IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士フイルム株式会社の特許一覧

特許7018856医用画像処理装置、方法およびプログラム
<>
  • 特許-医用画像処理装置、方法およびプログラム 図1
  • 特許-医用画像処理装置、方法およびプログラム 図2
  • 特許-医用画像処理装置、方法およびプログラム 図3
  • 特許-医用画像処理装置、方法およびプログラム 図4
  • 特許-医用画像処理装置、方法およびプログラム 図5
  • 特許-医用画像処理装置、方法およびプログラム 図6
  • 特許-医用画像処理装置、方法およびプログラム 図7
  • 特許-医用画像処理装置、方法およびプログラム 図8
  • 特許-医用画像処理装置、方法およびプログラム 図9
  • 特許-医用画像処理装置、方法およびプログラム 図10
  • 特許-医用画像処理装置、方法およびプログラム 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-03
(45)【発行日】2022-02-14
(54)【発明の名称】医用画像処理装置、方法およびプログラム
(51)【国際特許分類】
   A61B 6/03 20060101AFI20220204BHJP
   A61B 5/055 20060101ALI20220204BHJP
   G01T 1/161 20060101ALI20220204BHJP
   G06T 7/00 20170101ALI20220204BHJP
   A61B 6/00 20060101ALI20220204BHJP
【FI】
A61B6/03 360D
A61B5/055 380
G01T1/161 A
G06T7/00 350C
G06T7/00 612
A61B6/03 360E
A61B6/00 360Z
A61B6/00 350D
【請求項の数】 7
(21)【出願番号】P 2018172988
(22)【出願日】2018-09-14
(65)【公開番号】P2020043927
(43)【公開日】2020-03-26
【審査請求日】2020-08-12
(73)【特許権者】
【識別番号】306037311
【氏名又は名称】富士フイルム株式会社
(74)【代理人】
【識別番号】110001519
【氏名又は名称】特許業務法人太陽国際特許事務所
(72)【発明者】
【氏名】武井 瑞希
(72)【発明者】
【氏名】北村 嘉郎
【審査官】遠藤 直恵
(56)【参考文献】
【文献】特開2018-011958(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 6/00-6/03、5/055
G01T 1/161-1/166
G06T 7/00-7/90
(57)【特許請求の範囲】
【請求項1】
線対称な構造物を含む医用画像における疾病領域を判別する判別処理部を備え、
前記判別処理部は、前記医用画像から該医用画像よりも低解像度の特徴量マップを生成する第1判別部と、
前記特徴量マップの対称軸を基準として該特徴量マップを反転して反転特徴量マップを生成する第2判別部と、
前記特徴量マップおよび前記反転特徴量マップを重ね合わせ、重ね合わせた前記特徴量マップおよび前記反転特徴量マップを用いて、前記医用画像における前記疾病領域を判別する第3判別部とを有する医用画像処理装置。
【請求項2】
前記第1判別部、前記第2判別部および前記第3判別部は、それぞれが少なくとも1つの処理層を有するニューラルネットワークからなる請求項1に記載の医用画像処理装置。
【請求項3】
前記医用画像は脳のCT画像であり、前記疾病領域は前記脳内の疾病領域である請求項1または2に記載の医用画像処理装置。
【請求項4】
前記疾病領域は出血領域または梗塞領域である請求項3に記載の医用画像処理装置。
【請求項5】
前記疾病領域が判別された前記医用画像を表示部に表示する表示制御部をさらに備えた請求項1から4のいずれか1項に記載の医用画像処理装置。
【請求項6】
線対称な構造物を含む医用画像における疾病領域を判別処理部により判別する医用画像処理方法であって、
前記医用画像から該医用画像よりも低解像度の特徴量マップを生成し、
前記特徴量マップの対称軸を基準として該特徴量マップを反転して反転特徴量マップを生成し、
前記特徴量マップおよび前記反転特徴量マップを重ね合わせ、重ね合わせた前記特徴量マップおよび前記反転特徴量マップを用いて、前記医用画像における前記疾病領域を判別する医用画像処理方法。
【請求項7】
線対称な構造物を含む医用画像における疾病領域を判別する処理をコンピュータに実行させる医用画像処理プログラムであって、
前記医用画像から該医用画像よりも低解像度の特徴量マップを生成する手順と、
前記特徴量マップの対称軸を基準として該特徴量マップを反転して反転特徴量マップを生成する手順と、
前記特徴量マップおよび前記反転特徴量マップを重ね合わせ、重ね合わせた前記特徴量マップおよび前記反転特徴量マップを用いて、前記医用画像における前記疾病領域を判別する手順とをコンピュータに実行させる医用画像処理プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、脳画像等の医用画像における疾病領域を判別する医用画像処理装置、方法およびプログラムに関するものである。
