IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ DIC株式会社の特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2022-01-06
(45)【発行日】2022-01-21
(54)【発明の名称】成形用樹脂組成物及び成形体
(51)【国際特許分類】
   C08L 81/02 20060101AFI20220114BHJP
   C08K 3/22 20060101ALI20220114BHJP
   C08L 23/00 20060101ALI20220114BHJP
   C08L 23/08 20060101ALI20220114BHJP
   C01F 7/44 20220101ALI20220114BHJP
【FI】
C08L81/02
C08K3/22
C08L23/00
C08L23/08
C01F7/44
【請求項の数】 4
(21)【出願番号】P 2021548140
(86)(22)【出願日】2021-03-11
(86)【国際出願番号】 JP2021009702
【審査請求日】2021-08-17
(31)【優先権主張番号】P 2020057863
(32)【優先日】2020-03-27
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000002886
【氏名又は名称】DIC株式会社
(74)【代理人】
【識別番号】100177471
【弁理士】
【氏名又は名称】小川 眞治
(74)【代理人】
【識別番号】100163290
【弁理士】
【氏名又は名称】岩本 明洋
(74)【代理人】
【識別番号】100149445
【弁理士】
【氏名又は名称】大野 孝幸
(72)【発明者】
【氏名】兼松 孝之
(72)【発明者】
【氏名】高田 新吾
(72)【発明者】
【氏名】阿部 文明
(72)【発明者】
【氏名】奈良 早織
(72)【発明者】
【氏名】浅野 輝一
【審査官】三宅 澄也
(56)【参考文献】
【文献】国際公開第2019/208706(WO,A1)
【文献】国際公開第2019/208377(WO,A1)
【文献】国際公開第2013/141363(WO,A1)
【文献】特開2013-076039(JP,A)
【文献】特開2019-123664(JP,A)
【文献】特開2003-041019(JP,A)
【文献】国際公開第2013/039103(WO,A1)
【文献】特開2001-072866(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08G 63/00-64/42
(57)【特許請求の範囲】
【請求項1】
アスペクト比が10~500である板状のα-アルミナ(A)と、ポリアリーレンスルフィド樹脂(B)と、ガラス転移温度(Tg)が20℃以下、かつカルボキシル基、酸無水物基、グリシジルエステル基の何れかの官能基を有する(メタ)アクリル酸エステルの重合単位を1種以上含有し、かつオレフィンの重合単位を含有する重合体である熱可塑性樹脂(C)と、ガラス繊維(D)とを必須成分とし、質量換算で前記(A)+(B)+(C)+(D)の合計100部当たり、前記(A)を30~70部含有することを特徴とする成形用樹脂組成物。
【請求項2】
熱可塑性樹脂(C)が、質量換算で前記(A)+(B)+(C)+(D)の合計100部当たり、0.5~10部含有する、請求項1に記載の成形用樹脂組成物。
【請求項3】
ガラス繊維(D)が、質量換算で前記(A)+(B)+(C)+(D)の合計100部当たり、15~25部含有する、請求項1または2に記載の成形用樹脂組成物。
【請求項4】
請求項1~のいずれか1項記載の成形用樹脂組成物の成形体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ポリアリーレンスルフィド樹脂を含有する成形用樹脂組成物及び成形体に関する。
【背景技術】
【0002】
近年、電気電子部品や自動車部品には、より高度な耐久性が求められる様になってきており、ポリアリーレンスルフィド樹脂を含有する成形用樹脂組成物においても、種々の改良が行われている。成形体にも、使用環境として、低温から高温への又は高温から低温への急激な昇温降温に繰り返し耐えうる優れた物性(ヒートサイクル特性)が求められる様になってきた。
【0003】
この様な状況の下、特許文献1には、ポリアリーレンスルフィド樹脂と熱可塑性エラストマとガラス繊維とを含有する成形用樹脂組成物が記載されている。この成形用樹脂組成物は、エラストマとガラス繊維とを含有しており、その成形体は、常態においては、適切な靭性と優れた機械的強度を兼備しているものの、ヒートサイクル特性は充分ではなく、成形品にクラックが入る可能性がある等、機械強度が依然として不満足であった。
【0004】
