(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024097173
(43)【公開日】2024-07-18
(54)【発明の名称】混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法
(51)【国際特許分類】
B01J 49/09 20170101AFI20240710BHJP
B01J 49/70 20170101ALI20240710BHJP
【FI】
B01J49/09
B01J49/70
【審査請求】有
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2023000518
(22)【出願日】2023-01-05
(11)【特許番号】
(45)【特許公報発行日】2023-12-26
(71)【出願人】
【識別番号】000001063
【氏名又は名称】栗田工業株式会社
(74)【代理人】
【識別番号】100108833
【弁理士】
【氏名又は名称】早川 裕司
(74)【代理人】
【識別番号】100162156
【弁理士】
【氏名又は名称】村雨 圭介
(72)【発明者】
【氏名】小川 祐一
(72)【発明者】
【氏名】宮地 みどり
(57)【要約】
【課題】 セプレックス法を利用して混合イオン交換樹脂のアニオン交換樹脂とカチオン交換樹脂とを分離する際のNaOH溶液の使用量を削減することの可能な混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法を提供する。
【解決手段】 セプレックス塔3でアニオン交換樹脂中に混入しているカチオン交換樹脂を分離する第一のNaOH水溶液として、アニオン交換樹脂再生塔4で使用済の第二のNaOH水溶液を回収して用いることで、NaOH水溶液の使用量を削減しつつアニオン交換樹脂の再生を高精度で行う。
【選択図】
図1
【特許請求の範囲】
【請求項1】
アニオン交換樹脂とカチオン交換樹脂の混合イオン交換樹脂からアニオン交換樹脂とカチオン交換樹脂とを分離再生する方法であって、
混合イオン交換樹脂の投入部と、上下方向の途中に設けられたアニオン交換樹脂抜出部と、該アニオン交換樹脂抜出部よりも下方に設けられたカチオン交換樹脂抜出部と、底部に設けられたエア及び分離用水の注入部とを有する略筒状の混合イオン交換樹脂の逆洗分離塔に混合イオン交換樹脂投入し、前記分離塔内にエア及び分離用水の注入部から分離用水を上向流で通水して前記混合イオン交換樹脂を比重差を利用して分離する逆洗分離工程と、
前記アニオン交換樹脂とカチオン交換樹脂の分離界面より上側のアニオン交換樹脂を前記アニオン交換樹脂抜出部から抜き出してアニオン交換樹脂高度分離塔に移送するとともに、残余のカチオン交換樹脂をカチオン交換樹脂抜出部から抜き出してカチオン交換樹脂再生塔に移送する移送工程と、
前記アニオン交換樹脂高度分離塔に5重量%以上30重量%以下の第一のNaOH水溶液に浸漬して、アニオン交換樹脂中に混入しているカチオン交換樹脂を分離し、該カチオン交換樹脂を排出するアニオン交換樹脂分離工程と、
前記アニオン交換樹脂高度分離塔に残存したアニオン交換樹脂を第二のNaOH水溶液で再生するアニオン交換樹脂再生工程と、
前記カチオン交換樹脂再生塔内のカチオン交換樹脂を再生するカチオン交換樹脂再生工程と、
を有する混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法において、
前記第二のNaOH水溶液として未使用の高濃度NaOH水溶液を使用するとともに、前記第一のNaOH水溶液として、前記アニオン交換樹脂再生工程で使用済の第二のNaOH水溶液、又は前記アニオン交換樹脂再生工程で使用済の第二のNaOH水溶液及び前記アニオン交換樹脂分離工程で使用済の第一のNaOH水溶液を回収したNaOH水溶液を用いる、混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法。
【請求項2】
