(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2021-12-07
(45)【発行日】2022-01-12
(54)【発明の名称】電子ビーム検査装置のステージ位置決め
(51)【国際特許分類】
H01J 37/20 20060101AFI20220104BHJP
H01J 37/28 20060101ALI20220104BHJP
【FI】
H01J37/20 D
H01J37/28 B
(21)【出願番号】P 2020509111
(86)(22)【出願日】2018-08-31
(86)【国際出願番号】 EP2018073548
(87)【国際公開番号】W WO2019043204
(87)【国際公開日】2019-03-07
【審査請求日】2020-03-30
(32)【優先日】2017-09-04
(33)【優先権主張国・地域又は機関】EP
(32)【優先日】2017-11-08
(33)【優先権主張国・地域又は機関】US
【前置審査】
(73)【特許権者】
【識別番号】504151804
【氏名又は名称】エーエスエムエル ネザーランズ ビー.ブイ.
(74)【代理人】
【識別番号】100079108
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】バッゲン,マーセル,コエンラード,マリエ
(72)【発明者】
【氏名】アーレンズ,アントニウス,ヘンリカス
(72)【発明者】
【氏名】クインダースマ,ルーカス
(72)【発明者】
【氏名】ヴァン デ リフト,ヨハネス,ヒューベルタス,アントニウス
(72)【発明者】
【氏名】ヘンペニウス,ピーター,ポール
(72)【発明者】
【氏名】ヴァン ケンペン,ロベルタス,ヤコブス,セオドロス
(72)【発明者】
【氏名】ボッシュ,ニールズ,ヨハネス,マリア
(72)【発明者】
【氏名】ヴァン デ グローズ,ヘンリカス,マルティヌス,ヨハネス
(72)【発明者】
【氏名】ツェン,クオ-フェン
(72)【発明者】
【氏名】バトラー,ハンズ
(72)【発明者】
【氏名】ロンド,マイケル,ヨハネス,クリスティアーン
【審査官】中尾 太郎
(56)【参考文献】
【文献】特開2004-134745(JP,A)
【文献】特開2005-268268(JP,A)
【文献】特開2006-303312(JP,A)
【文献】特開2007-258695(JP,A)
【文献】特開2010-217032(JP,A)
【文献】国際公開第2011/043391(WO,A1)
【文献】国際公開第2017/089214(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37/20
H01J 37/28
(57)【特許請求の範囲】
【請求項1】
電子ビームを生成するように構成された電子光学系と、
試料のターゲット部分が前記電子ビームによって照射されるように前記試料をターゲット位置に保持するように構成されたオブジェクトテーブルと、
前記オブジェクトテーブルを前記電子ビームに対して第1の方向及び第2の方向に移動させるように構成された位置決めデバイスと、を備え、
前記位置決めデバイスが、ステージアクチュエータとバランスマスとを備え、
前記ステージアクチュエータが、前記オブジェクトテーブルに前記オブジェクトテーブルの加速度を生じさせる力を加えるように構成され、
前記オブジェクトテーブルへの前記力が、前記バランスマスへの反力を生じさせ、
前記バランスマスが、前記反力に応答して移動するように構成され、
前記位置決めデバイスが、前記バランスマスが前記反力の前記第1の方向の成分に応答して前記第1の方向に移動することを可能にするように構成され、
前記バランスマスの重心及び前記オブジェクトテーブルの重心が、前記第1の方向及び前記第2の方向により画定される平面の実質的に同一平面上にあり、
前記位置決めデバイスが、前記反力の前記第2の方向の成分に応答して前記第2の方向に移動するように構成された別のバランスマスを備え
、
前記位置決めデバイスが、前記バランスマスのアクティブマウントを備え、
前記アクティブマウントが、前記反力に応答して前記バランスマスの前記移動のアクティブ減衰を提供し、
ばね及び/又はダンパを含むパッシブマウントをさらに備え、
前記アクティブマウントがさらに、前記バランスマスの前記動きに応答して前記ばね及び/又は前記ダンパにより生じた別の力を少なくとも部分的に補償するように構成されている、電子ビーム装置。
【請求項2】
第3の方向が、前記第1及び第2の方向に対して直交し、
前記位置決めデバイスが、前記バランスマスが前記第1及び前記第2の方向に移動すること、及び、前記第3の方向の周りに回転すること、を可能にするように構成されている、請求項1に記載の電子ビーム装置。
【請求項3】
前記位置決めデバイスが、前記バランスマスのパッシブマウントを備え、
前記パッシブマウントが、前記反力に応答して前記バランスマスの移動のパッシブ減衰を提供する、請求項1に記載の電子ビーム装置。
【請求項4】
前記パッシブマウントが、プログレッシブパッシブ減衰を提供する、請求項3に記載の電子ビーム装置。
【請求項5】
前記パッシブマウントが、プログレッシブばねを備える、請求項4に記載の電子ビーム装置。
【請求項6】
前記アクティブマウントが、プログレッシブアクティブ減衰を提供する、請求項
1に記載の電子ビーム装置。
【請求項7】
前記アクティブマウントが、ゲインスケジューリングコントローラを備える、請求項
6に記載の電子ビーム装置。
【請求項8】
前記アクティブマウントがさらに、電磁アクチュエータを備え、
オブジェクトテーブルセットポイント、前記オブジェクトテーブルの位置の測定値、バランスマスセットポイント、及び/又は、前記バランスマスの位置の測定値に少なくとも部分的に基づいて、前記電磁アクチュエータのモータ定数が較正される、及び/又は、前記モータ定数に少なくとも部分的に起因する前記電磁アクチュエータの制御エラーが補償される、請求項
1に記載の電子ビーム装置。
【請求項9】
前記電子ビーム装置の真空を閉じ込めるように構成され、前記オブジェクトテーブル及び前記位置決めデバイスがその中に配置された真空容器と、
前記真空容器を支持するように配置されたベースフレームと、
支持要素と、をさらに備え、
前記ベースフレームが、前記支持要素を介して前記位置決めデバイスを支持し、
前記支持要素が、前記真空容器の壁を通って延びる、請求項1から
8の何れか一項に記載の電子ビーム装置。
【請求項10】
振動絶縁システムをさらに備え、
前記ベースフレームが、前記振動絶縁システムを介して前記真空容器を支持する、請求項
9に記載の電子ビーム装置。
【請求項11】
固定構造に接続され、前記固定構造と前記オブジェクトテーブルとの間に結合されて前記オブジェクトテーブルの加速度により生じたさらに別の力を少なくとも部分的に補償する動き補償システムをさらに備える、請求項1から
10の何れか一項に記載の電子ビーム装置。
【請求項12】
前記電子ビーム装置が、電子ビーム検査装置、走査電子顕微鏡、eビームライタ、eビームメトロロジ装置、eビームリソグラフィ装置、又は、eビーム欠陥検査装置である、請求項1から
11の何れか一項に記載の電子ビーム装置。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
[0001] この出願は、2017年9月4日に出願された欧州出願第17189213.6号及び2017年11月8日に出願された米国出願第62/583,290号の優先権を主張し、参照によりその全体が本明細書に組み込まれる。
【0002】
[0002] 本説明は、試料を検査するように構成された電子ビーム検査装置用のステージ位置決めデバイスに関する。本説明は、半導体デバイスを検査するのに適用可能な電子ビーム(eビーム)検査ツールに関する。
【背景技術】
【0003】
[0003] 半導体プロセスでは、欠陥が必然的に生じる。このような欠陥は、故障に至るまでデバイス性能に影響を与える場合がある。これによって、デバイス歩留まりに影響が及び、コスト上昇がもたらされる可能性がある。半導体プロセス歩留まりを制御するためには、欠陥監視が重要である。欠陥監視に有用な1つのツールは、1つ以上の電子ビームを使用して試料のターゲット部分を走査するSEM(走査電子顕微鏡)である。
