(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-01-26
(45)【発行日】2022-02-15
(54)【発明の名称】光走査装置、画像投写装置及び移動体
(51)【国際特許分類】
G02B 26/10 20060101AFI20220207BHJP
【FI】
G02B26/10 C
(21)【出願番号】P 2018049620
(22)【出願日】2018-03-16
【審査請求日】2021-01-18
(73)【特許権者】
【識別番号】000006747
【氏名又は名称】株式会社リコー
(74)【代理人】
【識別番号】100098626
【氏名又は名称】黒田 壽
(72)【発明者】
【氏名】山城 俊裕
(72)【発明者】
【氏名】橋口 強
【審査官】横井 亜矢子
(56)【参考文献】
【文献】国際公開第2017/112481(WO,A1)
【文献】特開2017-183690(JP,A)
【文献】特開2016-191826(JP,A)
【文献】特開2011-033755(JP,A)
【文献】特開2017-021131(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 26/10-26/12
G02B 27/00-30/60
H04N 1/04-1/207
H04N 5/66-5/74
(57)【特許請求の範囲】
【請求項1】
光源からの光を主走査方向及び副走査方向へ偏向して被走査領域を光走査する光走査装置であって、
前記光源からの光を少なくとも前記副走査方向へ偏向して前記被走査領域を光走査する光偏向手段と、
前記光偏向手段によって光走査された光を副走査方向の所定範囲で受光する
受光面を備える複数の受光手段と、
副走査方向の
互いに異なる位置で前記
複数の受光手段
の各受光面が受光する受光回数
の合計に基づいて、前記光偏向手段を制御する制御手段とを有することを特徴とする光走査装置。
【請求項2】
請求項1に記載の光走査装置において、
前記制御手段は、前記受光回数
の合計が規定回数から外れたとき、該受光回数
の合計が該規定回数に戻るように、前記光偏向手段を制御することを特徴とする光走査装置
。
【請求項3】
請求項1
又は2に記載の光走査装置において、
前記受光回数
の合計は、前記被走査領域に対する互いに異なる
複数のフレームに分けて行った光走査時に
、前記
複数の受光手段
の受光面が
該複数のフレーム間で異なる副走査方向の位置で受光した
受光回数の合計であることを特徴とする光走査装置。
【請求項4】
請求項1乃至
3のいずれか1項に記載の光走査装置において、
前記
受光手段は、
前記被走査領域のうち、前記光偏向手段における前記副走査方向への走査速度変動が生じたときに、
当該受光面内における副走査方向の互いに異なる箇所で受光される光の副走査方向の距離間隔が最も広がる
被走査領域部分を含むか、又は、
当該受光面内における副走査方向の互いに異なる箇所で受光される光の副走査方向の距離間隔が最も狭まる
被走査領域部分を含むことを特徴とする光走査装置。
【請求項5】
画像情報に基づいて変調された光により被走査領域を走査して画像を投写する画像投写装置であって、
請求項1乃至
4のいずれか1項に記載の光走査装置と、
前記光走査装置から出射された光を前記被走査領域に向けて投写する投写光学系とを有することを特徴とする画像投写装置。
【請求項6】
請求項1乃至
4のいずれか1項に記載の光走査装置、又は、請求項
5に記載の画像投写装置を備えることを特徴とする移動体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光走査装置、画像投写装置及び移動体に関する。
【背景技術】
【0002】
従来、光源からの光を主走査方向及び副走査方向へ偏向して被走査領域を光走査する光走査装置が知られている。
【0003】
例えば、特許文献1には、光源からの光を主走査方向及び副走査方向へ偏向して被走査領域を光走査する光偏向器を備え、被走査領域の光偏向方向端部に受光器を設けた光走査装置が開示されている。この光走査装置では、受光器がレーザービームを検知するタイミングに基づいて、主走査方向におけるレーザービームの偏向振幅を制御する。具体的には、主走査方向における走査往路時に受光器を通過する時のレーザービーム検出タイミングと走査復路時に受光器を通過する時のレーザービーム検出タイミングとの時間差を測定する。そして、この時間差が短い場合には、主走査方向におけるレーザービームの偏向振幅が狭いと判断し、この時間差が長い場合には、主走査方向におけるレーザービームの偏向振幅が広いと判断する。
【発明の概要】
【発明が解決しようとする課題】
【0004】
副走査方向における走査速度にムラがあると、主走査方向の光走査によって得られる走査線の密度にムラが生じ、副走査方向における走査線の粗密が発生する。前記特許文献1に開示の光走査装置では、副走査方向における走査線の粗密の発生を検出することができないため、副走査方向における走査線の粗密を改善することができない。
【課題を解決するための手段】
【0005】
上述した課題を解決するために、本発明は、光源からの光を主走査方向及び副走査方向へ偏向して被走査領域を光走査する光走査装置であって、前記光源からの光を少なくとも前記副走査方向へ偏向して前記被走査領域を光走査する光偏向手段と、前記光偏向手段によって光走査された光を副走査方向の所定範囲で受光する受光面を備える複数の受光手段と、副走査方向の互いに異なる位置で前記複数の受光手段の各受光面が受光する受光回数の合計に基づいて、前記光偏向手段を制御する制御手段とを有することを特徴とする。
【発明の効果】
【0006】
本発明によれば、副走査方向における走査線の粗密を改善することができる。
【図面の簡単な説明】
【0007】
【
図1】実施形態における光走査装置の一例を示す概略図。
【
図3】同光走査装置の制御装置の一例の機能ブロック図。
【
図4】同光走査装置に係る処理の一例のフローチャート。
【
図5】同光走査装置の光偏向器の一例を+Z方向から見たときの平面図。
【
図8】光偏向器の第二駆動部の変形を模式的に表した模式図。
【
図9】(a)は、光偏向器の圧電駆動部群Aに印加される駆動電圧Aの波形の一例を示すグラフ図。(b)は、光偏向器の圧電駆動部群Bに印加される駆動電圧Bの波形の一例を示すグラフ図。(c)は、(a)の駆動電圧の波形と(b)の駆動電圧の波形を重ね合わせた一例を示すグラフ図。
【
図11】(a)は、反射面の第二軸周りの可動速度が一定(均一)である場合の反射面の第二軸周りの振れ角(光走査角度)の時間変化を示す図。(b)は、反射面の第二軸周りの可動速度が一定(均一)である場合の投写画像イメージを示す図。(c)は、反射面の第二軸周りの可動速度が一定(均一)ではない場合の反射面の第二軸周りの振れ角(光走査角度)の時間変化を示す図。(d)は、反射面の第二軸周りの可動速度が一定(均一)ではない場合の反射面の投写画像イメージを示す図。
【
図12】光偏向器の固有振動数に基づいて受光器の配置を定めた一例の図。
【
図13】(a)は、反射面の第二軸周りの可動速度が一定(均一)であるときの受光器の受光信号の一例を示す説明図。(b)は、反射面の第二軸周りの可動速度が一定(均一)ではないときの受光器の受光信号の一例を示す説明図。
【
図14】(a)は、反射面の第二軸周りの可動速度が一定(均一)であるときの受光器の受光信号の一例を示す説明図。(b)は、反射面の第二軸周りの可動速度が一定(均一)ではないときの受光器の受光信号の他の例を示す説明図。
【
図15】実施形態における駆動信号の調整処理の一例を示すフローチャート。
【
図17】(a)は、反射面の第二軸周りの可動速度が一定(均一)であるときの受光器の受光信号の一例を示す説明図。(b)は、反射面の第二軸周りの可動速度が一定(均一)ではないときの受光器の受光信号の一例を示す説明図。
【
図18】実施形態における駆動信号の調整処理の他の例を示すフローチャート。
【
図19】(a)は、反射面の第二軸周りの可動速度が一定(均一)であるときの受光器の受光信号の一例を示す説明図。(b)は、反射面の第二軸周りの可動速度が一定(均一)ではないときの受光器の受光信号の更に他の例を示す説明図。
【
図20】ヘッドアップディスプレイ装置を搭載した自動車の一例の概略図。
【
図21】ヘッドアップディスプレイ装置の一例の概略図。
【
図22】光書込装置を搭載した画像形成装置の一例の概略図。
【
図24】レーザレーダ装置を搭載した自動車の一例の概略図。
【発明を実施するための形態】
【0008】
以下、本発明の実施形態について詳細に説明する。
【0009】
<第1実施形態>
まず、図面を参照して、本実施形態に係る光走査装置について詳細に説明する。
図1は、本実施形態の光走査装置の一例を示す概略図である。
【0010】