【背景技術】
【0002】
近年、CT装置およびMRI(Magnetic Resonance Imaging)装置等の医療機器の進歩により、より質の高い高解像度の医用画像を用いての画像診断が可能となってきている。とくに、対象部位を脳とした場合において、CT画像およびMRI画像等を用いた画像診断により、脳梗塞および脳出血等の血管障害を起こしている疾病領域を特定することができるため、特定した結果に基づいて適切な治療が行われるようになってきている。一般に疾病領域はCT画像上において周囲の領域と比較して高いCT値を示す。このため、画像診断においては周囲の領域と比較して高いCT値を示す領域の有無を読影することにより、疾病領域を判別することができる。
【0003】
一方、医用画像が非造影CT画像である場合、軽度のくも膜下出血、または超急性期の脳梗塞では、疾患が発生している部分とその周辺部分とのコントラストが不明瞭な場合が多い。このため、画像診断に際しては、医用画像において脳の左右対称な領域を比較することによって、疾病領域が存在するか否かを読影することが一般的に行われている。
【0004】
このような左右対称な領域を比較して疾病領域を検出するための各種手法が提案されている。例えば特許文献1には、医用画像における左右対称な領域の組み合わせを入力として、機械学習を行った判別器を用いて、疾病領域の有無を判別する手法が提案されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2018-011958号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、医用画像に含まれる脳の対称軸が医用画像に対して必ずしも垂直とならない場合がある。また、脳の形状が左脳と右脳とで異なる場合もある。このため、医用画像に含まれる脳が、厳密に左右対称とならない場合がある。ここで、特許文献1に記載された手法は、医用画像そのものを判別器に入力している。このため、特許文献1に記載された手法においては、脳の左右対称領域を比較しているものの、厳密に対称軸に対して対称でない脳が含まれる脳画像においては、疾病領域を精度よく判別することは困難である。
【0007】
本開示は上記事情に鑑みなされたものであり、脳等の線対称な構造物を含む医用画像における疾病領域を精度よく判別することを目的とする。
【課題を解決するための手段】
【0008】
本開示による医用画像処理装置は、線対称な構造物を含む医用画像における疾病領域を判別する判別処理部を備え、
判別処理部は、医用画像から医用画像の特徴量マップを生成する第1判別部と、
特徴量マップの対称軸を基準として特徴量マップを反転して反転特徴量マップを生成する第2判別部と、
特徴量マップおよび反転特徴量マップを重ね合わせ、重ね合わせた特徴量マップおよび反転特徴量マップを用いて、医用画像における疾病領域を判別する第3判別部とを有する。
【0009】
「線対称な構造物」とは、医用画像上においてそれ自体が線対称である1つの構造物のみならず、医用画像上において線対称な位置に存在する一対または複数対の構造物をも含む。なお、例えば脳は基本的には(すなわち解剖学的には)線対称な形をなしており、線対称に存在することが前提とされているが、厳密に線対称な形をなしているものではなく、左脳および右脳で大きさおよび形状が異なる場合がある。また、腎臓も解剖学的に線対称に対に存在するが、左右の腎臓の大きさおよび形状が異なる場合がある。このため、「線対称な構造物」は、完全に線対称な対をなす構造物のみならず、おおよそ線対称をなす構造物および線対称に存在することが前提とされる構造物も含むものとする。
【0010】
「判別」は医用画像における疾病領域の位置を判別すること、および医用画像における疾病領域の有無を判別することのいずれであってもよい。
【0011】
なお、本開示による医用画像処理装置においては、第1判別部、第2判別部および第3判別部は、それぞれが少なくとも1つの処理層を有するニューラルネットワークからなるものであってもよい。
【0012】
また、本開示による医用画像処理装置においては、医用画像は脳のCT画像であり、疾病領域は脳内の疾病領域であってもよい。
【0013】
また、本開示による医用画像処理装置においては、疾病領域は出血領域または梗塞領域であってもよい。
【0014】
また、本開示による医用画像処理装置においては、疾病領域が判別された医用画像を表示部に表示する表示制御部をさらに備えるものであってもよい。
【0015】
本開示による医用画像処理方法は、線対称な構造物を含む医用画像における疾病領域を判別処理部により判別する医用画像処理方法であって、
医用画像から医用画像の特徴量マップを生成し、
特徴量マップの対称軸を基準として特徴量マップを反転して反転特徴量マップを生成し、
特徴量マップおよび反転特徴量マップを重ね合わせ、重ね合わせた特徴量マップおよび反転特徴量マップを用いて、医用画像における疾病領域を判別する。
