IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社リコーの特許一覧

特許7014312マルチスケールフィルタリングによるMRI脳画像の正規化及び強調の方法
<>
  • 特許-マルチスケールフィルタリングによるMRI脳画像の正規化及び強調の方法 図1
  • 特許-マルチスケールフィルタリングによるMRI脳画像の正規化及び強調の方法 図2
  • 特許-マルチスケールフィルタリングによるMRI脳画像の正規化及び強調の方法 図3A
  • 特許-マルチスケールフィルタリングによるMRI脳画像の正規化及び強調の方法 図3B
  • 特許-マルチスケールフィルタリングによるMRI脳画像の正規化及び強調の方法 図4
  • 特許-マルチスケールフィルタリングによるMRI脳画像の正規化及び強調の方法 図5
  • 特許-マルチスケールフィルタリングによるMRI脳画像の正規化及び強調の方法 図6A
  • 特許-マルチスケールフィルタリングによるMRI脳画像の正規化及び強調の方法 図6B
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-01-24
(45)【発行日】2022-02-01
(54)【発明の名称】マルチスケールフィルタリングによるMRI脳画像の正規化及び強調の方法
(51)【国際特許分類】
   A61B 5/055 20060101AFI20220125BHJP
   G06T 7/00 20170101ALI20220125BHJP
【FI】
A61B5/055 380
G06T7/00 612
【請求項の数】 20
(21)【出願番号】P 2021002627
(22)【出願日】2021-01-12
(65)【公開番号】P2021109110
(43)【公開日】2021-08-02
【審査請求日】2021-01-12
(31)【優先権主張番号】16/744081
(32)【優先日】2020-01-15
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】000006747
【氏名又は名称】株式会社リコー
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(72)【発明者】
【氏名】クリシュナ プラサド アガラ ベンカテッシャ ラオ
(72)【発明者】
【氏名】シュリニジー シュリニヴァサ
(72)【発明者】
【氏名】リテシュ マハジャン
(72)【発明者】
【氏名】サンジーブ シンハ
(72)【発明者】
【氏名】マリヤッパ ナラヤナン
(72)【発明者】
【氏名】バルガヴァ ガウタム
(72)【発明者】
【氏名】ジテンダー サイニ
【審査官】伊知地 和之
(56)【参考文献】
【文献】特表2019-523065(JP,A)
【文献】国際公開第2019/099641(WO,A1)
【文献】特表2019-512295(JP,A)
【文献】米国特許出願公開第2019/0059840(US,A1)
【文献】米国特許出願公開第2008/0292194(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/055
A61B 6/00 - 6/14
G06T 7/00 - 7/90
(57)【特許請求の範囲】
【請求項1】
脳物質を含むボクセルの3次元MRI画像Aを処理する方法であって、
当該方法は、
前記画像Aにマルチスケールフィルタを適用して画像Bを生成することと、
前記画像A及び前記画像Bを比較することと、
前記画像A及び前記画像Bの前記比較に基づき前記画像Aのルーマ異常を補正することと、
前記画像Aのルーマ補正されたバージョンに基づき脳物質をセグメント化することと
を有する命令を実行するコンピュータシステムで実装される方法。
【請求項2】
前記画像Aに前記マルチスケールフィルタを適用することは、
前記画像Aに異なるスケールkの複数のフィルタを適用することと、
前記フィルタをかけられた前記画像Aの加重和を計算することと
を有する、
請求項1に記載のコンピュータシステムで実装される方法。
【請求項3】
前記異なるスケールkの複数のフィルタは、異なるサイズのカーネルによるフィルタを有する、
請求項2に記載のコンピュータシステムで実装される方法。
【請求項4】