図1に示すように、光走査装置10は、制御装置11の制御に従って光源装置12から照射された光を光偏向器13が有する反射面14により偏向して被走査面15を光走査する。光偏向器13により光走査可能な領域である走査可能領域16は、有効走査領域17を含む。被走査面15には、走査可能領域16内、かつ、有効走査領域17外に、受光器18が設けられている。光走査装置10は、制御装置11、光偏向器13、受光器18により構成される。
【0011】
制御装置11は、例えばCPU(Central Processing Unit)およびFPGA(Field-Programmable Gate Array)等を備えた電子回路ユニットである。光源装置12は、例えばレーザ光を照射するレーザ装置である。光偏向器13は、例えば反射面14を有し、反射面14を可動可能なMEMS(Micro Electromechanical Systems)デバイスである。被走査面15は、例えばスクリーンである。受光器18は、例えば光を受光して受光信号を出力するPD(Photo Diode)である。
【0012】
制御装置11は、外部装置等から取得した光走査情報に基づいて光源装置12および光偏向器13の制御信号を生成し、制御信号に基づいて光源装置12および光偏向器13に駆動信号を出力する。また、光源装置12から出力される信号、光偏向器13から出力される信号、受光器18から出力される受光信号に基づいて、光源装置12と光偏向器13の同期や制御信号の生成を行う。
【0013】
光源装置12は、制御装置11から入力された駆動信号に基づいて光源の照射を行う。
【0014】
光偏向器13は、制御装置11から入力された駆動信号に基づいて反射面14を一軸方向(一次元方向)または二軸方向(二次元方向)の少なくともいずれかに可動させ、光源装置12からの光を偏向する。なお、本実施形態の光偏向器13は、少なくとも、走査線の並び方向に対応する副走査方向へ偏向して被走査領域を光走査する光偏向手段であればよい。したがって、走査線の延び方向に対応する主走査方向と副走査方向の両方についての光走査を1つの光偏向手段によって実現してもよいし、主走査方向と副走査方向の各光走査を異なる光偏向手段によって実現してもよい。なお、駆動信号は、所定の駆動周波数を有する信号である。光偏向器13は、所定の固有振動数(共振周波数とも呼ぶ。)を有している。
【0015】
これにより、例えば、光走査情報の一例である画像情報に基づいた制御装置11の制御によって、光偏向器13の反射面14を所定の範囲で二軸方向に往復可動させ、反射面14に入射する光源装置12からの照射光を偏向して光走査することにより、被走査面15に任意の画像を投写することができる。
【0016】
なお、光偏向器13の詳細および制御装置11による制御の詳細については後述する。
【0017】
次に、
図2を参照して、光走査装置の一例のハードウェア構成について説明する。
図2は、光走査装置の一例のハードウェア構成図である。
図2に示すように、光走査装置10は、制御装置11、光源装置12、光偏向器13、受光器18を備え、それぞれが電気的に接続されている。その中でも制御装置11の詳細について以下に説明する。
【0018】
制御装置11は、CPU20、RAM21(Random Access Memory)、ROM22(Read Only Memory)、FPGA23、外部I/F24、光源装置ドライバ25、光偏向器ドライバ26を備えている。
【0019】
CPU20は、ROM22等の記憶装置からプログラムやデータをRAM21上に読み出し、処理を実行して、制御装置11の全体の制御や機能を実現する演算装置である。RAM21は、プログラムやデータを一時保持する揮発性の記憶装置である。
【0020】
ROM22は、電源を切ってもプログラムやデータを保持することができる不揮発性の記憶装置であり、CPU20が光走査装置10の各機能を制御するために実行する処理用プログラムやデータを記憶している。
【0021】
FPGA23は、CPU20の処理に従って、光源装置ドライバ25および光偏向器ドライバ26に適した制御信号を出力する回路である。また、光源装置ドライバ25および光偏向器ドライバ26を介して光源装置12および光偏向器13の出力信号を取得し、さらに受光器18から受光信号を取得し、出力信号および受光信号に基づいて制御信号を生成する。
【0022】
外部I/F24は、例えば外部装置やネットワーク等とのインタフェースである。外部装置には、例えば、PC(Personal Computer)等の上位装置、USBメモリ、SDカード、CD、DVD、HDD、SSD等の記憶装置が含まれる。また、ネットワークは、例えば自動車のCAN(Controller Area Network)やLAN(Local Area Network)、車車間通信、インターネット等である。外部I/F24は、外部装置との接続または通信を可能にする構成であればよく、外部装置ごとに外部I/F24が用意されてもよい。
【0023】
光源装置ドライバ25は、入力された制御信号に従って光源装置12に駆動電圧等の駆動信号を出力する電気回路である。
【0024】
光偏向器ドライバ26は、入力された制御信号に従って光偏向器13に駆動電圧等の駆動信号を出力する電気回路である。
【0025】
制御装置11において、CPU20は、外部I/F24を介して外部装置やネットワークから光走査情報を取得する。なお、CPU20が光走査情報を取得することができる構成であればよく、制御装置11内のROM22やFPGA23に光走査情報を格納する構成としてもよいし、制御装置11内に新たにSSD等の記憶装置を設けて、その記憶装置に光走査情報を格納する構成としてもよい。
【0026】
ここで、光走査情報とは、光源装置12と光偏向器13により被走査面15にどのように光走査させるかを示した情報であり、例えば、光走査により画像を表示する場合は、光走査情報は画像データである。また、例えば、光走査により光書込みを行う場合は、光走査情報は書込み順や書込み箇所を示した書込みデータである。他にも、例えば、光走査により物体認識を行う場合は、光走査情報は物体認識用の光を照射するタイミングと照射範囲を示す照射データである。
【0027】
次に、
図3を参照して、光走査装置10の制御装置11の機能構成について説明する。
図3は、光走査装置10の制御装置の一例の機能ブロック図である。
本実施形態に係る制御装置11は、CPU20の命令および
図2に示したハードウェア構成によって、次に説明する機能構成を実現することができる。
【0028】
図3に示すように、制御装置11は、機能として制御部30と駆動信号出力部31とを有する。制御部30は、例えばCPU20、FPGA23等により実現される制御手段であり、光走査情報や各デバイスからの信号を取得し、それらに基づいて制御信号を生成して駆動信号出力部31に出力する。
【0029】
例えば、制御部30は、外部装置等から画像データを光走査情報として取得し、所定の処理により画像データから制御信号を生成して駆動信号出力部31に出力する。また、制御部30は、駆動信号出力部31を介して光源装置12、光偏向器13の各出力信号を取得し、各出力信号に基づいて制御信号を生成する。さらに、制御部30は、受光器18の受光信号を取得し、取得した受光信号に基づいて制御信号を生成する。
【0030】
駆動信号出力部31は、光源装置ドライバ25、光偏向器ドライバ26等により実現され、入力された制御信号に基づいて光源装置12または光偏向器13に駆動信号を出力する。駆動信号出力部31は例えば駆動電圧を光源装置12または光偏向器13に印加する印加手段として機能する。駆動信号出力部31は、駆動信号を出力する対象ごとに設けられてもよい。
【0031】
なお、駆動信号は、光源装置12または光偏向器13の駆動を制御するための信号である。例えば、光源装置12においては、光源の照射タイミングおよび照射強度を制御する駆動電圧である。また、例えば、光偏向器13においては、光偏向器13の有する反射面14を可動させるタイミングおよび可動範囲を制御する駆動電圧である。
【0032】
次に、
図4を参照して、光走査装置10が被走査面15を光走査する処理について説明する。
図4は、光走査装置に係る処理の一例のフローチャートである。
ステップS11において、制御部30は、外部装置等から光走査情報を取得する。また、制御部30は、駆動信号出力部31を介して光源装置12、光偏向器13の各出力信号をそれぞれ取得し、また受光器18の受光信号を取得する。
【0033】
ステップS12において、制御部30は、取得した光走査情報、各出力信号、受光信号から制御信号を生成し、制御信号を駆動信号出力部31に出力する。このとき、起動時は各出力信号、受光信号を取得できない場合があるため、起動時は別ステップにより所定動作を行ってもよい。
【0034】
ステップS13において、駆動信号出力部31は、入力された制御信号に基づいて駆動信号を光源装置12および光偏向器13に出力する。
【0035】