また、特許文献2には、ポリアリーレンスルフィド樹脂と熱可塑性エラストマとガラス繊維とタルクとワラステナイトを含有する成形用樹脂組成物が記載されている。タルクとワラステナイトはいずれも熱伝導性が小さいため、この成形用樹脂組成物からの成形品は、熱伝導性が不充分となったり、ヒートサイクル特性が不充分となったりするため、やはり成形体にクラックが入る可能性がある等、機械強度が依然として不満足であった。
【0005】
ポリアリーレンスルフィド樹脂は、その優れた低吸湿性及び耐熱性の観点から、例えば、金属代替成形部品や、インサート成形部品の様な樹脂と金属との複合成形部品への応用が進んでいる。金属自体は極めて優れた熱伝導性を有していることから、ポリアリーレンスルフィド樹脂組成物と金属との接触界面において、どんな環境下であっても熱伝導が適切に行われないと、上記した様なクラックが成形品に入りやすい。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2006-36833号公報
【文献】特開2017-88688号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、ガラス繊維の様な繊維状フィラーに加えて、繊維状以外の形状であって、かつより熱伝導性に優れたフィラーを併用することで、機械的強度、ヒートサイクル特性及び熱伝導性とをバランスよく兼備する成形体が得られる、ポリアリーレンスルフィド樹脂を含有する成形用樹脂組成物を提供することを課題とする。
【課題を解決するための手段】
【0008】
本発明者は上記実情に鑑みて鋭意検討を行ったところ、繊維状以外の形状であって、かつより熱伝導性に優れたフィラーとして、特定アスペクト比の板状フィラーを特定含有割合となる様に調製した樹脂組成物にすることで、上記課題を解決できる成形体が得られることを見い出し、本発明を解決するに至った。
即ち本発明は、アスペクト比が10~500である板状フィラー(A)と、ポリアリーレンスルフィド樹脂(B)と、ガラス転移温度(Tg)が20℃以下の熱可塑性樹脂(C)と、ガラス繊維(D)とを必須成分とし、質量換算で前記(A)+(B)+(C)+(D)の合計100部当たり、前記板状フィラー(A)を30~70部含有する成形用樹脂組成物及びその成形体を提供するものである。
【発明の効果】
【0009】
本発明によれば、機械的強度、ヒートサイクル特性及び熱伝導性とをバランスよく兼備する成形体が得られる。
【発明を実施するための最良の形態】
【0010】
以下、本発明を詳細に説明する。
本発明は、アスペクト比が10~500である板状フィラー(A)を特定の含有割合(含有量)となる様に用いる。この板状フィラーとしては、有機化合物フィラー、無機化合物フィラーがあるが、熱伝導性がより優れる点で、無機化合物フィラーが好ましい。
【0011】
この様なアスペクト比が10~500である無機化合物フィラーとしては、公知慣用のものをいずれも用いることが出来るが、例えば、アルミナ(酸化アルミニウム)、窒化珪素、窒化硼素、窒化アルミニウムなどが挙げられる。より安定で熱伝導性に優れる成形品が得られる観点からは、熱伝導率10W/m/K以上の無機化合物フィラーを用いることが好ましい。これらの中でも、α-アルミナは、より高い機械的強度と高いヒートサイクル性と良好な熱伝導性が兼備できる観点から好ましい。また、窒化硼素は、良好な機械的強度と良好なヒートサイクル性とより高い熱伝導性とが兼備できる観点から好ましい。α-アルミナは窒化硼素に比べて弾性率が高い上、窒化硼素に比べて安価なため、より強度向上の目的でより多量に用いることが出来る。一方で、窒化硼素はα-アルミナよりも熱伝導率がかなり高いため、α-アルミナより少量の使用でより優れた熱伝導性が得られ易い。
【0012】
本発明では上記フィラーは、板状でアスペクト比が10~500である必要がある。板状とは、粒子の形状が長さ又は幅方向に比べて厚みが少ない形状を意味しており、薄片状・鱗片状・フレーク状と呼ばれることもある。本発明においては、一粒子の最大面積を有する面において、取りうる最大の長さを粒子径とする。粒子の粒子径は、レーザー回折式粒度分布測定方法で求めることが出来る。厚みは、走査型電子顕微鏡(SEM)での観察で得られた写真から厚みを計測することができる。そして、アスペクト比は計測した粒子径と厚みの比から見積もることができる。本発明では、前記で測定した平均粒子径と、前記方法で50個の板状フィラーを対象に測定した厚みの平均値からアスペクト比を求める。成形性の観点から、平均粒子径は1~50μm、中でも2~30μm、平均厚みは0.05~5μm、中でも0.1~3μm、アスペクト比は12~100であることが、それぞれ好ましい。更に取り扱い性や工業的入手容易性の観点から、最も好ましいアスペクト比は12~30の範囲である。
【0013】
本発明者は、板状フィラー(A)としては、同一化合物からなる板状フィラーであっても、かつ同一使用量であっても、上記アスペクト比が10未満であるものに比べて、アスペクト比が10以上のものを従来の、ポリアリーレンスルフィド樹脂と、熱可塑性樹脂と、ガラス繊維の混合物に含有させることによって、熱可塑性樹脂の併用による特に高温下での強度低下を効果的に防止するとともに、ヒートサイクル特性が格段に高くなることを見出した。