前記第一のNaOH水溶液に未使用の高濃度NaOH水溶液を添加する、請求項1に記載の混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法。
【請求項3】
前記第二のNaOH水溶液及び/又は第一のNaOH水溶液の濃度を純水により調整する、請求項2に記載の混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法。
【請求項4】
前記分離用水を上向流で通水して前記混合イオン交換樹脂を比重差を利用して分離する逆洗分離工程において、混合イオン交換樹脂に第三のNaOH水溶液を通液するイオン型調整を行い、該第三のNaOH水溶液として、前記アニオン交換樹脂再生工程で使用済の第二のNaOH水溶液及び前記アニオン交換樹脂分離工程で使用済の第一のNaOH水溶液を回収したNaOH水溶液を用いる、請求項1に記載の混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法。
【請求項5】
前記アニオン交換樹脂とカチオン交換樹脂が、ポーラス型イオン交換樹脂である、請求項1~4のいずれか1項に記載の混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、純水製造装置などに用いられる非再生式イオン交換装置や混床式イオン交換装置などで使用したアニオン交換樹脂とカチオン交換樹脂の混合イオン交換樹脂を分離して再生する方法に関する。
【背景技術】
【0002】
純水製造装置では原水中の不純物を除去して水の清浄度を高めているが、イオン性の不純物、すなわちアニオン性の不純物とカチオン性の不純物を除去するためにアニオン交換樹脂とカチオン交換樹脂とを混合充填した混床式イオン交換装置が汎用的に用いられている。この混床式イオン交換装置では、イオン交換樹脂はイオン交換容量に相当する量のイオンを交換すると、それ以上のイオン性不純物は除去できずに破過する。そこで、破過する前にある程度の被処理水を処理したら、この混床式イオン交換装置からイオン交換樹脂をそれぞれ回収して、カチオン交換樹脂再生塔、アニオン交換樹脂再生塔でそれぞれ塩酸や苛性ソーダなどにより再生して再利用している。この際、アニオン交換樹脂とカチオン交換樹脂とは、上向流で通水してアニオン交換樹脂とカチオン交換樹脂の比重差による沈降速度の違いを利用して分離するのが一般的である。
【0003】
この混合イオン交換樹脂の分離塔(逆洗分離塔)の一例を
図2に示す。
図2において、混合イオン交換樹脂の分離塔21は、円筒形の分離塔本体21Aの底部に注排水口22が設けられているとともに、複数の吐出ノズル23Aを備えた吐水部としての給水管23が設けられていて、頂部には排水口24が形成されている。この分離塔本体21Aの吐出ノズル23Aの下側には集水板25が配置されている。そして、分離塔21内の上下方向の中間付近にはアニオン交換樹脂抜出部としてのアニオン交換樹脂抜出配管26が設けられているとともに、このアニオン交換樹脂抜出配管26の下側で給水管23よりわずかに上側にカチオン交換樹脂抜出配管27が設けられている。また、分離塔21の側面にはのぞき窓28が形成されている。なお、29は分離塔21の側面上側に設けられた使用済の混合イオン交換樹脂の投入口である。
【0004】
このような混合イオン交換樹脂の分離塔21において、分離塔21内に使用済の混合イオン交換樹脂を投入し、続いて4重量%程度のNaOH水溶液を通液し、所定時間放置してイオン交換樹脂の型を調整して比重差を拡大したら、注排水口22から純水を注入して排水口24から分離塔内のNaOH水溶液を押し出し、洗浄を行う。そして、分離塔21内に所定量の分離用水(純水)が充填された状態とする。この際、分離用水の水面が混合イオン交換樹脂の上面より上位、特に500mm以下程度上位となるようにする。
【0005】
次に注排水口24からエアを分離塔内に注入し、混合イオン交換樹脂をバブリングしコロイド状に絡みついた樹脂粒子をほぐした後バブリングングを停止し、混合イオン交換樹脂を集水板25上に沈降させる。この際、比重の大きいカチオン交換樹脂が先に沈降し、比重の小さいアニオン交換樹脂が遅れて沈降する。続いて、逆洗に備えて、分離塔21内が満水となるように注排水口22から純水(分離用水)を導入する。