ステップS14において、光源装置12は、入力された駆動信号に基づいて光照射を行う。また、光偏向器13は、入力された駆動信号に基づいて反射面14の可動を行う。光源装置12および光偏向器13の駆動により、任意の方向に光が偏向され、光走査される。
【0036】
なお、本実施形態の光走査装置10では、1つの制御装置11が光源装置12および光偏向器13を制御する装置および機能を有しているが、光源装置用の制御装置と光偏向器用の制御装置を別体に設けてもよい。
【0037】
また、本実施形態の光走査装置10では、一つの制御装置11に光源装置12および光偏向器13の制御部30の機能および駆動信号出力部31の機能を設けているが、これらの機能は別体として存在していてもよく、例えば制御部30を有した制御装置11とは別に駆動信号出力部31を有した駆動信号出力装置を設ける構成としてもよい。
【0038】
次に、
図5~
図7を参照して、光偏向器について詳細に説明する。
図5は、二軸方向に光偏向可能な両持ちタイプの光偏向器の平面図である。
図6は、
図5のP-P’断面図である。
図7は
図5のQ-Q’断面図である。
【0039】
図5に示すように、光偏向器13は、入射した光を反射するミラー部101と、ミラー部に接続され、ミラー部をY軸に平行な第一軸周りに駆動する第一駆動部110a,110bと、ミラー部および第一駆動部を支持する第一支持部120と、第一支持部に接続され、ミラー部および第一支持部をX軸に平行な第二軸周りに駆動する第二駆動部130a,130bと、第二駆動部を支持する第二支持部140と、第一駆動部および第二駆動部および制御装置に電気的に接続される電極接続部150と、を有する。
【0040】
光偏向器13は、例えば、1枚のSOI(Silicon On Insulator)基板上に反射面14や第一圧電駆動部112a,112b、第二圧電駆動部131a~131f、132a~132f、電極接続部150等を形成した後にエッチング処理等で基板を成形することで、各構成部が一体的に形成されている。なお、前記の各構成部の形成は、SOI基板の成形後に行ってもよいし、SOI基板の成形中に行ってもよい。
【0041】
SOI基板は、単結晶シリコン(Si)からなる第一シリコン層の上に酸化シリコン層162が設けられ、その酸化シリコン層162の上にさらに単結晶シリコンからなる第二シリコン層が設けられている基板である。以降、第一シリコン層をシリコン支持層161、第二シリコン層をシリコン活性層163とする。なお、SOI基板は、焼結してシリコン活性層163の表面に酸化シリコン層164を形成した後に使用される。
【0042】
シリコン活性層163は、X軸方向またはY軸方向に対してZ軸方向への厚みが小さいため、シリコン活性層163、またはシリコン活性層163と酸化シリコン層164で構成された部材は、弾性を有する弾性部としての機能を備える。なお、本実施形態では、シリコン活性層163と下部電極201の電気的接触を抑制するために酸化シリコン層164を設けているが、酸化シリコン層164は絶縁性を有する別の材質に置き換えてもよい。
【0043】
なお、SOI基板は、必ず平面状である必要はなく、曲率等を有していてもよい。また、エッチング処理等により一体的に成形でき、部分的に弾性を持たせることができる基板であれば光偏向器13の形成に用いられる部材はSOI基板に限られない。
【0044】
ミラー部101は、例えば、円形状のミラー部基体102と、ミラー部基体の+Z側の面上に形成された反射面14とから構成される。ミラー部基体102は、例えば、シリコン活性層163と酸化シリコン層164から構成される。
【0045】
反射面14は、例えば、アルミニウム、金、銀等を含む金属薄膜で構成される。また、ミラー部101は、ミラー部基体102の-Z側の面にミラー部補強用のリブが形成されていてもよい。
【0046】
リブは、例えば、シリコン支持層161および酸化シリコン層162から構成され、可動によって生じる反射面14の歪みを抑制することができる。
【0047】
第一駆動部110a,110bは、ミラー部基体102に一端が接続し、第一軸方向にそれぞれ延びてミラー部101を可動可能に支持する2つのトーションバー111a,111bと、一端がトーションバーに接続され、他端が第一支持部の内周部に接続される第一圧電駆動部112a,112bと、から構成される。
【0048】
図6に示すように、トーションバー111a,111bはシリコン活性層163と酸化シリコン層164から構成される。また、第一圧電駆動部112a,112bは、弾性部であるシリコン活性層163と酸化シリコン層164の+Z側の面上に下部電極201、圧電部202、上部電極203の順に形成されて構成される。
【0049】
上部電極203および下部電極201は、例えば金(Au)または白金(Pt)等から構成される。圧電部202は、例えば、圧電材料であるPZT(チタン酸ジルコン酸鉛)からなる。
【0050】
図5に戻り、第一支持部120は、例えば、シリコン支持層161、酸化シリコン層162、シリコン活性層163、酸化シリコン層164から構成され、ミラー部101を囲うように形成された矩形形状の支持体である。
【0051】
第二駆動部130a,130bは、例えば、折り返すように連結された複数の第二圧電駆動部131a~131f、132a~132fから構成されており、第二駆動部130a,130bの一端は第一支持部120の外周部に接続され、他端は第二支持部140の内周部に接続されている。このような蛇行状構造をミアンダ構造とよぶ。また、第二圧電駆動部のように1つの梁と駆動力を有する部材で構成されている構造を駆動カンチレバーともよぶ。
【0052】
このとき、第二駆動部130aと第一支持部120の接続箇所および第二駆動部130bと第一支持部120の接続箇所、さらに第二駆動部130aと第二支持部140の接続箇所および第二駆動部130bと第二支持部140の接続箇所は、反射面14の中心に対して点対称となっている。
【0053】
図7に示すように、第二駆動部130a,130bは、弾性部であるシリコン活性層163、酸化シリコン層164の+Z側の面上に下部電極201、圧電部202、上部電極203の順に形成されて構成される。上部電極203および下部電極201は、例えば金(Au)または白金(Pt)等から構成される。圧電部202は、例えば、圧電材料であるPZT(チタン酸ジルコン酸鉛)からなる。
【0054】
図5に戻り、第二支持部140は、例えば、シリコン支持層161、酸化シリコン層162、シリコン活性層163、酸化シリコン層164から構成され、ミラー部101、第一駆動部110a,110b、第一支持部120および第二駆動部130a,130bを囲うように形成された矩形の支持体である。
【0055】
電極接続部150は、例えば、第二支持部140の+Z側の面上に形成され、第一圧電駆動部112a,112b、第二圧電駆動部131a~131fの各上部電極203および各下部電極201,および制御装置11にアルミニウム(Al)等の電極配線を介して電気的に接続されている。
【0056】
なお、本実施形態では、圧電部202が弾性部であるシリコン活性層163、酸化シリコン層164の一面(+Z側の面)のみに形成された場合を一例として説明したが、弾性部の他の面(例えば-Z側の面)に設けても良いし、弾性部の一面および他面の双方に設けても良い。
【0057】
また、ミラー部101を第一軸周りまたは第二軸周りに駆動可能であれば、各構成部の形状は実施形態の形状に限定されない。例えば、トーションバー111a,111bや第一圧電駆動部112a,112bが曲率を有した形状を有していてもよい。
【0058】
さらに、第一駆動部110a,110bの上部電極203の+Z側の面上、第一支持部の+Z側の面上、第二駆動部130a,130bの上部電極203の+Z側の面上、第二支持部の+Z側の面上の少なくともいずれかに酸化シリコン膜からなる絶縁層が形成されていてもよい。このとき、絶縁層の上に電極配線を設け、また、上部電極203または下部電極201と電極配線とが接続される接続スポットに、開口部として部分的に絶縁層を除去または絶縁層を形成しないことにより、第一駆動部110a,110b、第二駆動部130a,130bおよび電極配線の設計自由度をあげ、さらに電極同士の接触による短絡を抑制することができる。なお、絶縁層は絶縁性を有する部材であればよく、また、薄膜化等により反射防止材としての機能を備えさせてもよい。
【0059】
次に、光偏向器の第一駆動部および第二駆動部を駆動させる制御装置の制御の詳細について説明する。
第一駆動部110a,110b、第二駆動部130a,130bが有する圧電部202は、分極方向に正または負の電圧が印加されると印加電圧の電位に比例した変形(例えば、伸縮)が生じ、いわゆる逆圧電効果を発揮する。第一駆動部110a,110b,第二駆動部130a,130bは、前記の逆圧電効果を利用してミラー部101を可動させる。このとき、ミラー部101の反射面14に入射した光束が偏向される角度を振れ角とよぶ。振れ角は光偏向器13による偏向度合いを示している。圧電部202に電圧を印加していないときの振れ角をゼロとし、その角度よりも偏向角度が大きい場合を正の振れ角、小さい場合を負の振れ角とする。