【0014】
このような高アスペクト比の板状フィラーとしては、市販されているものであっても、合成したものであってもよく、例えば、特定アスペクト比範囲の板状α-アルミナ粒子は、水熱法、フラックス法等の公知慣用の製造方法で製造することが出来る。フラックス法としては、例えば、モリブデン化合物及び珪素或いは珪素原子を含む化合物からなる形状制御剤の存在下、アルミニウム化合物を焼成するα―アルミナ粒子の製造方法にて製造することが出来る。
【0015】
上記製造方法で得られたα-アルミナ粒子は、その粒子内に、モリブデンだけでなく、珪素或いは珪素原子を含む化合物を含むものとなる。このようなα-アルミナ粒子は、モリブデンの含有により、例えば、ゼータ電位がpH酸性側に等電点を示すことから、後記するポリアリーレンスルフィド樹脂(B)等へのより良好な分散性が期待できる。
また、珪素或いは珪素原子を含む化合物を有するα-アルミナ粒子は、例えば、それにシランカップリング剤処理を行った場合に、α-アルミナ粒子に含まれる珪素又は珪素化合物とシランカップリング剤のシラノール基との両者の間で化学結合が形成され、確実な表面処理を行うことが出来る。シランカップリング剤におけるシラノール基等の反応性基以外の有機原子団は、後記するポリアリーレンスルフィド樹脂(B)等との親和性をより高める効果があるから、上記同様により良好な分散性が期待できる。
【0016】
上記フィラー(A)は、機械的強度とヒートサイクル特性と熱伝導性を兼備させるため、質量換算で、該フィラー(A)+後記ポリアリーレンスルフィド樹脂(B)+後記熱可塑性樹脂(C)+後記ガラス繊維(D)の合計100部当たり、30~70部となる様に含有させる。分散がより簡便である観点から、好ましくは50部以下である。
【0017】
本発明においてポリアリーレンスルフィド樹脂(B)とは芳香環を硫黄原子で結合した構造を主鎖に持つポリマーを総称するものである。以下、ポリアリーレンスルフィド樹脂(B)をPAS樹脂(B)と略記することがある。
【0018】
前記PAS樹脂(B)としては、下記一般式(1)で示される繰り返し単位を有する、いわゆるポリフェニレンスルフィド樹脂(以下、PPS樹脂と略記することがある。)であることが、得られる成形品の耐熱性、機械特性及び耐薬品性の点から好ましい。
【0019】
【化1】
【0020】
前記PAS樹脂(B)には、必要に応じて、他の共重合体構成単位を含有させることができる。このとき含有可能な共重合体構成単位の具体例としては、特に制限されるものではないが、例えば、下記構造式(2)~(8)で表されるものが挙げられる。
【0021】
【化2】
【0022】
本発明で用いるPAS樹脂(B)としては、前記一般式(1)で表される繰り返し単位を70モル%以上含有するPPS樹脂であることが、耐熱性、機械特性及び耐薬品性に優れたポリマーとしての特徴が発揮されやすいため好ましい。
【0023】
また、前記一般式(8)のような結合基が3個、またはそれ以上有する芳香環を含有するPAS樹脂(B)を用いた場合には、成形時における成形用樹脂組成物の溶融粘度が高いため、該組成物の流動性を阻害しやすくなる。これを防ぐためにはこのタイプの構造はPAS樹脂(B)中、5モル%以下であることが好ましく、特に3モル%以下であることが好ましい。
【0024】
前記PAS樹脂の製造方法としては、特に制限されるものではなく、例えば以下の方法で製造出来る。
(i)ジハロゲン芳香族化合物類を硫黄と炭酸ソーダの存在下に重合させる方法。
(ii)ジハロゲン芳香族化合物類を極性溶媒中でスルフィド化剤の存在下に重合させる方法。
(iii)P-クロルチオフェノールを自己縮合させる方法。
(iv)有機極性溶媒とジハロゲン芳香族化合物を混合し加熱しておき、その中に含水スルフィド化剤を反応混合物中の水分量が有機極性溶媒の2~50モル%の範囲内になる様な速度で加えジハロゲン芳香族化合物とスルフィド化剤とを反応させる方法。
その他、各種方法が有り、どの方法で得られたPAS樹脂でも使用することができる。
【0025】
尚、この様なPAS樹脂(B)には、例えば、水酸基、カルボキシル基、アミノ基、メルカプト基、エポキシ基、酸無水物基、イソシアネート基、及びビニル基などの反応性官能基を、公知慣用の方法で導入することが出来る。
【0026】
本発明に使用するPAS樹脂(B)としては、ASTM D1238-86による316℃、5000g荷重下(オリフィス:0.0825±0.002インチ径×0.315±0.001インチ長さ)におけるメルトフローレートが300~15000g/10分、特に好ましくは400~3000g/10分であるものが、成形性が良好であるので好ましい。さらに、使用するPAS樹脂(B)の形態は、特に制限はなく、ペレットのような粒状でもあるいは粉状でもよい。
【0027】
上記メルトフローレート値が小さすぎる場合は、成形時における成形用樹脂組成物の粘度が高いため、該組成物の流動性を阻害しやすくなり、成形不良などの問題が発生する可能性があるので、下限は300g/10分であることが好ましい。