【0006】
この満水の状態で吐出ノズル23Aから純水を吐出して上向流にて通水して、分離界面がアニオン交換樹脂抜出配管26の吸込口の下端となるようにのぞき窓28から目視により確認しながら調整する。そして、アニオン交換樹脂抜出配管26から吸引してアニオン交換樹脂をアニオン交換樹脂・水混相流として流出させて取り出す。このアニオン交換樹脂・水混相流は、水切りをした後、アニオン交換樹脂再生塔に移送してアニオン交換樹脂の再生処理を行う。
【0007】
このようにしてアニオン交換樹脂を抜き出した後は、吐出ノズル23Aから純水の吐出を継続しながらカチオン交換樹脂抜出配管27から吸引し、カチオン交換樹脂・水混相流として流出させて取り出す。このカチオン交換樹脂・水混相流は、水切りをした後カオン交換樹脂再生分離塔)に移送してカチオン交換樹脂の再生処理を行う。このときカチオン交換樹脂は全部取り出さず、ある程度残存させることでアニオン交換樹脂の混入を防止する。
【0008】
しかしながら、上述したようなアニオン交換樹脂とカチオン交換樹脂の分離方法では、両者の分離が不十分である、という問題点があった。特にカチオン交換樹脂は界面部を分離塔21内に残存させることで良好に分離することができるが、最初に抜き出すアニオン交換樹脂にカチオン交換樹脂が混入しやすい、という問題点があった。
【0009】
そこで、セプレックス法という高濃度のNaOH水溶液を用いてアニオン交換樹脂とカチオン交換樹脂を分離する方法が適用されている。このセプレックス法は、
図3及び
図4に示すようなシステム及びプロセスで処理を行う。
【0010】
すなわち、混合イオン交換樹脂の分離再生システムは、
図3に示すように逆洗分離塔とセプレックス塔とアニオン交換樹脂再生塔とカチオン交換樹脂再生塔との四塔構成からなる。まず、逆洗分離塔において、逆洗分離工程によりアニオン交換樹脂とカチオン交換樹脂とを比重差により分離し、アニオン交換樹脂を抜き出す。この際、混合イオン交換樹脂にNaOH水溶液を通液することで、カチオン交換樹脂をNa型に、アニオン交換樹脂をOH型にそれぞれイオン型を調製することにより、アニオン交換樹脂とカチオン交換樹脂の比重差を大きくして、逆洗分離後のアニオン交換樹脂とカチオン交換樹脂のそれぞれに対する混入率を低減する。
【0011】
この逆洗分離工程では分離したアニオン交換樹脂にはカチオン交換樹脂が微量混入しているが、カチオン交換樹脂をアニオン交換樹脂高度分離塔としてのセプレックス分離塔に移送する。そして、このセプレックス分離塔にアニオン交換樹脂の比重とカチオン交換樹脂の比重の中間の比重のNaOH水溶液を注入した状態でバブリングにより樹脂をほぐして静置することで、混入したカチオン交換樹脂を下側に沈降させる。このカチオン交換樹脂をセプレックス分離塔の下部より抜き出して除去する。そして、塔内に純水を供給して、NaOH水溶液を押出洗浄した後、残ったアニオン交換樹脂を抜き出す(セプレックス分離工程)。
【0012】
この抜き出したアニオン交換樹脂は、アニオン交換樹脂再生塔に移送してさらにNaOH水溶液によりアニオン交換樹脂の再生洗浄を行う(アニオン交換樹脂再生工程)。一方、逆洗分離工程で分離したカチオン交換樹脂はカチオン交換樹脂再生塔に移送して定法によりカチオン交換樹脂の再生洗浄を行う(カチオン交換樹脂の再生工程)。
【0013】
上述したようなセプレックス法により、アニオン交換樹脂とチオン交換樹脂とを他方の混入を極めて少なくして分離することができる。しかしながら、セプレックス法は、
