(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2025025660
(43)【公開日】2025-02-21
(54)【発明の名称】アノード鋳造設備及びこれを用いたアノード製造方法
(51)【国際特許分類】
B22D 25/04 20060101AFI20250214BHJP
B22D 21/00 20060101ALI20250214BHJP
【FI】
B22D25/04 B
B22D21/00 B
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2023130666
(22)【出願日】2023-08-10
(71)【出願人】
【識別番号】000183303
【氏名又は名称】住友金属鉱山株式会社
(74)【代理人】
【識別番号】100136825
【弁理士】
【氏名又は名称】辻川 典範
(74)【代理人】
【識別番号】100095407
【弁理士】
【氏名又は名称】木村 満
(72)【発明者】
【氏名】和田 浩樹
(72)【発明者】
【氏名】森 勝弘
(72)【発明者】
【氏名】小林 純一
(72)【発明者】
【氏名】本村 優貴
(72)【発明者】
【氏名】小出 克将
(57)【要約】
【課題】アノードに生じた膨れを容易に検出すると共に、この膨れの発生を抑制することができるアノード鋳造設備を提供する。
【解決手段】 アノード鋳造用の複数の鋳型2が周方向に等間隔に載置された回転可能な円板状基台からなるターンテーブル1と、アノード鋳造中の鋳型2に冷却水を吹き付けて冷却する冷却装置4と、複数の鋳型2で鋳造されたアノードA群を順次剥ぎ取る剥取機5と、剥取機5で剥ぎ取られたアノードA群を順次冷却水に浸漬させて冷却する冷却槽6と、冷却槽6内で冷却されたアノードA群を所定枚数ずつ吊り上げて懸架手段8に移載する移載機7とから構成され、移載の際に吊り上げられる該所定枚数のアノードA群のうち剥取機5で最初又は最後に剥ぎ取られたアノードAの湯面側A
1を撮影する撮影機9が設けられている。
【選択図】
図3
【特許請求の範囲】
【請求項1】
アノード鋳造用の複数の鋳型が周方向に等間隔に載置された回転可能な円板状基台からなるターンテーブルと、アノード鋳造中の鋳型に冷却水を吹き付けて冷却する冷却装置と、前記複数の鋳型で鋳造されたアノード群を順次剥ぎ取る剥取機と、前記剥取機で剥ぎ取られたアノード群を順次冷却水に浸漬させて冷却する冷却槽と、前記冷却槽内で冷却されたアノード群を所定枚数ずつ吊り上げて懸架手段に移載する移載機とから構成される銅製錬におけるアノード鋳造設備であって、
前記移載の際に吊り上げられる前記所定枚数のアノード群のうち前記剥取機で最初又は最後に剥ぎ取られたアノードの湯面側を撮影する撮影機が設けられていることを特徴とするアノード鋳造設備。
【請求項2】
前記ターンテーブル上に載置されている鋳型の数が、前記所定枚数の数とは異なることを特徴とする、請求項1に記載のアノード鋳造設備。
【請求項3】
前記異なる数が1又は2であることを特徴とする、請求項2に記載のアノード鋳造設備。
【請求項4】
前記冷却槽は、その長手方向の一端部から他端部まで前記順次装入されるアノード群を搬送する搬送手段と、前記他端部側に搬送されたアノードを前記所定枚数ずつ押し上げる押上手段とを有していることを特徴とする、請求項3に記載のアノード鋳造設備。
【請求項5】
前記移載機は、前記移載時に前記吊り上げた所定枚数のアノードを鉛直方向に延在する中心軸を中心として90度以上270度以下回転することを特徴とする、請求項1から4のいずれか1項に記載のアノード鋳造設備。
【請求項6】
