイ素含有電極である。
【0018】
図2は、本明細書に記載される実施形態の実施に用いることができる図1A及び図1Bの処理システムに用いられる基板支持アセンブリ146の概略的な断面図を示している。図2を参照すると、静電チャック150は、該静電チャック150の上面192上に支持された基板190の温度の制御に適したヒータ要素170を含みうる。ヒータ要素170は、静電チャック150に埋め込まれうる。静電チャック150は、ヒータ電源106からヒータ要素170に電流を印加することによって抵抗的に加熱することができる。ヒータ電源106は、該ヒータ電源106をRFエネルギーから保護するために、RFフィルタ216を介して結合されうる。ヒータ電源106から供給される電流は、コントローラ110によって調整されて、ヒータ要素170によって生成される熱を制御し、したがって、膜の堆積中に基板190及び静電チャック150を実質的に一定の温度に維持する。供給される電流は、基板上へのダイヤモンドライクカーボン膜の堆積中に、静電チャック150の温度を約-50℃から約350℃の間で選択的に制御するように調整することができる。
【0019】
図1A及び1Bを参照すると、熱電対などの温度センサ172を静電チャック150に埋め込み、該静電チャック150の温度を監視することができる。測定された温度は、ヒータ要素170に供給される電力を制御し、基板を所望の温度に維持するために、コントローラ110によって用いられる。
【0020】
図2に戻ると、静電チャック150は、導電性材料のメッシュでありうるチャック電極210を含む。チャック電極210は、静電チャック150に埋め込まれうる。チャック電極210は、チャック電源212に結合されており、これは、通電時に、基板190を静電チャック150の上面192に静電的にクランプする。
【0021】
チャック電極210は、単極又は双極電極として構成することができ、あるいは別の適切な配置を有することができる。チャック電極210は、RFフィルタ214を介してチャック電源212に結合することができ、これは、基板190を静電チャック150の上面192に静電的に固定するための直流(DC)電力を供給する。RFフィルタ214は、処理チャンバ100内でプラズマを形成するために利用されるRF電力が電気機器に損傷を与えるのを防ぐ。静電チャック150は、AlN又はAlなどのセラミック材料から製造することができる。
【0022】
電力供給システム220は、基板支持アセンブリ146に結合される。電力供給システム220は、ヒータ電源106、チャック電源212、第1の無線周波数(RF)電源230、及び第2のRF電源240を含みうる。電力供給システム220の実施形態は、コントローラ110、及び該コントローラ110と通信しているセンサデバイス250、並びに第1のRF電源230及び第2のRF電源240の両方をさらに含みうる。コントローラ110はまた、基板190上に材料の層を堆積させるために、第1のRF電源230及び第2のRF電源240からのRF電力を印加することによる処理ガスからのプラズマを制御するために利用することができる。
【0023】
上述したように、静電チャック150は、第1のRF電極としても機能するとともに、一態様では基板190をチャックするように機能することができる、チャック電極210を含む。静電チャック150はまた、第2のRF電極260も含むことができ、チャック電極210とともに、プラズマを調整するためにRF電力を印加することができる。第1のRF電源230は第2のRF電極260に結合することができる一方で、第2のRF電源240はチャック電極210に結合することができる。第1のマッチングネットワーク及び第2のマッチングネットワークは、それぞれ、第1のRF電源230及び第2のRF電源240のために提供することができる。第2のRF電極260は、導電性材料の固体金属プレート、又は導電性材料のメッシュでありうる。
【0024】
第1のRF電源230及び第2のRF電源240は、同じ周波数で又は異なる周波数で、電力を生成することができる。幾つかの実施形態では、第1のRF電源230及び第2のRF電源240の一方又は両方が、独立して、約350KHzから約162MHz(例えば、350KHz、2MHz、13.56MHz、27MHz、40MHz、60MHz、100MHz、又は162MHz)の周波数で電力を生成することができる。第1のRF電源230及び第2のRF電源240の一方又は両方からのRF電力は、プラズマを調整するために変化させることができる。