図4に示すような機構及び手順でNaOH溶液の供給及び回収を行う。すなわち、セプレックス法におけるNaOH溶液の供給及び回収機構30は、逆洗分離塔31、セプレックス塔32及びアニオン交換樹脂再生塔33に超純水供給源34から超純水供給管35を経由して、超純水Wを供給するとともに未使用の濃厚NaOH水溶液Nを濃厚NaOH水溶液タンク36から供給し、それぞれ所定の濃度のNaOH水溶液を供給可能となっている。そして、使用済のNaOH水溶液は、廃NaOH水溶液排出支管37A、37B、37Cが合流した廃NaOH水溶液排出管37から廃液タンク38に貯留し、廃棄する。39A,39B、39Cは、所定の濃度のNaOH水溶液を供給するために超純水Wと濃厚NaOH水溶液SHとの混合比を調製するための比重計である。なお、
図4はNaOH溶液の供給及び回収についての説明図であるので、アニオン交換樹脂再生塔については記載していない。
【発明の概要】
【発明が解決しようとする課題】
【0014】
このように従来は、逆洗分離工程、セプレックス分離工程及びアニオン交換樹脂の再生工程でそれぞれ未使用のNaOH溶液を使用し、使用した後のNaOH溶液は廃棄していた。このため、NaOH水溶液を多量に使用する、という問題点があった。
【0015】
本発明は上記課題に鑑みてなされたものであり、セプレックス法を利用して混合イオン交換樹脂のアニオン交換樹脂とカチオン交換樹脂とを分離する際のNaOH溶液の使用量を削減することの可能な混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法を提供することを目的とする。
【課題を解決するための手段】
【0016】
上記目的に鑑み本発明は、アニオン交換樹脂とカチオン交換樹脂の混合イオン交換樹脂からアニオン交換樹脂とカチオン交換樹脂とを分離再生する方法であって、混合イオン交換樹脂の投入部と、上下方向の途中に設けられたアニオン交換樹脂抜出部と、該アニオン交換樹脂抜出部よりも下方に設けられたカチオン交換樹脂抜出部と、底部に設けられたエア及び分離用水の注入部とを有する略筒状の混合イオン交換樹脂の逆洗分離塔に混合イオン交換樹脂投入し、前記分離塔内にエア及び分離用水の注入部から分離用水を上向流で通水して前記混合イオン交換樹脂を比重差を利用して分離する逆洗分離工程と、前記アニオン交換樹脂とカチオン交換樹脂の分離界面より上側のアニオン交換樹脂を前記アニオン交換樹脂抜出部から抜き出してアニオン交換樹脂高度分離塔に移送するとともに、残余のカチオン交換樹脂をカチオン交換樹脂抜出部から抜き出してカチオン交換樹脂再生塔に移送する移送工程と、前記アニオン交換樹脂高度分離塔に5重量%以上30重量%以下の第一のNaOH水溶液に浸漬して、アニオン交換樹脂中に混入しているカチオン交換樹脂を分離し、該カチオン交換樹脂を排出するアニオン交換樹脂分離工程と、前記アニオン交換樹脂高度分離塔に残存したアニオン交換樹脂を第二のNaOH水溶液で再生するアニオン交換樹脂再生工程と、前記カチオン交換樹脂再生塔内のカチオン交換樹脂を再生するカチオン交換樹脂再生工程と、を有する混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法において、前記第二のNaOH水溶液として未使用の高濃度NaOH水溶液を使用するとともに、前記第一のNaOH水溶液として、前記アニオン交換樹脂再生工程で使用済の第二のNaOH水溶液、又は前記アニオン交換樹脂再生工程で使用済の第二のNaOH水溶液及び前記アニオン交換樹脂分離工程で使用済の第一のNaOH水溶液を回収したNaOH水溶液を用いる、混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法を提供する(発明1)。
【0017】
かかる発明(発明1)によれば、最終段階のアニオン交換樹脂の再生に第二のNaOH水溶液として未使用の高濃度NaOH水溶液を使用し、アニオン交換樹脂高度分離塔でカチオン交換樹脂を分離する第一のNaOH水溶液として、使用済の第二のNaOH水溶液を回収して再利用することで、NaOH水溶液の使用量を削減しつつアニオン交換樹脂の再生を高精度で行うことができる。
【0018】
上記発明(発明1)においては、前記第一のNaOH水溶液に未使用の高濃度NaOH水溶液を添加することが好ましい(発明2)。
【0019】