回転可能な円板状基台からなるターンテーブル上に周方向に等間隔に載置されたアノード鋳造用の複数の鋳型に熔体を鋳込む工程と、前記熔体が鋳込まれた鋳型に対して冷却水を吹き付けて冷却する工程と、前記鋳型で鋳造されたアノード群を順次剥ぎ取る工程と、前記剥ぎ取ったアノード群を順次冷却水に浸漬させて冷却する工程と、前記冷却されたアノード群を所定枚数ずつ吊り上げて懸架手段に移載する工程とからなる銅製錬におけるアノードの製造方法であって、
前記移載の際に吊り上げられる前記所定枚数のアノード群のうち最初又は最後に剥ぎ取られたアノードの湯面側を撮影し、得られた画像内に略円形の膨れの有無に基づいて前記冷却水の吹き付け条件を調整することを特徴とするアノードの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、アノード鋳造設備及び該アノード鋳造設備を用いたアノード製造方法に関する。
【背景技術】
【0002】
乾式銅製錬においては、主として銅精鉱からなる原料に対して熔錬工程、製銅工程、及び精製工程で段階的に銅品位を高めることで、高純度の電気銅を製造している。具体的には、先ず熔錬工程において、自熔炉にフラックスと共に銅精鉱を吹き込んで酸化処理することで、主として酸化鉄及び珪素からなるスラグと銅含有率60質量%程度のマットとを生成する。次に製銅工程において、上記自熔炉で生成したマットを転炉に移送して更に酸化処理することで、銅含有率98質量%程度の粗銅を生成する。最後に精製工程において、上記粗銅を精製炉に移送して酸素を除去することで銅含有率99質量%以上の精製粗銅を生成した後、この精製粗銅を鋳造して得た電解用アノード(以下、単にアノードとよぶ)を電解精製することで、銅含有率99.99質量%以上の電気銅を製造している。
【0003】
上記のアノードの鋳造では、円形の基台の上に複数のアノード鋳造用の鋳型(以下、単に鋳型と称する)を周方向に等間隔に設けたターンテーブルが用いられている。このターンテーブルを回転させながら、上記精製炉から抜き出した精製粗銅を1以上の樋を介して複数の鋳型内に順次鋳込むことで、アノードを連続的に効率よく鋳造することが可能になる。
【0004】
上記のターンテーブルを含むアノード鋳型装置には様々なものが提案されており、例えば特許文献1には、円周方向に沿って複数のモールド(鋳型)が配置された回転可能な回転テーブルと、一次冷却する第一の冷却手段と、アノードを剥ぎ取ったあとのモールドの温度を測定する温度測定手段と、二次冷却する第二の冷却手段と、そして、測定したモールドの温度に基づいてモールドの温度を所定温度まで冷却するために必要な冷却条件を特定し、その条件に従って第二の冷却手段を制御する温度管理手段とから構成されるアノード鋳造装置が開示されている。そして、このアノード鋳型装置を用いることで、モールド寿命を短くすることなくアノードの鋳造効率を高めることができると記載されている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記のようにして連続的に鋳造されたアノードは、後段の電解精製において、別途用意したカソードと共に1枚ずつ交互に並べられた状態で電解槽内に装入されて直流電圧が印加される。その際、印加電圧をできるだけ高くして操業するのが生産効率向上の観点から好ましく、この条件下でも短絡(ショート)が生じないようにするため、アノードの表裏面(アノード面とも称する)はできるだけ平坦であることが求められる。
【0007】
すなわち、アノード面に例えば局所的な膨らみ(以下、単に「膨れ」とも称する)があると、電解槽内の電解液中でこの膨れが溶解して剥がれることによりショートが発生したり、隣接するカソードとの面間距離が局所的に近づいてノジュールの形成に繋がったりするため、これらに起因するショートが発生しないように、印可電圧を下げて操業する必要が生じるからである。そこで、膨れを容易に検出すると共に、その検出結果に基づいて膨れの発生を抑制する技術が求められている。