【0004】
[0004] 欠陥を確実に監視するために、ターゲット部分に対する1つ以上の電子ビームの正確な位置決めが必要である。位置決め要件は、一層小さい欠陥を監視するためにさらに高めることが必要となる可能性がある。同時に、一般的には試料の移動速度、並びにその加速度及び減速度を増加させるのに必要な高いスループットが望まれる。また、試料の移動が停止した後に検査装置が落ち着くことができるまでの整定時間を短縮することが必要な可能性もある。概して、以上により試料の位置決めの精度及びダイナミクスに関する要件が高まる可能性がある。
【発明の概要】
【0005】
[0005] 例えば、試料の正確な位置決めを可能にする電子ビーム検査装置を提供することが望ましい。
【0006】
[0006] ある態様によれば、電子ビーム装置であって、
電子ビームを生成するように構成された電子光学系と、
試料のターゲット部分が電子ビームによって照射されるように試料をターゲット位置に保持するように構成されたオブジェクトテーブルと、
オブジェクトテーブルを電子ビームに対して移動させるように構成された位置決めデバイスと、を備え、
位置決めデバイスが、ステージアクチュエータとバランスマスとを備え、
ステージアクチュエータが、オブジェクトテーブルにオブジェクトテーブルの加速度を生じさせる力を加えるように構成され、
オブジェクトテーブルへの力が、バランスマスへの反力を生じさせ、
バランスマスが、反力に応答して移動するように構成され、
位置決めデバイスが、バランスマスが反力の第1の方向の成分に応答して第1の方向に移動することを可能にするように構成された、電子ビーム装置が提供される。
【図面の簡単な説明】
【0007】
[0007] 本発明の実施形態は、同様の参照番号が同様の構造要素を指す添付図面と関連する以下の詳細な説明によって容易に理解されるであろう。
【0008】
【
図1A】[0008] 本発明の実施形態を適用可能なeビーム検査ツールの概略図である。
【
図1B】[0008] 本発明の実施形態を適用可能なeビーム検査ツールの概略図である。
【
図2】[0009] 本発明のある実施形態に適用可能な電子光学系の概略図である。
【
図3】[0009] 本発明のある実施形態に適用可能な電子光学系の概略図である。
【
図4】[0010] 本発明のある実施形態に適用可能なEBIシステムの可能な制御アーキテクチャを概略的に示す。
【
図5A】[0011] 本発明のある実施形態に係る電子ビーム検査装置の一部の概略図である。
【
図5B】[0011] 本発明のある実施形態に係る電子ビーム検査装置の一部の概略図である。
【
図5C】[0011] 本発明のある実施形態に係る電子ビーム検査装置の一部の概略図である。
【
図5D】[0011] 本発明のある実施形態に係る電子ビーム検査装置の一部の概略図である。
【
図6A】[0012] 本発明のある実施形態に係る電子ビーム検査装置の一部の概略図である。
【
図6B】[0012] 本発明のある実施形態に係る電子ビーム検査装置の一部の概略図である。
【
図6C】[0012] 本発明のある実施形態に係る電子ビーム検査装置の一部の概略図である。
【
図7A】[0013] 本発明のある実施形態に係る電子ビーム検査装置の一部の概略図である。
【
図7B】[0014] 本発明のある実施形態に係る電子ビーム検査装置の動きプロファイルのある実施形態の時間ダイアグラムを高度に概略的に示す。
【
図8】[0015] 本発明の別の実施形態を示す。
【0009】
[0016] 本発明は、様々な変形及び代替的な形態をとりうるが、その具体的な実施形態は、図面に例として示され、本明細書において詳細に記載される。図面は縮尺どおりではない場合がある。しかしながら、図面及びその詳細な説明は、本発明を開示された特定の形態に限定することを意図するものではなく、むしろ、添付の請求項により規定される本発明の趣旨及び範囲に含まれる全ての変形、均等物及び代替物をカバーすることを意図していることを理解されたい。
【発明を実施するための形態】
【0010】
[0017] これより、本発明の様々な例示的な実施形態について、本発明の一部の例示的な実施形態が示されている添付図面を参照し、さらに充分に説明する。図面において、各層及び領域の厚さは明確さのため誇張されることがある。
【0011】
[0018] 本発明の詳細な例示的な実施形態を本明細書に開示する。ただし、本明細書に開示する具体的な構造的及び機能的詳細は、本発明の例示的な実施形態を説明するための典型例に過ぎない。しかしながら、本発明は多くの代替形式で実施されてよく、本明細書に記載の実施形態のみに限定されるものと解釈すべきではない。
【0012】
[0019] したがって、本発明の例示的な実施形態は、様々な変更及び代替形態が可能であるが、その実施形態は例として図面に示され、本明細書で詳細に説明される。しかしながら、本発明の例示的な実施形態を開示された特定の形態に限定する意図はなく、むしろ、本発明の例示的な実施形態は、本発明の範囲に含まれる全ての変形、均等物、及び代替物をカバーするものであることを理解されたい。図の記載全体を通して、同様の番号が同様の要素を示す。
【0013】
[0020] 本明細書で使用される「試料」という用語は、概して関心欠陥(DOI)が位置し得る基板又は任意の他の試料を指す。「試料」及び「サンプル」という用語は本明細書中で交換可能に使用されているが、基板についての本明細書中で説明される実施形態は、任意の他の試料(例えば、レチクル、マスク、又はフォトマスク)のために構成及び/又は使用できることを理解されたい。
【0014】
[0021] 本明細書で使用される「基板」という用語は、概して半導体又は非半導体材料で形成された基板を指す。このような半導体又は非半導体材料の例は、限定的ではないが単結晶シリコン、ガリウムヒ素、及びリン化インジウムを含む。このような基板は、半導体製造施設でよく見られる及び/又は処理される可能性がある。
【0015】
[0022] 本明細書で使用される「軸方向の」は、「装置、コラム又はレンズなどのデバイスの光軸方向の」を意味し、一方「半径方向の」は、「光軸に対して垂直な方向の」を意味する。光軸は通常、カソードが始点で試料が終点である。光軸は一般に図面中のz軸を指す。
【0016】
[0023] 本明細書で説明される検査ツールは、荷電粒子源、特にSEM、eビーム検査ツール、又はEBDWに適用可能なeビーム源に関連する。eビーム源は、この技術分野ではe銃(電子銃)と称されることもある。
【0017】
[0024] 図面について、図は正確な縮尺率ではないことに留意されたい。特に、図の一部の要素のスケールは大いに誇張され、その要素の特徴を強調する場合がある。図は同じ縮尺率ではないことにも留意されたい。2つ以上の図に示される、同様に構成することができる要素は、同じ参照番号を使用して示されている。
【0018】
[0025] 図面において、各コンポーネントの及び全てのコンポーネント間の相対的な寸法は明確さのため誇張されることがある。以下の図面の記載内で、同一又は同様の参照番号は同一又は同様のコンポーネント又はエンティティを指し、個々の実施形態に関する相違点のみが記載される。
【0019】
[0026] したがって、本発明の例示的な実施形態は、様々な変更及び代替形態が可能であるが、その実施形態は例として図面に示され、本明細書で詳細に説明される。しかしながら、本発明の例示的な実施形態を開示された特定の形態に限定する意図はなく、むしろ、本発明の例示的な実施形態は、本発明の範囲に含まれる全ての変形、均等物、及び代替物をカバーするものであることを理解されたい。
【0020】
[0027]
図1A及び
図1Bは、本発明のある実施形態において適用可能なeビーム検査(EBI)システム100の上面図及び断面図をそれぞれ概略的に示している。示されている実施形態は、筐体110と、検査対象の物体を受け取り、検査済みの物体を出力するためのインターフェイスとしての役割を果たす1対のロードポート120と、を備える。示されている実施形態はさらに、物体を取り扱う及び/又はロードポートとの間で輸送するように構成された、機器フロントエンドモジュール(EFEM)130と称される物体搬送システムを備える。示されている実施形態では、EFEM130は、ロードポート間で物体を輸送するように構成されたハンドラロボット140と、EBIシステム100のロードロック150と、を備える。ロードロック150は、筐体110の外側及びEFEM内に生じる大気条件と、EBIシステム100の真空チャンバ160内に生じる真空条件と、の間のインターフェイスである。示されている実施形態では、真空チャンバ160は、eビームを検査対象の物体、例えば半導体基板に投影するように構成された電子光学系170を備える。EBIシステム100はさらに、物体190を電子光学系170により生成されたeビームに対して移動させるように構成される位置決めデバイス180を備える。