前記異なるスケールkの複数のフィルタは、サイズは同じだが幅が異なるカーネルによるフィルタを有する、
請求項2に記載のコンピュータシステムで実装される方法。
【請求項5】
前記画像A及び前記画像Bを比較することは、
除算がボクセル単位で実行されるとして比C=B/Aを計算することを有する、
請求項1に記載のコンピュータシステムで実装される方法。
【請求項6】
前記画像Aのルーマ異常を補正することは、
C>1でボクセルの強度を増大させることを有する、
請求項5に記載のコンピュータシステムで実装される方法。
【請求項7】
前記画像Aのルーマ異常を補正することは、
C<1でボクセルの強度を低減させることを有する、
請求項5に記載のコンピュータシステムで実装される方法。
【請求項8】
前記画像A及び前記画像Bを比較することは、
前記比Cにガウスフィルタを適用して、フィルタをかけられた比Dを生成することを有し、
前記画像Aのルーマ異常を補正することは、前記フィルタをかけられた比Dに基づく、
請求項5に記載のコンピュータシステムで実装される方法。
【請求項9】
前記画像A及び前記画像Bを比較することは、隣接するボクセルと一致しない強度を有する前記画像A内のボクセルを識別する、
請求項1に記載のコンピュータシステムで実装される方法。
【請求項10】
前記画像Aのルーマ異常を補正することは、
頭の部分として識別されている前記画像A内のボクセルにラベルを付けるヘッドマスクEにガウスフィルタを適用して、フィルタをかけられたヘッドマスクFを生成することと、
前記フィルタをかけられたヘッドマスクFに基づきルーマ異常を補正することと
を更に有する、
請求項1に記載のコンピュータシステムで実装される方法。
【請求項11】
脳物質を含むボクセルの3次元MRI画像Aを処理する方法であって、
当該方法は、
画像Aに異なるサイズのカーネルによる複数のフィルタを適用することと、
前記フィルタをかけられた前記画像Aの加重和を計算して画像Bを生成することと、
除算がボクセル単位で実行されるとして比C=B/Aを計算することと、
前記比Cにガウスフィルタを適用して、フィルタをかけられた比Dを生成することと、
頭の部分として識別されている前記画像A内のボクセルにラベルを付けるヘッドマスクEにガウスフィルタを適用して、フィルタをかけられたヘッドマスクFを生成することと、
除算がボクセル単位で実行されるとして正規化マスクG=D/Fを計算することと、
前記正規化マスクGに基づき前記画像Aのルーマ異常を補正することと、
前記画像Aのルーマ補正されたバージョンに基づき脳物質をセグメント化することと
を有する命令を実行するコンピュータシステムで実装される方法。
【請求項12】
脳物質を含むボクセルの3次元MRI画像Aを処理する方法であって、
当該方法は、
画像Aに異なるスケールkの複数のフィルタを適用して複数の画像Bを生成することと、
スケールkに関して画像Bのボクセルの勾配を計算することと、
正勾配のボクセル及び負勾配のボクセルを識別することと、
前記正勾配のボクセル及び/又は前記負勾配のボクセルに基づき前記画像から脳物質をセグメント化することと
を有する命令を実行するコンピュータシステムで実装される方法。
【請求項13】
前記異なるスケールkの複数のフィルタは、異なるサイズのカーネルによるフィルタを有する、
請求項12に記載のコンピュータシステムで実装される方法。
【請求項14】
前記画像Aから前記脳物質をセグメント化することは、前記画像Aから脳白質及び脳灰白質を別々にセグメント化することを有する、
請求項12に記載のコンピュータシステムで実装される方法。
【請求項15】
前記脳灰白質をセグメント化することは、前記正勾配のボクセルに基づく、
請求項14に記載のコンピュータシステムで実装される方法。
【請求項16】
前記脳白質をセグメント化することは、前記負勾配のボクセルに基づく、
請求項14に記載のコンピュータシステムで実装される方法。
【請求項17】
前記画像Aから前記脳物質をセグメント化することは、ボクセルをそれらの強度に基づきクラスタ化することを更に有する、
請求項12に記載のコンピュータシステムで実装される方法。
【請求項18】
前記画像Aから前記脳物質をセグメント化することは、ボクセルが正勾配及び/又は負勾配を有している前記スケールkに更に基づく、
請求項12に記載のコンピュータシステムで実装される方法。