かかる発明(発明2)によれば、アニオン交換樹脂高度分離塔では、アニオン交換樹脂再生工程よりも高濃度のNaOH水溶液を使用するので、使用済の第二のNaOH水溶液を回収して再利用しただけではNaOH水溶液の濃度が不足するので、未使用の高濃度NaOH水溶液を添加してアニオン交換樹脂分離工程に適したNaOH水溶液濃度とすることで、使用済の第二のNaOH水溶液を回収して再利用するとともにアニオン交換樹脂分離工程に好適なNaOH水溶液濃度とすることができる。
【0020】
上記発明(発明2)においては、前記第二のNaOH水溶液及び/又は第一のNaOH水溶液の濃度を純水により調整することが好ましい(発明3)。
【0021】
かかる発明(発明3)によれば、NaOH水溶液の濃度を純水で調整することで、アニオン交換樹脂再生工程、アニオン交換樹脂分離工程をそれぞれ好適に行うことができる。
【0022】
上記発明(発明1)においては、前記分離用水を上向流で通水して前記混合イオン交換樹脂を比重差を利用して分離する逆洗分離工程において、混合イオン交換樹脂に第三のNaOH水溶液を通液するイオン型調整を行い、該第三のNaOH水溶液として、前記アニオン交換樹脂再生工程で使用済の第二のNaOH水溶液及び前記アニオン交換樹脂分離工程で使用済の第一のNaOH水溶液を回収したNaOH水溶液を用いることが好ましい(発明4)。
【0023】
かかる発明(発明4)によれば、分離用水を上向流で通水する逆洗分離工程において混合イオン交換樹脂に第三のNaOH水溶液を通液するイオン型調整に用いる第三のNaOH溶液として、前記アニオン交換樹脂再生工程で使用済の第二のNaOH水溶液及び前記アニオン交換樹脂分離工程で使用済の第一のNaOH水溶液を回収したNaOH水溶液を用いることで、NaOH水溶液の使用量を削減しつつ、イオン型調整、すなわちアニオン交換樹脂高度分離塔でのチオン交換樹脂を分離及びアニオン交換樹脂の再生を高精度で行うことができる。
【0024】
上記発明(発明1~4)においては、前記アニオン交換樹脂とカチオン交換樹脂が、ポーラス型イオン交換樹脂であることが好ましい(発明5)。
【0025】
かかる発明(発明5)によれば、5重量%以上30重量%以下のNaOH水溶液の比重は、ポーラス型アニオン交換樹脂の比重とポーラス型イオン交換樹脂の比重との両者の間とすることができるので、アニオン交換樹脂分離工程において比重差を利用してアニオン交換樹脂中に混入しているカチオン交換樹脂を好適に分離することができる。
【発明の効果】
【0026】
本発明の混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法によれば、アニオン交換樹脂高度分離塔でアニオン交換樹脂中に混入しているカチオン交換樹脂を分離する第一のNaOH水溶液として、使用済の第二のNaOH水溶液を回収して用いることで、NaOH水溶液の使用量を削減しつつアニオン交換樹脂の再生を高精度で行うことができる。
【図面の簡単な説明】
【0027】
【
図1】本発明の一実施形態による混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法におけるNaOH水溶液の供給及び回収方法を示す概略図である。
【
図2】混合イオン交換樹脂のアニオン交換樹脂とカチオン交換樹脂との分離塔の一例を示す概略図である。
【
図3】混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生システムを示すフロー図である。
【
図4】従来の混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法におけるNaOH水溶液の供給及び回収方法を示す概略図である。
【発明を実施するための形態】
【0028】
以下、本発明の混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法について、添付図面を参照にして詳細に説明する。
【0029】
〔混合イオン交換樹脂の分離再生システム〕
本実施形態の混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生システムは、前述した