【0021】
[0028] ある実施形態では、位置決めデバイスは、物体の実質的に水平な面における位置決めを行うためのXYステージや、物体の垂直方向の位置決めを行うためのZステージなどの複数のポジショナのカスケード接続された構成を含んでよい。
【0022】
[0029] ある実施形態では、位置決めデバイスは、物体の比較的長い距離の粗動位置決めを行うように構成された粗動ポジショナと、物体の比較的短い距離の微動位置決めを行うように構成された微動ポジショナと、の組み合わせを含んでよい。
【0023】
[0030] ある実施形態では、位置決めデバイス180はさらに、EBIシステム100により実行される検査プロセスの間に物体を保持するためのオブジェクトテーブルを備える。このような実施形態では、物体190は、静電クランプなどのクランプを用いてオブジェクトテーブルにクランプされてよい。このようなクランプはオブジェクトテーブルに一体化されてよい。
【0024】
[0031]
図2は、本発明のある実施形態に係るeビーム検査ツール又はシステムのある実施形態において適用可能な電子光学系200のある実施形態を概略的に示している。電子光学系200は、電子銃210と称されるeビーム源と、結像システム240と、を備える。
【0025】
[0032] 電子銃210は、電子源212と、サプレッサ214と、アノード216と、1セットのアパーチャ218と、コンデンサ220と、を備える。電子源212はショットキーエミッタであってよい。より具体的には、ある実施形態において電子源212は、セラミック基板と、2つの電極と、タングステンフィラメントと、タングステンピンと、を備える。2つの電極はセラミック基板と平行に固定され、2つの電極の反対側はタングステンフィラメントの2つの端部にそれぞれ接続される。タングステンをわずかに屈曲させてタングステンピンを配置するための先端を形成する。次に、ZrO2をタングステンピンの表面に塗布し、溶融してタングステンピンを覆う一方、タングステンピンの先端を覆わないように1300℃まで加熱する。溶融したZrO2は、タングステンの仕事関数を低下させ、放出された電子のエネルギー障壁を低減することができ、結果として電子ビーム202を効率的に放出させることができる。次に、サプレッサ214に負電荷を印加することによって電子ビーム202が抑制される。これにより、大きい広がり角を有する電子ビームは一次電子ビーム202に抑制され、その結果、電子ビーム202の輝度が高められる。アノード216の正電荷によって、電子ビーム202を抽出することができ、次に電子ビーム202のクーロン強制力が、アパーチャの外側の不要な電子ビームを除去するための異なるアパーチャサイズを有する調節可能なアパーチャ218を使用することによって制御されてよい。電子ビーム202を集光するために、倍率も提供するコンデンサ220を電子ビーム202に適用する。
図2に示すコンデンサ220は、例えば電子ビーム202を集光可能な静電レンズであってよい。一方、コンデンサ220は磁気レンズであってもよい。
【0026】
[0033]
図2及び
図3に示す結像システム240は、ブランカ248と、1セットのアパーチャ242と、検出器244と、4セットの偏向器250、252、254、及び256と、1対のコイル262と、ヨーク260と、フィルタ246と、電極270と、を備える。電極270は、電子ビーム202を遅延及び偏向させるのに使用されるとともに、上方磁極片及びサポート280に保持されるサンプル300の組み合わせに起因する静電レンズ機能をさらに有する。コイル262及びヨーク260は、磁気対物レンズとして構成される。
【0027】
[0034] 上記の電子ビーム202は、電子ピンを加熱し、電界をアノード216に加えることによって生成されるため、電子ビーム202を安定化させるために、電子ピンを加熱する時間を長くすべきである。これはエンドユーザの観点からは、時間がかかり不便であると見られる。したがって、ブランカ248を集光された電子ビーム202に適用して、電子ビーム202をオフにするのではなく、サンプルから離れるように一時的に偏向させる。
【0028】
[0035] 偏向器250及び256は、大きい視野内で電子ビーム202を走査するために適用され、偏向器252及び254は、小さい視野内で電子ビーム202を走査するのに使用される。全ての偏向器250、252、254、及び256は、電子ビーム202の走査方向を制御することができる。偏向器250、252、254、及び256は、静電偏向器又は磁気偏向器であってよい。ヨーク260の開口部はサンプル300の方を向き、磁界をサンプル300に浸透させる。一方、電極270はヨーク260の開口部の下方に配置されるため、サンプル300は損傷を受けない。電子ビーム202の色収差を補正するために、位相板270、サンプル300、及び上方磁極片は、電子ビーム202の色収差を除去するためのレンズを形成する。
【0029】
[0036] 電子ビーム202がサンプル300に突入すると、サンプル300の表面から二次電子が放出される。二次電子はフィルタ246によって検出器244に向けられる。
【0030】
[0037]
図4は、本発明のある実施形態において適用可能なEBIシステムの可能な制御アーキテクチャを概略的に示している。
図1に示したように、EBIシステムは、ロードポートと、基板搬送システムと、ロード/ロックと、電子光学系と、例えばzステージ及びx-yステージを含む位置決めデバイスと、を備える。図示されるように、EBIシステムのこれらの様々なコンポーネントは、各コントローラ、すなわち基板搬送システムに接続された基板輸送システムコントローラ、ロード/ロックコントローラ、電子光学コントローラ、検出器コントローラ、ステージコントローラなどを備えてよい。例えば、これらのコントローラは、例えば通信バスを介してシステムコントローラコンピュータ及び画像処理コンピュータに通信接続されてよい。示されている実施形態では、システムコントローラコンピュータ及び画像処理コンピュータは、ワークステーションに接続されてよい。
【0031】
[0038] ロードポートは、基板を基板搬送システムにロードし、基板搬送システムコントローラは、基板搬送を制御して基板をロード/ロックに搬送する。ロード/ロックコントローラは、検査対象である物体、例えば基板を、サポート、例えばeチャックとも称される静電クランプ上に固定できるように、チャンバに対してロード/ロックを制御する。位置決めデバイス、例えばzステージ及びxyステージは、基板がステージコントローラを使用した制御により移動することを可能にする。ある実施形態では、zステージの高さは、例えばピエゾアクチュエータなどのピエゾコンポーネントを使用して調整することができる。電子光学コントローラは、電子光学系の全ての条件を制御することができ、検出器コントローラは、電子光学系からの電気信号を受信し、これを画像信号に変換することができる。システムコントローラコンピュータは、コマンドを対応するコントローラに送信するのに使用される。画像処理コンピュータは、画像信号を受信した後、これを処理して欠陥を特定することができる。
【0032】
[0039] 上記の実施例では、オブジェクトテーブルを位置決めデバイスによって移動させ、次に真空容器であるフレームに取り付ける。結果として、オブジェクトテーブルの加速及び減速によって、フレーム、つまり真空容器に伝達される反力が生じる。したがって、反力は、試料の位置決めの位置決め誤差に変わる可能性がある真空容器の振動及び/又は変形を生じさせる可能性がある。電子ビームを生成する電子光学系もまた真空容器に取り付けられ、変形はさらに電子ビームの位置決めの誤差をもたらす可能性がある。
【0033】
