(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-01-17
(45)【発行日】2022-01-26
(54)【発明の名称】画像形成装置、画像形成システム及び処理位置移動方法
(51)【国際特許分類】
B41J 2/01 20060101AFI20220119BHJP
B41J 25/20 20060101ALI20220119BHJP
B65H 7/02 20060101ALI20220119BHJP
G01B 11/00 20060101ALI20220119BHJP
【FI】
B41J2/01 307
B41J2/01 401
B41J2/01 451
B41J25/20
B65H7/02
G01B11/00 G
G01B11/00 H
(21)【出願番号】P 2018044808
(22)【出願日】2018-03-12
【審査請求日】2021-01-18
(31)【優先権主張番号】P 2017050506
(32)【優先日】2017-03-15
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000006747
【氏名又は名称】株式会社リコー
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(72)【発明者】
【氏名】砂押 雅之
(72)【発明者】
【氏名】林 智明
(72)【発明者】
【氏名】水野 雅弘
(72)【発明者】
【氏名】長洲 剛史
【審査官】四垂 将志
(56)【参考文献】
【文献】特開2011-136526(JP,A)
【文献】特開2011-31609(JP,A)
【文献】特開2015-182364(JP,A)
【文献】特開2008-254203(JP,A)
【文献】特開2017-019118(JP,A)
【文献】特開2007-069428(JP,A)
【文献】特開2010-055064(JP,A)
【文献】特開2014-189337(JP,A)
【文献】特開2016-087807(JP,A)
【文献】米国特許出願公開第2011/0074860(US,A1)
【文献】特開2003-205654(JP,A)
【文献】特開平9-109425(JP,A)
【文献】特開2011-177950(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B41J2/01-2/215
B41J25/20
B65H7/02
G01B11/00
(57)【特許請求の範囲】
【請求項1】
複数のヘッドユニットを有し、搬送される被搬送物に対して前記複数のヘッドユニットによって画像形成処理を行う画像形成装置であって、
前記複数のヘッドユニットによって前記画像形成処理が行われた処理位置を、前記複数のヘッドユニットよりも搬送方向下流で検出するずれ量センサと、
前記複数のヘッドユニットのうち少なくとも1つのヘッドユニットの前記処理位置を、前記ずれ量センサの検出結果に基づいた第1の位置へ搬送方向に直交する直交方向に移動する移動部と、
前記少なくとも1つのヘッドユニットに対応した位置で前記被搬送物の表面情報を検出する表面検出センサと、
を備え、
前記移動部は、前記第1の位置に対する前記少なくとも1つのヘッドユニットの処理位置を、前記表面検出センサが検出した表面情報に基づいて前記直交方向に移動させること、
を特徴とする画像形成装置。
【請求項2】
前記表面検出センサの検出したデータの原点を変更する変更部を備えることを特徴とする請求項1に記載の画像形成装置。
【請求項3】
前記変更部は、前記直交方向に前記表面検出センサの位置を移動して原点を変更することを特徴とする請求項2に記載の画像形成装置。
【請求項4】
前記変更部は、前記表面検出センサの出力する画像データの原点座標を変更することを特徴とする請求項2記載の画像形成装置。
【請求項5】
前記表面検出センサの出力に基づいて、前記被搬送物の位置、移動速度、移動量又はこれらの組み合わせである検出結果を算出するコントローラを備えることを特徴とする請求項1乃至4の何れか1項に記載の画像形成装置。
【請求項6】
前記被搬送物の所定の箇所に対して前記ヘッドユニットが画像形成処理を行う処理位置よりも前記被搬送物が搬送される搬送方向の上流側に設けられた第1の支持部材と、
前記処理位置よりも前記搬送方向の下流側に設けられた第2の支持部材とを前記ヘッドユニットごとに備え、
前記第1の支持部材及び前記第2の支持部材の間に、前記表面検出センサを備えることを特徴とする請求項1乃至5の何れか1項に記載の画像形成装置。
【請求項7】
前記表面検出センサは、光学センサであることを特徴とする請求項1乃至6の何れか1項に記載の画像形成装置。
【請求項8】
前記表面情報は、前記被搬送物が有するパターンであり、
コントローラは、前記パターンに基づいて、検出結果を求めることを特徴とする請求項5乃至7の何れか1項に記載の画像形成装置。
【請求項9】
前記パターンは、前記被搬送物に形成される凹凸形状に対して照射される光の干渉によって生成されることを特徴とする請求項8に記載の画像形成装置。
【請求項10】
前記被搬送物は、搬送方向に沿って長尺に連続したシートであることを特徴とする請求項1乃至9の何れか1項に記載の画像形成装置。
【請求項11】
前記表面検出センサは、前記処理位置より前記第1の支持部材に近い位置に設置されることを特徴とする請求項6に記載の画像形成装置。
【請求項12】
前記検出結果に基づいて、前記ヘッドユニットに前記画像形成処理を行わせる制御部を更に備え、
前記制御部は、前記検出結果に基づいて、前記ヘッドユニットが前記画像形成処理を行うそれぞれのタイミングを前記ヘッドユニットごとに生成することを特徴とする請求項5に記載の画像形成装置。
【請求項13】
前記移動部は、前記少なくとも1つのヘッドユニットを前記直交方向に移動させるアクチュエータを含むことを特徴とする請求項1乃至12の何れか1項に記載の画像形成装置。
【請求項14】
前記ヘッドユニットは、液体を吐出する複数のノズルが前記直交方向に配列された液体吐出ヘッドユニットであって、
前記移動部は、前記少なくとも1つのヘッドユニットの、吐出を行うノズルの位置を変更することを特徴とする請求項1乃至13の何れか1項に記載の画像形成装置。
【請求項15】
複数のヘッドユニットを有し、搬送される被搬送物に対して前記複数のヘッドユニットによって画像形成処理を行う1以上の装置を有する画像形成システムであって、
前記複数のヘッドユニットによって前記画像形成処理が行われた処理位置を前記複数のヘッドユニットよりも搬送方向下流で検出するずれ量センサと、
前記複数のヘッドユニットのうち少なくとも1つのヘッドユニットの前記処理位置を、前記ずれ量センサの検出結果に基づいて第1の位置へ、搬送方向に直交する直交方向に移動する移動部と、
前記少なくとも1つのヘッドユニットに対応した位置で前記被搬送物の表面情報を検出する表面検出センサと、
を備え、
前記移動部は、前記第1の位置に対する前記少なくとも1つのヘッドユニットの処理位置を、前記表面検出センサが検出した表面情報に基づいて前記直交方向に移動させること、
を特徴とする画像形成システム。
【請求項16】
複数のヘッドユニットを有し、搬送される被搬送物に対して前記複数のヘッドユニットによって画像形成処理を行う装置が行う処理位置移動方法であって、
前記複数のヘッドユニットよりも下流で、前記複数のヘッドユニットによって前記画像形成処理が行われた処理位置を検出する処理位置検出手順と、
前記複数のヘッドユニットのうち少なくとも1つのヘッドユニットの前記処理位置を、前記処理位置検出手順で検出された位置に基づいた第1の位置へ、搬送方向に直交する直交方向へ移動する第1の移動手順と、
前記少なくとも1つのヘッドユニットに対応した位置で、前記被搬送物の表面情報を検出する表面情報検出手順と、
前記第1の位置に対する前記少なくとも1つのヘッドユニットの処理位置を、前記検出された表面情報に基づいて前記直交方向に移動させる第2の移動手順と、を有することを特徴とする処理位置移動方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像形成装置、画像形成システム及び処理位置移動方法に関するものである。
【背景技術】
【0002】
従来、ヘッドユニットを用いて様々な処理を行う方法が知られている。例えば、プリントヘッドからインクを吐出する、いわゆるインクジェット方式によって画像形成等を行う方法が知られている。この画像形成によって、印刷媒体に印刷される画像の印刷品質を向上させる方法が知られている。
【0003】
例えば、印刷品質を向上させるため、プリントヘッドの向きを調整する方法が知られている。具体的には、まず、連続用紙印刷システムを通る印刷媒体であるウェブ(web)の横方向における位置変動がセンサによって検出される。このセンサによって検出される位置変動を補償するように、横方向におけるプリントヘッドの位置を調整する方法が知られている(例えば、特許文献1参照)。
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、例えば、画像形成される画像の画質を向上させるためには、吐出される液体の着弾位置を精度良くするように求められる場合がある。これに対して、従来の技術では、ヘッドユニットによって処理が行われる処理位置の精度が悪いため、吐出される液体の着弾位置等といった処理位置の精度が悪い場合があるのが課題となる。
【0005】
本発明の1つの側面は、液体を吐出する装置等のように、ヘッドユニットを用いて被搬送物に画像を形成する処理を行う装置の処理位置の精度を向上できる装置が提供できることを目的とする。
【課題を解決するための手段】
【0006】
上述した課題を解決するために、本発明の一態様である、複数のヘッドユニットを有し、搬送される被搬送物に対して前記複数のヘッドユニットによって画像形成処理を行う画像形成装置は、
前記複数のヘッドユニットによって前記画像形成処理が行われた処理位置を、前記複数のヘッドユニットよりも搬送方向下流で検出するずれ量センサと、
前記複数のヘッドユニットのうち少なくとも1つのヘッドユニットの前記処理位置を、前記ずれ量センサの検出結果に基づいた第1の位置へ搬送方向に直交する直交方向に移動する移動部と、
前記少なくとも1つのヘッドユニットに対応した位置で前記被搬送物の表面情報を検出する表面検出センサと、を備え、
前記移動部は、前記第1の位置に対する前記少なくとも1つのヘッドユニットの処理位置を、前記表面検出センサが検出した表面情報に基づいて前記直交方向に移動させることを特徴とする。
【発明の効果】
【0007】
ヘッドユニットを用いて被搬送物に画像を形成する処理を行う装置の処理位置の精度を向上できる装置が提供できる。
【図面の簡単な説明】
【0008】
【
図1】本発明の一実施形態に係る画像形成装置の一例を示す概略図である。
【
図2】本発明の一実施形態に係る液体を吐出する装置の全体構成例を示す概略図である。
【
図3】本発明の一実施形態に係る液体吐出ヘッドユニットの外形形状の一例を示す図である。
【
図4】本発明の一実施形態に係るずれ量の一例を示す図である。
【
図5】本発明の一実施形態に係るずれ量の算出例を示す図(その1)である。
【
図6】本発明の一実施形態に係るずれ量の算出例を示す図(その2)である。
【
図7】本発明の一実施形態に係る液体吐出ヘッドユニットの移動例を示す図である。
【
図8】本発明の一実施形態に係る液体を吐出する装置が有する液体吐出ヘッドユニットを移動させるための移動機構の一例を示すブロック図である。
【
図9】本発明の一実施形態に係る制御部のハードウェア構成の一例を示すブロック図である。
【
図10】本発明の一実施形態に係る制御部が有するデータ管理装置のハードウェア構成の一例を示すブロック図である。
【
図11】本発明の一実施形態に係る制御部が有する画像出力装置のハードウェア構成の一例を示すブロック図である。
【
図12】本発明の一実施形態に係る液体を吐出する装置による位置調整処理例を示すフローチャートである。
【
図13】本発明の一実施形態に係る液体を吐出する装置の機能構成の一例を示す機能ブロック図である。
【
図14】本発明の一実施形態に係る表面検出部を実現するハードウェア構成例を示すブロック図である。
【
図15】本発明の一実施形態に係るセンサデバイスの一例を示す外観図である。
【
図16】本発明の一実施形態に係る表面検出部を用いる機能構成の一例を示す機能ブロック図である。
【
図17】本発明の一実施形態に係る相関演算方法の一例を示す構成図である。
【
図18】本発明の一実施形態に係る相関演算におけるピーク位置の探索方法の一例を示す図である。
【
図19】本発明の一実施形態に係る相関演算の演算結果例を示す図である。
【
図20】本発明の一実施形態に係る液体を吐出する装置による画像形成動作中の表面検出部による検出と液体ヘッドユニットの移動処理の変形例を示すフローチャートである。
【
図21】本発明の一実施形態に係る液体を吐出する装置による被搬送物の変動量を算出する方法の一例を示すタイミングチャートである。
【
図22】本発明の一実施形態に係る液体を吐出する装置の第1変形例を示す概略図である。
【
図23】本発明の一実施形態に係る液体を吐出する装置の第2変形例を示す概略図である。
【発明を実施するための形態】
【0009】
以下、本発明の実施形態について添付の図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付し、重複する説明を省略する。
【0010】
<全体構成例>