【0028】
本発明の成形用樹脂組成物は、耐衝撃性の改良等のためにガラス転移温度(Tg)が20℃以下の熱可塑性樹脂(C)を含有する。この様なものとしては、ガラス転移温度(Tg)が20℃以下のゴムや、ポリオレフィン系の熱可塑性樹脂が挙げられる。
該熱可塑性樹脂(C)としては、PAS樹脂(B)を混練する際の温度で溶融し、混合分散出来ることが好ましく、そのため融点が280℃以下であり室温でゴム弾性を有するものであることが好ましい。
なお、ガラス転移温度や融点については、示差走査熱量計(パーキンエルマー社製「PYRIS Diamond DSC」)を用い、JIS K 7121に準拠して測定した値である。
【0029】
特に、得られる成形品が0℃や-15℃の低温下でも耐衝撃性を発現するために、熱可塑性樹脂(C)のガラス転移温度(Tg)は20℃以下であることが必須である。ガラス転移温度(Tg)が低くなりすぎると、高温での使用中にその熱可塑性樹脂(C)の一部が成形物外部へ染み出すなどの不具合を生じやすくなることから、好ましいガラス転移温度(Tg)の範囲は-60℃~20℃である。
【0030】
ガラス転移温度(Tg)が20℃以下のゴムとしては、例えば、イソプレンゴム(IR)、ブタジェンゴム(BR)、スチレン-ブタジェンゴム(SBR)、クロロプレンゴム(CR)、ニトリルゴム(NBR)、ブチルゴム(IIR)等が挙げられる。
【0031】
また、熱可塑性樹脂(C)としては、特に親和性に優れPAS樹脂(B)との混合が容易であり、熱や光による劣化が小さく、得られる成形品の耐衝撃性等の向上が顕著である点で、ポリオレフィン系熱可塑性樹脂を用いることが好ましい。この様なものとしては、例えば、α-オレフィン類の共重合体、α-オレフィン類とα,β-不飽和カルボン酸のエステル類との共重合体、α-オレフィン類とカルボン酸の不飽和エステルとの共重合体等が挙げられ、エチレン-プロピレン共重合体、エチレン-ブテン共重合体、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-酢酸ビニル共重合体等が挙げられる。熱可塑性樹脂(C)としては、上記した様な性質に優れる点で、好適には、オレフィンの重合単位を含有するポリオレフィン系熱可塑性樹脂を用いることができる。
【0032】
上記ポリオレフィン系熱可塑性樹脂としては、例えば、水酸基、カルボキシル基、アミノ基、メルカプト基、エポキシ基(グリシジルエステル基)、酸無水物基、イソシアネート基、及びビニル基などの官能基を有するものが好ましく、特に化学的に結合したカルボキシル基、酸無水物基、エポキシ基(グリシジルエステル基)の何れか1個以上の官能基を有すること、中でも、カルボキシル基、酸無水物基、グリシジルエステル基の何れかの官能基を有する(メタ)アクリル酸エステルの重合単位を1種以上有し、かつオレフィンの重合単位を含有するポリオレフィン系熱可塑性樹脂がPAS樹脂との分散性が良好になり、均一混合された成形用樹脂組成物を得ることが容易で、かつ得られる成形体の耐衝撃性等などが顕著に向上する点から好ましい。
【0033】
これらの官能基を有する熱可塑性樹脂としては、例えば、熱可塑性樹脂(C)を製造する際の共重合成分として所望の官能基を有するモノマーを併用することによって得ることができ、例えば、エチレンと(メタ)アクリル酸メチル、(メタ)アクリル酸グリシジルエステルの共重合体等が挙げられる。また、上記した官能基を有さない熱可塑性樹脂(C)と所望の官能基を有する化合物とを反応せしめて得ることもでき、例えば、エチレン-ブテン共重合体と無水マレイン酸とを過酸化物等の存在下で溶融混練して得られる酸変性エチレン-ブテン共重合体等が挙げられる。
【0034】
また、これらの官能基類を複数個、同時に含有するものでもよく、例えば、α-オレフィン類-無水マレイン酸-(メタ)アクリル酸グリシジルエステルの三元共重合体等が挙げられる。
【0035】
熱可塑性樹脂(C)の添加量は、特に制限されるものではないが、機械的強度、特に耐衝撃性と柔軟性(曲げ強度)とのバランス、およびヒートサイクル性の観点から、質量換算で、前記フィラー(A)+前記ポリアリーレンスルフィド樹脂(B)+該熱可塑性樹脂(C)+後記ガラス繊維(D)の合計100部当たり、0.5~10部となる様に含有させることが好ましい。熱可塑性樹脂(C)の配合量がこの範囲であることにより、耐衝撃性とヒートサイクル性とをより高いレベルで兼備し、且つ高温時の機械的強度の低下を効果的に防止できる。
【0036】