本発明は、上記事情に鑑みてなされたものであり、アノードに生じた膨れを容易に検出すると共に、この検出結果に基づいて膨れの発生を抑制することができるアノード鋳造設備及びこのアノード鋳造設備を使用したアノードの製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記目的を達成するため、本発明の銅製錬におけるアノード鋳造設備は、アノード鋳造用の複数の鋳型が周方向に等間隔に載置された回転可能な円板状基台からなるターンテーブルと、アノード鋳造中の鋳型に冷却水を吹き付けて冷却する冷却装置と、前記複数の鋳型で鋳造されたアノード群を順次剥ぎ取る剥取機と、前記剥取機で剥ぎ取られたアノード群を順次冷却水に浸漬させて冷却する冷却槽と、前記冷却槽内で冷却されたアノード群を所定枚数ずつ吊り上げて懸架手段に移載する移載機とから構成される銅製錬におけるアノード鋳造設備であって、前記移載の際に吊り上げられる前記所定枚数のアノード群のうち前記剥取機で最初又は最後に剥ぎ取られたアノードの湯面側を撮影する撮影機が設けられていることを特徴とする。
【0009】
また、本発明の銅製錬におけるアノードの製造方法は、回転可能な円板状基台からなるターンテーブル上に周方向に等間隔に載置されたアノード鋳造用の複数の鋳型に熔体を鋳込む工程と、前記熔体が鋳込まれた鋳型に対して冷却水を吹き付けて冷却する工程と、前記鋳型で鋳造されたアノード群を順次剥ぎ取る工程と、前記剥ぎ取ったアノード群を順次冷却水に浸漬させて冷却する工程と、前記冷却されたアノード群を所定枚数ずつ吊り上げて懸架手段に移載する工程とからなる銅製錬におけるアノードの製造方法であって、前記移載の際に吊り上げられる前記所定枚数のアノード群のうち最初又は最後に剥ぎ取られたアノードの湯面側を撮影し、得られた画像内に略円形の膨れの有無に基づいて前記冷却水の吹き付け条件を調整することを特徴とする。
【発明の効果】
【0010】
本発明によれば、アノードに生じた膨れを容易に検出すると共に、この検出結果を製造方法にフィードバックすることで膨れ発生を抑制することができる。
【図面の簡単な説明】
【0011】
【
図1】本発明に係るアノード鋳造設備で鋳造されるアノードの斜視図である。
【
図2】本発明に係るアノード鋳造設備の実施形態の模式的な平面図である。
【
図3】
図2のアノード鋳型設備が有する冷却槽並びにその前後にそれぞれ設けられている剥取機及び移載機の斜視図である。
【
図4】
図3に示す剥取機の正面図(a)及び側面図(b)であり、該側面図では鋳型からアノードを剥ぎ取る状態が示されている。
【
図5】
図3の移載機によって冷却槽内から複数枚のアノードを持ち上げた状態(a)、及び移載機によって持ち上げた複数枚のアノードをアノード支持部に載せる前に撮影する状態(b)を示す側面図である。
【
図6】
図3の移載機によって複数枚のアノードを移載しながらアノード面を撮影する様子を示す斜視図である。
【発明を実施するための形態】
【0012】
1.アノード
本発明のアノード鋳造装置で製造されるアノードは、
図1に示すような特徴的な形状を有している。すなわち、この
図1に示す電解用のアノードAは、縦横の長さが1000~1500mm程度の略矩形の板状部分の上側両隅部に、紙面左右の方向にそれぞれ突出する1対の耳部A
L、A
Rを有している。これら両耳部A
L、A
Rを電解槽の対向する両側壁の上端面において下から支持することでアノードAが懸架されるので、上記の板状部分を電解槽内の電解液に浸漬させることができる。アノードAは、更に後述する冷却槽内の1対のチェーンコンベアや、フォークリフトで運搬するまで待機させる懸架手段においても、これら両耳部A
L、A
Rを下から支持することによって懸架される。
【0013】
2.アノード鋳造設備
上記のアノードの製造を行なう本発明のアノード鋳造設備の実施形態について図面を参照しながら説明する。アノード鋳造設備は、例えば、