【0025】
概して、図1A、1B、及び2に関して説明したシステムは、本明細書に記載される実施形態による炭素膜を堆積させるために使用することができる。本明細書に記載される実施形態に従って製造された炭素膜(例えば、1つ以上の炭素層)は、本質的にアモルファスであり、高いsp炭素含有量を有する(例えば、ダイヤモンドライク)。堆積したままのダイヤモンドライクカーボン層は、0.1未満、例えば0.09の消光係数又はk値(K(633nmにおける))、1.8g/cc超、例えば約2.0g/cc以上、約2.5g/cc以上、例えば約1.8g/ccから約2.5g/ccの密度(g/cc)、2.0超、例えば約2.0から約3.0、例えば2.3の屈折率又はn値(n(633nmにおける))、約-100MPa未満、例えば約-1000MPaから約-100MPa、例えば約-550MPaの応力(MPa)、及び約150GPa以上、例えば約200から約400GPaまでの弾性率(GPa)を有する。本開示のさまざまな実施形態では、堆積したままのダイヤモンドライクカーボン層は、少なくとも40パーセント以上のsp混成炭素原子、例えば約60パーセント以上、例えば約90パーセントのsp混成炭素原子を含みうる。堆積されたままのダイヤモンドライクカーボン層は、約5Åから約20,000Åの間の厚さを有しうる。
【0026】
上記の特性を有するダイヤモンドライクカーボン層は、以下の例示的な堆積プロセスパラメータを使用して形成することができる。基板温度は、約-50℃から約350℃(例えば、約-10℃から約20℃)の範囲でありうる。チャンバ圧力は、約0.5mTorrから約10Torr(例えば、約5mTorrから約10mTorr)のチャンバ圧力の範囲でありうる。炭化水素含有ガス混合物の流量は、約10sccmから約1,000sccm(例えば、約100sccmから約200sccm)でありうる。希釈ガスの流量は、個別に、約50sccmから約5000sccm(例えば、約50sccmから約200sccm)の範囲でありうる。下記表Iは、米国カリフォルニア州サンタクララ所在のApplied Materials,Inc.社から入手可能な堆積チャンバ300mmの基板上で実行される例示的な堆積プロセスパラメータを示している。
【0027】
図3は、本開示の一実施形態による、基板上に配置された膜スタック上にダイヤモンドライクカーボン層を形成するための方法300のフロー図を示している。膜スタック上に形成されたダイヤモンドライクカーボン層は、例えば、膜スタックに階段状構造を形成するためのハードマスクとして利用することができる。図4A~4Bは、方法300に従って基板上に配置された膜スタック上にダイヤモンドライクカーボン層を形成するためのシーケンスを示す概略的な断面図である。図3に示される動作は、同時に、及び/又は示される順序とは異なる順序で実行することができることも理解されるべきである。
【0028】
方法300は、図1A又は図1Bに示される処理チャンバ100などの処理チャンバ内に図4Aに示される基板400などの基板を位置決めすることによって、動作310から開始する。基板400は、図1A図1B、及び図2に示される基板190でありうる。基板400は、静電チャック、例えば、静電チャック150の上面192上に位置づけることができる。基板400は、必要に応じて、ケイ素をベースとした材料、若しくは任意の適切な絶縁材料、導電性材料、又は導体材料であってよく、また、膜スタック404に階段状構造などの構造402を形成するために利用することができる基板400上に配置された膜スタック404を有する。
【0029】