図3に示す分離再生システムと同じであるので、その詳細な説明を省略する。
【0030】
(NaOH溶液の供給及び回収機構)
本実施形態においては、
図1に示すような構成のセプレックス法におけるNaOH溶液の供給及び回収機構1により、各構成エレメントにNaOH水溶液の供給及び回収を行う。すなわち、NaOH溶液の供給及び回収機構1は、逆洗分離塔2、アニオン交換樹脂高度分離塔としてのセプレックス塔3及びアニオン交換樹脂の再生塔4を備え、超純水供給源5から超純水供給管6を経由して超純水Wを供給するとともに、濃厚NaOH水溶液タンク7からNaOH水溶液供給管10を経由して未使用の濃厚NaOH水溶液Nを再生塔4に所定の濃度で供給可能となっている。また、8はNaOH水溶液の回収・供給タンクであり、アニオン交換樹脂の再生塔4及びセプレックス塔3を通過したNaOH水溶液を回収管11,12,13をそれぞれ経由して回収した後、逆洗分離塔2及びセプレックス塔3にNaOH水溶液供給管14,14A,14Bを経由して再利用NaOH水溶液Rとして供給可能となっている。さらに、9は廃液タンクであり、逆洗分離塔2を通過したNaOH水溶液を廃棄管15を経由して回収可能となっている。なお、12A及び13Aは予備廃棄管であり、16A,16B,16C,16Dは、所定の濃度のNaOH水溶液を供給するために超純水Wと濃厚NaOH水溶液SHとの混合比を調製するための比重計である。なお、
図1はNaOH溶液の供給及び回収についての説明図であるので、アニオン交換樹脂再生塔については記載していない。
【0031】
〔混合イオン交換樹脂の分離再生方法〕
本実施形態の混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法は、前述した
図3に示す分離再生システムにおける逆洗分離工程、アニオン交換樹脂分離工程(以下、セプレックス分離工程という)、アニオン交換樹脂の再生工程及びカチオン交換樹脂の再生工程と同じであるので、その詳細な説明を省略する。
【0032】
(NaOH水溶液の供給及び回収方法)
次に前述したような構成を有するNaOH溶液の供給及び回収機構1による本実施形態のNaOH溶液の供給及び回収方法について
図1に基づいて説明する。なお、NaOH水溶液のNaOH水溶液を供給及び回収方法は、時系列的には、逆洗分離工程、アニオン交換樹脂分離工程、アニオン交換樹脂の再生工程の順に進行するが、本実施形態においては説明の便宜上、アニオン交換樹脂の再生工程、セプレックス分離工程、逆洗分離工程の順に説明する。
【0033】
(初期段階)
初期状態においては、それぞれ好適な濃度のNaOH水溶液で逆洗分離工程、アニオン交換樹脂分離工程、アニオン交換樹脂の再生工程を実施するなどして、廃液タンク9に使用済のNaOH水溶液を貯留した状態とすることが好ましい。また、濃厚NaOH水溶液タンク7には、未使用の濃厚NaOH水溶液Nを貯留しておく、この濃厚NaOH水溶液Nの濃度は、後述するセプレックス分離工程におけるNaOH水溶液の濃度より高濃度であればよく、例えば25~48重量%の範囲内でセプレックス分離工程におけるNaOH水溶液の濃度に応じて適宜設定すればよい。
【0034】
(アニオン交換樹脂の再生工程)
アニオン交換樹脂の再生工程では、超純水供給管6から超純水Wを供給するとともに、濃厚NaOH水溶液タンク7からNaOH水溶液供給管10を経由して未使用の濃厚NaOH水溶液Nをアニオン交換樹脂の再生塔4に供給する。このとき、比重計16Cで再生塔4に供給される溶液の比重に基づきNaOHの濃度を確認し、必要に応じて超純水W及び/または濃厚NaOH水溶液Nの流量を調整することで、所望とする濃度(例えば4重量%程度)のNaOH水溶液を調製する。この清浄なNaOH水溶液により、最終段階としてのアニオン交換樹脂の再生を行う。そして、このアニオン交換樹脂の再生に使用した使用済のNaOH水溶液を回収管12から回収管11を経由してNaOH水溶液の回収・供給タンク8に回収する。また、NaOH水溶液の回収・供給タンク8には、後述するようにセプレックス分離工程で使用されたNaOH水溶液(再生工程よりも濃い)も回収され、合流する。したがって、NaOH水溶液の回収・供給タンク8内のNaOH水溶液は、セプレックス分離工程で使用されたNaOH水溶液よりも薄いNaOH水溶液が貯留されることになる。