以下、画像形成装置が有するヘッドユニットが、液体を吐出する液体吐出ヘッドユニットである場合を例に説明する。
【0011】
図1は、本発明の一実施形態に係る画像形成装置の一例を示す概略図である。例えば、画像形成装置は、図示するような液体を吐出する装置110である。このような液体を吐出する装置では、吐出される液体は、水性又は油性であるインク等の記録液である。以下、画像形成装置が液体を吐出する装置110である例で説明する。
【0012】
液体を吐出する装置110は、ウェブ120等の被搬送物を搬送する。図示する例では、液体を吐出する装置110は、ローラ130等によって搬送されるウェブ120に対して、液体を吐出して画像形成を行う。画像が形成される場合、ウェブ120は、記録媒体とも言える。また、ウェブ120は、いわゆる連続用紙印刷媒体等である。すなわち、ウェブ120は、巻き取りが可能なロール状のシート等である。このように、液体を吐出する装置110は、いわゆるプロダクション・プリンタである。以下の説明では、ローラ130が、ウェブ120の張力を調整等し、図示する方向(以下「搬送方向10」という。)にウェブ120が搬送される例で説明する。また、この例では、液体を吐出する装置110は、ブラック(K)、シアン(C)、マゼンタ(M)及びイエロー(Y)の4色のそれぞれのインクを吐出してウェブ120の所定の箇所に画像を形成するインクジェットプリンタである。
【0013】
図2は、本発明の一実施形態に係る液体を吐出する装置の全体構成例を示す概略図である。図示するように、液体を吐出する装置110は、4色のそれぞれのインクを吐出するため、4つの液体吐出ヘッドユニットを有する。
【0014】
そして、液体を吐出する装置110は、図示するように、最も下流に設置される液体吐出ヘッドユニットより下流となる位置に、ずれ量センサPSEN等を有する。
【0015】
各液体吐出ヘッドユニットは、搬送方向10に搬送されるウェブ120に対して、各色のそれぞれの液体を吐出する。また、ウェブ120は、2対のニップローラ(nip roller)及びローラ230等で搬送されるとする。以下、この2対のニップローラのうち、各液体吐出ヘッドユニットより上流側に設置されるニップローラを「第1ニップローラNR1」という。一方で、第1ニップローラNR1及び各液体吐出ヘッドユニットより下流側に設置されるニップローラを「第2ニップローラNR2」という。なお、各ニップローラは、図示するように、ウェブ120等の被搬送物を挟んで回転する。このように、各ニップローラ及びローラ230は、ウェブ120等を所定の方向へ搬送する機構等である。
【0016】
また、ウェブ120の記録媒体は、長尺であるのが望ましい。具体的には、記録媒体の長さは、第1ニップローラNR1と、第2ニップローラNR2との距離より長いのが望ましい。さらに、記録媒体は、ウェブに限られない。すなわち、記録媒体は、折り畳まれて格納されるシート、いわゆる「Z紙」等でもよい。
【0017】
以下、図示する全体構成例では、各液体吐出ヘッドユニットは、上流側から下流側に向かって、ブラック(K)、シアン(C)、マゼンタ(M)及びイエロー(Y)の順に設置されるとする。すなわち、最も上流側に設置される液体吐出ヘッドユニット(以下「ブラック液体吐出ヘッドユニット210K」という。)をブラック(K)用とする。このブラック液体吐出ヘッドユニット210Kの次に設置される液体吐出ヘッドユニット(以下「シアン液体吐出ヘッドユニット210C」という。)をシアン(C)用とする。さらに、シアン液体吐出ヘッドユニット210Cの次に設置される液体吐出ヘッドユニット(以下「マゼンタ液体吐出ヘッドユニット210M」という。)をマゼンタ(M)用とする。続いて、最も下流側に設置される液体吐出ヘッドユニット(以下「イエロー液体吐出ヘッドユニット210Y」という。)をイエロー(Y)用とする。
【0018】
各液体吐出ヘッドユニットは、画像データ等に基づいて、ウェブ120の所定の箇所に、各色のインクをそれぞれ吐出する。このインクによって像が形成される位置(以下「着弾位置」という。)は、液体吐出ヘッドユニットから液体が吐出される位置にほぼ等しい、すなわち、着弾位置は、液体吐出ヘッドユニットの直下等である。以下、液体吐出ヘッドユニットによって画像形成処理が行われ、画像が形成される処理位置を着弾位置とする例で説明する。
【0019】
この例では、ブラックのインクは、ブラック液体吐出ヘッドユニット210Kの着弾位置(以下「ブラック着弾位置PK」という。)に吐出される。同様に、シアンのインクは、シアン液体吐出ヘッドユニット210Cの着弾位置(以下「シアン着弾位置PC」という。)に吐出される。さらに、マゼンタのインクは、マゼンタ液体吐出ヘッドユニット210Mの着弾位置(以下「マゼンタ着弾位置PM」という。)に吐出される。また、イエローのインクは、イエロー液体吐出ヘッドユニット210Yの着弾位置(以下「イエロー着弾位置PY」という。)に吐出される。なお、各液体吐出ヘッドユニットがインクを吐出するそれぞれのタイミングの制御及び各液体吐出ヘッドユニットに設けられたアクチュエータACTの制御は、例えば、各液体吐出ヘッドユニットに接続されるコントローラ520が行う。なお、タイミングの制御とアクチュエータACTの制御は、2つ以上のコントローラ又は回路が行っても良い。アクチュエータACTについては、後述する。
【0020】
また、図示する例では、液体吐出ヘッドユニットごとに、複数のローラがそれぞれ設置される。図示するように、複数のローラは、例えば、各液体吐出ヘッドユニットを挟んで、上流側と、下流側とにそれぞれ設置される。具体的には、ウェブ120の搬送経路において、液体吐出ヘッドユニットごとに、各着弾位置の上流側にウェブ120を支持するローラ(以下「第1ローラ」という。)が設置される。また、各着弾位置から下流側にウェブ120を支持するローラ(以下「第2ローラ」という。)が設置される。このように、第1ローラ及び第2ローラがそれぞれ設置されると、各着弾位置において、いわゆる「ばたつき」が少なくできる。なお、第1ローラ及び第2ローラは、それぞれ従動ローラである。また、第1ローラ及び第2ローラは、モータ等により回転駆動されるローラであってもよい。
【0021】
なお、第1の支持部材の例である第1ローラ及び第2の支持部材の例である第2ローラは、従動ローラ等の回転体でなくてもよい。すなわち、第1ローラ及び第2ローラは、被搬送物を支える支持部材であればよい。例えば、第1の支持部材及び第2の支持部材は、断面円形状のパイプ又はシャフト等でもよい。他にも、第1の支持部材及び第2の支持部材は、被搬送物と接する部位が円弧状をした湾曲板等であってもよい。以下、第1の支持部材が第1ローラであり、かつ、第2の支持部材が第2ローラである例で説明する。
【0022】
具体的には、ブラック着弾位置PKのウェブ120の搬送方向上流側にブラック用第1ローラCR1Kが設置される。これに対して、ブラック着弾位置PKからウェブ120の搬送方向下流側にブラック用第2ローラCR2Kが設置される。同様に、シアン液体吐出ヘッドユニット210Cに対して、シアン用第1ローラCR1C及びシアン用第2ローラCR2Cがそれぞれ設置される。さらに、マゼンタ液体吐出ヘッドユニット210Mに対して、マゼンタ用第1ローラCR1M及びマゼンタ用第2ローラCR2Mがそれぞれ設置される。また、イエロー液体吐出ヘッドユニット210Yに対して、イエロー用第1ローラCR1Y及びイエロー用第2ローラCR2Yがそれぞれ設置される。
【0023】
液体を吐出する装置110は、例えば、
図2に示すように、表面検出部の機能の少なくとも一部を実現する表面検出センサデバイスを備える構成であるのが望ましい。以下、図示するように、液体を吐出する装置110が、4つの表面検出センサデバイスを有する構成を例に説明する。なお、表面検出センサデバイスは、5つ以上であってもよい。
【0024】
以下の説明では、ブラック液体吐出ヘッドユニット210Kに対して設置される表面検出センサデバイスを「ブラック用センサデバイスSENK」という。同様に、シアン液体吐出ヘッドユニット210Cに対して設置される表面検出センサデバイスを「シアン用センサデバイスSENC」という。さらに、マゼンタ液体吐出ヘッドユニット210Mに対して設置される表面検出センサデバイスを「マゼンタ用センサデバイスSENM」という。さらにまた、イエロー液体吐出ヘッドユニット210Yに対して設置される表面検出センサデバイスを「イエロー用センサデバイスSENY」という。また、以下の説明では、ブラック用センサデバイスSENK、シアン用センサデバイスSENC、マゼンタ用センサデバイスSENM及びイエロー用センサデバイスSENYを総じて、「表面検出センサデバイスSEN」という場合がある。
【0025】
また、以下の説明において、「表面検出センサデバイスが設置される位置」は、検出等が行われる位置を指す。したがって、「表面検出センサデバイスが設置される位置」に、検出等に用いる装置がすべて設置される必要はなく、表面検出センサデバイス以外の装置は、ケーブル等で接続されて他の位置に設置されてもよい。なお、
図2に図示するブラック用センサデバイスSENK、シアン用センサデバイスSENC、マゼンタ用センサデバイスSENM及びイエロー用センサデバイスSENYは、表面検出センサデバイスが設置される位置の例を示す。
【0026】
液体吐出ヘッドユニットの外形形状の一例を、
図3を用いて説明する。ここで、
図3(a)は、本発明の実施形態に係る液体を吐出する装置110の4つの液体吐出ヘッドユニット210K~210Yの一例を示す概略平面図である。
【0027】
図3(a)に示すように、各液体吐出ヘッドユニットは、本実施形態では、ライン型のヘッドユニットである。すなわち、
図2に示すように、液体を吐出する装置110は、搬送方向10において、上流側から、ブラック(K)、シアン(C)、マゼンタ(M)及びイエロー(Y)の順で、4つの液体吐出ヘッドユニット210K、210C、210M及び210Yを配置する。
【0028】
例えば、ブラック(K)の液体吐出ヘッドユニット210Kは、本実施形態では、直交方向20に、4つのヘッド210K-1、210K-2、210K-3及び210K-4を千鳥状に配置する。これにより、液体を吐出する装置110は、ウェブ120の画像形成領域(印刷領域)の幅方向(直交方向20)の全域に、画像を形成することができる。なお、他の液体吐出ヘッドユニット210C、210M及び210Yの構成は、例えば、ブラック(K)の液体吐出ヘッドユニット210Kと同様の構成である。したがって、他の色の液体吐出ヘッドユニットの説明を省略する。
【0029】
なお、液体吐出ヘッドユニットが4つのヘッドで構成される例を説明したが、液体吐出ヘッドユニットは、単一のヘッドで構成されても良い。
【0030】
図2に戻り、液体を吐出する装置110は、各液体吐出ヘッドユニットが、ウェブ120に、液体を吐出して形成した像の位置を検出する装置を備える。図示する例では、ずれ量センサPSENによって、液体を吐出する装置110は、液体で形成した像の位置を検出する。
【0031】
<ずれ量センサの例>
ずれ量センサPSENは、ヘッドユニットが像形成を行った位置を検出できる非接触センサであればよい。例えば、ずれ量センサPSENは、レーザ、CMOS(Complementary Metal Oxide Semiconductor)カメラ、CCD(Charge Coupled Device)カメラ、光学センサ、2次元センサ、エリアセンサ又はこれらの組み合わせ等である。また、ずれ量センサPSENは、表面検出部110F10と同様のハードウェア、すなわち、
図14に示すハードウェア等であってもよい。そして、ずれ量センサPSENが検出した各位置の異なる量が「ずれ量」となる。具体的には、ずれ量は、例えば、以下のように、算出される。
【0032】
<ずれ量の算出例>
まず、ずれ量について説明する。例えば、ずれ量は、以下のように発生する。
【0033】
図4は、本発明の一実施形態に係るずれ量の一例を示す図である。ウェブは、第1ローラ又は第2ローラ等(以下「搬送ローラRLL」という。)によって、搬送方向10に対して斜行する状態となる場合がある。まず、図示するように、搬送方向10に対して平行となるように、すなわち、斜行がない状態(以下「第1状態120A」という。)となるように、ウェブが設定されるとする。すなわち、第1状態120Aは、斜行がない状態の例であり、この状態が、ずれ量がほぼ「0」となる状態の例である。
【0034】
一方で、例えば、ウェブが搬送ローラRLLに斜めに架けられる等の理由によって、図示するように、斜行する状態(以下「第2状態120B」という。)になる場合がある。図示するように、第2状態120Bでは、ウェブは、第1状態120Aと比較して、搬送方向10に対して、角度がある。以下、第2状態120Bをずれ量がある(すなわち、ずれ量が「0」より大きい値となる場合である。)場合の例として説明する。
【0035】
なお、第2状態120Bにおいて、ウェブが斜行する向き及び量は、ウェブの物理的特性、ウェブにかけられる張力の変動、ウェブの蛇行、ウェブのファイバ向き又はこれの組み合わせ等によって定まる。
【0036】
そして、この例では、第1地点P1は、ブラック用センサデバイスSENK、シアン用センサデバイスSENC、マゼンタ用センサデバイスSENM又はイエロー用センサデバイスSENY(
図2)等の表面検出センサデバイスによって、ウェブの位置が検出される位置とする。また、表面検出センサデバイスは、後述するように、画像形成中に表面状態を検出するセンサであり、後述する表面検出部110F10を構成するハードウェアの一例である。