【0060】
まず、第一駆動部110a,110bを駆動させる制御装置11の制御について説明する。
第一駆動部110a,110bでは、第一圧電駆動部112a,112bが有する圧電部202に、上部電極203および下部電極201を介して駆動電圧が並列に印加されると、それぞれの圧電部202が変形する。この圧電部202の変形による作用により、第一圧電駆動部112a,112bが屈曲変形する。
【0061】
その結果、2つのトーションバー111a,111bのねじれを介してミラー部101に第一軸周りの駆動力が作用し、ミラー部101が第一軸周りに可動する。第一駆動部110a,110bに印加される駆動電圧は、制御装置11によって制御される。
【0062】
このとき、制御装置11によって、第一駆動部110a,110bが有する第一圧電駆動部112a,112bに所定の正弦波形の駆動電圧を並行して印加することで、ミラー部101を、第一軸周りに所定の正弦波形の駆動電圧の周期で可動させることができる。さらに、例えば、正弦波形電圧の周波数がトーションバー111a,111bの共振周波数と同程度である約20kHzに設定された場合、トーションバー111a,111bのねじれによる共振が生じるのを利用して、ミラー部101を約20kHzで共振振動させることができる。
【0063】
次に、
図8を参照して、第二駆動部を駆動させる制御装置の制御について説明する。
図8は、光偏向器の第二駆動部130a,130bの駆動を模式的に表した模式図である。斜線で表されている領域がミラー部101等である。
【0064】
第二駆動部130aが有する複数の第二圧電駆動部131a~131fのうち、最もミラー部に距離が近い第二圧電駆動部131aから数えて偶数番目の第二圧電駆動部、すなわち第二圧電駆動部131b,131d,131fを圧電駆動部群A(第一アクチュエータとも呼ぶ。)とする。
【0065】
また、さらに第二駆動部130bが有する複数の第二圧電駆動部132a~132fのうち、最もミラー部に距離が近い第二圧電駆動部132aから数えて奇数番目の第二圧電駆動部、すなわち第二圧電駆動部132a,132c,132eを同様に圧電駆動部群Aとする。圧電駆動部群Aは、駆動電圧が並行に印加されると、
図8(a)に示すように、圧電駆動部群Aが同一方向に屈曲変形し、正の振れ角となるようにミラー部101が第二軸周りに可動する。
【0066】
また、第二駆動部130aが有する複数の第二圧電駆動部131a~131fのうち、最もミラー部に距離が近い第二圧電駆動部131aから数えて奇数番目の第二圧電駆動部、すなわち第二圧電駆動部131a,131c,131eを圧電駆動部群B(第二アクチュエータとも呼ぶ。)とする。
【0067】
また、さらに第二駆動部130bが有する複数の第二圧電駆動部132a~132fのうち、最もミラー部に距離が近い第二圧電駆動部132aから数えて偶数番目の第二圧電駆動部、すなわち第二圧電駆動部132b,132d,132fを同様に圧電駆動部群Bとする。圧電駆動部群Bは、駆動電圧が並行に印加されると、
図8(c)に示すように、圧電駆動部群Bが同一方向に屈曲変形し、負の振れ角となるようにミラー部101が第二軸周りに可動する。
【0068】
また、
図8(b)に示すように、電圧が印加されていない、又は、電圧印加による圧電駆動部群Aによるミラー部101の可動量と電圧印加による圧電駆動群Bによるミラー部101の可動量が釣り合っている時は、振れ角はゼロとなる。
【0069】
図8(a)、(c)に示すように、第二駆動部130a,130bでは、圧電駆動部群Aが有する複数の圧電部202又は圧電駆動部群Bが有する複数の圧電部202を屈曲変形させることにより、屈曲変形による可動量を累積させ、ミラー部101の第二軸周りの振れ角を大きくすることができる。また、
図8(a)~
図8(c)を連続的に繰り返すように第二圧電駆動部に駆動電圧を印加することにより、ミラー部を第二軸周りに駆動させることができる。
【0070】
第二駆動部130a,130bに印加される駆動信号(駆動電圧)は、制御装置11によって制御される。
図9を参照して、圧電駆動部群Aに印加される駆動電圧(以下「駆動電圧A」という。)、圧電駆動部群Bに印加される駆動電圧(以下「駆動電圧B」という。)について説明する。また、駆動電圧A(第一駆動電圧)を印加する印加手段を第一印加手段、駆動電圧B(第二駆動電圧)を印加する印加手段を第二印加手段とする。
【0071】
図9(a)は、光偏向器の圧電駆動部群Aに印加される駆動電圧Aの波形の一例である。
図9(b)は、光偏向器の圧電駆動部群Bに印加される駆動電圧Bの波形の一例である。
図9(c)は、駆動電圧Aの波形と駆動電圧Bの波形を重ね合わせた図である。
【0072】
図9(a)に示すように、圧電駆動部群Aに印加される駆動電圧Aの波形は、例えば、ノコギリ波状の波形であり、周波数は、例えば60Hzである。また、駆動電圧Aの波形は、電圧値が極小値から次の極大値まで増加していく立ち上がり期間の時間幅をTrA、電圧値が極大値から次の極小値まで減少していく立ち下がり期間の時間幅をTfAとしたとき、例えば、TrA:TfA=8.5:1.5となる比率があらかじめ設定されている。このとき、一周期に対するTrAの比率を駆動電圧Aのシンメトリという。
【0073】
図9(b)に示すように、圧電駆動部群Bに印加される駆動電圧Bの波形は、例えば、ノコギリ波状の波形であり、周波数は、例えば60Hzである。また、駆動電圧Bの波形は、電圧値が極小値から次の極大値まで増加していく立ち上がり期間の時間幅をTrB、電圧値が極大値から次の極小値まで減少していく立ち下がり期間の時間幅をTfBとしたとき、例えば、TfB:TrB=8.5:1.5となる比率があらかじめ設定されている。このとき、一周期に対するTfBの比率を駆動電圧Bのシンメトリという。
【0074】
また、
図9(c)に示すように、例えば、駆動電圧Aの波形の周期TAと駆動電圧Bの波形の周期TBは、同一となるように設定されている。このとき、駆動電圧Aと駆動電圧Bは位相差dを有している。
【0075】
なお、駆動電圧A及び駆動電圧Bのノコギリ波状の波形は、例えば、正弦波の重ね合わせによって生成される。また、駆動電圧A及び駆動電圧Bの周波数(駆動周波数fs)は、光偏向器13の最低次の固有振動数(f(1))の半整数倍であることが望ましい。例えば、fsをf(1)の1/5.5倍、1/6.5倍、1/7.5倍のいずれかにするのが望ましい。これにより、半整数倍にすることで駆動周波数の高調波成分による振動を抑制できる。このような光走査にとって悪影響をおよぼす振動を不要振動とよぶ。
【0076】
また、本実施形態では、駆動電圧A,Bとしてノコギリ波状の波形の駆動電圧を用いているが、これに限らず、ノコギリ波状の波形の頂点を丸くした波形の駆動電圧や、ノコギリ波状の波形の直線領域を曲線とした波形の駆動電圧など、光偏向器のデバイス特性に応じて波形を変えることも可能である。この場合、シンメトリは、一周期に対する立ち上がり時間の比率、又は一周期に対する立ち下がり時間の比率となる。このとき、立ち上がり時間、立ち下がり時間のどちらを基準にするかは、任意に設定してもよい。
【0077】
図10を参照して、光走査装置10による光走査方式について説明する。
図10は、光走査装置10による光走査を説明する図である。
光走査装置10は、光源装置12からの光を光偏向器13によって主走査方向及び副走査方向の2方向に光を偏向し、
図10に示すように被走査面15上の有効走査領域17を含む走査可能領域16を光走査する。上述したように、2方向のうちの1方向である主走査方向(以下「X軸方向」ともいう。)には正弦波駆動信号によって光偏向器の反射面を共振による高速駆動を用いて光走査し、もう1方向である副走査方向(以下「Y軸方向」ともいう。)にはノコギリ波状駆動信号によって光偏向器の反射面を非共振による低速駆動を用いて光走査する。このような2方向の光走査によりジグザグに光走査する駆動方式はラスタースキャン方式ともよばれる。
【0078】
前記駆動方式においては、有効走査領域17では副走査方向(Y軸方向)は一定の速度で光走査できることが望ましい。これは、副走査方向の走査速度が一定でないと(副走査方向の走査速度にムラがあると)、例えば光走査による画像投写を行う際に、投写画像の輝度ムラや揺らぎ等が生じ、投写画像の劣化を招くためである。このような副走査方向の走査速度は、光偏向器13の反射面14の第二軸周りの可動速度、すなわち、反射面14の第二位軸周りの振れ角の時間変化を有効走査領域17において一定にすることが求められる。
【0079】
次に、
図11を参照して、光偏向器13の反射面14の第二軸周りの振れ角の時間変化と、振れ角の時間変化による投写画像の変化について説明する。