【請求項19】
前記画像Aは、ルーマ補正された画像である、
請求項12に記載のコンピュータシステムで実装される方法。
【請求項20】
前記画像Aの補正されていないバージョンにマルチスケールフィルタを適用して画像Bを生成することと、
前記画像Aの前記補正されていないバージョン及び前記画像Bを比較することとと、
前記画像Aの前記補正されていないバージョン及び前記画像Bの前記比較に基づき前記画像Aのルーマ異常を補正することと
を更に有する、
請求項19に記載のコンピュータシステムで実装される方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、概して、MRI画像の脳セグメンテーションに関係がある。
【背景技術】
【0002】
セグメンテーションは、脳のMRI(Magnetic Resonance Imaging)画像の解析における1つのステップである。脳の3次元MRI画像は、通常、ボクセルの3次元アレイであり、各ボクセルは、MRI撮像プロセスに対するそのボクセル内の物質の反応を表す値(強度)を有している。セグメンテーションステップは、どのボクセルが脳物質であって、どのボクセルがそうでないのかを決定する。MRI画像がセグメント化された後、脳物質であるボクセルは、それから更に解析され得る。
【0003】
セグメンテーションは、通常、MRI画像内のボクセルの強度に基づきしばしば行われる。例えば、1つのアプローチでは、類似した強度のボクセルは同じタイプの物質に相当するという前提で、類似した強度のボクセルのクラスタがグループ化される。しかし、これは、常に優れた前提というわけではない。
【0004】
例えば、MRI撮像プロセスにおけるノイズ及び強度変化は、間違った結果をもたらす可能性がある。バイアス場分散は、同じタイプの脳物質についてさえ、MRI画像の一方の側で他方と比べて強くないボクセルを生じさせる可能性がある。その上、異なる生理学的部位が類似した強度のボクセルを有することがあり、強度に基づきボクセルをクラスタ化することは、そのような異なる部位を区別できない。例えば、脳灰白質は脳白質よりも強くないが、非脳構造と強度が似ていることがある。強度のみに基づくクラスタ化は、脳灰白質をセグメント化することに失敗する可能性がある。
【0005】
よって、MRI画像の脳セグメンテーションのためのより良いアプローチが必要とされる。
【発明の概要】
【0006】
一態様で、マルチスケールフィルタリングが、MRI画像内のボクセルの強度を正規化するために使用される。マルチスケールフィルタはMRI画像に適用される。マルチスケールフィルタは、異なるスケールの(例えば、異なるサイズのカーネルを使用する)フィルタを画像に適用する。1つのアプローチで、1×1×1フィルタ、3×3×3フィルタ、5×5×5フィルタ、などが適用され、このようなコンポーネントフィルタをかけられた画像の加重和が、マルチスケールフィルタをかけられた画像を生成するために計算される。ルーマ異常(すなわち、強度変化)は、マルチスケールフィルタをかけられた画像と原画像との比較に基づき補正される。1つのアプローチで、画像の強度は、マルチスケールフィルタをかけられたバージョンよりも暗い原画像内のボクセルについては増大され、マルチスケールフィルタをかけられたバージョンよりも明るいボクセルについては低減される。
【0007】
他の態様で、更なる特徴は、マルチスケール勾配に基づきもたらされる。それらは、MRI画像をセグメント化するために他の特徴と組み合わせて使用され得る。MRI画像は、異なるスケールkのフィルタを用いてフィルタをかけられる。kに関して勾配は計算される。ボクセルごとに、これは、kに対するそのボクセルの強度の変化である。正勾配のボクセルは、脳白質によって境界される脳灰白質を表し得る。負勾配のボクセルは、脳灰白質によって境界される脳白質を表し得る。
【0008】
2つの技術は組み合わされてよい。最初に、正規化がMRI画像に適用され得る。次いで、正規化されたバージョンについてマルチスケール勾配が計算され得る。
【0009】
他の態様として、上記のいずれかに関係があるコンポーネント、デバイス、システム、改善、方法、プロセス、アプリケーション、コンピュータ可読媒体、及び他の技術がある。
【0010】