【0037】
一方で、第2地点P2は、液体吐出ヘッドユニットから液体が吐出され、吐出された液体がウェブに着弾する位置とする。
【0038】
例えば、図示するように、第1地点P1では、第1状態120A及び第2状態120Bのそれぞれのウェブの端部が一致し、表面検出センサデバイスが検出するウェブの位置がどちらも第1距離DIS1であるとする。すなわち、この例では、第1状態120Aであっても、第2状態120Bであっても、第1地点P1において、第1距離DIS1は、一致する。
【0039】
一方で、第2地点P2において、例えば、ヘッド位置P2Hで、液体吐出ヘッドユニットによって、ウェブに、液体が吐出される処理が行われるとする。図示するように、同じ第1距離DIS1となるヘッド位置P2Hで、ウェブに、液体が吐出されても、ウェブが、第1状態120Aであるか、第2状態120Bであるかによって、ウェブ上に液体が着弾する位置が異なる。
【0040】
具体的には、ウェブが第1状態120Aであると、ウェブには、図示するように、ウェブの端部から第2距離DIS2となる位置に、液体が着弾する。一方で、ウェブが第2状態120Bであると、ウェブには、図示するように、ウェブの端部から第3距離DIS3となる位置に、液体が着弾する。
【0041】
すなわち、第1地点P1において、第1距離DIS1と検出される位置であっても、第2地点P2において、ウェブの状態によって、異なる位置となる場合がある。したがって、第1地点P1において、第1距離DIS1と検出され、かつ、第2地点P2において、ヘッド位置P2Hで液体が吐出されても、ウェブの状態によって、液体が着弾する位置は、第2距離DIS2の位置になったり、第3距離DIS3の位置になったりする。
【0042】
そこで、液体を吐出する装置110は、例えば、以下のように、ずれ量を算出する。
【0043】
<ずれ量の算出手順例>
ずれ量は、例えば、特開2016-221719号公報によって開示されている方法等で算出される。具体的には、ずれ量は、以下のように算出される。
【0044】
図5は、本発明の一実施形態に係るずれ量の算出例を示す図(その1)である。まず、
図4に示す第1状態120Aにおける例について説明する。また、この例では、ブラック液体吐出ヘッドユニット210K及びシアン液体吐出ヘッドユニット210Cによって、液体が吐出される。
【0045】
まず、この例では、図示するように、ブラック液体吐出ヘッドユニット210Kは、直交方向20において、第21地点P21及び第23地点P23のそれぞれの位置に、液体を吐出する。このようにして、例えば、図示するような、第1画像パターンPTN1及び第3画像パターンPTN3が形成されるように、ブラック液体吐出ヘッドユニット210Kは、液体を着弾させる。
【0046】
次に、ブラック液体吐出ヘッドユニット210Kから吐出される液体が着弾したウェブは、搬送方向10、すなわち、シアン液体吐出ヘッドユニット210Cが設置される方へ搬送される。
【0047】
そして、図示するように、シアン液体吐出ヘッドユニット210Cは、直交方向20において、第22地点P22の位置に、液体を吐出する。この例では、シアン液体吐出ヘッドユニット210Cは、第21地点P21と、第23地点P23との中間地点となる第22地点P22の位置に、液体を吐出する。このようにして、例えば、図示するような、第2画像パターンPTN2が形成されるように、シアン液体吐出ヘッドユニット210Cは、液体を着弾させる。
【0048】
したがって、図示するように、ウェブが第1状態120Aであると、直交方向20において、第1画像パターンPTN1と、第3画像パターンPTN3とが形成される中間の位置に、第2画像パターンPTN2が形成される。
【0049】
そして、ずれ量センサPSENは、図示するように、シアン液体吐出ヘッドユニット210Cより、搬送方向10における下流にて、液体が着弾した位置、すなわち、各パターンが形成された位置を検出する。
【0050】
図示するように、ずれ量センサPSENの検出範囲は、複数のパターンを一度に検出できる範囲に設定される。つまり、ずれ量センサPSENが検出において撮像を行う場合には、複数のパターンが1つの画像に写るように撮像を行う。なお、検出が行われるタイミングは、ずれ量センサPSENから検出結果を示すデータを読み出す関係によって、タイミングがずれてもよい。
【0051】
次に、液体を吐出する装置110は、ずれ量センサPSENによる検出結果に基づいて、各液体吐出ヘッドユニットの位置を調整するか否かを判断する。この位置は後述する各液体吐出ヘッドユニットの位置の移動の初期位置として用いられる。以下、シアン液体吐出ヘッドユニット210Cを調整すべきか否かを判断する例で説明する。
【0052】
この例では、液体を吐出する装置110は、第2画像パターンPTN2が、第1画像パターンPTN1と、第3画像パターンPTN3との中間地点に形成されているか否かに基づいて、シアン液体吐出ヘッドユニット210Cの位置を調整するか否かを判断する。
【0053】
図示するように、ウェブが第1状態120Aであると、第2画像パターンPTN2は、第1画像パターンPTN1と、第3画像パターンPTN3との中間地点に形成される。そして、液体を吐出する装置110は、例えば、各パターンが形成された位置の間隔を比較すると、中間地点に形成されたか否かを判断できる。
【0054】
具体的には、第1画像パターンPTN1と、第2画像パターンPTN2との間隔を「第1画像パターン間隔DS12」とする。一方で、第2画像パターンPTN2と、第3画像パターンPTN3との間隔を「第2画像パターン間隔DS23」とする。そして、第1画像パターン間隔DS12と、第2画像パターン間隔DS23とがほぼ同一であると、液体を吐出する装置110は、第2画像パターンPTN2が中間地点に形成されたと判断する。すなわち、第1画像パターン間隔DS12と、第2画像パターン間隔DS23とがほぼ等間隔であると、液体を吐出する装置110は、ウェブが第1状態120Aであると判断できる。
【0055】
次に、液体を吐出する装置110は、第2画像パターンPTN2が、第1画像パターンPTN1と、第3画像パターンPTN3との中間地点に形成されていると、シアン液体吐出ヘッドユニット210Cを調整しないと判断する。一方で、液体を吐出する装置110は、第2画像パターンPTN2が、第1画像パターンPTN1と、第3画像パターンPTN3との中間地点より所定量以上ずれた位置に形成されていると、シアン液体吐出ヘッドユニット210Cを調整すると判断する。
【0056】
したがって、図示するように、ウェブが第1状態120Aであると、液体を吐出する装置110は、第2画像パターンPTN2が、第1画像パターンPTN1と、第3画像パターンPTN3との中間地点に形成されていると判断する。そのため、液体を吐出する装置110は、シアン液体吐出ヘッドユニット210Cを調整しないと判断する。
【0057】
また、この例では、第1画像パターンPTN1と、第3画像パターンPTN3との中間地点に対して、第2画像パターンPTN2が形成された位置の差分が「ずれ量」となる。すなわち、ずれ量は、第1画像パターンPTN1と、第3画像パターンPTN3との中間地点を基準値とする第2画像パターンPTN2が形成された位置を示す量である。
【0058】
そのため、図示するように、ウェブが第1状態120Aであり、第2画像パターンPTN2が、第1画像パターンPTN1と、第3画像パターンPTN3とのほぼ中間地点に形成されると、ずれ量は、ほぼ「0」となる。一方で、第2画像パターンPTN2が第1画像パターンPTN1と、第3画像パターンPTN3との中間地点からずれた位置に形成されると、ずれ量が発生する。
【0059】
例えば、以下のように、ウェブが第2状態120Bであると、ずれ量が発生する。
【0060】
図6は、本発明の一実施形態に係るずれ量の算出例を示す図(その2)である。図示する例は、
図5と比較すると、ウェブが
図4に示す第2状態120B、すなわち、ウェブが斜行する点が異なる。以下、
図5に示す構成の例で説明し、重複する説明を省略する。
【0061】
また、図示する例では、ブラック着弾位置PKより下流、かつ、シアン着弾位置PCより上流の位置から、ウェブは、斜行している。
【0062】
このように、ウェブが第2状態120Bであると、
図5と同様にブラック液体吐出ヘッドユニット210K及びシアン液体吐出ヘッドユニット210Cが液体を吐出しても、
図5とは異なるように各画像パターンが形成される。具体的には、この例では、図示するように、斜行によって、第2画像パターンPTN2は、
図5に示す場合と比較して、第1画像パターンPTN1と、第3画像パターンPTN3との中間地点より、第3画像パターンPTN3方へずれた位置に形成される。
【0063】
そのため、ウェブが第2状態120Bであると、図示するように、第1画像パターン間隔DS12と、第2画像パターン間隔DS23とは異なる間隔となる。すなわち、図示するように、ウェブが斜行すると、第2画像パターンPTN2は、第1画像パターンPTN1と、第3画像パターンPTN3との中間地点から、ずれた位置に形成される。したがって、ウェブが第2状態120Bであると、図示するように、ずれ量SLが発生する。
【0064】
ずれ量SLは、図示するように、ずれ量センサPSENが、各画像パターンが形成されたそれぞれの位置を検出することによって算出できる。具体的には、まず、ずれ量センサPSENが、第1画像パターンPTN1及び第3画像パターンPTN3が形成された直交方向20におけるそれぞれの位置を検出する。位置は、例えば、座標値等によって検出される。
【0065】
次に、液体を吐出する装置110は、第1画像パターンPTN1及び第3画像パターンPTN3が形成された位置の中間地点を計算する。例えば、液体を吐出する装置110は、第1画像パターンPTN1の座標値と、第3画像パターンPTN3の座標値との中間となる座標を計算する。このようにすると、液体を吐出する装置110は、基準値を計算できる。
【0066】
続いて、ずれ量センサPSENが、第2画像パターンPTN2が形成された直交方向20におけるそれぞれの位置を検出する。そして、液体を吐出する装置110は、基準値と、第2画像パターンPTN2の座標値との差分を計算すると、ずれ量SLを算出できる。なお、ずれ量SLの算出方法は、上記の算出手順に限られず、他の算出手順によって算出されてもよい。
【0067】
以上のようなずれ量が発生すると、液体を吐出して画像を形成する場合には、各色の液体がずれた位置に着弾する場合がある。また、後述するように画像を形成している間に表面検出センサデバイスの検出結果に基づいてヘッドユニットを移動させようとしても、それぞれの表面検出センサデバイスの検出する位置が離れていて同じ位置を検出できず、ウェブ120の搬送中の蛇行に追従できない場合がある。すなわち、ずれ量が発生すると、いわゆる色ずれが起きる場合がある。このように、色ずれが発生すると、形成される画像の画質が悪い場合がある。
【0068】
そこで、ずれ量が発生する場合には、液体を吐出する装置110は、算出されたずれ量に基づいて、例えば、以下のように、液体吐出ヘッドユニットの位置を移動させる。
【0069】
<液体吐出ヘッドユニットの移動手順例>
図7は、本発明の一実施形態に係る液体吐出ヘッドユニットの移動例を示す図である。以下、
図6に示すようなずれ量SLが発生した場合を例に説明する。
【0070】
図示するように、液体を吐出する装置110は、例えば、シアン液体吐出ヘッドユニット210Cを移動させる。シアン液体吐出ヘッドユニット210Cを移動させる移動量MVは、ずれ量SLに基づいて定まる。具体的には、この例では、図示するように、液体を吐出する装置110は、シアン液体吐出ヘッドユニット210Cをずれ量SL分、第1画像パターンPTN1が形成される方向(図では、上方向である。)へ移動させる。すなわち、液体を吐出する装置110は、ずれ量SLがなくなるように、シアン液体吐出ヘッドユニット210Cを移動させる。このように、移動量MVは、第2画像パターンPTN2が第1画像パターンPTN1と、第3画像パターンPTN3との中間地点に画像形成されるように、液体吐出ヘッドユニットを移動させる量である。
【0071】
以上のように、ずれ量SLに基づいて、液体吐出ヘッドユニットを移動させると、液体を吐出する装置110は、図示するように、ウェブが斜行しても、ずれ量SLが少なくなるように、液体を着弾させることができる。したがって、ずれ量SLに基づいて、液体吐出ヘッドユニットを移動させると、液体を吐出する装置110は、色ずれが少なくなるように調整し、形成する画像の画質を向上させることができる。
【0072】
なお、液体を吐出する装置110は、シアン液体吐出ヘッドユニット210C以外の液体吐出ヘッドユニットを移動させてもよい。図示する例は、ブラック液体吐出ヘッドユニット210Kに対して、シアン液体吐出ヘッドユニット210C等の液体吐出ヘッドユニットを合わせ込む例である。すなわち、図示する例は、黒色が形成される位置を基準に、黒色以外の色を合わせ込む例である。
【0073】
一方で、液体を吐出する装置110は、他の色を基準に合わせ込んでもよい。例えば、液体を吐出する装置110は、図示する例では、ブラック液体吐出ヘッドユニット210Kを移動させてもよい。すなわち、黒色以外の色が形成される位置を基準にしてもよい。
【0074】
また、液体吐出ヘッドユニットを移動させる移動部は、例えば、以下のようなハードウェアによって実現される。
【0075】
<移動機構例>