図4Aに示される例示的な実施形態に示されるように、基板400は、実質的に平坦な表面、不均一な表面、又はその上に構造が形成された実質的に平坦な表面を有しうる。膜スタック404は、基板400上に形成される。一実施形態では、膜スタック404を利用して、フロントエンド又はバックエンドプロセスにおいてゲート構造、接触構造、又は相互接続構造を形成することができる。方法300は、膜スタック404上で実行することができ、NAND構造などのメモリ構造に用いられる階段状構造をその中に形成することができる。一実施形態では、基板400は、結晶シリコン(例えば、Si<100>又はSi<111>)、酸化ケイ素、歪みシリコン、シリコンゲルマニウム、ドープ又は非ドープポリシリコン、ドープ又は非ドープシリコン基板、及びパターン化又は非パターン化基板、シリコンオンインシュレータ(SOI)、炭素をドープされた酸化ケイ素、窒化ケイ素、ドープされたシリコン、ゲルマニウム、ヒ化ガリウム、ガラス、サファイアなどの材料でありうる。基板400は、200mm、300mm、及び450mm、又は他の直径の基板、並びに長方形又は正方形のパネルなど、さまざまな寸法を有することができる。別途明記されない限り、本明細書に記載される実施形態及び実施例は、直径200mm、直径300mm、又は直径450mmの基板上で実行される。SOI構造が基板400に利用される実施形態では、基板400は、シリコン結晶基板上に配置された埋め込み誘電体層を含みうる。本明細書に描かれている実施形態では、基板400は結晶シリコン基板でありうる。
【0030】
一実施形態では、基板400上に配置された膜スタック404は、複数の垂直に積み重ねられた層を有しうる。膜スタック404は、該膜スタック404内に繰り返し形成された、第1の層(408a、408a、408a,・・・・・・、408aとして示されている)と第2の層(408b、408b、408b,・・・・・・、408bとして示されている)とを含む対を含むことができる。これらの対は、第1の層と第2の層の対が所望の数に達するまで繰り返し形成された、第1の層(408a、408a、408a,・・・・・・、408aとして示されている)と第2の層(408b、408b、408b,・・・・・・、408bとして示されている)とを交互に含んでいる。
【0031】
膜スタック404は、三次元メモリチップなどの半導体チップの一部でありうる。第1の層(408a、408a、408a,・・・・・・、408aとして示されている)と第2の層(408b、408b、408b,・・・・・・、408bとして示されている)との3つの繰り返し層が図4A~4Bに示されているが、第1の層と第2の層との対の任意の所望の数の繰り返しを、必要に応じて利用することができることに留意されたい。
【0032】
一実施形態では、膜スタック404を利用して、三次元メモリチップ用の複数のゲート構造を形成することができる。膜スタック404に形成された第1の層408a、408a、408a、・・・・・・、408aは第1の誘電体層であってよく、第2の層408b、408b、408b,・・・・・・、408bは第2の誘電体層でありうる。適切な誘電体層を利用して、第1の層408a、408a、408a,・・・・・・、408aを形成することができ、第2の層408b、408b、408b,・・・・・・、408bは、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、シリコンオキシカーバイド、窒化チタン、酸化物と窒化物の複合材料、窒化物層を挟む少なくとも1つ以上の酸化物層、及びそれらの組合せを含む。幾つかの実施形態では、誘電体層は、4より大きい誘電率を有する高k材料でありうる。高k材料の適切な例には、とりわけ、二酸化ハフニウム(HfO)、二酸化ジルコニウム(ZrO)、酸化ハフニウムケイ素(HfSiO)、酸化ハフニウムアルミニウム(HfAlO)、酸化ジルコニウムケイ素(ZrSiO)、二酸化タンタル(TaO)、酸化アルミニウム、アルミニウムをドープした二酸化ハフニウム、ビスマスストロンチウムチタン(BST)、及びプラチナジルコニウムチタン(PZT)が含まれる。
【0033】
1つの特定の例では、第1の層408a、408a、408a,・・・・・・、408aは酸化ケイ素層であり、第2の層408b、408b、408b,・・・・・・、408bは、第1の層408a、408a、408a,・・・・・・、408a上に配置された窒化ケイ素層又はポリシリコン層である。一実施形態では、第1の層408a、408a、408a,・・・・・・、408aの厚さは、約50Åから約1000Åの間、例えば約500Åに制御することができ、各第2の層408b、408b、408b,・・・・・・、408bの厚さは、約50Åから約1000Åの間、例えば約500Åに制御することができる。膜スタック404は、約100Åから約2000Åの間の合計の厚さを有することができ、技術の進歩にともなって変化しうる。