【0035】
なお、本実施形態においは、濃厚NaOH水溶液Nの希釈及びNaOH水溶液の濃度調整用に純水、特に超純水Wを用いる。ここで、超純水Wとしては、例えば、抵抗率:18.1MΩ・cm以上、微粒子:粒径50nm以上で1000個/L以下、生菌:1個/L以下、TOC(Total Organic Carbon):1μg/L以下、全シリコン:0.1μg/L以下、金属類:1ng/L以下、イオン類:10ng/L以下、過酸化水素;30μg/L以下、水温:25±2℃のものが好適である。
【0036】
(セプレックス分離工程)
セプレックス分離工程では、超純水供給管6から超純水Wを供給するとともに、NaOH水溶液の回収・供給タンク8からNaOH水溶液供給管14,14Aを経由して使用済のNaOH水溶液SHをセプレックス塔3に供給する。ここで、セプレックス分離工程で用いるNaOH水溶液の濃度は、例えば9~25重量%程度と濃厚であることから、NaOH水溶液の回収・供給タンク8に貯留された回収NaOH水溶液Rでは濃度が不足する。そこで、比重計16Bにより算出されるNaOH水溶液の濃度から不足分を概算し、濃厚NaOH水溶液タンク7からNaOH水溶液供給管10を経由して濃厚NaOH水溶液Nをセプレックス塔3に供給する。この使用済のNaOH水溶液Rと濃厚NaOH水溶液Nを併用してセプレックス法による分離を行う(セプレックス分離工程)。そして、このセプレックス分離工程に使用したNaOH水溶液を回収管13から回収管11を経由してNaOH水溶液の回収・供給タンク8に回収する。なお、NaOH水溶液の回収・供給タンク8にも比重計16Dを設けて、回収・供給タンク8に貯留中のNaOH濃度を確認しておくことが好ましい。
【0037】
(逆洗分離工程)
逆洗分離工程では、超純水供給管6から超純水Wを供給するとともに、NaOH水溶液の回収・供給タンク8からNaOH水溶液供給管14,14Bを経由して使用済のNaOH水溶液Rを逆洗分離塔2に供給する。このとき、比重計16Aで逆洗分離塔2に供給される溶液の比重に基づきNaOHの濃度を確認し、必要に応じ超純水W及び/または回収NaOH水溶液Rの流量を調整することで、所望とする濃度(例えば4重量%程度)のNaOH水溶液を調製する。この使用済のNaOH水溶液Rを用いて逆洗分離工程でイオン型の調整を行う。そして、このイオン型の調整に使用したNaOH水溶液は、廃棄管15から廃液タンク9に回収して、所定の処理を施した後廃棄すればよい。
【0038】
なお、セプレックス分離工程、再生工程後のNaOH水溶液が水質的に再利用できないときには、予備廃棄管12A,13Aから廃液タンク9に回収して、所定の処理を施した後廃棄すればよい。
【0039】
以上本発明について、前記実施形態に基づいて説明してきたが、本発明は前記実施形態に限定されず種々の変形実施が可能である。例えば、セプレックス法の実施装置としては種々の構成に適用可能であり、例えば、セプレックス分離工程とアニオン交換樹脂の再生工程とをセプレックス塔内で両方を行う構成としてもよい。
【実施例0040】
以下の具体的実施例により本発明をさらに詳細に説明する。
【0041】
[実施例1]
混合イオン交換樹脂の逆洗分離塔、カチオン交換樹脂再生塔、セプレックス分離塔及びアニオン交換樹脂再生塔により混合イオン交換樹脂のアニオン交換樹脂とカチオン交換樹脂との分離再生装置を構成し、
図3に示すプロセスでアニオン交換樹脂とカチオン交換樹脂の分離精製とアニオン交換樹脂の再生を行った。この際、
図1に示す方法でNaOH水溶液の供給及び回収を行った。
【0042】
分離する混合樹脂は600Lで、カチオン樹脂:アニオン樹脂=1:1とし、アニオン交換樹脂としては比重1.05g/mL(湿潤時)のポーラス型アニオン交換樹脂を、カチオン交換樹脂としては比重1.28g/mL(湿潤時)のポーラス型カチオン交換樹脂をそれぞれ用いた。