図8は、本発明の一実施形態に係る液体を吐出する装置が有する液体吐出ヘッドユニットを移動させるための移動機構の一例を示すブロック図である。例えば、移動部を実現する移動機構は、図示するようなハードウェア等によって実現される。図示する例は、シアン液体吐出ヘッドユニット210Cを移動させる移動機構の例である。
【0076】
まず、図示する例では、シアン液体吐出ヘッドユニット210Cを移動させるリニアアクチュエータ等のアクチュエータACTが、シアン液体吐出ヘッドユニット210Cに設置される。そして、アクチュエータACTには、アクチュエータACTを制御する制御装置CTRLが接続される。
【0077】
アクチュエータACTは、例えば、リニアアクチュエータ又はモータである。また、アクチュエータACTは、制御回路、電源回路及び機構部品等を有してもよい。
【0078】
制御装置CTRLには、移動量MV(
図7)が入力される。そして、制御装置CTRLは、移動量MVに基づいて、ずれ量SL(
図7)を補償するように、アクチュエータACTによって、シアン液体吐出ヘッドユニット210Cを移動させる。
【0079】
<制御部の例>
制御部の例であるコントローラ520(
図2)は、例えば、以下に説明する構成である。
【0080】
図9は、本発明の一実施形態に係る制御部のハードウェア構成の一例を示すブロック図である。例えば、コントローラ520は、情報処理装置等である上位装置71と、プリンタ装置72とを有する。図示する例では、コントローラ520は、上位装置71から入力される画像データ及び制御データに基づいて、プリンタ装置72に、記録媒体に対して画像を画像形成させる。
【0081】
上位装置71は、例えば、PC(Personal Computer)等である。また、プリンタ装置72は、プリンタコントローラ72C及びプリンタエンジン72Eを有する。
【0082】
プリンタコントローラ72Cは、プリンタエンジン72Eの動作を制御する。まず、プリンタコントローラ72Cは、上位装置71と、制御線70LCを介して制御データを送受信する。さらに、プリンタコントローラ72Cは、プリンタエンジン72Eと、制御線72LCを介して制御データを送受信する。この制御データの送受信によって、制御データが示す各種印刷条件等がプリンタコントローラ72Cに入力され、プリンタコントローラ72Cは、レジスタ等によって、印刷条件等を記憶する。次に、プリンタコントローラ72Cは、制御データに基づいて、プリンタエンジン72Eを制御し、印刷ジョブデータ、すなわち、制御データに従って画像形成を行う。
【0083】
プリンタコントローラ72Cは、CPU72Cp、印刷制御装置72Cc及び記憶装置72Cmを有する。なお、CPU72Cp及び印刷制御装置72Ccは、バス72Cbによって接続され、相互に通信を行う。また、バス72Cbは、通信I/F(interface)等を介して、制御線70LCに接続される。
【0084】
CPU72Cpは、制御プログラム等によって、プリンタ装置72全体の動作を制御させる。すなわち、CPU72Cpは、演算装置及び制御装置である。
【0085】
印刷制御装置72Ccは、上位装置71から送信される制御データに基づいて、プリンタエンジン72Eと、コマンド又はステータス等を示すデータを送受信する。これにより、印刷制御装置72Ccは、プリンタエンジン72Eを制御する。また、
図19に示す記憶部110F3は、例えば、記憶装置72Cm等によって実現される。さらに、
図19に示す速度演算部110F4は、例えば、CPU72Cp等によって実現される。なお、記憶部110F3及び速度演算部110F4は、他の演算装置及び記憶装置で実現されてもよい。
【0086】
プリンタエンジン72Eには、データ線70LD-C、70LD-M、70LD-Y及び70LD-K、すなわち、複数のデータ線が接続される。そして、プリンタエンジン72Eは、複数のデータ線を介して、上位装置71から画像データを受信する。次に、プリンタエンジン72Eは、プリンタコントローラ72Cによる制御に基づいて、各色の画像形成を行う。
【0087】
プリンタエンジン72Eは、データ管理装置72EC、72EM、72EY及び72EK、すなわち、複数のデータ管理装置を有する。また、プリンタエンジン72Eは、画像出力装置72Ei及び搬送制御装置72Ecを有する。
【0088】
図10は、本発明の一実施形態に係る制御部が有するデータ管理装置のハードウェア構成の一例を示すブロック図である。例えば、複数のデータ管理装置は、同一の構成である。以下、各データ管理装置が同一の構成である例で説明し、データ管理装置72ECを例に説明する。したがって、重複する説明は、省略する。
【0089】
データ管理装置72ECは、ロジック回路72EClと、記憶装置72ECmとを有する。図示するように、ロジック回路72EClは、データ線70LD-Cを介して上位装置71と接続される。また、ロジック回路72EClは、制御線72LCを介して印刷制御装置72Ccと接続される。なお、ロジック回路72EClは、ASIC(Application Specific Integrated Circuit)又はPLD(Programmable Logic Device)等で実現される。
【0090】
ロジック回路72EClは、プリンタコントローラ72C(
図9)から入力される制御信号に基づいて、上位装置71から入力される画像データを記憶装置72ECmに記憶する。
【0091】
また、ロジック回路72EClは、プリンタコントローラ72Cから入力される制御信号に基づいて、記憶装置72ECmからシアン用画像データIcを読み出す。次に、ロジック回路72EClは、読み出されたシアン用画像データIcを画像出力装置72Eiに送る。
【0092】
なお、記憶装置72ECmは、3頁程度の画像データを記憶できる容量を有するのが望ましい。3頁程度の画像データが記憶できると、記憶装置72ECmは、上位装置71から入力される画像データ、画像形成中の画像データ及び次に画像形成するための画像データを記憶できる。
【0093】
図11は、本発明の一実施形態に係る制御部が有する画像出力装置のハードウェア構成の一例を示すブロック図である。図示するように、画像出力装置72Eiは、出力制御装置72Eicと、各色の液体吐出ヘッドユニットであるブラック液体吐出ヘッドユニット210K、シアン液体吐出ヘッドユニット210C、マゼンタ液体吐出ヘッドユニット210M及びイエロー液体吐出ヘッドユニット210Yとを有する。
【0094】
出力制御装置72Eicは、各色の画像データを各色の液体吐出ヘッドユニットにそれぞれ出力する。すなわち、出力制御装置72Eicは、入力される画像データに基づいて、各色の液体吐出ヘッドユニットを制御する。
【0095】
出力制御装置72Eicは、複数の液体吐出ヘッドユニットを同時又は個別に制御する。すなわち、出力制御装置72Eicは、タイミングの入力を受けて、各液体吐出ヘッドユニットに液体を吐出させるタイミングを変える制御等を行う。なお、出力制御装置72Eicは、プリンタコントローラ72C(
図9)から入力される制御信号に基づいて、何れかの液体吐出ヘッドユニットを制御してもよい。さらに、出力制御装置72Eicは、ユーザによる操作等に基づいて、何れかの液体吐出ヘッドユニットを制御してもよい。
【0096】
なお、
図9に示すプリンタ装置72は、上位装置71から画像データを入力する経路と、制御データに基づく上位装置71及びプリンタ装置72の間での送受信に用いられる経路とをそれぞれ異なる経路とする例である。
【0097】
また、プリンタ装置72は、例えば、ブラック1色で画像形成を行う構成とされてもよい。ブラック1色で画像形成を行う場合において、画像形成を行う速度を速くするため、例えば、1つのデータ管理装置と、4つのブラック液体吐出ヘッドユニットとを有する構成等でもよい。このようにすると、複数のブラック液体吐出ヘッドユニットによって、それぞれブラック用のインクが吐出される。そのため、1つのブラック液体吐出ヘッドユニットとする構成と比較して、速い画像形成を行うことができる。
【0098】
搬送制御装置72Ec(
図9)は、ウェブ120を搬送させるモータ、機構及びドライバ装置等である。例えば、搬送制御装置72Ecは、各ローラ等に接続されるモータ等を制御し、ウェブ120を搬送させる。
【0099】
<位置調整処理例>
図12は、本発明の一実施形態に係る液体を吐出する装置による位置調整処理例を示すフローチャートである。例えば、液体を吐出する装置110は、以下のように位置調整処理を行う。
【0100】
ステップS01では、液体を吐出する装置110は、印刷ジョブ中か否かを判断する。具体的には、まず、液体を吐出する装置110は、上位装置等から印刷の指示があると、画像形成を開始する。そして、ステップS01では、液体を吐出する装置110は、上位装置等の指示に基づいて、印刷ジョブを実行中であるか否かを判断する。
【0101】
次に、印刷ジョブ中であると液体を吐出する装置110が判断すると(ステップS01でYES)、液体を吐出する装置110は、ステップS02に進む。一方で、印刷ジョブ中でないと液体を吐出する装置110が判断すると(ステップS01でNO)、液体を吐出する装置110は、ステップS01に進む。
【0102】
ステップS02では、液体を吐出する装置110は、印刷動作中であるか否かを判断する。液体を吐出する装置110は、上位装置等から送信される画像データに基づいて、各液体吐出ヘッドユニットから液体を吐出させて、印刷を行う。このように、印刷ジョブ中であっても、液体を吐出する装置110は、印刷動作中である場合と、印刷動作中でない場合とがある。
【0103】
印刷動作中であると、液体を吐出する装置110は、例えば、画像データに基づいてウェブに対して液体を吐出して、画像データが示す画像をウェブに画像形成する。一方で、印刷動作中でなく、かつ、印刷ジョブ中であると、液体を吐出する装置110は、例えば、いわゆる損紙を搬送する。
【0104】
損紙は、印刷動作が行われる前又は後に搬送されるウェブ等である。例えば、2台の液体を吐出する装置110をつなげて画像形成する場合がある。この場合には、印刷動作が行われる前では、乾燥によるコックリングが、印刷される画像に影響する。そのため、上流側の液体を吐出する装置110が有する乾燥ローラから、下流側の液体を吐出する装置110が有する液体吐出ヘッドユニットまでの区間に、少なくとも損紙が発生する。また、印刷動作が行われる後では、下流側の液体を吐出する装置110が有する液体吐出ヘッドユニットから、後処理装置までの区間に、少なくとも損紙が発生する。
【0105】
このように、損紙が搬送されている間に、液体を吐出する装置110は、ステップS03以降の処理を行うのが望ましい。
図5及び
図6に示すように、ステップS03以降の処理を行うと、ウェブには、ずれ量を算出するため、各画像パターン等が形成される。このような画像パターン等は、印刷動作が行われている領域に形成されないのが望ましい。したがって、ステップS03以降の処理は、損紙が搬送されている間(ステップS02でNOと判断される場合である。)に行われると、画像形成される画像に、画像パターン等が形成されないため、画像の画質を向上させることができる。なお、損紙が発生するタイミングであれば、画像パターンの形成は印刷ジョブ中でなくても良い。例えば、液体を吐出する装置に紙を架け渡した直後に実施しても良い。
【0106】
次に、印刷動作中であると液体を吐出する装置110が判断すると(ステップS02でYES)、液体を吐出する装置110は、ステップS01に進む。一方で、印刷動作中でないと液体を吐出する装置110が判断すると(ステップS02でNO)、液体を吐出する装置110は、ステップS03に進む。
【0107】
ステップS03では、液体を吐出する装置110は、調整済みか否かを判断する。例えば、調整済みか否かは、後述するステップS07によって、液体吐出ヘッドユニットを移動する調整が行われたか否かに基づいて判断する。すなわち、ステップS03では、液体を吐出する装置110は、ずれ量がほぼ「0」となるように、調整された後か否かに基づいて判断する。
【0108】
また、調整された後か否かは、例えば、調整完了フラグが「ON」であるか「OFF」であるかによって記憶される。したがって、液体を吐出する装置110は、この例では、調整完了フラグに基づいて、調整済みか否かを判断する。なお、調整完了フラグは、初期値、すなわち、調整が行われる前であると、「OFF」である。一方で、後段に行われるステップS08が以前の全体処理で行われると、調整完了フラグは、「ON」となる。
【0109】
次に、調整済みである、すなわち、調整完了フラグが「ON」であると液体を吐出する装置110が判断すると(ステップS03でYES)、液体を吐出する装置110は、ステップS01に進む。一方で、調整済みでない、すなわち、調整完了フラグが「OFF」であると液体を吐出する装置110が判断すると(ステップS03でNO)、液体を吐出する装置110は、ステップS04に進む。
【0110】
ステップS05では、液体を吐出する装置110は、ずれ量を算出する。具体的には、ステップS05では、液体を吐出する装置110は、
図6に示すように、ずれ量を算出する。なお、ステップS05乃至ステップS08は、調整される液体吐出ヘッドユニットごとに、別々に行われるのが望ましい。
【0111】
ステップS06では、液体を吐出する装置110は、ずれ量が所定量以上であるか否かを判断する。なお、所定量は、例えば、あらかじめ設定される値である。また、所定量は、液体を吐出する装置110が液体吐出ヘッドユニットを移動させることができる最小単位であるのが望ましい。具体的には、液体吐出ヘッドユニットが1ミクロン単位の分解能で移動できる仕様である場合には、所定量は、1ミクロンであるのが望ましい。