図2に示すように、2基の円板状のターンテーブル1が線対称に配置されたいわゆるツインホイールタイプのアノード鋳造設備であり、各ターンテーブル1上には複数のアノード鋳型(以下、単に鋳型とも称する)2が周方向に等間隔に載置されている。なお、
図1にはターンテーブル1の上に18個の鋳型2を設けた例が示されているが、アノード鋳型の個数はこれに限定されるものではない。
【0014】
上記の2基のターンテーブル1の各々を白矢印方向に間欠的に回転することによって、図示しない前段の精製炉においてバッチ方式(回分式)で精製処理された精製粗銅(熔体又は熔湯とも称する)が、樋部3を介して複数の鋳型2に一定量ずつ順次鋳込まれる。熔体が鋳込まれた鋳型2は、冷却装置4において下方から冷却水が吹き付けられることで冷却され、熔体の冷却固化が進行する。冷却装置4内における冷却固化により鋳造されたアノードAは、鋳型2の底面の略中央部から出没する略円柱状の押し上げピンによって耳部側が鋳型2から押し上げられる。上記のようにして耳部側が押し上げられたアノードAは、剥取機5によって鋳型2から剥ぎ取られる。
【0015】
剥取機5は、例えば
図4(a)に示すように1対の腕部51と、これら1対の腕部51の先端部にそれぞれ両端部が接続する丸棒状の先端接続部52と、これら1対の腕部51において該先端接続部52が接続する先端部とは反対側の後端部にそれぞれ両端部が接続し、カウンターウエイトの役割を担う後端接続部53と、これら1対の腕部51の後端部側をそれぞれ回動可能に支持する1対の支持脚54とから構成される。そして、上記の先端接続部52には、アノードAの両耳部A
L、A
Rをそれぞれ引っ掛けて吊り上げる1対のフック55が揺動可能に取り付けられている。
【0016】
上記構造の剥取機5を用いることにより、
図4(b)に示すように、1対のフック55で両耳部A
L、A
Rを引っ掛けることで鋳型2から剥ぎ取られたアノードAは、1対の腕部51がその1対の支持脚54の支持部を中心として紙面時計回りに回動することにより、その湯面側A
1をターンテーブル1に対向させた状態で冷却槽6内に装入される。この冷却槽6には、
図3に示すように、装入されたアノードAを冷却槽6の長手方向の一端部から他端部まで移動させる好適には1対のチェーンコンベアからなる搬送手段61、及びこれを駆動するモーター62が設けられている。これにより、冷却槽6内に装入されたアノードAは、搬送手段61で冷却槽6内を一端部から他端部まで移動しながら冷却槽6内に満たされている冷却水に浸漬されることよって冷却される。
【0017】
上記のようにして冷却槽6内の冷却水で冷却されたアノードAは、冷却槽6の他端部側に到達する。冷却槽6を挟んで剥取機5の反対側には、移載機7が設けられている。移載機7は、例えば
図6に示すように、床面から立設する柱状の基部71と、該基部71の上端面から出没する柱状の昇降部72と、該昇降部72の上端部に回動可能に設けられた回動部73と、該回動部73の互いに反対側の両側面からそれぞれ水平方向に突出するように設けられた1対の腕部74と、これら1対の腕部74のそれぞれの先端部分において摺動可能に設けられた1対の爪部75とから構成される。
【0018】
上記構造の移載機7を用いることにより、冷却槽6内において他端部側に到達したアノードA群は、1対の爪部75によって両耳部AL、ARが引っ掛けられた状態で冷却槽6から所定枚数ずつ吊り上げられた後、回動部73によってその鉛直方向に延在する中心軸Oを中心として例えば180度回転させられ、そのまま昇降部72によって降下させられることで、両耳部AL、ARが1対の支持板からなる懸架手段8によって下方から支持される。アノードA群は、フォークリフトで運搬するまでこの懸架手段8で懸架された状態で保持される。上記の回動部73による180度の回転により、アノードA群は上記の湯面側A1が上記のターンテーブル1に対向する方向とは反対の方向を向くことになる。