本開示の実施形態は、添付の図面の例とともに理解される場合に、より容易に以下の詳細な説明及び添付の特許請求の範囲から明らかである他の利点及び特徴を有している。
【図面の簡単な説明】
【0011】
図1】一実施形態に従って、MRI画像のボリューム強度正規化のためのフロー図である。
図2】3次元MRI画像の1つのスライスである(先行技術)。
図3A】異なるサイズのカーネルを使用するマルチスケールフィルタリングを示す。
図3B】異なる幅のカーネルを使用するマルチスケールフィルタリングを示す。
図4図2のMRI画像のためのヘッドマスクの1つのスライスである。
図5】一実施形態に従って、マルチスケール勾配特徴を表すフロー図である。
図6A】白質によって境界される灰白質を示すMRI画像のスライスである。
図6B】スケールkの関数としての強度のグラフである。
【発明を実施するための形態】
【0012】
図及び以下の記載は、単に例示として、好適な実施形態を参照する。以下の説明から、本明細書で開示されている構造及び方法の代替の実施形態は、請求されているものの原理から逸脱せずに用いられ得る実行可能な代案として容易に認識されることが留意されるべきである。
【0013】
図1は、一実施形態に従って、MRI画像のボリューム強度正規化のためのフロー図である。プロセスは、頭又は頭の部分の3次元MRI画像Aから開始する。通常、画像Aは、ボクセルの3次元アレイによって表現される。次の例では、Aは、ボクセルの256×256×256アレイであるとする。画像Aの個々のボクセルを表すために、A(X)との語が使用される。xは、ボクセルのインデックスであり、A(x)は、ボクセルxの強度である。
【0014】
図2(先行技術)は、頭の3次元MRI画像の1つのスライスを示す。この例で、各ボクセルxは、MRI撮像プロセスに対するそのボクセル内の物質の反応を表す値(強度)A(x)を有している。強度値は、黒から白までの範囲に及ぶグレースケールによって図2では表されている。MRI画像Aは脳物質を含むが、非脳物質、例えば、目、鼻腔、頭蓋骨、筋肉、なども含むことがある。画像Aはまた、例えば、ノイズ又は組織的バイアスによって引き起こされる強度異常(ルーマ異常)を伴うことがある。
【0015】
図1のプロセス100は、ルーマ異常を補正して、正規化された画像Hを得る。正規化された画像Hは、次いで、どのボクセルが脳物質であるかを識別するセグメンテーションプロセス190で使用されてよい。適切に正規化された画像Hは、ロー画像Aに基づくセグメント化と比較して、より正確な結果をもたらす。
【0016】
プロセス100は、次のように進む。マルチスケールフィルタ110が入力画像Aに適用され、フィルタをかけられた画像Bを得る。1つのアプローチで、マルチスケールフィルタ110は、異なるスケールのフィルタFを使用する。ここで、kは、スケールのインデックスである。入力画像Aは、コンポーネントフィルタをかけられた画像Bを生成するよう各フィルタFによってフィルタをかけられ、Bの加重和は、統合的な、フィルタをかけられた画像Bをもたらす。数学的に:

B=Σk* (1)
ここで、B=A**F

wkは重みであり、総和は異なるスケールkにわたり、*は乗算であり、**は畳み込みである。
【0017】
異なるスケールフィルタFは、異なる形を取り得る。図3Aは、異なるサイズのカーネルを使用するマルチスケールフィルタリングを示す。フィルタFは、1×1のカーネルサイズを有し、フィルタFは、3×3のカーネルサイズを有し、フィルタFは、5×5のカーネルサイズを有する、など。例示の都合上、図3Aでは2次元フィルタリングが示されているが、マルチスケールフィルタリングは何次元でもあってよい。画像Aは、異なるサイズのフィルタFの夫々で畳み込まれる。フィルタをかけられた画像は、マルチスケールフィルタをかけられたバージョンBを生成するよう重み付けされ足し合わされる。
【0018】
図3Bは、サイズは同じであるが幅が異なるカーネルを使用するマルチスケールフィルタリングを示す。ここでは、全てのカーネルは5×5であるが、それらは、フィルタごとにガウス曲線によって示されるように、異なる幅のガウス分布に相当する。フィルタFは、最も狭いガウス分布であり、フィルタFは、より広く、フィルタFは、更に広い、など。
【0019】