[0040] 反力の影響を少なくとも部分的に補償するために、オブジェクトテーブルからガスマウントへのフィードフォワードを提供してよい。このような補償によって、反力の影響が軽減する可能性があるが、これはフィードフォワードの帯域幅の制約により、限られた周波数範囲でしか効果がない可能性がある。
【0034】
[0041] システムのスループットに関する要件が今後増大する傾向があるため、結果として生じるより高いステージ加速度がさらに高い反力を生じさせ、これによって上記の欠点をさらに悪化させる可能性がある。
【0035】
[0042] 本発明のある実施形態によれば、位置決めデバイス180は、
図5Aに概略的に示すステージアクチュエータ500と、バランスマス510と、を備える。ステージアクチュエータは、オブジェクトテーブル520に力530を加えることによって、オブジェクトテーブル520の加速度を生じさせるように構成される。オブジェクトテーブル520への力530は、バランスマス510への反力540を生じさせる。バランスマス510は反力に応じて移動する。したがって、バランスマス510が少なくとも部分的に反力に適応することによって、バランスマス510の移動が生じる。例えば、ステージアクチュエータ500は、オブジェクトテーブル520とバランスマス510との間に配置されてよい。したがって、オブジェクトテーブル520に作用する、ステージアクチュエータ500により生成された力がバランスマス510への反力を生じさせることになる。反力は、例えばステージアクチュエータ500がオブジェクトテーブル520に加えた力と反対方向への対応するバランスマス510の移動を生じさせる可能性がある。これによって、真空容器などの電子ビーム検査装置の他の構造への反力を低減することができる。
【0036】
[0043] バランスマス510は、例えばオブジェクトテーブル520の重さを上回る重さを有してよい。例えば、バランスマス510は、例えばオブジェクトテーブル520より5倍又は10倍重くてよい。バランスマス510の重さがオブジェクトテーブル520の重さを上回るため、バランスマス510の移動のストロークがオブジェクトテーブル520のストロークより小さい可能性がある。
【0037】
[0044] バランスマス510のストロークをさらに小さくするために、バランスマス510に減衰器550が設けられてよい。減衰器550はベースプレート551に支持される。減衰器550はパッシブ減衰器を含んでよい。パッシブ減衰器は、ばね、及び/又は流体ダンパなどのダンパによって提供されてよい。代替的又は付加的に、減衰器550はアクティブ減衰器を含んでよい。アクティブ減衰器は、例えばバランスマス510の移動を減衰するアクチュエータを含んでよい。ステージアクチュエータ500は、例えばバランスマス510の加速及び/又は移動を検知するセンサに応答して駆動されてよい。代替的に、アクチュエータは、ステージアクチュエータ駆動信号から所望の減衰力を計算することによって駆動されてよい。ステージアクチュエータ駆動信号が分かっている(例えばオブジェクトテーブルセットポイントから導出される)ため、バランスマス510への反力はこれから計算することができる。バランスマス510の特性(例えば、その重さ、移動の範囲など)が分かっていることによって、減衰力及び対応する減衰アクチュエータ駆動信号を決定することができ、これに応じて減衰アクチュエータを駆動することができる。
【0038】
[0045] 減衰器550は、プログレッシブばねなどの非線形要素を含んでよい。このような非線形要素の一例では、
図5Dに示すように、バランスマスのストロークが大きくなる(バランスマスの変位が大きくなる)につれて、プログレッシブばねの剛性が増大する(ばね力が大きくなる)。代替的又は付加的に、減衰器550は、ゲインスケジューリングコントローラなどの非線形要素を含んでよい。このような非線形要素の一例では、バランスマスのストロークが大きくなるにつれて、ゲインスケジューリングコントローラのコントローラ剛性が増大する(ばね力が大きくなる)。これらの非線形要素はさらに、非線形要素を有しない減衰器550と比べてバランスマスのストロークを小さくするのを助けることができる。
【0039】
[0046] ある実施形態では、減衰器550は、ばね及び/又はダンパなどのパッシブダンパと、アクチュエータを備えたアクティブダンパと、を備える。バランスマス510の変位に起因してばね及び/又はダンパにより生じた力は、ばね及び/又はダンパを介してステージプレート551に伝達される。アクティブダンパのアクチュエータはまた、アクチュエータを使用したバランスマスのフィードフォワード制御を使用して、ばね及び/又はダンパにより生じた力を補償することができ、結果として生じるステージプレート551への力を低減することができる。ばね及び/又はダンパにより生じた力を補償するための、アクチュエータへのフィードフォワード制御信号は、オブジェクトテーブル520のセットポイントから導出されたバランスマス510のセットポイントから導出することができる。
【0040】
[0047] ある実施形態では、減衰器550は電磁アクチュエータを備える。電磁アクチュエータの挙動はモータ定数を用いて表すことができる。電磁アクチュエータの全動作範囲について単一のモータ定数がよく用いられるが、モータ定数は実際には位置依存性である。このような電磁アクチュエータの制御精度はモータ定数の位置依存性に苦しみ、例えば、ばね及び/又はダンパにより生じた力の補償を不正確なものにする可能性がある。これはベースプレートに伝達される力が増大する一因となる。電磁アクチュエータのモータ定数が位置依存性である理由は、
ヨーク内の磁気強度が位置によって異なること、及び
コイルが、バランスマスの寄生運動によって磁気ヨークに出入りすること、
による。
この位置依存性モータ定数は、例えばオブジェクトテーブルセットポイント、測定されたオブジェクトテーブルの位置、バランスマスセットポイント、及び/又は測定されたバランスマスの位置に少なくとも部分的に基づいて較正することができる。また、モータ定数の位置依存性は、同様にオブジェクトテーブルセットポイント、測定されたオブジェクトテーブルの位置、バランスマスセットポイント及び/又は測定されたバランスマスの位置を用いて少なくとも部分的に補償し得る電磁アクチュエータの制御エラーをもたらす可能性がある。
【0041】
[0048] バランスマス510は、単一の方向又は複数の方向に移動するように構成されてよい。
【0042】
[0049] ある実施形態では、
図5Bに概略的に示すように、バランスマス510は、一方向Xに移動するように構成されてよく、バランスマス510は、例えば試料の主面に平行な方向に移動するように構成されてよい(
図5Bは上面図を示しているため、この場合の試料の主面は
図5Bの紙面である)。試料の主面(例えば上面)は、オブジェクトテーブル520の移動の主面(同様に
図5Bの紙面である)と一致してよい。この面は、直交し得る(
図5Bに示された)第1及び第2の方向X、Yによって画定することができる。バランスマス510の移動の一方向は、オブジェクトテーブル520の移動の主方向と一致してよい。例えば、一方向は走査方向と一致してよい。オブジェクトテーブル520が第1の方向に沿って加速するとき、バランスマス510は第1の方向に沿って反対方向に加速することができる。これによって、バランスマス510は、第1の方向に沿った反力の成分に適応することができ、その結果、第1の方向の反力を少なくとも部分的に補償することができる。ある実施形態では、オブジェクトテーブル520の重心521及びバランスマス510の重心511は、第1及び第2の方向により画定される平面の同一平面上にある。したがって、外乱トルクを低減することができる。外乱トルクは、位置決めデバイスがオブジェクトテーブルに及ぼすオブジェクトテーブルの加速度を生じさせる力と、別のバランスマスによる協調性反応と、から生じる。バランスマスは、水平面内の一方向、例えばX方向又はY方向に移動可能であってよい。したがって、このような実施形態では、バランスマスはその方向の反力を吸収することができる。位置決めデバイスは、可動部分と固定部分とを含むリニアモータなどのアクチュエータを備えてよい。可動部分はオブジェクトテーブルに接続されてよい。固定部分はバランスマスに接続されてよい。これによって、固定部分は、反力に応答してバランスマスとともに移動することができる。バランスマスは、単一の物体、又はバランスマスの移動の方向に沿って見たときのオブジェクトテーブルの各側に1つずつの2つから構成されるバランスマス部分で形成されてよい。したがって、2つから構成されるバランスマス部分を使用して、結果として生じる外乱トルクを低減することができ、高重量のバランスマスを適用することができる。