【0019】
上記の回動部73による180度の回転後のアノードA群の湯面側A1が対向する位置に撮影機9が設けられている。これにより、移載機7によって所定枚数ずつ移載されるアノードA群のうち、剥取機5で最後に剥ぎ取られたアノードAの湯面側A1を撮影することができる。この撮影機9によって撮影された画像を解析することにより、アノードAに生じた膨れの有無を容易に判断することができる。
【0020】
上記の本発明の実施形態のアノード鋳造設備では、アノードAの湯面側A1とは反対側の面が冷却槽6内において進行方向を向くように剥取機5によって冷却槽6内に装入されるが、これに限定されるものではなく、剥取機が、鋳型2から剥ぎ取ったアノードAを鉛直方向に延在する軸を中心として180度回転させた後、その湯面側A1が冷却槽6内において進行方向を向くように冷却槽6内に装入するものでもよい。この場合は、移載機7によって所定枚数ずつ移載されるアノードA群のうち、剥取機5で最初に剥ぎ取られたアノードAの湯面側A1を撮影することができる。
【0021】
なお、上記のターンテーブル1上における回転方向に関して剥取機5の下流側には、該剥取機5で剥ぎ取られた鋳型2において次に鋳造されるアノードAが容易に剥ぎ取られるようにするため、該鋳型2の内面にスラリー状の離型剤を散布する離型剤散布機10が設けられている。更に、ターンテーブル1における回転方向に関して剥取機5の上流側には、規格外の不良アノードを剥ぎ取る、上記の剥取機5と好適には同様の構造を有する不良アノード剥取機11及びこの不良アノード剥取機11で剥ぎ取った不良アノードを一時的に保持する不良アノード保持手段12が設けられている。
【0022】
上記した本発明の実施形態のアノード鋳造設備は、ターンテーブル1上に載置されている鋳型2の数が、上記の冷却槽6内の押上手段63によってまとめて押し上げられるアノードA群の数とは異なることが好ましい。その理由は、上記のターンテーブル1上に載置されている鋳型2の数が、上記の押上手段63でまとめて押し上げるアノードA群の数と同じであれば、撮影機9での撮影は、常に同じ鋳型2で鋳造したアノードを撮影することになるので、それ以外の鋳型2において膨れが発生したときに検出できないからである。これに対して、ターンテーブル1上に載置されている鋳型2の数に比べて押上手段63でまとめて押し上げるアノードAの数が例えば3つ多い場合は、撮影機9で撮影するアノードAは、ターンテーブル1の周方向に関して3つずつずれた鋳型2で鋳造したアノードAを撮影することになるので、上記したように、毎回同じ鋳型2で鋳造したアノードを撮影する問題を回避することができる。
【0023】
上記のターンテーブル1上に載置されている鋳型2の載置数と、押上手段63によってまとめて押し上げられるアノードA群の一括押上数との差は1又は2であることが好ましい。すなわち、上記の載置数と一括押上数との差が1であれば、撮影機9で撮影するアノードAは、ターンテーブル1上に載置されている全ての鋳型2に対して、ターンテーブル1が1周回るごとに周方向に関して1つずつずれた位置に載置されている鋳型2で鋳造したアノードAを順番に撮影することができるので、全ての鋳型2に対してそれらで鋳造したアノードAの膨れの有無を検査することができる。
【0024】
一方、上記の載置数と一括押上数との差が2であれば、撮影機9で撮影するアノードAは、ターンテーブル1上に載置されている鋳型2の個数が奇数の場合は、ターンテーブル1が1周回るごとに、周方向に関して2つずつずれた位置に載置されている鋳型2で鋳造したアノードAを順番に撮影することになる。従って、この場合もターンテーブル1上に載置されている全ての鋳型2に対してそれらで鋳造したアノードAを順番に撮影することができる。
【0025】