図11(a)は、反射面14の第二軸周りの可動速度が一定(均一)である場合の反射面14の第二軸周りの振れ角(光走査角度)の時間変化を示す図である。
図11(b)は、反射面の第二軸周りの可動速度が一定(均一)である場合の投写画像イメージを示す図である。
図11(c)は、反射面の第二軸周りの可動速度が一定(均一)ではない場合の反射面の第二軸周りの振れ角(光走査角度)の時間変化を示す図である。
図11(d)は、反射面の第二軸周りの可動速度が一定(均一)ではない場合の反射面の投写画像イメージを示す図である。
なお、投写画像イメージは、全面が同じ輝度となるように設定された単色画像を光走査装置10により被走査面15に投写した際のイメージ画像である。
【0080】
反射面14の第二軸周りの振れ角の時間変化、すなわち反射面14の第二軸周りの可動速度は、
図11(a)に示すように直線的であることが望ましい。つまり、反射面14の第二軸周りの可動速度に変動(ムラ)を生じさせずに駆動することが望ましい。この場合、
図11(b)の投写画像イメージのように輝度ムラや走査歪みを生じさせずに画像投写が可能となる。このような駆動を実現するため、第二軸周りの駆動は、駆動電圧波形Aと駆動電圧波形Bの相対的な位相やシンメトリを調整し、ノコギリ波状駆動電圧に含まれる高調波成分による光偏向器13の共振励起等による不要な振動を抑制している。例えば、駆動電圧波形Aの高調波成分により生じる振動と、駆動電圧波形Bの高調波成分により生じる振動は、駆動電圧波形Aと駆動電圧波形Bの相対的な位相差を調整することで相殺することが可能であり、これにより不要な振動を抑制することができる。
【0081】
また、例えば、低周波側からN番目の励起を抑制したい光偏向器13の固有振動数f(N)が、以下の式(1)で求められる周波数fn(以下「ヌル周波数」という。)近傍に含まれるように、駆動周波数fs、駆動電圧波形A、駆動電圧波形BのシンメトリSを調整することで、不要振動を抑制することが可能である。
【0082】
【0083】
不要な振動を抑制可能な理由を以下に説明する。
ノコギリ波状駆動信号の周波数スペクトル(駆動信号をフーリエ変換して周波数成分に分解したもの)には、一定間隔の「谷(理論上信号強度がゼロまで低減される点)」が存在する。また、この「谷」近傍の周波数領域は、信号強度が低減される。この「谷」をヌル周波数、「谷」周辺の周波数領域を周波数低減領域とよぶ。この「谷」近傍の周波数領域とは、例えば、ヌル周波数から周波数が±10%程度の周波数領域である。
【0084】
このとき、光偏向器13の任意の固有振動数f(N)が周波数低減領域に含まれるようにシンメトリSを調整することで、固有振動の励起を抑制し、反射面14の不要な振動を抑制することができる。このとき、光偏向器13の最低次の固有振動数f(1)が周波数低減領域に含まれるようにシンメトリSを調整することで最も不要な振動を抑制することができる。
【0085】
また、各駆動電圧の電圧値を調整することで、前記の位相差の調整による不要な振動の抑制をより強くすることができる。これは、圧電駆動部の駆動電圧に対する感度が設計や製造誤差により異なるため、駆動電圧を調整することで駆動電圧Aと駆動電圧Bに発生する高調波成分により生じる振動の大きさを揃え、相殺度合いを高めることができるためである。
【0086】
以上のように、駆動信号の各パラメータを調整することで、反射面14の不要な振動を抑制し、反射面14の第二軸周りの可動速度の均一性を保とうとしている。しかしながら、実際には、
図11(c)に示すように、環境温度変化や経時変化により、反射面14の第二軸周りの可動速度に揺れが生じてしまい、可動速度の均一性を保つことが困難である。このとき、副走査方向(Y軸方向)に走査線の粗密が生じ、走査線が密である部分の輝度が相対的に高くなり、走査線が疎である部分の輝度が相対的に低くなり、その結果、
図11(d)に示すように、投写画像には副走査方向(Y軸方向)に輝度ムラが生じる。
【0087】
本実施形態においては、反射面14の不要な振動によって副走査方向(Y軸方向)に輝度ムラが発生した場合、その輝度ムラを検知し、駆動信号の各パラメータを調整して反射面14の不要な振動を抑制することにより、輝度ムラを抑制する。
【0088】
副走査方向の輝度ムラは、副走査方向における走査線の粗密によって生じたものである。副走査方向における走査線の粗密が生じると、受光器18の受光面(所定範囲)内において、各走査線の光が受光される副走査方向位置の距離間隔が変化する。これにより、受光器18の受光面内で光が受光される受光回数が変化する。例えば、走査線の密度が粗になると、受光器18の受光面内で各走査線の光が受光される副走査方向位置の距離間隔が広がり、受光器18の受光面内で受光される受光回数が減る。逆に、走査線の密度が密になると、受光器18の受光面内で各走査線の光が受光される副走査方向位置の距離間隔が狭まり、受光器18の受光面内で受光される受光回数が増える。したがって、被走査面15を副走査方向へ1回走査するときに走査線が受光器18の受光面を副走査方向へ通るおおよその期間Tに受光器18が光を受光する受光回数から、副走査方向における走査線の粗密が発生しているか否かを検出することができる。
【0089】
ここで、反射面14の第二軸周りの可動速度の均一性が保たれていないとき、
図11(c)に示したように、反射面14の振れ角が最も負側から最も正側へ変位する際に、可動速度は周期的に振動するように揺れていることがわかる。これは、可動速度の揺れが、ノコギリ波状駆動電圧に含まれる高調波成分によって光偏向器13の固有振動数が励起されて生じる振動に由来しているためである。このような振動の周期と副走査方向において走査線が粗となる位置及び密になる位置との間には、互いに相関関係がある。したがって、この相関関係から導きだされる走査線が疎となる位置や密になる位置に、受光器18を配置することが可能である。
【0090】
このように走査線が疎となる位置や密になる位置では、反射面14の第二軸周りの可動速度ムラの大きさ(振幅)に対する走査線の距離間隔の変化度合いが大きい。そのため、反射面14の第二軸周りの可動速度ムラの大きさ(振幅)が比較的小さいものであっても、これを走査線の距離間隔が比較的大きく変化する。すなわち、反射面14の第二軸周りの可動速度ムラの大きさ(振幅)に対し、受光器18が光を受光する受光回数の変化の感度が高いものとなる。そこで、本実施形態では、反射面14の第二軸周りの可動速度ムラが発生したときに走査線が密になる位置を受光面が含むように受光器18を配置している。
【0091】
具体例を、
図12を参照して説明する。
図12は、光偏向器の固有振動数に基づいて受光器18の配置を定めた一例の図である。
固有振動数f(N)としたとき、副走査方向(Y軸方向)の輝度ムラの周期Tmは、下記の式(2)で求められる。このとき、最低次の固有振動数f(1)を励起することによる振動の寄与率が最も大きい場合には、下記の式(2)はTm=1/f(1)に近似が可能である。
【数2】
【0092】
駆動電圧の駆動周波数fsを1/6.5倍に設定し、光偏向器13の最低次の固有振動数f(1)が周波数低減領域に含まれるように駆動電圧のシンメトリをTrA:TfA=8.5:1、TfB:TrB=8.5:1と設定する。このとき、輝度ムラ(明暗縞)の周期性は、最低次の固有振動f(1)の周期に依存する。すなわち、明るい縞、もしくは暗い縞が、走査可能領域に対して最低次の固有振動数f(1)の逆数の周期で現れることとなる。したがって、受光器18を走査可能領域の副走査方向(Y軸方向)において、走査開始地点から1/f(1)の整数倍になる位置に設ける。
【0093】
また、輝度ムラが生じるとき、詳細は後述するが走査の歪みも生じている。よって、輝度ムラを通じて走査歪みも検出可能である。
【0094】
図13(a)は、反射面14の第二軸周りの可動速度が一定(均一)であるときの受光器18の受光信号の一例を示す説明図である。
図13(b)は、反射面14の第二軸周りの可動速度が一定(均一)ではないときの受光器18の受光信号の一例を示す説明図である。
【0095】
図13(a)に示すように、反射面14の第二軸周りの可動速度が一定(均一)である場合、本実施形態では、4往復分の走査線(8本の走査線)が受光器18の受光面を通過する。そのため、受光器18が光を受光する受光回数は8回となる。一方、環境温度変化や経時変化により反射面14の第二軸周りの可動速度ムラが生じた場合、副走査方向における走査線の粗密が生じ、本実施形態の受光器18が配置されている位置では走査線が密になる。その結果、受光器18の受光面を通過する走査線の数が増え(
図13(b)の例では12本の走査線)、受光器18が光を受光する受光回数は12回となる。
【0096】
反射面14の第二軸周りの可動速度ムラが発生したときに走査線が疎になる位置を受光面が含むように受光器18を配置した場合には、以下のようになる。
図14(a)は、反射面14の第二軸周りの可動速度が一定(均一)であるときの受光器18の受光信号の一例を示す説明図である。