【0043】
[0050] 1次元において移動可能なバランスマスの場合、
図5Cに概略的に示すように、第2の方向Yに沿って移動可能な別のバランスマス560を設けてよい。別のバランスマス560は、第2の方向561の反力(の成分)に応答して移動可能である。したがって、バランスマス510及び別のバランスマス560を使用して、第1及び第2の方向により画定される平面内の反力に適応することができる。第1の方向Xに沿って移動可能なバランスマス510と同様に、別のバランスマス560は、第1及び第2の方向X、Yにより画定される平面において、オブジェクトテーブル520及びバランスマス510と同一平面内に配置されてよい。重心511、521及び561は、第1及び第2の方向により画定される平面の同一平面内にあるように配置されてよい。したがって、オブジェクトテーブル520とバランスマス510、520及び560の移動の合成から生じる外乱トルクを回避することができる。オブジェクトテーブル520が第1及び第2の方向により画定される平面内を移動する(例えば加速する)とき、反力の第1の方向の成分がバランスマスによって適応され、反力の第2の方向の成分が別のバランスマス560によって適応される。バランスマスのそれぞれは、水平面内の一方向、例えばX方向又はY方向に移動可能であってよい。したがって、このような実施形態では、各バランスマスは各方向の反力を吸収することができる。位置決めデバイスは方向ごとにそれぞれのアクチュエータを備えてよい。アクチュエータは積層されてよい。アクチュエータは、例えばそれぞれが可動部分と固定部分とを含むリニアモータを備えてよい。第1のアクチュエータの可動部分はオブジェクトテーブルに接続されてよい。第1のアクチュエータの固定部分は第1のバランスマスに接続されてよい。第2のアクチュエータの可動部分は第1のアクチュエータの固定部分に接続されてよい。第2のアクチュエータの固定部分は第2のバランスマスに接続されてよい。これによって、第1のアクチュエータの固定部分は、反力に応答して第1のバランスマスとともに移動することができる。第2のアクチュエータの固定部分は、反力に応答して第2のバランスマスとともに移動することができる。1次元の場合と同様に、各バランスマスは、単一の物体、又はバランスマスの移動の方向に沿って見たときのオブジェクトテーブルの各側に1つずつの2つから構成されるバランスマス部分で形成されてよい。したがって、各バランスマスについて2つから構成されるバランスマス部分を使用して、結果として生じる外乱トルクを低減することができ、高重量のバランスマスを適用することができる。
【0044】
[0051] 別のバランスマス560は、例えば第1及び第2の方向により画定される平面において、オブジェクトテーブル520と同一平面内に配置されてよい。ある実施形態では、オブジェクトテーブル520の重心及び別のバランスマス560の重心は、第1及び第2の方向により画定される平面の同一平面上にある。したがって、外乱トルクを低減することができる。外乱トルクは、位置決めデバイスがオブジェクトテーブルに及ぼすオブジェクトテーブル520の加速度を生じさせる力と、別のバランスマス560による協調性反応と、から生じる。
【0045】
[0052] 別の実施形態では、
図5Aに示したように、バランスマス510は第1及び第2の方向X、Yに移動するように構成されてよい。同様に、バランスマス510は、第1及び第2の方向により画定される平面内で回転し、第1及び第2の方向に対して直交する第3の方向の周りに回転するように構成されてよい。したがって、バランスマス510は、第1及び第2の方向により画定される平面における反力に適応するとともに、この平面に対して垂直な軸周り、すなわち第3の方向Z周りの反力に適応することができる。これによって、バランスマス510は、オブジェクトテーブル520への平面に沿って延びる力及び/又はトルクの結果としての反力及びトルクに少なくとも部分的に適応することができる。オブジェクトテーブルは概して第1及び第2の方向により画定される平面に沿って移動するため、このような移動の結果としての反力に少なくとも部分的に適応することができる。したがって、結果として生じる真空容器やフレームなどの検査装置の他の構造への反力を低減することができる。2次元バランスマスは、X、Y及びrZ方向の反力を吸収するように構成されたプレート又は矩形フレームを含んでよい。
【0046】
[0053] ある実施形態によれば、
図6Aを参照して以下で説明されるように、動き補償システムが提供される。
図6Aに概略的に示すように、位置決めデバイス180は、ステージプレート600と、オブジェクトテーブル520とステージプレート600との間に力を加えるように構成されたステージアクチュエータ500とを備える。力はオブジェクトテーブルの加速度を生じさせる結果、ステージプレートへの反力540をもたらす。この実施形態によれば、動き補償システム620が提供される。動き補償システムは、ステージプレート600と真空容器160外側の固定構造610との間に作用する。固定構造は、フレームなど、真空容器外側の任意の構造であってよい。動き補償システムは、ステージプレートにかかる反力に少なくとも部分的に対抗する。ステージプレートは、(ガスマウントなどの)振動絶縁体630を用いて真空容器に取り付けられる。したがって、真空容器は、オブジェクトテーブル及びポジショナから少なくとも部分的に分離することができる。例えばオブジェクトテーブルを加速する際の反力に起因する振動の伝播を少なくとも部分的に防ぐことができる。したがって、振動が真空容器及び電子光学系170に到達するのを少なくとも部分的に防ぐことができる。結果として、真空容器など、電子ビーム検査装置の構造への反力を低減することができる。
【0047】
[0054] 動き補償システムはアクティブ又はパッシブであってよい。例示的な実施形態を以下に提供する。
【0048】
[0055]
図6Bは、動き補償システム620のある実施形態を示している。動き補償システムは、ステージプレートと固定構造との間に力622を加えるためにステージプレート600と固定構造610との間に配置される動き補償アクチュエータ621を備える。動き補償システムはさらに、動き補償コントローラ623を備える。動き補償コントローラの動き補償コントローラ出力は、動き補償コントローラ623によって動き補償アクチュエータを駆動するために動き補償アクチュエータに接続される。動き補償コントローラ623の動き補償コントローラ入力624に、オブジェクトテーブルの位置を特定するオブジェクトテーブル位置信号625が供給される。オブジェクトテーブル位置信号は、オブジェクトテーブル位置セットポイント信号又はオブジェクトテーブルの測定された位置であってよい。動き補償コントローラ623は、オブジェクトテーブル位置信号から加速度プロファイルを導出する。動き補償コントローラは、加速度プロファイルに基づいてフィードフォワード信号を導出し、フィードフォワード信号を動き補償アクチュエータに供給する。したがって、フィードフォワードタイプの補正を行うことができる。フィードフォワード信号は、ステージプレートへの、位置決めデバイスがオブジェクトテーブルに力を加えることの結果である予想反力を表してよい。位置決めデバイスによるオブジェクトテーブル520への力は、オブジェクトテーブル520の加速度から導出される。したがって、ステージプレート600への反力は、動き補償アクチュエータを駆動してステージプレートに補償力を加えることによって少なくとも部分的に補償することができる。
【0049】
[0056]