これに対して、上記の載置数と一括押上数との差が2で且つターンテーブル1上に載置されている鋳型2の個数が偶数の場合は、ターンテーブル1上に載置されている鋳型2に対して周方向に1つおきに鋳造したアノードAについては撮影を行なうことができなくなる。この場合は、ターンテーブル1上に載置されている全ての鋳型2のうち半分に対してそれらにより鋳造したアノードAの撮影が終わった後に、剥取機5の上流側に位置する不良アノード剥取機11を作動させてアノードAを1枚だけ取り除けばよい。これにより、残る半分の鋳型2で鋳造したアノードAを撮影できるので、結果的に全ての鋳型2で鋳造したアノードAを撮影することができる。
【0026】
なお、ターンテーブル1上に載置されている鋳型2の数が7、11、13、17、19のような素数であれば、押上手段63によってまとめて押し上げるアノードA群の数を、このターンテーブル1上の鋳型2の数の整数倍以外の任意の数にすることで、不良アノード剥取機11を作動させることなく全ての鋳型2に対してそれらで鋳造したアノードAの膨れの有無を検査することができる。一方、ターンテーブル上に載置される鋳型2の数が素数でない場合は、押上手段63によってまとめて押し上げるアノードA群の数を、このターンテーブル1上の鋳型2の数よりも1だけ異なる数とするか、あるいは素数にすることで、上記と同様に不良アノード剥取機11を作動させることなく全ての鋳型2に対してそれらで鋳造したアノードAの膨れの有無を検査することができる。
【0027】
上記した本発明の実施形態のアノード鋳造設備においては、冷却槽6内の押上手段63によってまとめて押し上げられたアノードA群を、移載機7を用いて180度回転させた後、撮影機9による撮影及び懸架手段8への懸架を行なうものであったが、これに限定されるものではなく、90度以上270度以下の範囲内の任意の回転角度を採用することができる。また、撮影機9による撮影時の回転角度と懸架手段8への懸架の回転角度が互いに異なっていてもよい。例えば、押上手段63で押し上げたアノードA群を、移載機7を用いて先ず90度回転させて撮影機9で撮影した後、更に90度回転させて懸架手段8に懸架させてもよい。一般的にターンテーブル1の周りには
図1に示す機器のほかに様々な設備が設けられていることが多いため、上記のように撮影機9の位置や懸架手段8の位置が90度以上270度以下の範囲内において任意の回転角度でよければ、設備のレイアウトの自由度が増すので好ましい。
【0028】
3.アノードの製造方法
次に、本発明の銅製錬におけるアノードの製造方法の実施形態について説明する。本発明の実施形態のアノード製造方法は、上記にて説明した回転可能な円板からなるターンテーブル1上に周方向に等間隔に載置された複数の鋳型2に精製炉から排出される熔体としての精製粗銅を樋部3を介して鋳込む工程と、冷却装置4において該熔体が鋳込まれた鋳型2に対して下方から冷却水を吹き付けて冷却する工程と、鋳型2の底面から出没する略円柱状の押し上げピンと剥取機5との協働により、鋳型2で鋳造されたアノードA群の各々の両耳部AL、ARを剥取機5のフックで引っ掛けることで鋳型2から順次剥ぎ取る工程と、該剥ぎ取ったアノードA群をそれらの各々の湯面側A1がターンテーブル1に対向する姿勢のまま、冷却槽6内に設けられている1対のチェーンコンベア等の搬送手段61で両耳部AL、ARを支持させ、これにより冷却槽6の長手方向の一端部から他端部まで搬送させながら冷却槽6内の冷却水に浸漬させることで冷却する工程と、該搬送手段61によって冷却槽6の上記他端部側に到達したアノードA群を押上手段63によって所定枚数ずつ押し上げる工程と、これら所定枚数ずつまとめて押し上げられたアノードA群を移載機7を用いて吊り上げて鉛直方向に延在する回転軸を中心として回転させることで懸架手段8に移載する工程とからなる。
【0029】