上記ポリアリーレンスルフィド樹脂(B)として、反応性官能基を含有するポリアリーレンスルフィド樹脂を用いると共に、熱可塑性樹脂(C)として、オレフィンの重合単位と前記ポリアリーレンスルフィド樹脂に含まれる反応性官能基に対して反応性を有する反応性官能基とを含有する重合体を用いて、両者と組み合わせることがより好ましい。ポリアリーレンスルフィド樹脂(B)として、反応性官能基を含有しないポリアリーレンスルフィド樹脂を用いると共に、熱可塑性樹脂(C)として、オレフィンの重合単位は含有するがポリアリーレンスルフィド樹脂に含まれる反応性官能基と反応する様な反応性官能基を含有しない重合体を用いて、両者を組み合わせた場合と比較し、単純な物理的混合でなく、化学結合の発生に伴った化学的混合(ポリマ分子の一体化)により、熱可塑性樹脂がより微分散する効果が得られ、その結果より高いヒートサイクル特性を発揮することが出来る。具体的には、樹脂(B)と熱可塑性樹脂(C)とが、両者が化学結合しうる官能基をそれぞれ含有した、ポリアリーレンスルフィド樹脂と、炭素原子数4以上のオレフィンの重合単位を含有する重合体との組み合わせ、を含有することが、より好ましい。この様な官能基同士の組み合わせとしては、例えば、水酸基とイソシアネート基、カルボン酸基とグリシジル基(エポキシ基)等が挙げられる。
【0037】
ガラス繊維(D)としては、公知慣用のものがいずれも使用出来る。ガラス繊維は、細線をまとめて収束処理したものや、細線を、例えば、エポキシ系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物等の官能性化合物またはポリマーで表面処理及び収束処理したものを用いることが好ましい。カラス繊維の形態としては、例えば、ロービング、チョップドストランド、クロス等が挙げられる。
中でも、前記フィラー(A)と組み合わせて用いるに当たって、ガラス繊維(D)としてはチョップドストランドを用いることが、両者の形状に基づき、成形品中での特異な配向により機械的強度を相乗的に向上させることが出来ることから好ましい。
【0038】
ガラス繊維(D)の繊維長は、特に制限されるものではないが、例えば、1~5mmとすることで、前記フィラー(A)の大きさや形状と相俟って、成形品に優れた機械的強度とヒートサイクル特性と兼備させることが出来るので好ましい。ガラス繊維(D)の添加量は、特に制限されるものではないが、質量換算で、前記フィラー(A)+前記ポリアリーレンスルフィド樹脂(B)+前記熱可塑性樹脂(C)+該ガラス繊維(D)の合計100部当たり、15~25部となる様に含有させることが好ましい。ガラス繊維(D)の配合量がこの範囲であることで、耐衝撃性とヒートサイクル性と熱伝導性のバランスがより良好となる。
【0039】
また、本発明の成形用樹脂組成物には、本発明の要旨を逸脱しない範囲であれば、上記したものに該当しない充填材を添加しても差し支えない。充填材としては、粉粒状、針状、球状、または中空状および繊維状が挙げられる。さらには、前記板状フィラーとは異なるアスペクト比を有する平板状、鱗片状のものであってもよい。具体的には、硫酸カルシウム、珪酸カルシウム、クレー、タルク、アルミナ、珪砂、ガラス粉、金属粉、グラファイト、カーボンブラックなどの粉状充填材、前記板状フィラーとは異なるアスペクト比を有する雲母、ガラス板、セリサイト、アルミニウムフレークなどの金属箔、黒鉛などの平板状もしくは鱗片状充填材、シラスバルーン、金属バルーン、ガラスバルーンなどの中空状充填材、炭素繊維、グラファイト繊維、ウィスカー、金属繊維、ウォラストナイト等の無機繊維状充填材、芳香族ポリアミド繊維等の有機繊維状充填材を挙げることができる。
【0040】
また、本発明の成形用樹脂組成物には、一般に熱可塑性樹脂に添加される、前記熱可塑性樹脂(C)に該当しない公知の物質、即ち可塑剤、少量の離型剤、滑剤、耐熱安定剤、耐候性安定剤、発泡剤、防錆剤、難燃剤、着色剤、結晶化促進剤、核剤等を添加してもよい。
【0041】
また、本発明の成形用樹脂組成物は、ISO178における曲げ弾性率が10GPa以上の成形体を与えるものであることが好ましい。弾性率が10GPa以上であると、強度(剛性)が良好であって、割れが発生するなどの問題が起こりにくい。
【0042】
本発明の成形用樹脂組成物の製造方法は、特に制限されるものではなく、公知慣用の製造方法がいずれも採用できる。例えば、上記各原料(A)~(D)を必須成分として、これらを同時に、或いは任意の順序にて、例えば、バンバリーミキサー、ニーダー、ロール、単軸もしくは二軸の押出機などを用い、固相状態で均一となる様に予備混合して、原料(B)及び(C)中に、フィラー(A)とガラス繊維(D)が均一に分散した粉体分散物を調製する方法が挙げられる。
【0043】
或いは、上記原料(A)~(D)をそれぞれ、押出機などに供給して、十分溶融混練することにより調製出来る。具体的には、上記原料の予備混合分散物を、例えば、単軸あるいは二軸の押出機、バンバリーミキサー、ニーダー、ミキシングロールなどの公知慣用の溶融混練装置に供して、250~420℃の温度で混練する方法などが挙げられる。原料の混合順序にも特に制限はなく、全ての原材料を上記の方法により溶融混練する方法、一部の原料を上記の方法により溶融混練し、さらに残りの原料を溶融混練する方法、あるいは一部の原料を単軸あるいは二軸の押出機により溶融混練中にサイドフィーダーを用いて残りの原料を混合する方法など、いずれの方法を用いてもよい。ポリアリーレンスルフィド樹脂(B)と熱可塑性樹脂(C)とを溶融混練後、フィラー(A)とガラス繊維(D)を添加し、溶融混練して製造することも出来る。混練後に、真空状態に曝して発生するガスを除去することは好ましい。この様にして成形用樹脂組成物を得ることにより各成分の分散状態が良好な材料を得ることができる。