【0034】
ダイヤモンドライクカーボン層は、基板400上に存在する膜スタック404の有無にかかわらず、基板400の任意の表面又は任意の部分上に形成することができることに留意されたい。
【0035】
動作320において、チャック電圧が静電チャックに印加されて、基板400を静電チャックにクランプする。電気バイアスは、チャック電極210を介して基板400に提供される。チャック電極210は、該チャック電極210にバイアス電圧を供給するチャック電源212と電子的に通信することができる。一実施形態では、チャック電圧は約10ボルトから約3000ボルトの間である。
【0036】
動作320の間、処理容積内のプロセス圧力は、約0.1mTorrから約10Torr(例えば、約0.5mTorrから約15mTorr)に維持することができ、処理温度及び/又は基板温度は、約-50℃から約350℃(例えば、約-10℃から約20℃)に維持することができる。
【0037】
動作330では、炭化水素含有ガス混合物が処理容積126内に流れ込む。炭化水素含有ガス混合物は、ガス分配アセンブリ120を介して、又は側壁101を介してのいずれかで、ガスパネル130から処理容積126に流れ込むことができる。炭化水素含有ガス混合物は、少なくとも1つの炭化水素化合物を含みうる。炭化水素含有ガス混合物は、不活性ガス、希釈ガス、又はそれらのいずれかの組合せをさらに含みうる。幾つかの実施形態では、動作320中に供給されたチャック電圧は、動作330中、維持される。幾つかの実施形態では、プロセス条件は、動作320の間に確立され、動作330中、維持される。
【0038】
一実施形態では、炭化水素化合物は、ガス状炭化水素である。一実施形態では、炭化水素化合物は、一般式Cを有し、ここで、xは1から20の間の範囲を有し、yは1から20の間の範囲を有する。適切な炭化水素化合物には、例えば、C、C、CH、C、1,3-ジメチルアダマンタン、ビシクロ[2.2.1]ヘプタ-2,5-ジエン(2,5-ノルボルナジエン)、アダマント(C1016)、ノルボルネン(C10)、又はそれらの組合せが含まれる。
【0039】
幾つかの実施形態では、炭化水素含有ガス混合物は、1つ以上の希釈ガスをさらに含む。適切な希釈ガスには、ヘリウム(He)、アルゴン(Ar)、キセノン(Xe)、水素(H)、窒素(N)、アンモニア(NH)、又はそれらのいずれかの組合せが含まれうるが、これらに限定されない。一実施形態では、希釈ガスは、Ar、He、及びNの組合せを含む。一実施形態では、希釈ガスは、Ar、He、及びHの組合せを含む。
【0040】
幾つかの実施形態では、炭化水素含有ガス混合物は不活性ガスをさらに含む。幾つかの実施形態では、アルゴン(Ar)及び/又はヘリウム(He)などの不活性ガスを、炭化水素含有ガス混合物とともに処理容積126内に供給することができる。窒素(N)及び一酸化窒素(NO)などの他の不活性ガスもまた、ダイヤモンドライクカーボン層の密度及び堆積速度を制御するために使用することができる。
【0041】
動作340では、プラズマが基板レベルで生成されて、図4Bに示されるように膜スタック上にダイヤモンドライクカーボン膜を形成する。プラズマは、静電チャックに第1のRFバイアスを印加することによって生成されうる。第1のRFバイアスは、約350KHzから約162MHz(例えば、350KHz、2MHz、13.56MHz、27MHz、40MHz、60MHz、100MHz、又は162MHz)の周波数において、約10ワットから及び約3000ワットでありうる。一実施形態では、第1のRFバイアスは、約1500ワットから約2500ワットの間(例えば、1800~2200ワット)の電力及び約40MHz以上の周波数で提供される。一実施形態では、第1のRFバイアスは、第2のRF電極260を介して静電チャック150に提供される。第2のRF電極260は、該第2のRF電極260にバイアス電圧を供給する第1のRF電源230と電子通信することができる。第1のRF電源230は、約350KHzから約100MHz(例えば、350KHz、2MHz、13.56MHz、27MHz、40MHz、60MHz、又は100MHz)の周波数で電力を生成することができる。