本発明のアノード製造方法の実施形態においては、上記の移載機7による移載の際に、該所定枚数のアノードA群のうち最後に剥取機5で剥ぎ取られたアノードAの湯面側A1を撮影機9で撮影し、その画像を解析することで、撮影したアノードAの湯面側A1における平面視略円形の凸状の「膨れ」の有無を検査する。この画像解析の方法には、上記の「膨れ」の有無を正確に検査できるのであれば特に限定はなく、例えば、YOLO(You Only Look Once)、CNN(Convolutional Neural Network)、SSD(Single Shot MultiBox Detector)などの画像解析用の物体検出モデルの中から適宜選定することができる。
【0030】
上記の検査の結果、「膨れ」有りと判定された場合は、この「膨れ」有りのアノードを鋳造した鋳型2に対して問題ないか点検するか、あるいは冷却装置4において鋳型2の下方から散布する冷却水の散布量を減らすか、又は冷却水の温度を上げる等の冷却能力を下げる方向の調整を行なう。これにより、鋳型2の温度を上げることができるので、鋳型2の温度が下がり過ぎることで生じるアノードAの湯面側A1の膨れ発生の問題を抑えることができる。
【0031】
以上、説明したように、本発明の実施形態のアノード製造方法でアノードを製造することによって、アノードAの湯面側A1に生じた「膨れ」を容易且つ正確に検出することができるので、「膨れ」の少ない高品質のアノードを製造することができる。次に、実施例を挙げて本発明をより具体的に説明する。
【実施例0032】
図2に示すようなアノード鋳造設備を使用してアノードを製造した。このアノード製造設備は、アノード鋳造用の18個の鋳型2が載置された2基のターンテーブル1からなり、各々のターンテーブル1には、熔体が鋳込まれた鋳型の上下から冷却水を散布する冷却装置4が設けられており、冷却装置4での冷却により鋳造されたアノードAは剥取機5によって鋳型2から剥ぎ取られるようになっている。剥取機5で剥ぎ取られたアノードAは、冷却槽6内の冷却水に浸漬することで冷却されると共に、チェーンコンベアによって冷却槽6の長手方向の一端部から他端部まで搬送されるようになっている。
【0033】
上記の冷却槽6の該他端部側まで到達したアノードAは、冷却槽6内に設けられている押上手段63によって16枚ずつ押し上げられるようになっており、これにより一括して押し上げられた16枚のアノードA群を、移載機7によって吊り上げたまま移載機7の鉛直方向に延在する回転軸を中心として180度回転させて懸架手段8に移載させた。この180度の回転後に、16枚のアノードA群のうち最後に剥取機5で剥ぎ取ったアノードAの湯面側A1を撮影機9で撮影した。なお、9枚のアノードAの撮影を行なった後に不良アノード剥取機11を作動させて鋳型からアノードAを1枚だけ取り除いた。上記の操作を繰り返しながら2バッチ分の精製粗銅からアノードAを製造した。
【0034】
撮影機9で撮影したアノードAの湯面側A1の画像は、物体検出モデルYOLOを使用して解析し、画像内において略円形の「膨れ」の個数が増加したと判断した場合に、鋳型2の温度を少し高めるため、冷却水の供給弁を絞って冷却装置4において鋳型2の下方から散布する冷却水の散布量を減らした。
【0035】
比較のため、撮影機9によるアノードAの湯面側A1の「膨れ」の検出を行なわずにアノードAの製造を行なった。すなわち、「膨れ」の個数に応じて冷却装置4において鋳型2の下方から散布する冷却水の散布量を調整する操作を行なわないことを除いて実施例と同様にしてアノードAの製造を行った。
【0036】
その結果、実施例では比較例に比べてアノードAの湯面側A1に発生した「膨れ」の個数を約半分まで減らすことができた。具体的には、実施例ではアノードAの湯面側A1に生じた「膨れ」の検出結果に基づいて冷却装置4において鋳型2の下方から散布する冷却水の散布量を調整したので、アノードAの湯面側A1で発生した「膨れ」の個数を比較例に比べて52/100まで減らすことができた。