図6Bはさらに、ステージプレート600と真空容器160の壁との間に配置された、振動ダンパなどの振動絶縁体630を示す。振動ダンパは、弾性材料を含んでよい、及び/又は空気ダンパなどのガスダンパを含んでよい。振動ダンパはステージプレートを真空容器に取り付ける。このような振動ダンパは、低周波ロールオフを上回る周波数に対して減衰性を示す傾向があってよい。したがって、動き補償コントローラは、低周波ロールオフ未満の周波数帯で動き補償アクチュエータを駆動することができる。これによって、振動ダンパ及び動き補償システムは互いを補完することができる。
【0050】
[0057] 動き補償コントローラ623は、オブジェクトテーブル520及びアクチュエータの可動部分の重心521の質量フィードフォワードであるフィードフォワード信号を生成するように構成されてよい。オブジェクトテーブル520の可動部分の重心を基準にしたとき、反力と動き補償アクチュエータが生成した力との差異から生じるトルクを低減することができる。
【0051】
[0058] 動き補償アクチュエータは、リニアモータ、ピエゾアクチュエータなどの任意の適切なアクチュエータを備えてよい。
【0052】
[0059]
図6Cは、パッシブ動き補償システム620のある実施形態を示している。パッシブ動き補償システムは、ステージプレート600を固定構造610に接続する取付けデバイス626を備える。取付けデバイスは、取付けアーム、取付けロッド、又は任意の適切な取付け構造であってよい。取付けデバイスは剛性であってよく、その結果、ステージプレートと固定構造とをかなり強固に接続する。したがって、位置決めデバイスがオブジェクトテーブルに力を加えるとき、ステージプレートへの反力は取付けデバイスに導かれる。取付けデバイスが真空容器外側の固定構造に接続されると、反力は真空容器外側の固定構造へ導かれる。固定構造は、固く剛性のある構造であってよい。したがって、ステージプレートへの反力が、真空容器及びこれと接続された電子ビーム銃から離れるように誘導され、その結果、反力の真空容器内への伝播が少なくとも部分的に防止される。
【0053】
[0060] 同時に真空気密接続を保ちながら、取付けデバイスを真空容器から切り離すために、(627で概略的に示される)ダイアフラム又はベローズが提供されてよい。取付けデバイスは、ダイアフラム又はベローズを介して(誘導されて)ステージプレートを固定構造に接続する。
【0054】
[0061] 固定構造610は、フレームなどの真空容器外側の任意の構造を含んでよい。例えば、固定構造は、真空容器のサポート、すなわち真空容器を保持する支持構造を含んでよい。これにより、取付けデバイスは真空容器のサポートでステージプレートを支持し、その結果、反力を真空容器のサポートに導く。
【0055】
[0062] ある実施形態によれば、
図7Aを参照して以下で説明されるように、リアクションマスが提供される。位置決めデバイス180は、第1のアクチュエータ700と第2のアクチュエータ710とを備える。第1のアクチュエータ700は、オブジェクトテーブル500を第1の移動範囲701にわたって移動させるように構成される。第2のアクチュエータ710は、オブジェクトテーブル及び第1のアクチュエータを第2の移動範囲711にわたって移動させるように構成される。ただし、第1のアクチュエータ及び第2のアクチュエータは、必ずしもオブジェクトテーブル520を同じ方向に移動させる必要があるわけではない。リアクションマス720が提供される。第1のアクチュエータ700は、その力、すなわち第1のアクチュエータ力をオブジェクトテーブル520とリアクションマス720との間に加える。これによって、第1のアクチュエータ力は、リアクションマス720への第1のアクチュエータ反力721を生じさせる。リアクションマス720は反力に応答して移動可能である。電子ビーム検査ツールの使用の際、試料の表面の複数のターゲット部分を検査する必要がある。例えば、試料の表面のターゲット部分を共にカバーする複数の電子ビームを生成する電子ビーム検査ツールを使用するとき、オブジェクトテーブル520は、試料の表面の隣接する部分を検査するために連続的に位置決めされる必要がある。したがって、連続的な加速、減速、停止の移動サイクルが位置決めデバイスによって与えられる必要がある。試料のターゲット部分は、例えば試料が静止位置にあるとき、又は移動の間、例えば基板のターゲット部分を走査するために一定速度で移動する間に検査することができる。第1及び第2のアクチュエータを組み合わせて適用することで、例えばアクチュエータの一方が比較的遅い移動、すなわち低周波移動成分を与え、他方のアクチュエータが比較的速い移動、すなわち高周波移動成分を与える、様々な移動プロファイルを生成することができる。ここに記載のリアクションマスを用いて、具体的には第1のアクチュエータの作動に応答して生じる特定の反力に適応することができる。
【0056】
[0063] 例えば、第1のアクチュエータはショートストロークアクチュエータであってよく、第2のアクチュエータはロングストロークアクチュエータであってよい。したがって、第2のアクチュエータの第2の移動範囲は、第1のアクチュエータの第1の移動範囲より大きい。第1のアクチュエータは、例えば比較的短い移動範囲にわたる速く正確な移動を実行するのに適用することができる。第2のアクチュエータは、例えば大きい移動範囲にわたる比較的遅い移動を実行するのに適用することができる。第1及び第2のアクチュエータの作動によって、第1及び第2のアクチュエータのそれぞれがその一部を考慮に入れた、オブジェクトテーブルの合成移動をもたらすことができる。この構成の第1のアクチュエータが概して高い加速度を与えると仮定すると、第1のアクチュエータの作動は、概してオブジェクトテーブルへの比較的高い力を生じさせることになる。これに伴い、第1のアクチュエータの作動は、比較的高い反力を生じさせることになる。これにより、この反力はリアクションマスに加えられ、その結果、この反力が第2のアクチュエータ、真空容器及び電子ビーム検査装置のその他の構造に導入されることが妨げられる、又は少なくとも抑制される。
【0057】
[0064] ショートストロークアクチュエータ及びロングストロークアクチュエータの一例は以下の通りであってよい。
図7Bは、速度V対時間Tのグラフ図である。第2のアクチュエータ、すなわちロングストロークアクチュエータは、実質的に一定の速度712での移動を実行するように駆動される。第1のアクチュエータは、速度サイクル702により示された移動サイクルを実行する。移動サイクルは、第2のアクチュエータによる移動を補償すること、つまりオブジェクトテーブルを効果的に静止位置に保持し、オブジェクトテーブルが次の位置に移動するように加速させ、オブジェクトテーブルを減速させることを含み、その後に、オブジェクトテーブルが次の静止位置に保持される、第2のアクチュエータの移動を補償することが続く。これによって、オブジェクトテーブルが静止状態に保持される移動サイクルの一部において、第1及び第2のポジショナは等しいが反対の速度を与える。
【0058】
[0065] この実施例では、加速、減速などの反復サイクルの結果である反力は、大部分とは言わないまでも実質的な部分が、第1のアクチュエータ、すなわちショートストロークアクチュエータから生じる。したがって、これらの反力は、第1のアクチュエータと直接相互作用するリアクションマスによって適応され、その結果、結果として生じる外乱トルクを最小限に抑えることができる。
【0059】
[0066] リアクションマスは次のように実現することができる。ある実施形態では、第1のアクチュエータ700は、可動部分と対応部分とを備える。例えば、リニアモータの場合、可動部分及び対応部分の一方がコイルアセンブリを備え、可動部分及び対応部分の他方が磁石アセンブリを備える。第1のアクチュエータは、可動部分と対応部分との間に第1のアクチュエータ力を生成する。可動部分はオブジェクトテーブルに接続される。リアクションマスは対応部分に含まれ、少なくとも1つの移動方向に沿って移動可能である。
【0060】
[0067] ある実施形態では、第1のアクチュエータ700の可動部分と結合されたオブジェクトテーブルの重心521は、リアクションマス720を含む対応部分の重心と同一平面上にある。重心は、試料の主表面、すなわち第1及び第2のアクチュエータがオブジェクトテーブルの移動を実行する主表面により画定される平面の同一平面上にあってよい。したがって、結果として生じる外乱トルクを低減することができる。
【0061】