図14(b)は、反射面14の第二軸周りの可動速度が一定(均一)ではないときの受光器18の受光信号の他の例を示す説明図である。
【0097】
図14(a)に示すように、反射面14の第二軸周りの可動速度が一定(均一)である場合、本実施形態では、4往復分の走査線(8本の走査線)が受光器18の受光面を通過する。そのため、受光器18が光を受光する受光回数は8回となる。一方、環境温度変化や経時変化により反射面14の第二軸周りの可動速度ムラが生じた場合、副走査方向における走査線の粗密が生じ、
図14の例では走査線が疎になる。その結果、受光器18の受光面を通過する走査線の数が減り(
図14(b)の例では4本の走査線)、受光器18が光を受光する受光回数は4回となる。
【0098】
次に、
図15を用いて、各受光信号に基づいた駆動信号の調整処理について説明する。
図15は、本実施形態における駆動信号の調整処理のフローチャートである。
駆動信号の調整処理は、
図3で示した制御装置11の制御部30で行われる。
図15に示すように、ステップS21では、制御部30は、受光器18から受光信号を取得する。
【0099】
ステップS22では、制御部30は、取得した受光信号から受光回数を算出する。なお、受光回数は、被走査面15を副走査方向へ1回走査するときに走査線が受光器18の受光面を副走査方向へ通過する時間に相当する期間Tの間に、受光したことを示すHレベル信号が何回検出されたかを観測することにより算出する。
【0100】
ステップS23では、制御部30は、ステップS22で算出した受光回数が、予め定めた所定の値(規定回数)よりも大きいか否かを判定する。受光回数が所定の値よりも大きいと判定した場合はステップS24に進み、所定の値よりも小さいと判定した場合は調整処理を終了する。
【0101】
ステップS24では、制御部30は、駆動電圧Aと駆動電圧Bの位相差を調整する。位相調整量は、予め定めた量である。なお、ステップS22で算出した受光回数に基づいて、駆動電圧Aと駆動電圧Bの位相調整量を算出してもよい。また、予め定めた受光回数に基づいた位相調整量をデータテーブルとして記憶し、そのデータテーブルから算出してもよいし、予め定めた所定の式によって受光回数から位相調整量を算出してもよい。さらに、外部の温度センサから温度情報を取得し、その温度情報に基づいて位相調整量を定めてもよいし、調整回数をカウントしてカウントに基づいて予め定めた量を変化させても良い。
【0102】
以上のように、本実施形態では、被走査面15を副走査方向へ1回走査するときに走査線が受光器18の受光面を副走査方向へ通過する時間に相当する期間Tの間に受光器18が受光した受光回数に基づいて駆動信号を調整する。これにより、環境温度変化や経時変化による第二軸周りの可動速度ムラを検出し、可動速度の均一性が保たれるように駆動信号を調整することができ、副走査方向の走査線の粗密が改善され、輝度ムラが抑制することができる。
【0103】
駆動信号の調整の際は、受光器18に光が入射するように光走査する必要がある。そこで例えば、
図16に示すように、制御装置11は、予め記憶した検出用画像1000を受光器18の受光面に投写するように光源装置12と光偏向器13を制御する。検出用画像1000は、受光器18の受光面全面に照射され、かつ、有効走査領域外にのみ投写することが好ましい。これにより、ユーザーに検出用画像1000を認識させずに駆動信号の調整が可能となる。また、検出用画像1000は、受光器18の受光面以外に照射される領域が少ないほどよい。これにより、光源の無駄な発光を抑制して、温度上昇の抑制や省エネルギー化を図ることができる。
【0104】
また、本実施形態では受光回数に基づいて各駆動信号の位相を調整する場合について説明したが、受光回数に基づいて各駆動信号のシンメトリや電圧値を調整してもよい。この場合、
図15の調整処理のステップS24における「位相調整」を「シンメトリ調整」または「電圧値調整」に置き換えて行う。
【0105】
なお、位相調整、シンメトリ調整においては、駆動電圧A、駆動電圧Bのうち、1周期に対する立ち上がり時間比率が大きい方を調整するのが好ましい。これは、調整直後に急激な立ち上がりが生じると、不要な振動が生じる場合があるためである。また、電圧値調整においては、1周期に対する立ち上がり時間比率が小さい方を調整するのが好ましい。これは、立ち上がりが急な方が圧電駆動部の感度が大きく、調整量が少なく済むためである。
【0106】
また、本実施形態では、副走査方向における走査線の粗密が生じたことを、受光器18の受光回数によって検出する例であったが、受光器18の受光面(所定範囲内)における副走査方向に最も離れた2つの位置で走査光を受光した受光タイミングの時間差によって検出することもできる。
【0107】
図17(a)は、反射面14の第二軸周りの可動速度が一定(均一)であるときの受光器18の受光信号の一例を示す説明図である。
図17(b)は、反射面14の第二軸周りの可動速度が一定(均一)ではないときの受光器18の受光信号の一例を示す説明図である。
図17(a)に示すように、反射面14の第二軸周りの可動速度が一定(均一)である場合、本実施形態では、4往復分の走査線(8本の走査線)が受光器18の受光面を通過し、受光器18が光を受光する受光回数は8回となる。一方、環境温度変化や経時変化により反射面14の第二軸周りの可動速度ムラが生じた場合、副走査方向における走査線の粗密が生じ、本実施形態の受光器18が配置されている位置では走査線が密になり、受光器18が光を受光する受光回数は12回となる。
【0108】
このとき、受光信号中で最初に検出されるHレベル信号と最後に検出されるHレベル信号との時間差Tsは、受光器18が光を受光する受光回数が増えるほどは大きくなる。そのため、受光回数に代えて、この時間差Tsを用いても、本実施形態と同様の処理を実現することができる。
【0109】
図18は、受光回数に代えて時間差Tsを用いた場合における駆動信号の調整処理のフローチャートである。
図18に示すように、ステップS21では、制御部30は、受光器18から受光信号を取得する。ステップS22では、制御部30は、取得した受光信号から、最初に検出されるHレベル信号と最後に検出されるHレベル信号との時間差Tsを算出する。
【0110】
ステップS23では、制御部30は、ステップS22で算出した時間差Tsが、予め定めた所定の値(規定時間)よりも大きいか否かを判定する。時間差Tsが所定の値よりも大きいと判定した場合はステップS24に進み、所定の値よりも小さいと判定した場合は調整処理を終了する。
【0111】
ステップS24では、制御部30は、駆動電圧Aと駆動電圧Bの位相差を調整する。位相調整量は、予め定めた量である。なお、ステップS22で算出した時間差Tsに基づいて、駆動電圧Aと駆動電圧Bの位相調整量を算出してもよい。また、予め定めた時間差Tsに基づいた位相調整量をデータテーブルとして記憶し、そのデータテーブルから算出してもよいし、予め定めた所定の式によって時間差Tsから位相調整量を算出してもよい。さらに、外部の温度センサから温度情報を取得し、その温度情報に基づいて位相調整量を定めてもよいし、調整回数をカウントしてカウントに基づいて予め定めた量を変化させても良い。
【0112】
また、本実施形態では、被走査面15を副走査方向へ1回走査する間(1フレームの間)における副走査方向の複数の位置で受光される光の受光回数に基づいて、副走査方向における走査線の粗密を検出する例であるが、これに限られない。例えば、
図19に示すように、本実施形態における期間Tの前半期間T1における受光回数の検出を1フレーム目で検出し、後半期間T2における受光回数の検出を2フレーム目で検出するように、副走査方向の複数の位置で受光される光の受光回数の検出を複数のフレームにわけて行っても良い。この場合、複数フレームで検出された受光回数の合計を用いて、副走査方向における走査線の粗密を検出することができる。
【0113】
副走査方向の複数の位置で受光される光の受光回数の検出を複数のフレームにわけて行うことで、各フレームにおける検出用画像1000の投写領域を狭くすることができる(
図19の例では、受光器18の受光面の半分で済む。)。これにより、1フレーム中における光源の発光時間を抑制することができ、温度上昇の抑制を図ることができる。
【0114】
なお、副走査方向の複数の位置で最も離れた2つの位置で受光される受光タイミングの時間差Tsに基づいて、副走査方向における走査線の粗密を検出する場合でも同様である。すなわち、最も離れた2つの位置で受光される受光タイミングをそれぞれ別のフレームで検出してもよい。
【0115】
また、本実施形態では、副走査方向の複数の位置で受光される光の受光回数の検出、あるいは、最も離れた2つの位置で受光される受光タイミングの時間差Tsの検出を、1つの受光器18(単一の受光面をもつ受光器)によって行っているが、複数の受光器によって行ってもよい。この場合、副走査方向の複数の位置で受光される光の受光回数の検出を複数の受光器にわけて行い、複数の受光器で検出された受光回数の合計を用いて副走査方向における走査線の粗密を検出することができる。