【0112】
後段のステップS07では、液体を吐出する装置110は、液体吐出ヘッドユニットを移動させる。したがって、所定量を分解能と同一の値に設定すると、液体を吐出する装置110は、ずれ量を効率良く調整することができる。
【0113】
次に、ずれ量が所定量以上であると液体を吐出する装置110が判断すると(ステップS06でYES)、液体を吐出する装置110は、ステップS07に進む。一方で、ずれ量が所定量以上でないと液体を吐出する装置110が判断すると(ステップS06でNO)、液体を吐出する装置110は、ステップS08に進む。
【0114】
ステップS07では、液体を吐出する装置110は、液体吐出ヘッドユニットを移動させる。例えば、ステップS07では、液体を吐出する装置110は、
図7に示すように、液体吐出ヘッドユニットを移動させる。この場合には、所定量は、ノズルの間隔であるのが望ましい。
【0115】
なお、移動部が行う着弾位置の移動は、液体吐出ヘッドユニットの移動に限られない。例えば、移動は、吐出を行うノズル位置の変更によって実現されてもよい。
【0116】
ステップS08では、液体を吐出する装置110は、調整完了フラグを「ON」にする。すなわち、ステップS07による調整、又は、ステップS05による算出結果によって、ずれ量がほぼ「0」であると判断されると、例えば、液体を吐出する装置110が形成した画像は、
図5に示すような状態等となる場合が多い。このように、調整完了フラグは、ステップS07による調整が行われた後、又は、ずれ量がほぼ「0」である場合を「ON」として示すデータである。なお、調整完了フラグは、他の形式のデータでもよい。
【0117】
<機能構成例>
図13は、本発明の一実施形態に係る液体を吐出する装置の機能構成の一例を示す機能ブロック図である。例えば、図示するように、液体を吐出する装置110は、処理位置検出部110F40と、調整部110F50とを備える。また、図示するように、液体を吐出する装置110は、液体吐出ヘッドユニットごとに、表面検出部110F10及び変更部110F70を更に備えるのが望ましい。さらに、液体を吐出する装置110は、計測部110F30、計算部110F60を更に備えるのが望ましい。
【0118】
表面検出部110F10は、液体吐出ヘッドユニット210による画像形成中にウェブ120の表面を検出する機能である。
【0119】
計測部110F30は、ウェブ120の搬送量を計測する機能の例である。
【0120】
計算部110F60は、表面検出部110F10の出力から、表面の位置、速度、移動量又はこれらの組み合わせの何れかを算出する機能である。表面検出部110F10の機能、計測部110F30の機能の詳細については後述する。
【0121】
変更部110F70は、表面検出部110F10の検出する位置の原点を変更する機能である。
【0122】
搬送される被搬送物に対して、それぞれの液体吐出ヘッドユニット210は、例えば、
図2に示すように、搬送の経路上の異なる位置に設置される。以下、複数の液体吐出ヘッドユニットのうち、
図2に示すシアン用の液体吐出ヘッドユニット210C等の部分を例に説明する。
【0123】
<処理位置検出部の例>
処理位置検出部110F40は、液体吐出ヘッドユニット210Kと液体吐出ヘッドユニット210Cから吐出された液体が被搬送物に着弾する着弾位置等の処理位置を検出する。そして、調整部110F50は、処理位置検出部110F40が検出した着弾位置に基づいて、液体吐出ヘッドユニットKに対する液体吐出ヘッドユニット210Cのずれ量を算出する。例えば、処理位置検出部110F40は、例えば、ずれ量センサPSEN(
図2)等によって実現される。
【0124】
まず、液体が着弾すると、
図5に示すように、液体ヘッドユニット210Kが吐出した液体によって第1画像パターンPTN1及び第3画像パターンPTN3が形成される。また、液体ヘッドユニット210Cが吐出した液体によって、第2画像パターンPTN2が形成される。これにより、画像パターンPTNが形成される。次に、調整部110F50は、画像パターンPTNが形成された位置を検出することによって、液体ヘッドユニット210Kに対する液体ヘッドユニット210Cの直交方向における処理位置を検出することができる。すなわち、処理位置は、画像パターンPTNが形成された位置等をずれ量センサPSEN等が検出することによって検出される。
【0125】
なお、ずれ量センサPSENは、ずれ量が発生する可能性がある範囲を検出する。例えば、ずれ量センサPSENは、「±1.5mm」程度の範囲を検出する。なお、ずれ量センサPSENが検出する範囲は、表面検出部110F10が検出を行う範囲とは別の設定でもよい。また、ずれ量センサPSENが検出する範囲は、記録媒体又は液体吐出ヘッドユニットの種類等に基づいて定められてもよい。
【0126】
そして、調整部110F50は、ずれ量センサPSENが検出する着弾位置に基づいて、例えば、
図6に示すように、ずれ量を算出する。例えば、調整部110F50は、コントローラ520(
図2)等によって実現される。
【0127】
調整部110F50は、着弾位置に基づいて算出されるずれ量に基づいて、着弾位置を搬送方向に直交する直交方向へ調整する。例えば、調整部110F50は、
図7に示すように、液体吐出ヘッドユニットを直交方向へ移動させて、着弾位置を調整する。以下、調整部110F50が液体吐出ヘッドユニットの着弾位置を変更した後の着弾位置を第1の位置とする。また、調整部110F50は、液体吐出ヘッドユニットを移動させて調整する場合には、例えば、
図8に示すようなハードウェア等によって実現される移動部によって液体吐出ヘッドユニットを直交方向へ移動させる。また、上述したように、着弾位置の移動は、吐出を行うノズル位置の変更で行っても良い。
【0128】
変更部110F70は、ずれ量に基づいて、調整部110F50が液体吐出ヘッドユニットの着弾位置を移動させる場合には、画像形成中の表面検出部110F10による検出の原点を変更する。例えば、変更部110F70は、
図8に示す移動部と同様のハードウェア等を用いて、ずれ量に基づいて、センサの位置を移動させて原点を変更する。
【0129】
他に、変更部110F70は、表面検出部110F10が検出を行う範囲において、ずれ量に基づいて、原点とする座標を変える設定を行い、原点を変更する。このようにすると、表面検出センサの出力する画像データの原点座標が変更できる。すなわち、変更部110F70は、表面検出部110F10が検出した範囲のうち、一部の範囲を使用するように変更してもよい。例えば、変更部110F70は、後述する制御回路52等によって実現される。
【0130】
以上のように、処理位置検出部110F40によって検出される着弾位置に基づいて、調整部110F50が、着弾位置を調整する。そして、調整部110F50による調整後、表面検出部110F10が検出を行う原点が、変更部110F70によって変更される。さらに、表面検出部110F10によって、画像形成が行われている間にも調整が行われるため、液体を吐出する装置110は、吐出される液体の着弾位置の精度を向上できる。表面検出部110F10による画像形成中のウェブの位置の検出と液体吐出ヘッドユニットの移動によるウェブの蛇行の追従については後述する。
【0131】
表面検出部110F10は、図示するように、液体吐出ヘッドユニットごとに設置されるのが望ましい。具体的には、
図2に示す例では、表面検出部110F10は、図示するように4つとなる。また、表面検出部110F10は、搬送方向におけるウェブ120の位置、移動速度、移動量又はこれらの組み合わせを検出する。なお、表面検出部110F10は、例えば、以下のような構成等によって実現される。
【0132】
<表面検出部のハードウェア構成例>
液体吐出ヘッドユニットごとに、表面検出センサデバイスがそれぞれ設置される。表面検出センサデバイスは、表面検出部の機能を実現するハードウェアの例である。また、表面検出センサデバイスには、レーザ又は赤外線等の光を利用する光学センサOS等が用いられるのが望ましい。光学センサOSは表面検出センサデバイスが有する表面検出センサの例である。以下、単に「表面検出センサ」と記載した場合、表面検出センサデバイスが備えるセンサを指す。表面検出センサは、撮像部の機能を実現するハードウェアの例である。なお、光学センサOSは、例えば、CCDカメラ又はCMOSカメラ等でもよい。以下、光学センサOSがCMOSイメージセンサである例で説明する。また、表面検出部は、例えば、以下に説明するハードウェア構成が望ましい。
【0133】
図14は、本発明の一実施形態に係る撮像部を実現するハードウェア構成例を示すブロック図である。例えば、撮像部は、図示するようなセンサデバイスSEN、及びコントローラ520等のハードウェアによって実現される。
【0134】
まず、センサデバイスSENは、例えば、以下のような構成である。
【0135】
図15は、本発明の一実施形態に係るセンサデバイスSENの一例を示す外観図である。
【0136】
図示するセンサデバイスSENは、ウェブ120等の被搬送物に対して光源から光を当てることで形成されるスペックルパターンを撮像する。なお、スペックルパターンは、ウェブ120の表面情報の一例である。具体的には、センサデバイスSENは、まず、半導体レーザ光源(LD)及びコリメート光学系(CL)等の光学系を有する。また、検出装置は、スペックルパターン等が写る画像を撮像するため、CMOSイメージセンサと、CMOSイメージセンサにスペックルパターンを集光結像するためのテレセントリック撮像光学系(TO)とを有する。
【0137】
図示する構成の例では、異なるセンサデバイスSENの備えるCMOSイメージセンサが、例えば、時刻TM1と、時刻TM2との各々において、それぞれスペックルパターンを撮像する。そして、時刻TM1で撮像される画像と、時刻TM2で撮像される画像とに基づいて、コントローラ520が、相互相関演算等の処理を行う。
【0138】
この場合、時刻TM1から時刻TM2までの間に一方のセンサデバイスから他方のセンサデバイスまでの距離に対して対象物が実際に移動した距離を算出することができる。詳細については後述する。
【0139】
また、同じセンサデバイスSENが離間した時刻TM1と時刻TM2のそれぞれにおいてパターン等を示す画像を撮像し、時刻TM1で撮像したスペックルパターンを示す画像と、時刻TM2で撮像したスペックルパターンを示す画像とを用いて相互相関演算等の処理を行っても良い。この場合、コントローラ520は、時刻TM1から時刻TM2における対象物の移動量を出力することができる。なお、図示する例は、検出装置のサイズは、幅W×奥行きD×高さHは、15×60×32[mm]とする例である。
【0140】
なお、光源は、レーザ光を用いる装置に限られない。例えば、光源は、LED(Light Emitting Diode)又は有機EL(Electro-Luminescence)等でもよい。そして、光源の種類によって、表面情報を示すパターンは、スペックルパターンでなくともよい。以下、表面情報を示すパターンがスペックルパターンである例で説明する。
【0141】
また、CMOSイメージセンサは、撮像部を実現するハードウェアの一例である。本例では、相関演算を行うハードウェアをコントローラ520として記載したが、相関演算は、何れかのセンサデバイスに搭載されたFPGA回路で実行されても良い。
【0142】
制御回路52は、センサデバイスSEN内部の光学センサOS及び光源LG等を制御する。具体的には、制御回路52は、変更部110F70の機能を実現するハードウェアの一例である。
【0143】
また、制御回路52は、例えば、トリガ信号を光学センサOSに対して出力して、光学センサOSがシャッタを切るタイミングを制御する。
【0144】
また、制御回路52は、光学センサOSから、2次元画像を取得できるように制御する。次に、制御回路52は、光学センサOSが撮像し、生成される2次元画像を記憶装置53に送る。
【0145】
記憶装置53は、いわゆるメモリ等である。なお、制御回路52から、送られる2次元画像を分割して、異なる記憶領域に記憶できる構成であるのが望ましい。
【0146】
コントローラ520は、例えば、記憶装置53に記憶される画像データ等を用いて演算を行う。制御回路52及びコントローラ520は、例えば、CPU(Central Processing Unit)又は電子回路等である。なお、制御回路52、記憶装置53及びコントローラ520は、異なるデバイスでなくともよい。例えば、制御回路52及びコントローラ520は、1つのCPU等であってもよい。
【0147】
<表面検出部を用いる機能構成例>
図16は、本発明の一実施形態に係る表面検出部を用いる機能構成の一例を示す機能ブロック図である。以下、図示するように、液体吐出ヘッドユニットごとに設置される表面検出部のうち、ブラック液体吐出ヘッドユニット210K及びシアン液体吐出ヘッドユニット210Cの組み合わせを例に説明する。
【0148】
また、図示するように、ブラック液体吐出ヘッドユニット210K用の表面検出部110F10が「A位置」に係る検出結果を出力し、シアン液体吐出ヘッドユニット210C用の表面検出部110F10が「B位置」に係る検出結果を出力する例で説明する。
【0149】
まず、ブラック液体吐出ヘッドユニット210K用の表面検出部110F10は、例えば、撮像部16A、撮像制御部14A、画像記憶部15A及び変更部110F70A等で構成される。
【0150】