【0043】
アニオン交換樹脂再生塔4には濃厚NaOH水溶液タンク7から未使用の濃厚NaOH水溶液Nを純水Wで希釈して供給した。アニオン交換樹脂の再生工程及び後述するセプレックス分離工程で使用したNaOH水溶液は、回収・供給タンク8で受けて、再利用NaOH水溶液Rとしてセプレックス分離塔3に供給して再利用し、さらにNaOH濃度の不足分として未使用の濃厚NaOH水溶液Nと必要に応じて超純水Wを追加して供給した。そして、回収・供給タンク8の再利用NaOH水溶液Rは、逆洗分離塔2でのイオン型調整で再利用した。
【0044】
逆洗分離工程のイオン型調整工程では4重量%に調整したNaOH水溶液を使用し、再生レベルはアニオン樹脂に対して200g-NaOH/LRとした。ここで、再生レベル[g--再生剤(NaOH/LR]は、樹脂量に対する再生剤(100%換算)の使用量を表す。ここでは、アニオン樹脂量に対してであるので、混合樹脂600Lではなく、アニオン交換樹脂300Lに対しての再生剤使用量をあらわす。
【0045】
セプレックス分離工程では16重量%に調整したNaOH水溶液を使用し、アニオン交換樹脂の1.5倍量(体積比)のNaOH水溶液を使用した。
【0046】
再生工程では4重量%のNaOH水溶液を使用し、再生レベルはアニオン樹脂に対して50g-NaOH/LRとした。
【0047】
これら、逆洗分離工程、セプレックス分離工程及び再生工程で使用したNaOH水溶液量(100%換算)を表1に、参考資料として16%NaOH水溶液の比重、イオン型調整前のカチオン交換樹脂(H型)、イオン型調整前のアニオン交換樹脂(OH型)及びイオン型調整後のカチオン交換樹脂(Na型)の比重を表2それぞれに示す。
【0048】
【0049】
【0050】
表1から明らかなとおり、逆洗分離に必要なNaOH水溶液は60Lであるが、セプレックス分離工程、再生工程で使用したNaOH水溶液を再利用しているので、実質“0”であり、廃棄されるNaOH水溶液は87Lであった。
【0051】
[比較例1]
混合イオン交換樹脂の逆洗分離塔、カチオン交換樹脂再生塔、セプレックス分離塔及びアニオン交換樹脂再生塔により混合イオン交換樹脂のアニオン交換樹脂とカチオン交換樹脂との分離再生装置を構成し、
図3に示すプロセスでアニオン交換樹脂とカチオン交換樹脂の分離精製とアニオン交換樹脂の再生を行った。この際、
図4に示す方法でNaOH水溶液の供給及び回収を行った。
【0052】
分離する混合樹脂は600Lで、カチオン樹脂:アニオン樹脂=1:1とし、アニオン交換樹脂としては比重1.05g/mL(湿潤時)のポーラス型アニオン交換樹脂を、カチオン交換樹脂としては比重1.28g/mL(湿潤時)のポーラス型カチオン交換樹脂をそれぞれ用いた。
【0053】
アニオン交換樹脂再生塔4の再生工程、セプレックス分離塔3のセプレックス分離工程、逆洗分離塔2での逆洗分離工程の各工程で使用されたNaOH水溶液は再利用せず、廃棄することとした。
【0054】
逆洗分離工程のイオン型調整工程では4重量%に調整したNaOH水溶液を使用し、再生レベルはアニオン樹脂に対して200g-NaOH/LRとした。
【0055】
セプレックス分離工程では16重量%に調整したNaOH水溶液を使用し、アニオン交換樹脂の1.5倍量(体積比)のNaOH水溶液を使用した。
【0056】
再生工程では4重量%のNaOH水溶液を使用し、再生レベルはアニオン樹脂に対して50g-NaOH/LRとした。
【0057】
これら、逆洗分離工程、セプレックス分離工程及び再生工程で使用したNaOH水溶液量(100%換算)を表3に示す。
【0058】
【0059】
表3から明らかなとおり、逆洗分離工程、セプレックス分離工程及びアニオン交換樹脂再生工程を実施する際に使用するNaOH水溶液を未使用のものとし、一過的に廃棄した場合、その消費量は合計で147Lであり、実施例1と比較してNaOHの廃液量が60L(65%以上)増加することがわかる。