【0042】
幾つかの実施形態では、動作340は、第2のRFバイアスを静電チャックに印加して、イオン密度及びイオンエネルギーを独立して制御して、膜応力を調整することをさらに含む。第2のRFバイアスは、約350KHzから約100MHz(例えば、350KHz、2MHz、13.56MHz、27MHz、40MHz、60MHz、又は100MHz)の周波数で、約10ワットから及び約3000ワットでありうる。一実施形態では、第2のRFバイアスは、約800ワットから約1200ワットの間の電力、及び約13.56MHz以下、例えば約2MHzの周波数で提供される。一実施形態では、第2のRFバイアスは、チャック電極210を介して基板400に提供される。チャック電極210は、該チャック電極210にバイアス電圧を供給する第2のRF電源2400と電子通信することができる。一実施形態では、第2のRFバイアスは、約10ワットから約3000ワットの間の電力で提供される。一実施形態では、第2のRFバイアスは、約800ワットから約1200ワットの間の電力で提供される。一実施形態では、動作320で供給されるチャック電圧は、動作340中、維持される。
【0043】
本開示の他のいずれかの実施形態と組み合わせることができる幾つかの実施形態では、動作340中、第1のRFバイアスは、チャック電極210を介して基板400に提供され、第2のRFバイアスは、第2のRF電極260を介して基板400に提供することができる。
【0044】
本開示の他のいずれかの実施形態と組み合わせることができる幾つかの実施形態では、動作340中、第1のRFバイアスは、ガス分配アセンブリ120又は電極182に提供することができ、第2のRFバイアスは、第2のRF電極260又はチャック電極210を介して基板400に提供することができる。このような場合には、ガス分配アセンブリ120又は電極182に印加する第1のRFバイアスは、高い周波数を有していてよく、第2のRF電極260又はチャック電極210に印加する第2のRFバイアスは、低い周波数を有していてよい。
【0045】
第1のRFバイアス及び第2のRFバイアスに、電力レベルと周波数のさまざまな組合せを使用することができる。幾つかの実施形態では、第1のRFバイアスは、約40MHz、60MHz、又は162MHzで約2000ワットであってよく、第2のRFバイアスは、350KHzで約1000ワットでありうる。幾つかの実施形態では、第1のRFバイアスは、40MHz、60MHz、又は162MHzで約2000ワットであってよく、第2のRFバイアスは、2MHzで約1000ワットでありうる。幾つかの実施形態では、第1のRFバイアスは、約40MHz、60MHz、又は162MHzで約2000ワットであってよく、第2のRFバイアスは、13.56MHzで約1000ワットでありうる。
【0046】
本開示の他の任意の実施形態と組み合わせることができる幾つかのさらなる実施形態では、動作340中、第1のRFバイアスは、チャック電極210を介して基板400に提供され、第2のRFバイアスは、第2のRF電極260を介して基板400に提供することができ、第3のRFバイアスは、ガス分配アセンブリ120又は電極182に提供することができる。このような場合には、第1のRFバイアス及び第2のRFバイアスは、本開示で論じられる周波数と電力の任意の組合せであってよく、第3のRFバイアスは、本開示で論じられる第1又は第2のRFバイアスのものと同一の電力及び周波数を有するように構成することができる。
【0047】
幾つかの実施形態では、ダイヤモンドライクカーボン層412が動作340中に基板上に形成された後、ダイヤモンドライクカーボン層412は水素ラジカルに曝露される。幾つかの実施形態では、ダイヤモンドライクカーボン層は、動作340の堆積プロセス中に水素ラジカルに曝露される。幾つかの実施形態では、水素ラジカルは、RPSに形成され、処理領域に送給される。理論に拘束されるものではないが、ダイヤモンドライクカーボン層を水素ラジカルに曝露すると、sp混成炭素原子の選択的エッチングが生じ、したがって、膜のsp混成炭素原子の割合が増加し、エッチングの選択性が向上すると考えられる。