なお、この例では、シアン液体吐出ヘッドユニット210C用の表面検出部110F10は、例えば、表面検出部110F10と同様の構成であり、撮像部16B、撮像制御部14B、画像記憶部15B及び変更部110F70A等で構成される。以下、表面検出部110F10を例に説明する。
【0151】
撮像部16Aは、図示するように、搬送方向10に搬送されるウェブ120を撮像する。なお、撮像部16Aは、例えば、
図15に示す光学センサOSによって実現される。
【0152】
撮像制御部14Aは、シャッタ制御部141A、画像取込部142A、変更部110F70を有する。なお、撮像制御部14Aは、例えば、
図15に示す制御回路52等によって実現される。
【0153】
画像取込部142Aは、撮像部16Aによって撮像される画像を取得する。
【0154】
シャッタ制御部141Aは、撮像部16Aが撮像するタイミングを制御する。変更部110F70は、上述したように調整部110F50が移動部によって液体吐出ヘッドユニットの着弾位置を直交方向へ移動させる場合には、画像形成中の表面検出部110F10による検出の原点を変更する。
【0155】
画像記憶部15Aは、撮像制御部14Aが取り込んだ画像を記憶する。なお、画像記憶部15Aは、例えば、
図14に示す記憶装置53等によって実現される。
【0156】
計算部110F60は、画像記憶部15A及び15Bに記憶されるそれぞれの画像に基づいて、ウェブ120が有するパターンの位置、ウェブ120が搬送される移動速度及びウェブ120が搬送される移動量を算出可能に構成される。
【0157】
また、計算部110F60は、シャッタ制御部141Aに、シャッタを切るタイミングを示す時差Δtのデータを出力する。すなわち、計算部110F60は、「A位置」を示す画像と、「B位置」を示す画像とが時差Δtで、それぞれ撮像されるように、シャッタを切るタイミングをシャッタ制御部141Aに出力する。
【0158】
なお、計算部110F60は、コントローラ520等によって実現される。
【0159】
ウェブ120は、表面又は内部に散乱性を有する部材である。そのため、ウェブ120にレーザ光が照射されると、反射光が拡散反射する。この拡散反射によって、ウェブ120には、パターンが形成される。すなわち、パターンは、「スペックル」と呼ばれる斑点、いわゆるスペックルパターンである。そのため、ウェブ120を撮像すると、スペックルパターンを示す画像が得られる。この画像からスペックルパターンのある位置がわかるため、ウェブ120の所定の位置がどこにあるかが検出できる。
【0160】
なお、このスペックルパターンは、ウェブ120の表面又は内部に形成される凹凸形状によって、照射されるレーザ光が干渉するため、生成される。
【0161】
ウェブ120が搬送されると、ウェブ120が有するスペックルパターンも一緒に搬送される。そのため、同一のスペックルパターンを異なる時間でそれぞれ検出すると、移動量が求められる。すなわち、同一のスペックルパターンを検出してパターンの移動量が求まると、計算部110F60は、ウェブ120の移動量を求めることができる。この求まる移動量を単位時間あたりに換算すると、計算部110F60は、ウェブ120が移動した移動速度を求めることができる。
【0162】
なお、求められる移動量又は移動速度は、ウェブ120の搬送方向に限らない。撮像部16Aが2次元の画像データを出力しているため、計算部110F60は、2次元における移動量又は移動速度を求めることが可能である。
【0163】
移動部110F80は、計算部110F60が計算した直交方向の移動量又は移動速度に基づいて、液体吐出ヘッドユニット210を移動させる機能を有する。また、移動部110F80は、
図8に示すようなハードウェアで実現される。
【0164】
制御部110F20は、表面検出部110F10による検出結果に基づいて、複数の液体吐出ヘッドユニットに液体をそれぞれ吐出させるタイミングを制御する機能を有する。制御部110F20は、例えば、
図9に示すハードウェア構成等によって実現される。制御部110F20は、計算部110F60が計算した、搬送方向の移動量のずれ又は移動速度のずれに基づいて、液体吐出ヘッドユニット210の吐出するタイミングを制御する。
【0165】
また、液体を吐出する装置110は、エンコーダ等の計測部を更に備えてもよい。具体的には、エンコーダは、例えば、ローラ230が有する回転軸に対して設置される。このようにすると、ローラ230の回転量に基づいて移動量を計測できる。この計測結果を表面検出センサによる検出結果と併せて利用すると、より精度良く、液体を吐出する装置110は、ウェブ120に対して液体を吐出できる。
【0166】
また、計算部110F60は、例えば、以下のような相関演算を行う。
【0167】
<相関演算例>
図17は、本発明の一実施形態に係る相関演算方法の一例を示す構成図である。例えば、計算部110F60は、図示するような構成によって、相関演算を行うと、画像データが撮像された位置におけるウェブ120の直交方向の相対位置、移動量、移動速度又はこれらの組み合わせ等を演算することができる。また、画像データが撮像されたタイミングにおけるウェブ120の理想の搬送位置からのずれ量、移動速度等を計算することができる。
【0168】
具体的には、計算部110F60は、図示するように、第1の2次元フーリエ変換部FT1、第2の2次元フーリエ変換部FT2、相関画像データ生成部DMK、ピーク位置探索部SR、演算部CAL及び変換結果記憶部MEMを有する構成である。
【0169】
第1の2次元フーリエ変換部FT1は、第1画像データD1を変換する。具体的には、第1の2次元フーリエ変換部FT1は、直交方向用のフーリエ変換部FT1a及び搬送方向用のフーリエ変換部FT1bを有する構成である。
【0170】
直交方向用のフーリエ変換部FT1aは、直交方向に、第1画像データD1を1次元フーリエ変換する。そして、搬送方向用のフーリエ変換部FT1bは、直交方向用のフーリエ変換部FT1aによる変換結果に基づいて、搬送方向に、第1画像データD1を1次元フーリエ変換する。このようにして、直交方向用のフーリエ変換部FT1a及び搬送方向用のフーリエ変換部FT1bが、直交方向及び搬送方向に、それぞれ1次元フーリエ変換する。このようにして変換された変換結果を、第1の2次元フーリエ変換部FT1は、相関画像データ生成部DMKに出力する。
【0171】
同様に、第2の2次元フーリエ変換部FT2は、第2画像データD2を変換する。具体的には、第2の2次元フーリエ変換部FT2は、直交方向用のフーリエ変換部FT2a、搬送方向用のフーリエ変換部FT2b及び複素共役部FT2cを有する構成である。
【0172】
直交方向用のフーリエ変換部FT2aは、直交方向に、第2画像データD2を1次元フーリエ変換する。そして、搬送方向用のフーリエ変換部FT2bは、直交方向用のフーリエ変換部FT2aによる変換結果に基づいて、搬送方向に、第2画像データD2を1次元フーリエ変換する。このようにして、直交方向用のフーリエ変換部FT2a及び搬送方向用のフーリエ変換部FT2bが、直交方向及び搬送方向に、それぞれ1次元フーリエ変換する。
【0173】
次に、複素共役部FT2cは、直交方向用のフーリエ変換部FT2a及び搬送方向用のフーリエ変換部FT2bによる変換結果の複素共役を計算する。そして、複素共役部FT2cが計算した複素共役を、第2の2次元フーリエ変換部FT2は、相関画像データ生成部DMKに出力する。
【0174】
続いて、相関画像データ生成部DMKは、第1の2次元フーリエ変換部FT1から出力される第1画像データD1の変換結果と、第2の2次元フーリエ変換部FT2から出力される第2画像データD2の変換結果とに基づいて、相関画像データを生成する。
【0175】
相関画像データ生成部DMKは、積算部DMKa及び2次元逆フーリエ変換部DMKbを有する構成である。
【0176】
積算部DMKaは、第1画像データD1の変換結果と、第2画像データD2の変換結果とを積算する。そして、積算部DMKaは、積算結果を2次元逆フーリエ変換部DMKbに出力する。
【0177】
2次元逆フーリエ変換部DMKbは、積算部DMKaによる積算結果を2次元逆フーリエ変換する。このように、2次元逆フーリエ変換が行われると、相関画像データが生成される。そして、2次元逆フーリエ変換部DMKbは、相関画像データをピーク位置探索部SRに出力する。
【0178】
ピーク位置探索部SRは、生成された相関画像データにおいて、最も急峻となる(すなわち、立ち上がりが急になる。)ピーク輝度(ピーク値)があるピーク位置を探索する。まず、相関画像データには、光の強さ、すなわち、輝度の大きさを示す値が入力される。また、輝度は、マトリクス状に入力される。
【0179】
なお、相関画像データでは、輝度は、エリアセンサの画素ピッチ間隔、すなわち、画素サイズ間隔で並ぶ。そのため、ピーク位置の探索は、いわゆるサブピクセル処理を行ってから、探索が行われるのが望ましい。このように、サブピクセル処理が行われると、ピーク位置が精度良く探索できる。そのため、計算部110F60は、位置、移動量及び移動速度等を精度良く出力できる。
【0180】
例えば、ピーク位置探索部SRによる探索は、以下のように行われる。
【0181】
図18は、本発明の一実施形態に係る相関演算におけるピーク位置の探索方法の一例を示す図である。図では、横軸は、相関画像データが示す画像における搬送方向の位置を示す。一方で、縦軸は、相関画像データが示す画像の輝度を示す。
【0182】
以下、相関画像データが示す輝度のうち、第1データ値q1、第2データ値q2及び第3データ値q3の3つのデータを例に説明する。つまり、この例では、ピーク位置探索部SR(
図17)は、第1データ値q1、第2データ値q2及び第3データ値q3を繋ぐ曲線kにおけるピーク位置Pを探索する。
【0183】
まず、ピーク位置探索部SRは、相関画像データが示す画像の輝度の各差分を計算する。そして、ピーク位置探索部SRは、計算した差分のうち、最も差分の値が大きくなるデータ値の組み合わせを抽出する。次に、ピーク位置探索部SRは、最も差分の値が大きくなるデータ値の組み合わせに隣接する組み合わせを抽出する。このようにすると、図示する、第1データ値q1、第2データ値q2及び第3データ値q3のように、ピーク位置探索部SRは、3つのデータを抽出できる。そして、抽出される3つのデータを繋いで曲線kを算出すると、ピーク位置探索部SRは、ピーク位置Pを探索できる。このようにすると、ピーク位置探索部SRは、サブピクセル処理等の演算量を少なくし、より高速にピーク位置Pを探索できる。なお、最も差分の値が大きくなるデータ値の組み合わせの位置が、最も急峻な位置となる。また、サブピクセル処理は、上記の処理以外の処理でもよい。
【0184】
以上のように、ピーク位置探索部SRがピーク位置を探索すると、例えば、以下のような演算結果が得られる。
【0185】
図19は、本発明の一実施形態に係る相関演算の演算結果例を示す図である。図は、相互相関関数の相関強度分布を示す。なお、図では、X軸及びY軸は、画素の通し番号を示す。図示する「相関ピーク」のようなピーク位置が、ピーク位置探索部SR(
図17)によって探索される。
【0186】
図17に戻り、演算部CALは、ウェブの相対位置、移動量又は移動速度等を演算する。例えば、演算部CALは、相関画像データの中心位置と、ピーク位置探索部SRによって探索されるピーク位置との差を計算すると、相対位置及び移動量を演算することができる。
【0187】
また、演算部CALは、例えば、移動量を時間で除算して移動速度を計算できる。
【0188】
以上のようにして、計算部110F60は、相関演算によって、センサの位置における相対位置、移動量又は移動速度等を検出できる。なお、相対位置、移動量又は移動速度等の検出方法は、これに限定されない。例えば、計算部110F60は、以下のように、相対位置、移動量又は移動速度等を検出してもよい。
【0189】
まず、計算部110F60は、第1画像データ及び第2画像データのそれぞれの輝度を2値化する。すなわち、計算部110F60は、輝度があらかじめ設定される閾値以下であれば、「0」とし、一方で、輝度が閾値より大きい値であると、「1」とする。このように2値化された第1画像データ及び第2画像データを比較して、計算部110F60は、相対位置を検出してもよい。
【0190】
なお、図では、Y方向に変動がある例を説明したが、X方向に変動がある場合には、ピーク位置は、X方向にもずれた位置に発生する。
【0191】
また、計算部110F60は、これ以外の検出方法によって、相対位置、移動量又は移動速度等を検出してもよい。例えば、計算部110F60は、いわゆるパターンマッチング処理等によって、各画像データに写るそれぞれのパターンから相対位置を検出してもよい。
【0192】
このように、スペックルパターンに基づいて、液体を吐出する装置110は、精度良く、直交方向及び搬送方向の少なくとも一方において、ウェブ120の位置を示す検出結果を求めることができる。また、搬送方向及び直交方向のそれぞれの位置を検出するのにセンサデバイスを兼用すると、それぞれの方向について検出装置等のコストが少なくできる。さらに、センサの数が少なくできるので、省スペースとすることもできる。
【0193】
また、本発明に係る液体を吐出する装置は、例えば、以下のようにずれ量を検出し、調整を行ってもよい。
【0194】
図20は、本発明の一実施形態に係る液体を吐出する装置による画像形成動作中の表面検出部による検出と液体ヘッドユニットの移動処理のフローチャートである。このフローチャートは、
図12に示すフローチャートの後に実施される。すなわち、