[0068] 反力に応答してリアクションマスの移動を抑制するために、リアクションマスの反応移動を減衰するためのダンパ730(ばねなど)を設けてよい。ダンパは、例えばリアクションマス720と第2のポジショナ710との間に配置されてよい。
【0062】
[0069]
図8は、上記の実施形態と組み合わせて使用し得る、本発明の別の実施形態を示している。
図8は、電子光学系170と、オブジェクトテーブル520と、位置決めデバイス180と、真空容器160とベースフレーム810と、を備えたEBIシステム100を示す。電子光学系170は、複数の電子ビームを同時に生成するように構成される。オブジェクトテーブル520は、試料、例えば基板を、試料のターゲット部分が複数の電子ビームで放射されるようにターゲット位置に保持するように構成される。位置決めデバイス180は、オブジェクトテーブル520を電子光学系170に対して移動させるように構成される。真空容器160は、真空を閉じ込めるように構成される。オブジェクトテーブル520及び位置決めデバイス180は、真空容器160内に配置される。ベースフレーム810は、真空容器160及び位置決めデバイス180を互いに平行に支持するように配置される。
【0063】
[0070] EBIシステム100は支持要素820を備えてよい。ベースフレーム810は、支持要素820を介して位置決めデバイス180を支持する。位置デバイス180はステージプレート600を備えてよい。位置決めデバイスは、オブジェクトテーブル520とステージプレート600との間に力を加えてオブジェクトテーブル520の加速度を生じさせるように構成される。支持要素820はステージプレート600を支持する。
【0064】
[0071] 支持要素820は、単一部分であってよい、又は複数の部分を含んでよい。例えば、支持要素820は、2つ若しくは4つの支持梁、又は他の任意の適切な数の支持梁を含んでよい。支持要素820は、ベースフレーム810から真空容器の壁を通って真空環境に延びて位置決めデバイス180を支持することができる。壁に支持要素820が通過できる穴が設けられてよい。穴は、周囲の気体が真空環境に入ることを防ぐダイアフラム又はベローズなどの可撓性要素で覆われてよい。可撓性要素は、振動が支持要素820から真空容器160に伝播するのを抑える又は妨げるのに役立つ可能性がある。
【0065】
[0072] EBIシステム100は振動絶縁システム630を備えてよい。ベースフレーム810は、振動絶縁システム630を介して真空容器160を支持する。このように、位置決めデバイス180から支持要素820及びベースフレーム810を介した真空容器160への振動の伝播が抑制される。これは電子光学系170への外乱を抑制する。
【0066】
[0073]
図8の実施形態では、ベースフレーム810は、真空容器160及び位置決めデバイス180を互いに平行に支持するように配置される。その逆は、ベースフレーム810に真空容器160を支持させ、真空容器160に位置決めデバイス180を支持させることである。この場合は、位置決めデバイス180が真空容器160を振動させる。真空容器160及び位置決めデバイス180を互いに平行に支持するベースフレーム810を備えることによって、位置決めデバイス180が生じさせた振動を、この振動が真空容器160に到達する前にベースフレーム810によって吸収することができる。ベースフレーム810は、固定フレームであってよく、大きい質量を有してよく、及び/又は床に固く接続されてよい。ある実施形態では、支持要素820は、振動絶縁システム630より大きい剛性を有する。
【0067】
[0074] さらなる実施形態を以下の条項に記載することができる。
【0068】
1.電子ビームを生成するように構成された電子光学系と、
試料のターゲット部分が電子ビームによって照射されるように試料をターゲット位置に保持するように構成されたオブジェクトテーブルと、
オブジェクトテーブルを電子ビームに対して移動させるように構成された位置決めデバイスと、を備え、
位置決めデバイスが、ステージアクチュエータとバランスマスとを備え、
ステージアクチュエータが、オブジェクトテーブルにオブジェクトテーブルの加速度を生じさせる力を加えるように構成され
オブジェクトテーブルへの力が、バランスマスへの反力を生じさせ、
バランスマスが、反力に応答して移動するように構成され、
位置決めデバイスが、バランスマスが反力の第1の方向の成分に応答して第1の方向に移動することを可能にするように構成された、
電子ビーム装置。
【0069】
2.電子ビーム装置の真空を閉じ込めるように構成された真空容器をさらに備え、オブジェクトテーブル及び位置決めデバイスが真空容器内に配置された、条項1に記載の電子ビーム装置。
【0070】
3.第1の方向及び第2の方向が試料の主面を画定し、第3の方向が第1及び第2の方向に対して直交し、位置決めデバイスが、バランスマスが第1及び第2の方向に移動すること、及び第3の方向の周りに回転することを可能にするように構成された、条項1又は2に記載の電子ビーム装置。
【0071】
4.第1の方向及び第2の方向が直交する、条項1から3のいずれかに記載の電子ビーム装置。
【0072】
5.位置決めデバイスが、反力の第2の方向の成分に応答して第2の方向に移動するように構成された別のバランスマスを備える、条項1から4のいずれかに記載の電子ビーム装置。
【0073】
6.バランスマスの重心及びオブジェクトテーブルの重心が、第1の方向及び第2の方向により画定される平面の同一平面上にある、条項1から5のいずれかに記載の電子ビーム装置。
【0074】
7.位置決めデバイスが、バランスマスのパッシブマウントを備え、パッシブマウントが反力に応答してバランスマスの移動のパッシブ減衰を提供する、条項1から6のいずれかに記載の電子ビーム装置。
【0075】
8.パッシブマウントがプログレッシブパッシブ減衰を提供する、条項7に記載の電子ビーム装置。
【0076】
9.パッシブマウントがプログレッシブばねを備える、条項8に記載の電子ビーム装置。
【0077】
10.位置決めデバイスが、バランスマスのアクティブマウントを備え、アクティブマウントが反力に応答してバランスマスの移動のアクティブ減衰を提供する、条項1から9のいずれかに記載の電子ビーム装置。
【0078】
11.アクティブマウントがプログレッシブアクティブ減衰を提供する、条項10に記載の電子ビーム装置。
【0079】
12.アクティブマウントがゲインスケジューリングコントローラを備える、条項11に記載の電子ビーム装置。
【0080】
13.ばね及び/又はダンパを含むパッシブマウントをさらに備え、アクティブマウントがさらに、バランスマスの動きに応答してばね及び/又はダンパにより生じた力を少なくとも部分的に補償するように構成された、条項10~12に記載の電子ビーム装置。
【0081】
14.アクティブマウントがさらに電磁アクチュエータを備え、オブジェクトテーブルセットポイント、オブジェクトテーブルの位置の測定値、バランスマスセットポイント、及び/又はバランスマスの測定値に少なくとも部分的に基づいて、電磁アクチュエータのモータ定数が較正される、及び/又はモータ定数に少なくとも部分的に起因する電磁アクチュエータの制御エラーが補償される、条項10~13に記載の電子ビーム装置。
【0082】
15.電子ビームを生成するように構成された電子光学系と、
試料のターゲット部分が電子ビームによって照射されるように試料をターゲット位置に保持するように構成されたオブジェクトテーブルと、
オブジェクトテーブルを電子ビームに対して移動させるように構成された位置決めデバイスであって、ステージプレートとステージアクチュエータとを備え、ステージプレートがステージアクチュエータを支持するように構成され、ステージアクチュエータが、オブジェクトテーブルとステージプレートとの間に、オブジェクトテーブルの加速度を生じさせる力を加えるように構成され、オブジェクトテーブルへの力がステージプレートへの反力を生じさせる位置決めデバイスと、
ステージプレートと固定構造との間に作用するように構成された動き補償システムであって、ステージプレートに加えられた反力に少なくとも部分的に対抗するように構成された動き補償システムと、
を備えた、電子ビーム装置。
【0083】