【0116】
なお、副走査方向の複数の位置で最も離れた2つの位置で受光される受光タイミングの時間差Tsに基づいて、副走査方向における走査線の粗密を検出する場合でも同様である。すなわち、最も離れた2つの位置で受光される受光タイミングをそれぞれ別の受光器で検出してもよい。
【0117】
<第2実施形態>
次に、
図20及び
図21を参照して、本実施形態の光走査装置10を適用した画像投写装置について詳細に説明する。
画像投写装置は、光走査により画像を投写する装置であり、例えばヘッドアップディスプレイ装置である。
図20は、画像投写装置の一例であるヘッドアップディスプレイ装置500を搭載した自動車400の実施形態に係る概略図である。
図21は、ヘッドアップディスプレイ装置500の一例の概略構成図である。
【0118】
図20に示すように、ヘッドアップディスプレイ装置500は、例えば、自動車400のウインドシールド(フロントガラス401等)の付近に設置される。ヘッドアップディスプレイ装置500から発せられる投写光Lがフロントガラス401で反射され、ユーザーである観察者(運転者402)に向かう。これにより、運転者402は、ヘッドアップディスプレイ装置500によって投写された画像等を虚像として視認することができる。なお、ウインドシールドの内壁面にコンバイナを設置し、コンバイナによって反射する投写光によってユーザーに虚像を視認させる構成にしてもよい。
【0119】
図21に示すように、ヘッドアップディスプレイ装置500は、赤色、緑色、青色のレーザ光源501R,501G,501Bからレーザ光が出射される。出射されたレーザ光は、各レーザ光源に対して設けられるコリメータレンズ502,503,504と、2つのダイクロイックミラー505,506と、光量調整部507と、から構成される入射光学系を経た後、反射面14を有する光偏向器13にて偏向される。
【0120】
そして、偏向されたレーザ光は、自由曲面ミラー509と、中間スクリーン510と、投写ミラー511から構成される投写光学系とを経て、投写される。中間スクリーン510には受光器18が設けられており、受光器18からの受光信号を用いて光走査装置10の調整が行われる。
【0121】
なお、前記ヘッドアップディスプレイ装置500では、レーザ光源501R,501G,501B、コリメータレンズ502,503,504、ダイクロイックミラー505,506は、光源ユニット530として光学ハウジングによってユニット化されている。
【0122】
前記ヘッドアップディスプレイ装置500は、中間スクリーン510に表示される中間像を自動車400のフロントガラス401に投写することで、その中間像を運転者402に虚像として視認させる。
【0123】
レーザ光源501R,501G,501Bから発せられる各色レーザ光は、それぞれ、コリメータレンズ502,503,504で略平行光とされ、2つのダイクロイックミラー505,506により合成される。合成されたレーザ光は、光量調整部507で光量が調整された後、反射面14を有する光偏向器13によって二次元走査される。光偏向器13で二次元走査された投写光Lは、自由曲面ミラー509で反射されて歪みを補正された後、中間スクリーン510に集光され、中間像を表示する。中間スクリーン510は、マイクロレンズが二次元配置されたマイクロレンズアレイで構成されており、中間スクリーン510に入射してくる投写光Lをマイクロレンズ単位で拡大する。
【0124】
光偏向器13は、反射面14を二軸方向に往復可動させ、反射面14に入射する投写光Lを二次元走査する。この光偏向器13の駆動制御は、レーザ光源501R,501G,501Bの発光タイミングに同期して行われる。
【0125】
以上、画像投写装置の一例としてのヘッドアップディスプレイ装置500の説明をしたが、画像投写装置は、反射面14を有した光偏向器13により光走査を行うことで画像を投写する装置であればよい。
【0126】
例えば、表示スクリーン上に画像を投写するプロジェクタや、観測者の頭部等に装着される装着部材に搭載され、装着部材が有する反射透過スクリーンに投写、または眼球をスクリーンとして画像を投写するヘッドマウントディスプレイ装置等にも、同様に適用することができる。
【0127】
また、画像投写装置は、車両や装着部材だけでなく、例えば、航空機、船舶、移動式ロボット等の移動体、あるいは、その場から移動せずにマニピュレータ等の駆動対象を操作する作業ロボットなどの非移動体に搭載されてもよい。
【0128】
<第3実施形態>
次に、
図22及び
図23を参照して、本実施形態の光走査装置10を適用した光書込装置について詳細に説明する。
図22は、光書込装置600を組み込んだ画像形成装置の一例である。
図23は、光書込装置の一例を示す概略構成図である。
【0129】
図22に示すように、前記光書込装置600は、レーザ光によるプリンタ機能を有するレーザプリンタ650等に代表される画像形成装置の構成部材として使用される。画像形成装置において光書込装置600は、1本または複数本のレーザビームで被走査面15である感光体ドラムを光走査することにより、感光体ドラムに光書込を行う。
【0130】
図23に示すように、光書込装置600において、レーザ素子などの光源装置12からのレーザ光は、コリメータレンズなどの結像光学系601を経た後、反射面14を有する光偏向器13により一軸方向または二軸方向に偏向される。
【0131】
そして、光偏向器13で偏向されたレーザ光は、その後、第一レンズ602aと第二レンズ602b、反射ミラー部602cからなる走査光学系602を経て、被走査面15(例えば感光体ドラムや感光紙)に照射し、光書込みを行う。走査光学系602は、被走査面15にスポット状に光ビームを結像する。このとき、受光器18は、光偏向器の被走査面でもある走査光学系602に設けられる。
【0132】
このように前記光書込装置600は、レーザ光によるプリンタ機能を有する画像形成装置の構成部材として使用することができる。
【0133】
また、レーザ光をサーマルメディアに偏向して光走査し、加熱することで印字するレーザラベル装置等の画像形成装置の構成部材として使用することができる。
【0134】
前記光書込装置に適用される反射面14を有した光偏向器13は、ポリゴンミラー等を用いた回転多面鏡に比べ駆動のための消費電力が小さいため、光書込装置の省電力化に有利である。
【0135】
また、光偏向器13の振動時における風切り音は回転多面鏡に比べ小さいため、光書込装置の静粛性の改善に有利である。光書込装置は回転多面鏡に比べ設置スペースが圧倒的に少なくて済み、また光偏向器13の発熱量もわずかであるため、小型化が容易であり、よって画像形成装置の小型化に有利である
【0136】
<第4実施形態>
次に、
図24及び
図25を参照して、本実施形態の光走査装置10を適用した物体認識装置について詳細に説明する。
物体認識装置は、対象方向の物体を認識する装置であり、例えばレーザレーダ装置である。
図24は、物体認識装置の一例であるレーザレーダ装置を搭載した自動車の概略図である。
図25は、レーザレーダ装置の一例を示す概略構成図である。
【0137】
図24に示すように、レーザレーダ装置700は、例えば自動車701に搭載され、対象方向を光走査して、対象方向に存在する被対象物702からの反射光を受光することで、被対象物702を認識する。
【0138】
図25に示すように、光源装置12から出射されたレーザ光は、発散光を略平行光とする光学系であるコリメートレンズ703と、平面ミラー704とから構成される入射光学系を経て、反射面14を有する光偏向器13で一軸もしくは二軸方向に走査される。そして、投光光学系である投光レンズ705等を経て自動車前方の被対象物702に照射される。被走査面でもある投光レンズ705には、受光器18が設けられている。
【0139】
被対象物702で反射された反射光は、光検出器709により光検出される。詳しくは、反射光は受光光学系である集光レンズ706等を経て撮像素子707により受光され、撮像素子707は検出信号を信号処理回路708に出力する。信号処理回路708は、入力された検出信号に2値化やノイズ処理等の所定の処理を行い、結果を測距回路710に出力する。
【0140】
測距回路710は、光源装置12がレーザ光を発光したタイミングと、光検出器709でレーザ光を受光したタイミングとの時間差、または受光した撮像素子707の画素ごとの位相差によって、被対象物702の有無を認識し、さらに被対象物702との距離情報を算出する。
【0141】
反射面14を有する光偏向器13は多面鏡に比べて破損しづらく、小型であるため、耐久性の高い小型のレーダ装置を提供することができる。
【0142】