図13に示す処理位置検出部110F40により処理位置が検出され、調整部110F50の指示により移動部がそれぞれの液体吐出ヘッドユニットの直交方向の着弾位置を第1の位置へ移動し、変更部110F70がそれぞれの表面検出部110F10の原点位置を変更した後に行われる。すなわち、調整部110F50の指示により移動部が移動した第1の位置を初期位置として、画像形成動作中の液体吐出ヘッドユニットの直交方向の移動が行われる。
図20に示す全体処理を行いながら、ウェブ120に画像データが示す画像を形成する。
【0195】
なお、図示する処理は、1つの液体吐出ヘッドユニットに対する処理を示す。すなわち、図示する処理は、例えば、
図2に示す例では、シアン液体吐出ヘッドユニット210Cに係る処理である。また、他の色の液体吐出ヘッドユニットに対しては、例えば、図示する処理が並列又は前後して別途行われる。画像形成中のウェブ120の蛇行に液体吐出ヘッドユニットを追従させる目的では、図示する処理は、並列で行われることが望ましい。ただし、完全に同時である必要はない。例えば、画像形成中のウェブ120の蛇行に追従するように液体吐出ヘッドユニットをそれぞれ直交方向に移動可能であれば良い。
【0196】
ステップS01では、液体を吐出する装置110は、複数のセンサデータに基づいて被搬送物の位置等を算出する。すなわち、ステップS01では、液体を吐出する装置110は、まず、各表面センサデバイスによって、ウェブ120の位置等をそれぞれ検出する。次に、液体を吐出する装置110は、各表面センサデバイスから出力されるそれぞれの検出結果を示すセンサデータを取得する。続いて、液体を吐出する装置110の計算部110F60は、複数のセンサデータ、すなわち、複数の検出結果に基づいて、記録媒体等の変動量を算出する。
【0197】
ステップS02では、液体を吐出する装置110は、液体吐出ヘッドユニットを直交方向に移動させる。また、ステップS02は、ステップS01による検出結果に基づいて行われる。さらに、ステップS02は、ステップS01による検出結果に基づいて定まる直交方向におけるウェブ120の変動量を補償するように、液体吐出ヘッドユニットを移動させる。例えば、ステップS01で検出されたウェブ120の位置の変動分、ステップS02では、液体を吐出する装置110は、液体吐出ヘッドユニットを移動させて、ウェブ120の位置の変動を補償する。これにより、画像形成中のウェブ120の蛇行に液体吐出ヘッドユニットを追従させることができる。なお、液体を吐出する装置110は、液体を吐出させるタイミングを調整してもよい。
【0198】
上記の処理は、例えば、以下のようなタイミングチャートで説明できる。
【0199】
図21は、本発明の一実施形態に係る液体を吐出する装置による被搬送物の変動量を算出する方法の一例を示すタイミングチャートである。図示するように、液体を吐出する装置110は、複数の検出結果に基づいて、変動量を算出する。具体的には、第1検出結果S1及び第2検出結果S2に基づいて、液体を吐出する装置110は、変動量を示す算出結果を出力する。まず、第1検出結果S1及び第2検出結果S2は、
図2に示す表面センサのうち、何れか2つの表面センサから出力されるセンサデータがそれぞれ示す検出結果である。次に、液体を吐出する装置110は、各センサデータが示す複数の検出結果から変動量を算出する。
【0200】
変動量は、液体吐出ヘッドユニットごとに算出される。以下、シアン液体吐出ヘッドユニット210C(
図2)用の変動量を算出する例で説明する。この例では、変動量は、例えば、シアン用センサデバイスSENC(
図2)による検出結果と、シアン用センサデバイスSENCより1つ上流側に設置されるブラック用センサデバイスSENK(
図2)による検出結果とに基づいて算出される。図では、第1検出結果S1は、ブラック用センサデバイスSENKによる検出結果である。一方で、第2検出結果S2は、シアン用センサデバイスSENCによる検出結果である。
【0201】
ブラック用センサデバイスSENKと、シアン用センサデバイスSENCとの間隔、すなわち、表面センサ間の距離が、「L2」であるとする。また、センサデータに基づいて検出される移動速度が、「V」であるとする。さらに、ブラック用センサデバイスSENKによる検出位置から、シアン用センサデバイスSENCによる検出位置まで被搬送物が搬送されるのにかかる移動時間が「T2」であるとする。この場合には、移動時間は、「T2=L2/V」と算出される。
【0202】
また、表面センサによるサンプリング間隔を「A」とする。さらに、ブラック用センサデバイスSENKと、シアン用センサデバイスSENCとの間でのサンプリング回数を「n」とする。この場合には、サンプリング回数は、「n=T2/A」と算出される。
【0203】
図示する算出結果、すなわち、変動量を「ΔX」とする。例えば、図示するように、検出周期が「0」である場合には、変動量は、移動時間「T2」前の第1検出結果S1と、検出周期「0」の第2検出結果S2とを比較して算出される。具体的には、変動量は、「ΔX=X2(0)-X1(n)」と算出される。そして、表面センサの位置が着弾位置よりも第1ローラに近い位置である場合には、液体を吐出する装置110は、表面センサの位置まで用紙が移動した場合の記録媒体の位置の変動を計算して
図8に図示したアクチュエータACTを駆動させる。
【0204】
次に、液体を吐出する装置110は、変動量「ΔX」を補償するように、アクチュエータACT(
図8)を制御し、シアン液体吐出ヘッドユニット210C(
図8)を直交方向において、移動させる。このようにすると、被搬送物の位置が変動しても、液体を吐出する装置110は、被搬送物に対して、画像を精度良く画像形成することができる。また、図示するように、2つの検出結果、すなわち、2つの表面センサによる検出結果に基づいて、変動量を算出すると、各表面センサの位置情報を積算せずに、変動量が算出できる。そのため、このようにすると、各表面センサによる検出誤差の累積が少なくできる。
【0205】
なお、変動量の算出は、他の液体吐出ヘッドユニットにおいて同様に行われる。例えば、マゼンタ液体吐出ヘッドユニット210M(
図2)用の変動量は、シアン用センサデバイスSENCによる第1検出結果S1と、マゼンタ用センサデバイスSENMによる第2検出結果S2とによって算出される。さらに、イエロー液体吐出ヘッドユニット210Y(
図2)用の変動量は、マゼンタ用センサデバイスSENMによる第1検出結果S1と、イエロー用センサデバイスSENYによる第2検出結果S2とによって算出される。なお、ブラック用センサデバイスSENKよりも搬送方向上流側にセンサデバイスを配置することで、ブラック液体吐出ヘッドユニット210Kの変動量を算出することもできる。
【0206】
また、第1検出結果S1に用いられる検出結果は、移動させる液体吐出ヘッドユニットより1つ上流側に設置される表面センサによって検出される検出結果に限られない。すなわち、第1検出結果S1は、移動させる液体吐出ヘッドユニットより上流側に設置される表面センサによって検出される検出結果であればよい。例えば、イエロー液体吐出ヘッドユニット210Y用の変動量は、第1検出結果S1に、ブラック用センサデバイスSENK又はシアン用センサデバイスSENCの何れかによる検出結果が用いられて算出されてもよい。
【0207】
一方で、第2検出結果S2は、移動させる液体吐出ヘッドユニットに最も近い位置に設置される表面センサによる検出結果であるのが望ましい。
【0208】
また、変動量は、3つ以上の検出結果によって算出されてもよい。
【0209】
このように、複数の検出結果から算出される変動量に基づいて、それぞれの液体吐出ヘッドユニットの移動を行い、ウェブに対して、液体が吐出されると、画像等が、記録媒体に形成される。
【0210】
なお、表面検出センサデバイスが設置される位置は、各着弾位置に近い位置であるのが望ましい。各着弾位置に対して近い位置に表面検出センサデバイスが設置されると、各着弾位置と、表面検出センサデバイスが設置される位置との距離が短くなる。各着弾位置と、表面検出センサが設置される位置との距離が短くなると、検出における誤差が少なくできる。そのため、液体を吐出する装置110は、表面検出センサにデバイスよって、搬送方向における位置、移動速度、移動量又はこれらの組み合わせを精度良く検出できる。
【0211】
各着弾位置に近い位置は、具体的には、各第1ローラ及び各第2ローラの間である。すなわち、図示する例では、ブラック用センサデバイスSENKが設置される位置は、図示するように、ブラック用ローラ間INTK1であるのが望ましい。同様に、シアン用センサデバイスSENCが設置される位置は、図示するように、シアン用ローラ間INTC1であるのが望ましい。さらに、マゼンタ用センサデバイスSENMが設置される位置は、図示するように、マゼンタ用ローラ間INTM1であるのが望ましい。さらにまた、イエロー用センサSENデバイスYが設置される位置は、図示するように、イエロー用ローラ間INTY1であるのが望ましい。このように、各ローラ間に、表面検出センサデバイスが設置されると、表面検出センサデバイスは、各着弾位置に近い位置で移動速度等を検出できる。また、ローラ間は、直交方向への移動速度である蛇行速度や、搬送方向への移動速度である搬送速度が比較的安定している場合が多い。そのため、液体を吐出する装置110は、精度良く位置、移動速度又は移動量を検出できる。
【0212】
表面検出センサデバイスが設置される位置は、各ローラ間において、着弾位置より第1ローラに近い位置であるのが望ましい。すなわち、表面検出センサデバイスが設置される位置は、各着弾位置より上流側であるのが望ましい。
【0213】
具体的には、ブラック用センサデバイスSENKが設置される位置は、ブラック着弾位置PKから上流側に向かってブラック用第1ローラCR1Kが設置される位置までの間(以下「ブラック用上流区間INTK2」という。)であるのが望ましい。同様に、シアン用センサデバイスSENCが設置される位置は、シアン着弾位置PCから上流側に向かってシアン用第1ローラCR1Cが設置される位置までの間(以下「シアン用上流区間INTC2」という。)であるのが望ましい。さらに、マゼンタ用センサSENデバイスMが設置される位置は、マゼンタ着弾位置PMから上流側に向かってマゼンタ用第1ローラCR1Mが設置される位置までの間(以下「マゼンタ用上流区間INTM2」という。)であるのが望ましい。さらにまた、イエロー用センサデバイスSENYが設置される位置は、イエロー着弾位置PYから上流側に向かってイエロー用第1ローラCR1Yが設置される位置までの間(以下「イエロー用上流区間INTY2」という。)であるのが望ましい。
【0214】
各表面検出センサデバイスが設置される位置が、ブラック用上流区間INTK2、シアン用上流区間INTC2、マゼンタ用上流区間INTM2及びイエロー用上流区間INTY2となると、液体を吐出する装置110は、精度良く位置、移動速度又は移動量を検出できる。さらに、このような位置に表面検出センサデバイスが設置されると、表面検出センサデバイスが各着弾位置より上流側に設置される。そのため、液体を吐出する装置110は、まず、上流側で表面検出センサデバイスによって出力されたデータに基づいて位置、移動速度又は移動量を検出して、各液体吐出ヘッドユニットが移動する位置又は速度、及び各液体吐出ヘッドユニットが吐出するタイミングを計算できる。すなわち、この計算が行われる間等に、ウェブ12が下流側へ搬送されると、計算された位置及びタイミングで各液体吐出ヘッドユニットは、インクを吐出できる。
【0215】
なお、各液体吐出ヘッドユニットの直下を表面検出センサデバイスが設置される位置とすると、制御動作分の遅れ等によって、色ズレが生じてしまう場合がある。したがって、表面検出センサデバイスが設置される位置は、各着弾位置より上流側であると、液体を吐出する装置110は、色ズレを少なくし、画質を向上できる。また、各着弾位置付近等を、表面検出センサデバイス等を設置する位置とするのは、制約される場合がある。そのため、表面検出センサデバイスが設置される位置は、各着弾位置より各第1ローラに近い位置であるのが望ましい。
【0216】
なお、上述したような制御動作の遅れが問題とならない場合及び位置の制約がない場合には、表面検出センサデバイスの位置は、例えば、各液体吐出ヘッドユニットのそれぞれの直下等でもよい。表面検出センサデバイスが直下にあると、直下における正確な移動量が、表面検出センサデバイスによって検出できる。したがって、移動量等の計算が速くできるのであれば、表面検出センサデバイスは、各液体吐出ヘッドユニットの直下により近い位置にあるのが望ましい。一方で、表面検出センサデバイスは、各液体吐出ヘッドユニットの直下になくてもよく、直下にない場合であっても、同様の計算が行われる。
【0217】
なお、例えば、
図2に示すように、ずれ量センサPSENは、ウェブ120に対して、各液体吐出ヘッドユニットが設置される側、すなわち、
図5に示す第1画像パターンPTN1等が検出できる側に設置される。
【0218】
一方で、表面検出センサデバイスSENは、ウェブ120に対して、各液体吐出ヘッドユニットが設置されるのとは反対側、すなわち、ずれ量センサPSENが設置されるのとは反対側に設置される。つまり、
図2に示すように、ずれ量センサPSENは、表側に設置され、一方で、表面検出センサデバイスSENは、裏側に設置される。表面検出センサデバイスSENがスペックルセンサの場合、液体が吐出されない面の方が、検出が容易であるためである。しかしながら、液体が吐出されない位置を検出できるのであれば、表面検出センサデバイスは表側に設置されても良い。