【0048】
動作350において、ダイヤモンドライクカーボン層412が基板上に形成された後、基板はデチャックされる。動作350中、チャック電圧はオフにされる。反応性ガスはオフにされ、任意選択的に処理チャンバからパージされる。一実施形態では、動作350中、RF電力は低減される(例えば、約200W)。基板が静電チャックからデチャックされると、残りのガスは処理チャンバからパージされる。処理チャンバはポンプダウンされ、基板はリフトピン上を上に移動し、プロセスチャンバの外へと移送される。
【0049】
ダイヤモンドライクカーボン層412が基板上に形成された後、該ダイヤモンドライクカーボン層412は、階段状構造などの三次元構造を形成するためのパターニングマスクとしてエッチングプロセスに利用することができる。ダイヤモンドライクカーボン層412は、標準的なフォトレジストパターニング技術を使用してパターン化することができる。
【0050】
以下の非限定的な例は、本明細書に記載される実施形態をさらに説明するために提供される。しかしながら、これらの例は、すべてを網羅することは意図しておらず、本明細書に記載される実施形態の範囲を限定することを意図するものでもない。一実施形態では、本明細書に開示される低応力、高密度のダイヤモンドライクカーボン膜は、10℃の温度で150sccmのC及び100sccmのHeをプロセスガスとして流し、希釈ガスとしてAr及び/又はHeを用いてCVDリアクタ内の基板ペデスタル(静電チャック)を介して2000ワットのRF(60MHz)電力を印加することによって、製造した。得られたダイヤモンドライクカーボン膜、アモルファスカーボン基準膜、及びPVDによって形成されたダイヤモンドライクカーボン膜の比較が以下の表IIに示されている。
【0051】
したがって、半導体デバイスの三次元スタックを製造するための階段状構造を形成するために利用することができる、透明性の高いダイヤモンドライクカーボンハードマスク層を形成するための方法及び装置が提供される。所望のロバストな膜特性とエッチング選択性とを備えたダイヤモンドライクハードマスク層を利用することにより、膜スタックに形成された結果として得られる構造の改善された寸法及びプロファイル制御を獲得することができ、チップデバイスの電気的性能を、半導体デバイスの三次元スタックの用途において強化することができる。
【0052】
以上の説明は本開示の実施形態を対象としているが、本開示の基本的な範囲を逸脱することなく、本開示の他の実施形態及びさらなる実施形態が考案されてよく、本開示の範囲は、以下の特許請求の範囲によって決定される。
図1A
図1B
図2
図3
図4A
図4B
【手続補正書】
【提出日】2024-04-23
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
基板上に炭素膜を形成する方法において、
静電チャック上に位置づけられた基板を有する処理チャンバ内に炭化水素含有ガス混合物を流すことであって、前記静電チャックは前記静電チャック内に第1の無線周波数(RF)電極と第2の無線周波数(RF)電極を含み、前記基板が約-50℃から約350℃の温度に維持される、炭化水素含有ガス混合物を流すこと、及び
前記基板上にダイヤモンドライクカーボン膜を堆積させるために、前記静電チャックの前記第1のRF電極に第1のRFバイアスを印加してプラズマを生成すること
を含む、方法。
【請求項2】
プラズマを生成することが、前記静電チャックの前記第2のRF電極に第2のRFバイアスを印加することをさらに含む、請求項1に記載の方法。
【請求項3】
前記第2のRFバイアスが、約800ワットから約1200ワットの電力及び350KHzから13.56MHzの周波数で提供される、請求項2に記載の方法。
【請求項4】
前記第1のRFバイアスが約10ワットから約3000ワットの電力及び350KHz以上の周波数で提供され、前記第2のRFバイアスが約10ワットから約3000ワットの電力及び350KHz以上の周波数で提供される、請求項2に記載の方法。
【請求項5】