【0044】
本発明の成形体は、上述の成形用樹脂組成物を成形して得られた部品である。これの成形には、例えば、射出成形、押出成形、引抜成形、ブロー成形、プレス成形、紡糸などの周知の成形方法を採用することができる。
射出成形条件は、特に制限されるものではないが、例えば、成形用樹脂組成物の射出成形時の温度(シリンダー温度)は、流動性をより向上させる観点から280℃以上が好ましく、機械特性を向上させる観点から340℃以下が好ましい。一方、金型温度温度は、120~170℃とすることが、PAS樹脂相の結晶化度を高め強度向上を見込める、との点で好ましい。
【0045】
本発明の成形用樹脂組成物は、中でも、所定の形状の金属部品が当該成形用樹脂組成物で包埋された、所望の形状の金属インサート成形体を射出成形にて製造するのに好適である。
射出成形により、当該成形用樹脂組成物に分散されているガラス繊維(D)が流動方向に配向しつつ、それよりもサイズの小さいフィラー(A)の一部は流れ方向に対して垂直方向に向くことにより、流れ方向の鉛直方向からの応力に対する機械的強度が著しく向上する。同時に、ポリアリーレンスルフィド樹脂(B)と熱可塑性樹脂(C)とが、インサートされた金属部品の表面との界面に強固に密着し、激しい温度変化に当たっても金属の膨張収縮に充分に追従することで、良好な機械的強度と、良好なヒートサイクル特性と、良好な熱伝導性とを兼備する成形体が得られる。
【0046】
本発明の成形用樹脂組成物から得られた成形体は、必要に応じて、加熱したり遠赤外線やマイクロ波を照射して、成形時と同温度或いはより高温に、適当な時間をかけて暴露すること(アニーリング)で、より寸法変化が小さく機械的物性に優れた成形体とすることが出来る場合がある。
ポリアリーレンスルフィド樹脂(B)と熱可塑性樹脂(C)として、反応性官能基を含有するポリアリーレンスルフィド樹脂と、オレフィンの重合単位と前記ポリアリーレンスルフィド樹脂に含まれる反応性官能基に対して反応性を有する反応性官能基とを含有する重合体とを選択し、これらを組み合わせ場合において、万一、成形条件の選択が不適切であり、充分に両者の反応が進行させられなかった等の場合には、このアニーリングが有効となる場合がある。
【0047】
本発明の成形用樹脂組成物は、機械的強度、ヒートサイクル特性、熱伝導性がいずれも良好であることから、これらを要求される部品、箱型の電気・電子部品集積モジュール用保護・支持部材やモーターなどの金属をインサートする成形品に特に有用である他、ハウジングなどの構造部品、電装部品ケースなどに適している。センサー、LEDランプ、コネクター、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、磁気ヘッドケース、パワーモジュール、端子台、半導体、液晶、FDDキャリッジ、FDDシャーシ、パラボラアンテナ、コンピューター関連部品等に代表される電気・電子部品;VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザーディスク(登録商標)・コンパクトディスク等の音声機器部品、照明部品、冷蔵庫部品、エアコン部品、あるいは給湯機や風呂の湯量、温度センサーなどの水回り機器部品等に代表される家庭、事務電気製品部品; オフィスコンピューター関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、ライターなどに代表される機械関連部品; 顕微鏡、双眼鏡、カメラ、時計等に代表される高額機器、精密機械関連部品;オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディヤー用ポテンシャルメーターベース、リレーブロック、インヒビタースイッチ、排気ガスバルブ等の各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、湯温センサー、ブレーキパットウェアーセンサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキパッド摩耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ウォーターポンプインペラー、タービンベイン、デュストリビューター、スタータースイッチ、イグニッションコイルおよびそのボビン、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、ホーンターミナル、電装部品絶縁板、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、モーター関連部品(ワイパー可動部、パワーウインドウ可動部、ラジエターモーター用ブラッシュホルダー、インシュレーター、ローター、モーターコア、バスリング)等の自動車・車両関連部品、その他各種用途にも適用可能である。特に小型精密化による製品設計自由度および成形品の急激な温度変化による成形品クラック発生の抑制、かつ機械強度、流動性に優れることから、特に成形品の形状自由度が要求され、金属代替が熱望されている自動車部品用途、電気電子部品用途、熱機器部品用途等に有用である。