【0219】
このように、液体を吐出する装置110は、画像形成中ではないタイミングに、処理位置検出部110F40によって検出した位置に液体吐出ヘッドユニット210の直交方向の処理位置と表面検出部110F10の原点位置を移動し、画像形成中に表面検出部110F10による検出結果に基づいて、各液体吐出ヘッドユニットが吐出するタイミング、各液体吐出ヘッドユニットを移動させる移動量又はこれらの組み合わせを計算できる。
【0220】
そして、画像形成中に上流側にて、位置が検出され、その後、ウェブ120が下流側にある着弾位置に搬送されると、その間に、液体を吐出するタイミング、液体吐出ヘッドユニットの移動又はこれらの組み合わせが行われる。そのため、各液体吐出ヘッドユニットは、搬送方向、直交方向又は両方向に、精度良く着弾位置を変更することができる。
【0221】
<まとめ>
本発明の一実施形態に係る液体を吐出する装置は、処理位置検出部110F40によって、例えば、
図6に示すように、ずれ量を算出する。次に、液体を吐出する装置は、調整部110F50によって、例えば、
図7に示すように、ずれ量に基づいて、液体吐出ヘッドユニットを直交方向へ移動させる。
【0222】
例えば、
図4に示すように、斜行等が発生すると、ずれ量が発生する。このように、ずれ量が発生すると、色ずれ等が発生し、画質が悪くなる場合が多い。そこで、液体を吐出する装置は、ずれ量がほぼ「0」となるように、液体吐出ヘッドユニットを直交方向に移動させる。このようにすると、ずれ量が少なくなり、液体を吐出する装置は、液体を着弾させる位置の精度を向上させることができる。さらに、液体ヘッドユニットの移動に応じて表面検出部110F10の原点を移動する。画像形成中には、調整部110F50の指示によって移動された液体吐出ヘッドユニットの位置を初期位置として、表面検出部110F10の検出結果からウェブ120の位置、速度、又は移動量を検出し、ウェブ120の蛇行に追従して液体吐出ヘッドユニットを移動させる。このようにして液体を吐出する装置は、着弾位置の精度向上によって、色ずれ等を少なくして画質を向上させることができる。
【0223】
<変形例>
表面検出センサと、ずれ量センサとは、センサが兼ねられてもよい。この変形例では、兼用に用いられるセンサは、画像形成が行われる領域の外側に設置される。例えば、兼用に用いられるセンサは、直交方向におけるウェブ120の端部等に設置される。また、この変形例では、兼用に用いられるセンサは、ウェブ120に対して、液体吐出ヘッドユニットが設置される側に、設置される。
【0224】
そして、この変形例では、
図5に示す第1画像パターンPTN1、第2画像パターンPTN2及び第3画像パターンPTN3は、ウェブ120の端部等に形成される。さらに、この変形例では、パターンを検出するのに用いられる光源とは別に、第1画像パターンPTN1等を検出するのに用いられる光源が更にあってもよい。また、第1画像パターンPTN1等を検出する際に、第1画像パターンPTN1等を検出する用の光源は、光量が調整されてもよい。すなわち、同一のセンサであっても、
図12のフローを実行している場合、少なくとも2つ以上の液体吐出ヘッドユニット210よりも下流に設けられるセンサがずれ量センサとなり、
図20のフローを実行している場合、少なくとも画像形成中に移動させる液体吐出ヘッドユニット210に設けられるセンサが表面検出センサとなる。
【0225】
以上のように、表面検出センサと、ずれ量センサとが兼ねられる構成であると、センサが少なくできる。そのため、コストを小さくすることができる。
【0226】
なお、本発明に係る液体を吐出する装置は、1以上の装置を有する液体を吐出するシステムによって実現されてもよい。例えば、ブラック液体吐出ヘッドユニット210Kとシアン液体吐出ヘッドユニット210Cが同じ筐体の装置であり、マゼンタ液体吐出ヘッドユニット210Mとイエロー液体吐出ヘッドユニット210Yが同じ筐体の装置であり、この両者を有する液体を吐出するシステムによって実現されても良い。
【0227】
また、本発明に係る液体を吐出する装置及び液体を吐出するシステムでは、液体は、インクに限られず、他の種類の記録液又は定着処理液等でもよい。すなわち、本発明に係る液体を吐出する装置及び液体を吐出するシステムは、インク以外の種類の液体を吐出する装置に適用されてもよい。
【0228】
したがって、本発明に係る液体を吐出する装置及び液体を吐出するシステムが形成する画像は、厚みや凹凸を持ったものであっても良い。例えば、形成される物体は、三次元造形物等でもよい。
【0229】
なお、第1の支持部材及び第2の支持部材は、兼ねられてもよい。例えば、第1の支持部材及び第2の支持部材は、以下のような構成でもよい。
【0230】
図22は、本発明の一実施形態に係る液体を吐出する装置の第1変形例を示す概略図である。
図2と比較すると、図示する構成では、第1の支持部材及び第2の支持部材の配置が異なる。図示するように、第1の支持部材及び第2の支持部材は、例えば、第1部材RL1、第2部材RL2、第3部材RL3、第4部材RL4及び第5部材RL5によって実現されてもよい。すなわち、各液体吐出ヘッドユニットの上流側に設けられる第2の支持部材と、各液体吐出ヘッドユニットの下流側に設けられる第1の支持部材とは、兼用されてもよい。なお、第1の支持部材及び第2の支持部材は、ローラで兼ねられてもよく、湾曲板で兼ねられてもよい。
【0231】
さらに、被搬送物は、用紙等の記録媒体に限られない。被搬送物は、液体が付着可能な材質であればよい。例えば、液体が付着可能な材質は、紙、糸、繊維、布帛、皮革、金属、プラスチック、ガラス、木材、セラミックス又はこれらの組み合わせ等の液体が一時的でも付着可能であればよい。
【0232】
例えば、液体を吐出する装置110は、以下のように、被搬送物をベルト等にしてもよい。
【0233】
図23は、本発明の一実施形態に係る液体を吐出する装置の第2変形例を示す概略図である。本変形例では、ヘッドユニット350C、350M、350Y及び350Kがインク滴を吐出して、転写ベルト328の外周表面上に画像を形成する。以下、ヘッドユニット350C、350M、350Y及び350Kをまとめて「ヘッドユニット群350」という。
【0234】
次に、乾燥機構370は、転写ベルト328上に形成された画像を乾燥させ、膜化する。
【0235】
続いて、転写ベルト328が転写ローラ330と対向する転写部において、液体を吐出する装置110は、転写ベルト328上の膜化した画像を用紙Pに転写する。
【0236】
また、クリーニングローラ323は、転写後の転写ベルト328の表面をクリーニングする。
【0237】
このように、本変形例では、液体を吐出する装置において、転写ベルト328の周りには、ヘッドユニット350C、350M、350Y、350K、乾燥機構370、クリーニングローラ323及び転写ローラ330等が設けられる。
【0238】
本変形例では、転写ベルト328は、駆動ローラ321、対向ローラ322、4つの形状維持ローラ324及び8つの支持ローラ325C1、325C2、325M1、325M2、325Y1、325Y2、325K1及び325K2等に架け渡され、転写ベルト駆動モータ327によって回転する駆動ローラ321に従動して図中矢印方向に移動する。駆動ローラ321の回転によって転写ベルト328が移動する方向を移動方向とする。
【0239】
また、ヘッドユニット群350に対向して設けられる8つの支持ローラ325C1、325C2、325M1、325M2、325Y1、325Y2、325K1及び325K2は、各ヘッドユニット350からインク滴が吐出される際に、転写ベルト328の引張状態を維持する。そして、転写モータ331は、転写ローラ330を回転駆動する。
【0240】
さらに、本変形例では、支持ローラ325C1と支持ローラ325C2との間、かつ、ヘッドユニット350Cの吐出位置よりも、転写ベルト328の移動方向において上流側に、センサデバイス332Cが配置される。
【0241】
また、ヘッドユニット350Cに対する支持ローラ325C1、支持ローラ325C2及びセンサデバイス332Cの位置関係と同様の位置関係で、ヘッドユニット350Mに対してもセンサデバイス332Mが設けられる。
【0242】
さらに、本変形例は、乾燥機構370の搬送方向下流側に、ずれ量センサPSEN3が配置される例である。なお、ずれ量センサPSEN3は、乾燥機構370よりも上流側に配置されても良い。
【0243】
本変形例では、ヘッドユニット350M、ヘッドユニット350Y及びヘッドユニット350Kには、アクチュエータ333M、333Y及び333Kがそれぞれ設けられる。また、アクチュエータ333Mは、ヘッドユニット350Mを、転写ベルト328の移動方向と直交する方向に移動させるアクチュエータである。同様に、アクチュエータ333Y及び333Kは、それぞれヘッドユニット350Y及びヘッドユニット350Kを転写ベルト328の移動方向と、直交方向に移動させるアクチュエータである。
【0244】
制御基板340は、ずれ量センサPSEN3から取得したデータに基づいて、画像形成処理の前にヘッドユニット350M、350Y、350Kをそれぞれ移動させる。
【0245】
また、センサデバイス332C、332M、332Y及び332Kから取得した画像データに基づいて、転写ベルト328の直交方向の移動量及び転写ベルト328の移動方向の移動量等を検出する。また、制御基板340は、転写ベルト328の直交方向の移動量に応じて、アクチュエータ333M、333Y及び333Kを制御し、ヘッドユニット350M、350Y及び350Kを直交方向に移動させる。さらに、制御基板340は、転写ベルト328の移動方向の移動量に応じて、ヘッドユニット350M、350Y及び350Kの吐出タイミングを制御する。
【0246】
さらに、制御基板340は、転写ベルト駆動モータ327、転写モータ331に駆動信号を出力する。
【0247】
本変形例によれば、転写ベルト328の移動中に、転写ベルト328が駆動ローラ321の駆動による移動方向と、直交方向に動いた場合にも、検出した移動量に応じて、液体を吐出する装置110は、ヘッドユニット350M、350Y及び350Kを直交方向にそれぞれ移動させることができる。このため、液体を吐出する装置110は、転写ベルト328上に品質の高い画像を形成することができる。
【0248】
また、転写ベルト328が駆動ローラ321の駆動による移動方向に、想定と異なる移動量移動した場合にも、検出した移動量に応じて、液体を吐出する装置110は、ヘッドユニット350M、350Y及び350Kの吐出タイミングをそれぞれ変更することができる。このため、液体を吐出する装置110は、転写ベルト328上に品質の高い画像を形成することができる。
【0249】
上記の例では、センサデバイス332C、332M、332Y及び332Kから取得した画像データに基づいて、転写ベルト328の直交方向の移動量と、転写ベルト328の移動方向の移動量とを算出したが、何れかの移動量しか使用しない場合は、一方のみを算出しても良い。
【0250】
また、本変形例では、ヘッドユニット350Cは、アクチュエータを備えないが、備えても良い。そして、ヘッドユニット350Cを直交方向に移動させることで、転写ベルト328から用紙Pに転写される際の、転写Pの搬送方向に直交する方向の位置を制御することができる。
【0251】
なお、上記の例では、複数のヘッドユニットを用いて転写ベルト328上に画像を形成する例について記載したが、一つのヘッドユニットで画像を形成する場合にも適用可能である。
【0252】
また、本発明は、搬送される被搬送物に対して、搬送方向に直交する方向に並べられたライン状のヘッドユニットを用いて何らかの処理を行う装置に適用可能である。
【0253】
例えば、本発明に係る実施形態は、ヘッドユニットがレーザを発し、レーザによって、被搬送物である基板に、パターニングの処理を行う画像形成等でもよい。具体的には、画像形成装置は、まず、レーザヘッドを基板が搬送される搬送方向と直交する方向にライン状に並べて有する。そして、画像形成装置は、レーザの書き込んだ結果を検出してヘッドユニットの位置を調整し、その後基板の位置等を検出し、検出結果に基づいて、ヘッドユニットを移動させる等を行う。この例では、処理位置は、レーザが基板に照射される位置が処理位置となる。また、この例ではパターニングが画像の形成となる。
【0254】
さらに、搬送装置が有するヘッドユニットは、複数でなくともよい。すなわち、被搬送物に対して、基準となる位置に、処理を行い続ける等の場合には、本発明は、適用可能である。
【0255】
また、本発明に係る実施形態では、搬送装置、1以上の情報処理装置等を有する搬送システム又はこれらの組み合わせ等のコンピュータに液体を吐出させる方法等の処理方法のうち、一部又は全部を実行させるためのプログラムによって実現されてもよい。
【0256】
以上、本発明の好ましい実施例について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形又は変更が可能である。
【符号の説明】
【0257】
110 画像形成装置
120 ウェブ
210K ブラック液体吐出ヘッドユニット
210C シアン液体吐出ヘッドユニット
210M マゼンタ液体吐出ヘッドユニット
210Y イエロー液体吐出ヘッドユニット
SENK ブラック用センサ
SENC シアン用センサ
SENM マゼンタ用センサ
SENY イエロー用センサ
520 コントローラ
【先行技術文献】
【特許文献】
【0258】