マルチスケールフィルタリングは、畳み込みに基づく必要がない。例えば、空間不変性フィルタリングが使用され得る。スケールが異なるサイズのフィルタによって実装される場合に、ボクセルxの各コンポーネント画像Bは、xの特定の近傍内にあるボクセルの強度に基づく。このとき、近傍のサイズは、スケールkにより変化する。
【0020】
画像Bは、画像Aのマルチスケールフィルタをかけられたバージョンであるから、B(x)は、ボクセルxの局所近傍でのある種の“平均”強度を表し、一方、A(x)は、まさにボクセルxの強度である。プロセス100の残りで、画像A及びBは比較され、画像Aの強度は、この比較に基づき、ルーマ異常を補正される。
【0021】
図1に戻ると、112で、比C=B/Aが計算される。ここで、除算はボクセルに基づく。すなわち、ボクセルxごとに、C(x)=B(x)/A(x)。B(x)>A(x)の場合、すなわち、同様に、C(x)>1の場合、ボクセルxは、近傍平均よりも強度が低く、これが異常であるならば、ボクセルA(x)の強度は増大されるべきである。対照的に、B(x)<A(x)、すなわちC(x)<1の場合、ボクセルxは、近傍平均よりも強度が高く、ボクセルA(x)の強度は低減されるべきである。図1中、比Cは、114で、フィルタをかけられた比Dを生成するようガウスフィルタによってフィルタをかけられる。これは、正規化効果が極端すぎないように、比Cを平滑化する。
【0022】
図1では、正規化の効果を抑えるよう、ヘッドマスクEも使用される。図4は、図2のMRI画像に対応するヘッドマスクEの1つのスライスである。ヘッドマスクは、頭の部分であるボクセルに対しては1(図4では白として示される)であり、頭の外のボクセルに対しては0(図4では黒)である。ヘッドマスクEも、122で、頭と頭以外との間の境界を滑らかにするようガウスフィルタによってフィルタをかけられ、そして、フィルタをかけられたマスクFが得られる。これは、130で、フィルタをかけられた比Dに適用されて、正規化マスクG=D/Fを得る。このとき、除算はボクセルに基づき、頭ボリューム内にあるボクセルに対してのみ実行される。
【0023】
正規化マスクGは、次いで135で、ルーマ補正された画像H=G*Aを得るよう原画像Aに適用される。このとき、乗算はボクセルに基づく。すなわち、H(x)=G(x)*A(x)。
【0024】
別の態様で、図5は、一実施形態に従って、マルチスケール勾配特徴を表すフロー図である。マルチスケール勾配特徴は、スケールに対する強度の勾配に基づく特徴である。プロセスは、頭又は頭の部分から開始する。これは、図1と同じ画像Aであってよく、あるいは、図1の正規化された画像Hのような、別の画像であってもよい。異なるスケールkの複数のフィルタFは、510で、フィルタをかけられた画像Bを生成するよう入力画像Aに適用される。ここで、kは、スケールのインデックス又は次元である。プロセス100に関して上述された異なるスケールフィルタFが、ここでも使用されてよい。夫々の、フィルタをかけられた画像Bは、ボクセルxのアレイであり、B(x)は、スケールkでのボクセルxの強度である。B(x)は、xの関数であるが、それは、スケールkの関数でもある。kに関して勾配が520で計算される。これは、差ΔB(x)=Bk+1(x)-B(x)を取ること、又はスケール(k+1)及び(k)の間の“距離”によって正規化される差ΔB(x)を使用すること、によって行われてよい。代替的に、数値法が、導関数∂B(x)/∂kを推定するために使用されてもよい。勾配の特徴530は抽出され、脳セグメンテーションのプロセス590で使用され得る。
【0025】
図5はまた、具体的な例を示す。この例で、特徴530は、正勾配を有しているボクセル532Pと、負勾配を有しているボクセル532Nとを含む。クラスタ化アルゴリズムは、脳をセグメント化するよう592でMRI画像に適用されるが、白質及び灰白質は別々に考えられる。正勾配のボクセル532Pは、灰白質クラスタ化592Pの部分として含まれる。負勾配のボクセル532Nは、白質クラスタ化592Nの部分として含まれる。
【0026】