【実施例
【0048】
以下に、本発明を実施例により、具体的に説明するが、本発明はこれらの実施例の範囲に限定されるものではない。
【0049】
(板状アルミナ粒子の合成)
水酸化アルミ(日本軽金属工業製;平均粒子径9.4μm)100質量部と、シリカ粒子(関東化学株式会社製)の0.65質量部と、三酸化モリブデン(太陽鉱工株式会社製)の3.44質量部とを乳鉢で混合し、混合物を得た。得られた混合物を坩堝に入れ、セラミック電気炉にて1100℃で10時間焼成を行なった。その後坩堝から取り出して解砕をしたのち、0.5%のアンモニア水溶液で常温のもと30分間浸漬することで洗浄を行い、次いで目開き53μのふるいを用いて分級を行い粗粒子成分を除去して、薄い青色の粉末(EF1)を得た。得られた粉末に対してXRD測定を行ったところ、α-アルミナに由来する鋭いピーク散乱が現れ、α結晶構造以外のアルミナ結晶系ピークは観察されなく、緻密な結晶構造を有する板状アルミナであることを確認した。
なおXRD測定は、作製した試料を0.5mm深さの測定試料用ホルダーにのせ、一定荷重で平らになるように充填し、それを広角X線回折(XRD)装置(株式会社リガク製Rint-Ultma)にセットし、Cu/Kα線、40kV/30mA、スキャンスピード2度/分、走査範囲10~70度の条件で行った。
【0050】
(平均粒子径Lの計測)
合成例1で得られた板状アルミナ(以下、「EF1」ということがある。)について、レーザー回折式粒度分布計HELOS(H3355)&RODOS(株式会社日本レーザー製)を用い、分散圧3bar、引圧90mbarの条件でメディアン径D50(μm)を求め、平均粒子径Lとした。平均粒子径Lは、6.6μmであった。
【0051】
(平均厚さDの計測)
上記試料について、走査型電子顕微鏡(SEM)を用いて、50個の厚さを測定した平均値を採用し、平均厚さD(μm)とした。平均厚さDは、0.5μmであった。
【0052】
上記より、合成して得られた板状アルミナのアスペクト比L/Dは、13.2であった。
【0053】
(カルボキシル基含有ポリフェニレンスルフィド樹脂(PPS-1)の製造)
圧力計、温度計、コンデンサ、デカンター、精留塔を連結した撹拌翼付き150リットルオートクレーブにp-ジクロロベンゼン(以下、「p-DCB」と略記する。)33.222kg(226モル)、N-メチル-2-ピロリドン(以下、「NMP」と略記する。)2.280kg(23モル)、47.23質量%NaSH水溶液27.300kg(NaSHとして230モル)、及び49.21質量%NaOH水溶液18.533g(NaOHとして228モル)を仕込み、撹拌しながら窒素雰囲気下で173℃まで5時間掛けて昇温して、水27.300kgを留出させた後、オートクレーブを密閉した。脱水時に共沸により留出したp-DCBはデカンターで分離して、随時オートクレーブ内に戻した。脱水終了後のオートクレーブ内は微粒子状の無水硫化ナトリウム組成物がp-DCB中に分散した状態であった。この組成物中のNMP含有量は0.069kg(0.7モル)であったことから、仕込んだNMPの97モル%(22.3モル)がNMPの開環体(4-(メチルアミノ)酪酸)のナトリウム塩(以下、「SMAB」と略記する。)に加水分解されていることが示された。オートクレーブ内のSMAB量は、オートクレーブ中に存在する硫黄原子1モル当たり0.097モルであった。仕込んだNaSHとNaOHが全量、無水Na2Sに変わる場合の理論脱水量は27.921gであることから、オートクレーブ内の残水量621g(34.5モル)の内、401g(22.3モル)はNMPとNaOHとの加水分解反応に消費されて、水としてオートクレーブ内に存在せず、残りの220g(12.2モル)は水、あるいは結晶水の形でオートクレーブ内に残留していることを示していた。オートクレーブ内の水分量はオートクレーブ中に存在する硫黄原子1モル当たり0.053モルであった。
【0054】
上記脱水工程終了後に、内温を160℃に冷却し、NMP47.492kg(479モル)に含む溶液を仕込み、185℃まで昇温した。オートクレーブ内の水分量は、工程2で仕込んだNMP1モル当たり0.025モルであった。ゲージ圧が0.00MPaに到達した時点で、精留塔を連結したバルブを開放し、内温200℃まで1時間掛けて昇温した。この際、精留塔出口温度が110℃以下になる様に冷却とバルブ開度で制御した。留出したp-DCBと水の混合蒸気はコンデンサで凝縮し、デカンターで分離して、p-DCBはオートクレーブへ戻した。留出水量は179g(9.9モル)で、オートクレーブ内水分量は41g(2.3モル)で、脱水後に仕込んだNMP1モル当たり0.005モルで、オートクレーブ中に存在する硫黄原子1モル当たり0.010モルであった。オートクレーブ内のSMAB量は脱水時と同じく、オートクレーブ中に存在する硫黄原子1モル当たり0.097モルであった。