16.電子ビーム装置の真空を閉じ込めるように構成された真空容器をさらに備え、オブジェクトテーブル及び位置決めデバイスが真空容器内に配置された、条項15に記載の電子ビーム装置。
【0084】
17.固定構造が真空容器の外側に配置された、条項16に記載の電子ビーム装置。
【0085】
18.ステージプレートを真空容器の壁で支持する、低周波ロールオフを有する振動ダンパをさらに備え、動き補償コントローラが、低周波ロールオフ未満の周波数帯でアクチュエータを駆動するように構成された、条項16又は17に記載の電子ビーム装置。
【0086】
19.動き補償システムが、ステージプレートを固定構造に接続する取付けデバイスを備える、条項15から18に記載の電子ビーム装置。
【0087】
20.真空容器がダイアフラム又はベローズを備え、取付けデバイスが、ダイアフラム又はベローズを介してステージプレートを固定構造に接続する、条項19に記載の電子ビーム装置。
【0088】
21.固定構造が真空容器のサポートを備え、取付けデバイスが、ステージプレートを真空容器のサポートで支持する、条項19又は20に記載の電子ビーム装置。
【0089】
22.動き補償システムが、
ステージプレートと固定構造との間に力を生成するように構成された動き補償アクチュエータと、
動き補償コントローラであって、オブジェクトテーブルのオブジェクトテーブル位置信号が供給される動き補償コントローラ入力と、動き補償アクチュエータに接続されて動き補償アクチュエータを駆動する動き補償コントローラ出力とを有し、オブジェクトテーブル位置信号から加速度プロファイルを導出し、加速度プロファイルに基づいて動き補償アクチュエータにフィードフォワード信号を供給するように構成された、動き補償コントローラと、
を備えた条項15から21のいずれかに記載の電子ビーム装置。
【0090】
23.動き補償コントローラが、オブジェクトテーブル及びアクチュエータの可動部分の重心の質量フィードフォワードとしてフィードフォワード信号を生成するように構成された、条項15から22のいずれかに記載の電子ビーム装置。
【0091】
24.電子ビームを生成するように構成された電子光学系と、
試料のターゲット部分が電子ビームによって照射されるように試料をターゲット位置に保持するように構成されたオブジェクトテーブルと、
オブジェクトテーブルを電子ビームに対して移動させるように構成された位置決めデバイスと、を備え、
位置決めデバイスが、
オブジェクトテーブルを第1の移動範囲にわたって少なくとも1つの方向に沿って移動させるように構成された第1のアクチュエータと、
オブジェクトテーブル及び第1のアクチュエータを第2の移動範囲にわたって少なくとも1つの方向に沿って移動させるように構成された第2のアクチュエータと、
リアクションマスと、を備え、
第1のアクチュエータが、オブジェクトテーブルとリアクションマスとの間に第1のアクチュエータ力を加えるように構成され、オブジェクトテーブルへの第1のアクチュエータ力がリアクションマスへの第1のアクチュエータ反力を生じさせ、リアクションマスが、反力に応答して移動するように構成された、
電子ビーム装置。
【0092】
25.電子ビーム装置の真空を閉じ込めるように構成された真空容器をさらに備え、オブジェクトテーブル及び位置決めデバイスが真空容器内に配置された、条項24に記載の電子ビーム装置。
【0093】
26.第1のアクチュエータが可動部分と対応部分とを備え、第1のアクチュエータが、可動部分と対応部分との間に第1のアクチュエータ力を生成するように構成され、可動部分がオブジェクトテーブルに取り付けられ、リアクションマスが対応部分に含まれ、少なくとも1つの方向に沿って移動可能である、条項24又は25に記載の電子ビーム装置。
【0094】
27.第1のアクチュエータが、反力に応答してリアクションマスの反応移動を減衰するためのダンパを備える、条項24から26のいずれかに記載の電子ビーム装置。
【0095】
28.第1のアクチュエータがショートストロークアクチュエータであり、第2のアクチュエータがロングストロークアクチュエータであり、第2の移動範囲が、第1の移動範囲より大きい、条項24から27のいずれかに記載の電子ビーム装置。
【0096】
29.位置決めデバイスに接続されて位置決めデバイスを駆動するステージコントローラであって、第2のアクチュエータを駆動して、第2の移動範囲の少なくとも一部にわたる実質的に一定の速度での移動を実行し、第1のアクチュエータを駆動して、実質的に一定の速度での移動の補償と、次の位置へのオブジェクトテーブルの加速とを交互に行うように構成されたステージコントローラをさらに備える、条項28に記載の電子ビーム装置。
【0097】
30.電子ビームを生成するように構成された電子光学系と、
試料のターゲット部分が電子ビームで放射されるように試料をターゲット位置に保持するように構成されたオブジェクトテーブルと、
オブジェクトテーブルを電子光学系に対して移動させるように構成された位置決めデバイスと、
真空を閉じ込めるように構成され、オブジェクトテーブル及び位置決めデバイスが中に配置された真空容器と、を備え、
ベースフレームが、真空容器及び位置決めデバイスを支持するように配置された、電子ビーム装置。
【0098】
31.真空容器を含み、ベースフレームが真空容器及び位置決めデバイスを支持するように配置された、条項1から30のいずれかに記載の電子ビーム装置。
【0099】
32.支持要素をさらに備え、ベースフレームが支持要素を介して位置決めデバイスを支持し、支持要素が真空容器の壁を通って延びる、条項31に記載の電子ビーム装置。
【0100】
33.位置決めデバイスがステージプレートを備え、位置決めデバイスが、オブジェクトテーブルとステージプレートとの間に、オブジェクトテーブルの加速度を生じさせる力を加えるように構成され、支持要素がステージプレートを支持する、条項32に記載の電子ビーム装置。
【0101】
34.振動絶縁システムをさらに備え、ベースフレームが振動絶縁システムを介して真空容器を支持する、条項30から33のいずれかに記載の電子ビーム装置。
【0102】
35.電子ビーム装置が、電子ビーム検査装置、SEM、eビームライタ、eビームメトロロジ装置、eビームリソグラフィ装置、及びEビーム欠陥検査装置である、条項1から34のいずれかに記載の電子ビーム装置。
【0103】
[0075] 上記の条項は電子ビーム装置に言及しているが、これらの条項における実施形態は、例えばリソグラフィ、メトロロジ、又は検査で使用されるEUV放射装置などの任意の真空装置に直ちに実装することができる。さらに、上記の実施形態における電子ビーム装置は、単一ビーム電子ビーム装置又はマルチビーム電子ビーム装置であってよい。
【0104】
[0076] 以上では、様々な実施形態に係る電子ビーム検査装置が別々に説明されている。しかしながら、様々な実施形態の組み合わせを同じ電子ビーム検査装置に結合することができる。例えば、バランスマスを有する電子ビーム検査装置の実施形態に、本明細書に記載の動き補償システムが提供されてよい。バランスマスは反力の一部に適応することができる。フレーム動き補償(アクティブ又はパッシブ)は、反力の残りの影響を少なくとも部分的に弱めることができる。したがって、バランスマスとフレーム動き補償の組み合わせは、例えば電子ビーム検査装置のフレーム又は真空容器への反力の導入をかなりの程度まで低減できる安定的なシステムを提供することができる。別の例として、バランスマスを有する電子ビーム検査装置に、本明細書に記載の第1及び第2のアクチュエータ及びリアクションマスが提供されてよい。別の例として、本明細書に記載の動き補償システムが提供された電子ビーム検査装置に、本明細書に記載の第1及び第2のアクチュエータ及びリアクションマスが提供されてよい。さらに別の例として、電子ビーム検査装置が、本明細書に記載のバランスマス、動き補償システム、第1及び第2のアクチュエータ及びリアクションマスを採用してよい。本明細書に記載のバランスマス、動き補償システム及び/又は第1及び第2のアクチュエータ及びリアクションマスを電子ビーム検査装置に組み込む場合、本明細書に記載の電子ビーム検査ツールの別の実施形態、修正、光学的特徴などを適用できることは理解されるであろう。
【0105】
[0077] 他の修正及び変形が、以下で特許請求される本発明の趣旨及び範囲を逸脱することなくなされ得ることを理解されたい。