前記基板が約-10℃から約20℃の温度で維持される、請求項1に記載の方法。
【請求項6】
前記炭化水素含有ガス混合物が、C、C、CH、C、1,3-ジメチルアダマンタン、ビシクロ[2.2.1]ヘプタ-2,5-ジエン(2,5-ノルボルナジエン)、アダマント(C1016)、ノルボルネン(C10)、又はそれらのいずれかの組合せを含む炭化水素前駆体を含む、請求項1に記載の方法。
【請求項7】
前記炭化水素含有ガス混合物が、He、Ar、Xe、N、H、又はそれらのいずれかの組合せを含む希釈ガスをさらに含む、請求項1に記載の方法。
【請求項8】
前記炭化水素含有ガス混合物が、前記処理チャンバの側壁に配置されたガスパネルを通って前記処理チャンバ内に流れ込む、請求項1に記載の方法。
【請求項9】
半導体基板上に炭素膜を形成する方法において、
静電チャック上に位置づけられた半導体基板を有する処理チャンバ内に炭化水素含有ガスと希釈ガスの混合物を流すことであって、前記炭化水素含有ガスに対する前記希釈ガスの体積比は1:4以上である、炭化水素含有ガスと希釈ガスの混合物を流すこと、及び
前記半導体基板上にダイヤモンドライクカーボン膜を堆積させるために、前記静電チャック内の第1の電極に第1の無線周波数(RF)バイアス、及び前記静電チャックの第2の電極に第2の無線周波数(RF)バイアスを印加してプラズマを生成すること
を含み、
前記半導体基板は、約-50℃から約350℃の温度に維持される、
方法。
【請求項10】
前記第1のRFバイアスが、約13.56MHz以上の周波数で提供され、前記半導体基板は、-10℃から20℃の温度に維持される、請求項9に記載の方法。
【請求項11】
前記第2のRFバイアスが、13.56MHz以下で提供される、請求項9に記載の方法。
【請求項12】
前記炭化水素含有ガスが、C、C、CH、C、1,3-ジメチルアダマンタン、ビシクロ[2.2.1]ヘプタ-2,5-ジエン(2,5-ノルボルナジエン)、アダマント(C1016)、ノルボルネン(C10)、又はそれらのいずれかの組合せを含む、請求項9に記載の方法。
【請求項13】
前記希釈ガスが、He、Ar、Xe、N、H、又はそれらのいずれかの組合せを含む、請求項9に記載の方法。
【請求項14】
プラズマを生成することが、前記静電チャックの上方に配置され、前記静電チャックに対向する第3の電極に第3のRFバイアスを印加することをさらに含む、請求項9に記載の方法。
【請求項15】
前記第3のRFバイアスが、10ワットから3000ワットの電力並びに350KHzから162MHzの周波数で提供される、請求項14に記載の方法。
【請求項16】
基板を処理する方法において、
静電チャック上に位置づけられた基板を有する処理チャンバ内に炭化水素含有ガス混合物を流すことであって、前記基板は第1の誘電体層と前記第1の誘電体層上に配置される第2の誘電体層を有する膜スタックを含む、炭化水素含有ガス混合物を流すこと、
前記基板上にダイヤモンドライクカーボン膜を堆積させるために、前記静電チャックに第1の無線周波数(RF)バイアスを印加してプラズマを生成することであって、前記ダイヤモンドライクカーボン膜の弾性率は200GPaから400GPaである、プラズマを生成すること、
前記ダイヤモンドライクカーボン膜の上にパターン化されたフォトレジスト層を形成すること、
前記パターン化されたフォトレジスト層に対応するパターンで前記ダイヤモンドライクカーボン膜をエッチングし、エッチングされた部分を生じさせること、及び
前記ダイヤモンドライクカーボン膜の前記エッチングされた部分に材料を堆積させること
を含む、方法。
【請求項17】
プラズマを生成することは、前記静電チャックに第2のRFバイアスを印加することをさらに含む、請求項16に記載の方法。
【請求項18】
前記ダイヤモンドライクカーボン膜が、極端紫外線(EUV)リソグラフィプロセスにおける下層として用いられる、請求項16に記載の方法。
【請求項19】
前記炭化水素含有ガス混合物が、He、Ar、Xe、N、H、又はそれらのいずれかの組合せを含む希釈ガスをさらに含む、請求項16に記載の方法。
【請求項20】
前記炭化水素含有ガス混合物が、前記処理チャンバの側壁に配置されたガスパネルを通って前記処理チャンバ内に流れ込む、請求項19に記載の方法。
【外国語明細書】