図6Aは、MRI画像のスライスである。円で囲まれた領域は、灰白質によって境界される白質を含むエリアの拡大である。白質610は、より高い強度を有し、周囲の灰白質615は、より低い強度を有する。図6Bは、白質ボリューム内のボクセルxについてのスケールkの関数としての強度のグラフである。小さいスケールkで、フィルタリングは、ボクセルxの周りの小さい近傍622内のボクセルのみを含む。近傍622は、ほぼ白質ボクセルである。従って、kの小さい値でのフィルタをかけられた強度B(x)632は、白質についての高い強度レベルでほとんど一定である。スケールkが大きくなるにつれて、近傍624は、周囲の灰白質を含むように広がり、フィルタをかけられた強度B(x)634は下がるので、負勾配644が存在する。灰白質のボリュームが大きい場合に、大きいスケール626で、フィルタをかけられた強度B(x)636は飽和し始める。よって、負勾配644は、灰白質によって境界される白質を示し、対応するスケールkは、白質の幅の指標である。
【0027】
同じ状況は、白質によって境界される灰白質について起こる。スケールが小さい場合に、近傍内のボクセルはほぼ灰白質であるから、フィルタをかけられた強度は低いままである。近傍のサイズが大きくなるにつれて、より多くの白質ボクセルが含まれる。フィルタをかけられた強度は増大し、スケールkに関して強度の正勾配が存在する。
【0028】
このようにして、正勾配のボクセル及び負勾配のボクセル並びにそれらの対応するスケールkは、MRI画像を脳物質及び非脳物質にセグメント化するための更なる特徴として使用され得る。
【0029】
詳細な説明には多くの詳細が含まれているが、それらは、発明の範囲を制限するものと解釈されるべきではなく、単に種々の例を表すものにすぎない。当然ながら、本開示の範囲は、先に上述されていない他の実施形態を含む。当業者に明らかである様々な他の改良、変更、及び変形は、添付の特許請求の範囲で定義されている精神及び範囲から逸脱せずに、本明細書で開示されている方法及び装置の配置、動作及び詳細において行われてよい。従って、発明の範囲は、添付の特許請求の範囲及びそれらの法上の均等によって決定されるべきである。
【0030】
代替の実施形態は、コンピュータハードウェア、ファームウェア、ソフトウェア、及び/又はそれらの組み合わせで実装される。実施は、プログラム可能なプロセッサによる実行のためにコンピュータ可読記憶デバイスに有形に具現されたコンピュータプログラム製品で実装可能であり、方法ステップは、入力に作用して出力を生成することによって機能を実行するよう命令のプログラムを実行するプログラム可能なプロセッサによって実行可能である。実施形態は、データ及び命令フォームを受けるよう、かつデータ及び命令をデータ記憶システム、少なくとも1つの入力デバイス、及び少なくとも1つの出力デバイスへ送るよう結合された少なくとも1つのプログラム可能なプロセッサを含むプログラム可能なコンピュータシステムで実行可能である1つ以上のコンピュータプログラムで有利に実装可能である。各コンピュータプログラムは、高位プロシージャ又はオブジェクト指向プログラミング言語で、あるいは、望まれる場合にはアセンブリ又は機械言語で実装可能であり、いずれの場合にも、言語は、コンパイル済み又は解釈済みの言語であることができる。適切なプロセッサには、例として、汎用のマイクロプロセッサ及び専用のマイクロプロセッサの両方が含まれる。一般に、プロセッサは、リードオンリーメモリ及び/又はランダムアクセスメモリから命令及びデータを受け取る。一般に、コンピュータは、データファイルを記憶する1つ以上の大容量記憶デバイスを含み、そのようなデバイスには、内蔵ハードディスク及びリムーバブルディスクのような磁気ディスク、光学磁気ディスク、並びに光ディスクが含まれる。コンピュータプログラム命令及びデータを有形に具現するのに適した記憶デバイスには、例として、EPROM、EEPROM、及びフラッシュメモリデバイスのような半導体メモリ、内蔵ハードディスク及びリムーバブルディスクのような磁気ディスク、光学磁気ディスク、並びにCD-ROMディスクを含む全ての形態の不揮発性メモリが含まれる。上記のいずれも、ASIC(Application-Specific Integrated Circuits)、FPGA及び他の形態のハードウェアに組み込まれるか、あるいは、それらによって補われ得る。
【符号の説明】
【0031】
532P 正勾配のボクセル
532N 負勾配のボクセル
610 白質
615 灰白質
A 入力画像
B マルチスケールフィルタをかけられた画像
E ヘッドマスク
G 正規化マスク
H ルーマ補正された画像
k スケール
x ボクセル
図1
図2
図3A
図3B
図4
図5
図6A
図6B