【0055】
次いで、内温200℃から230℃まで3時間掛けて昇温し、230℃で1時間撹拌した後、250℃まで昇温し、1時間撹拌した。内温200℃時点のゲージ圧は0.03MPaで、最終ゲージ圧は0.30MPaであった。冷却後、得られたスラリーの内、6.5kgを30リットルの80℃温水に注いで1時間撹拌した後、濾過した。このケーキを再び30リットルの温水で1時間撹拌し、洗浄した後、濾過した。次に、得られたケーキに30リットルの水を加え、酢酸でpHを4.5に調整し、常温で1時間撹拌したのち、濾過した。さらに得られたケーキに30リットルの温水を加え、1時間撹拌したのち、ろ過する操作を2回繰返して、熱風循環乾燥機を用い120℃で一晩乾燥して白色粉末上のカルボキシル基含有ポリフェニレンスルフィド樹脂(以下、「PPS-1」という。)を得た。得られたポリマーの溶融粘度は98Pa・sで、カルボキシル基含有量は55.4μmol/gであった。また、融点(Tm)は282℃、再結晶化温度(Tc2)は203℃であった。
【0056】
(組成物配合・作製)
表に記載する組成成分および配合量(全て質量部)にしたがい、各材料をタンブラーで均一に混合した。その後、東芝機械株式会社製ベント付き2軸押出機「TEM-35B」に前記配合材料を投入し、樹脂成分吐出量25kg/hr、スクリュー回転数250rpm、樹脂成分の吐出量(kg/hr)とスクリュー回転数(rpm)との比率(吐出量/スクリュー回転数)=0.1(kg/hr・rpm)、設定樹脂温度330℃で溶融混練して樹脂組成物のペレットを得た。
【0057】
(評価用成形物作製)
得られたペレットをシリンダー温度320℃に設定した住友-ネスタール社製射出成形機(SG75-HIPRO・MIII)に供給し、金型温度150℃に温調したD2シート片成形用金型、または両つかみ部より組成物が流入する構造のダンベル試験片成形用金型を用いて、射出成形を行った。
【0058】
(冷熱衝撃試験)
縦25mm、横40mm、厚さ10mmの鋼鉄製のインサートブロック部材の、前記部材縦方向の辺の中点同士を結び、前記部材横方向の辺に平行な直線上に、直径3.55mmの厚さ方向に平行な2個の貫通穴の直径の中心を有し、該貫通穴の直径の中心同士が前記直線の中点を中心にして20mm離れて配置されたインサートブロック部材を準備し、次いで、前記2個の貫通穴と射出成型用金型内部に設置された2本の鋼鉄製円柱形のピンとを用いて、前記インサートブロック部材が前記射出成型用金型の内部に保持されるように設置し、かつ、成形用樹脂組成物のペレットを射出成型した後に、前記インサートブロック部材の外周全面が肉厚1mmの成形用樹脂組成物で被覆されるように設計された射出成形金型を用いて、前記成形用樹脂組成物のペレットを射出成型し成型品を得た。得られた前記インサートブロック部材を内包する成形用樹脂組成物の成型品を用いて、気相式の冷熱衝撃試験機中で、「1サイクル;-40℃/0.5時間~150℃/0.5時間」の冷熱サイクル試験を実施し、クラックが発生するサイクル数を記録した。この冷熱衝撃試験は、ヒートサイクル特性の評価方法の一つである。
【0059】
(熱伝導率の測定)
作製したD2シート片から10mm×10mmのテストピース(放熱部材)を切り出し、熱伝導率測定装置(LFA467 HyperFlash、NETZSCH社製)を用いて、25℃における熱拡散率及び比熱の測定を行った。次いで、アルキメデス法により、この放熱部材の密度を測定した。得られた熱拡散率、比熱、そして密度の積から、この放熱部材の熱伝導率を見積もった。
【0060】
(ウエルド曲げ強度の測定)
作製したダンベル型成形体を用いて、ISO178に準拠してウエルド曲げ強度の測定を行った。
【0061】
(配合表と評価結果)
【0062】
【表1】
【0063】
上記配合表における実施例及び比較例に使用した各種原料は、以下の通りである。なお、下記の窒化硼素、板状アルミナのアスペクト比は、前記EF1と同様の方法により測定した値を上記表中に記載している。
窒化硼素;デンカ株式会社製ボロンナイトライドSGP
CF1;株式会社フジミインコーポレーテッド製板状アルミナPWA9
タルク;林化成株式会社製PK-S
ガラス繊維;Owens Corning社製ガラス繊維FT-562
熱可塑性樹脂;住友化学株式会社製ボンドファースト7M
〔エチレン-グリシジルメタクリレート-アクリル酸メチル共重合体、ガラス転移温度(Tg)-33℃〕
【要約】
機械的強度、ヒートサイクル特性及び熱伝導性とをバランスよく兼備する成形体が得られる、ポリアリーレンスルフィド樹脂を含有する成形用樹脂組成物を提供する。具体的には、アスペクト比が10~500である板状フィラー(A)と、ポリアリーレンスルフィド樹脂(B)と、ガラス転移温度(Tg)が20℃以下の熱可塑性樹脂(C)と、ガラス繊維(D)とを必須成分とし、質量換算で前記(A)+(B)+(C)+(D)の合計100部当たり、前記(A)を30~70部含有する成形用樹脂組成物及び当該成形用樹脂組成物の成形体を提供する。