このようなレーダレーダ装置は、例えば車両、航空機、船舶、ロボット等に取り付けられ、所定範囲を光走査して障害物の有無や障害物までの距離を認識することができる。
【0143】
前記物体認識装置では、一例としてのレーザレーダ装置700の説明をしたが、物体認識装置は、反射面14を有した光偏向器13を制御装置11で制御することにより光走査を行い、光検出器により反射光を受光することで被対象物702を認識する装置であればよく、上述した実施形態に限定されるものではない。
【0144】
例えば、手や顔を光走査して得た距離情報から形状等の物体情報を算出し、記録と参照することで対象物を認識する生体認証や、対象範囲への光走査により侵入物を認識するセキュリティセンサ、光走査により得た距離情報から形状等の物体情報を算出して認識し、3次元データとして出力する3次元スキャナの構成部材などにも同様に適用することができる。
【0145】
以上、本発明の各種実施形態について説明したが、上述した実施形態は本発明の一適用例を示したものである。本発明は、上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で様々な変形や変更を加えて具体化することができる。
【0146】
例えば、受光器18として、PD(フォトダイオード)の代わりに、PSD(Position Sensitive Detector)やラインCCDを用いてもよい。
また、受光器18は、光偏向器13によって走査される被走査領域に存在していればよく、配置箇所は被走査面15上に限定されない。
【0147】
以上に説明したものは一例であり、次の態様毎に特有の効果を奏する。
[第1態様]
第1態様は、光源(例えばレーザ光源501R,501G,501B)からの光を主走査方向及び副走査方向へ偏向して被走査領域を光走査する光走査装置10であって、前記光源からの光を少なくとも前記副走査方向へ偏向して前記被走査領域を光走査する光偏向手段(例えば光偏向器13)と、前記光偏向手段によって光走査された光を副走査方向の所定範囲で受光する受光手段(例えば受光器18)と、前記所定範囲内における副走査方向の複数の位置で前記受光手段が受光する受光回数に基づいて、前記光偏向手段を制御する制御手段(例えば制御装置11)とを有することを特徴とするものである。
副走査方向における走査線の粗密が発生すると、副走査方向の所定範囲内で各走査線の光が受光手段によって受光される副走査方向位置の距離間隔が変化する。これにより、当該所定範囲内で受光手段が受光する受光回数が変化する。例えば、走査線の密度が粗になると、副走査方向の所定範囲内で各走査線の光が受光手段によって受光される副走査方向位置の距離間隔が広がり、当該所定範囲内で受光手段が受光する受光回数が減る。逆に、走査線の密度が密になると、副走査方向の所定範囲内で各走査線の光が受光手段によって受光される副走査方向位置の距離間隔が狭まり、当該所定範囲内で受光手段が受光する受光回数が増える。したがって、所定範囲内における副走査方向の複数の位置で受光手段が受光する受光回数から、副走査方向における走査線の粗密の発生を検出することができる。
本態様によれば、所定範囲内における副走査方向の複数の位置で受光手段が受光する受光回数に基づいて光偏向手段を制御するため、副走査方向における走査線の粗密を改善することができる。
【0148】
[第2態様]
第2態様は、第1態様において、前記制御手段は、前記受光回数が規定回数から外れたとき、該受光回数が該規定回数に戻るように、前記光偏向手段を制御することを特徴とするものである。
これによれば、副走査方向における走査線の粗密を容易に改善することができる。
【0149】
[第3態様]
第3態様は、光源(例えばレーザ光源501R,501G,501B)からの光を主走査方向及び副走査方向へ偏向して被走査領域を光走査する光走査装置10であって、前記光源からの光を少なくとも前記副走査方向へ偏向して前記被走査領域を光走査する光偏向手段(例えば光偏向器13)と、前記光偏向手段によって光走査された光を副走査方向の所定範囲で受光する受光手段(例えば受光器18)と、前記所定範囲内における副走査方向に最も離れた2つの位置で前記受光手段が受光する受光タイミングの時間差に基づいて、前記光偏向手段を制御する制御手段(例えば制御装置11)とを有することを特徴とする。
副走査方向における走査線の粗密が発生すると、副走査方向の所定範囲内で各走査線の光が受光手段によって受光される副走査方向位置の距離間隔が変化する。これにより、当該所定範囲内における副走査方向に最も離れた2つの位置で前記受光手段が受光する受光タイミングの時間差が変化する。例えば、走査線の密度が粗になると、当該所定範囲内における副走査方向に最も離れた2つの位置で前記受光手段が受光する受光タイミングの時間差が大きくなる。逆に、走査線の密度が密になると、当該所定範囲内における副走査方向に最も離れた2つの位置で前記受光手段が受光する受光タイミングの時間差が小さくなる。したがって、所定範囲内における副走査方向に最も離れた2つの位置で前記受光手段が受光する受光タイミングの時間差から、副走査方向における走査線の粗密の発生を検出することができる。
本態様によれば、所定範囲内における副走査方向に最も離れた2つの位置で前記受光手段が受光する受光タイミングの時間差に基づいて光偏向手段を制御するため、副走査方向における走査線の粗密を改善することができる。
【0150】
[第4態様]
第4態様は、第3態様において、前記制御手段は、前記時間差が規定時間から外れたとき、該時間差が該規定時間に戻るように、前記光偏向手段を制御することを特徴とするものである。
これによれば、副走査方向における走査線の粗密を容易に改善することができる。
【0151】
[第5態様]
第5態様は、第1乃至第4態様のいずれかにおいて、前記受光手段は、前記所定範囲内に照射される光を単一の受光面で受光するものであることを特徴とするものである。
これによれば、簡易な構成で、副走査方向における走査線の粗密を改善することができる。
【0152】
[第6態様]
第6態様は、第1乃至第4態様のいずれかにおいて、前記受光手段は、前記所定範囲内に照射される光を互いに異なる受光面で受光するものであることを特徴とするものである。
これによれば、簡易な構成で、副走査方向における走査線の粗密を改善することができる。
【0153】
[第7態様]
第7態様は、第1乃至第6態様のいずれかにおいて、前記受光回数又は前記受光タイミングは、前記被走査領域に対する互いに異なる光走査時に前記受光手段が受光したものを含むことを特徴とするものである。
これによれば、1回の走査時における光源の発光時間を抑制することができ、温度上昇の抑制を図ることができる。
【0154】
[第8態様]
第8態様は、第1乃至第7態様のいずれかにおいて、前記所定範囲は、前記光偏向手段における前記副走査方向への走査速度変動が生じたときに、互いの距離間隔が最も広がる位置を含むか、又は、互いの距離間隔が最も狭まる位置を含むことを特徴とするものである。
これによれば、副走査方向における走査速度変動(ムラ)の大きさ(振幅)に対し、所定範囲内における副走査方向の複数の位置で受光手段が受光する受光回数の変化の感度、あるいは、所定範囲内における副走査方向に最も離れた2つの位置で前記受光手段が受光する受光タイミングの時間差の変化の感度が高まる。よって、副走査方向における走査線の粗密の発生をより精度よく検出でき、また発生した粗密をより正確に改善することができる。
【0155】
[第9態様]
第9態様は、画像情報に基づいて変調された光により被走査領域を走査して画像を投写する画像投写装置(例えばヘッドアップディスプレイ装置500)であって、第1乃至第8態様のいずれかに係る光走査装置10と、前記光走査装置から出射された光を前記被走査領域に向けて投写する投写光学系(例えば投写ミラー511)とを有することを特徴とするものである。
これによれば、副走査方向の輝度ムラが抑制された投写画像を投写することができる。
【0156】
[第10態様]
第10態様は、移動体(例えば自動車400,701)であって、第1乃至第8態様のいずれかに係る光走査装置10、又は、第9態様に係る画像投写装置を備えることを特徴とするものである。
これによれば、副走査方向における走査線の粗密を改善された高品質の光走査装置10を搭載する移動体を実現することができる。
【符号の説明】
【0157】
10 :光走査装置
11 :制御装置
12 :光源装置
13 :光偏向器
14 :反射面
15 :被走査面
16 :走査可能領域
17 :有効走査領域
18 :受光器
30 :制御部
400 :自動車
402 :運転者
500 :ヘッドアップディスプレイ装置
510 :中間スクリーン
530 :光源ユニット
600 :光書込装置
601 :結像光学系
602 :走査光学系
650 :レーザプリンタ
700 :レーザレーダ装置
701 :自動車
702 :被対象物
1000 :検出用画像
【先行技術文献】
【特許文献】
【0158】