【0016】
本開示による医用画像処理プログラムは、線対称な構造物を含む医用画像における疾病領域を判別する処理をコンピュータに実行させる医用画像処理プログラムであって、
医用画像から医用画像の特徴量マップを生成する手順と、
特徴量マップの対称軸を基準として特徴量マップを反転して反転特徴量マップを生成する手順と、
特徴量マップおよび反転特徴量マップを重ね合わせ、重ね合わせた特徴量マップおよび反転特徴量マップを用いて、医用画像における疾病領域を判別する手順とをコンピュータに実行させる。
【0017】
本開示による他の医用画像処理装置は、コンピュータに実行させるための命令を記憶するメモリと、
記憶された命令を実行するよう構成されたプロセッサとを備え、プロセッサは、
線対称な構造物を含む医用画像における疾病領域を判別する処理であって、
医用画像から医用画像の特徴量マップを生成し、
特徴量マップの対称軸を基準として特徴量マップを反転して反転特徴量マップを生成し、
特徴量マップおよび反転特徴量マップを重ね合わせ、重ね合わせた特徴量マップおよび反転特徴量マップを用いて、医用画像における疾病領域を判別する処理を実行する。
【発明の効果】
【0018】
本開示によれば、より精度よく疾病領域を判別することができる。
【図面の簡単な説明】
【0019】
図1】本開示の実施形態による医用画像処理装置を適用した、診断支援システムの概要を示すハードウェア構成図
図2】本開示の実施形態による医用画像処理装置の概略構成を示す図
図3】本実施形態における判別処理部の構成を示す概略図
図4】出血領域を含む脳画像を示す図
図5】特徴量マップを示す図
図6】反転特徴量マップを示す図
図7】重ね合わせマップを示す図
図8】出血領域が特定された脳画像を示す図
図9】本実施形態において行われる処理を示すフローチャート
図10】脳画像を示す図
図11】出血領域が存在する脳画像を示す図
【発明を実施するための形態】
【0020】
以下、図面を参照して本開示の実施形態について説明する。図1は、本開示の実施形態による医用画像処理装置を適用した、診断支援システムの概要を示すハードウェア構成図である。図1に示すように、診断支援システムでは、本実施形態による医用画像処理装置1、3次元画像撮影装置2、および画像保管サーバ3が、ネットワーク4を経由して通信可能な状態で接続されている。
【0021】
3次元画像撮影装置2は、被検体の診断対象となる部位を撮影することにより、その部位を表す3次元画像を生成する装置であり、具体的には、CT装置、MRI装置、およびPET(Positron Emission Tomography)装置等である。3次元画像撮影装置2により生成された3次元画像は画像保管サーバ3に送信され、保存される。なお、本実施形態においては、被検体である患者の診断対象部位は脳であり、3次元画像撮影装置2はCT装置であり、被検体の脳を含む頭部のCT画像を3次元の脳画像B0として生成する。
【0022】
画像保管サーバ3は、各種データを保存して管理するコンピュータであり、大容量外部記憶装置およびデータベース管理用ソフトウェアを備えている。画像保管サーバ3は、有線あるいは無線のネットワーク4を介して他の装置と通信を行い、画像データ等を送受信する。具体的には3次元画像撮影装置2で生成された脳画像B0の画像データを含む各種データをネットワーク経由で取得し、大容量外部記憶装置等の記録媒体に保存して管理する。なお、画像データの格納形式およびネットワーク4経由での各装置間の通信は、DICOM(Digital Imaging and Communication in Medicine)等のプロトコルに基づいている。
【0023】
医用画像処理装置1は、1台のコンピュータに、本開示の医用画像処理プログラムをインストールしたものである。コンピュータは、診断を行う医師が直接操作するワークステーションまたはパーソナルコンピュータでもよいし、それらとネットワークを介して接続されたサーバコンピュータでもよい。医用画像処理プログラムは、DVD(Digital Versatile Disc)あるいはCD-ROM(Compact Disc Read Only Memory)等の記録媒体に記録されて配布され、その記録媒体からコンピュータにインストールされる。または、ネットワークに接続されたサーバコンピュータの記憶装置、もしくはネットワークストレージに、外部からアクセス可能な状態で記憶され、要求に応じて医師が使用するコンピュータにダウンロードされ、インストールされる。
【0024】
図2は、コンピュータに医用画像処理プログラムをインストールすることにより実現される医用画像処理装置の概略構成を示す図である。図2に示すように、医用画像処理装置1は、標準的なワークステーションの構成として、CPU(Central Processing Unit)11、メモリ12およびストレージ13を備えている。また、医用画像処理装置1には、液晶ディスプレイ等の表示部14、並びにキーボードおよびマウス等の入力部15が接続されている。
【0025】
ストレージ13には、ハードディスクドライブ等からなり、ネットワーク4を経由して画像保管サーバ3から取得した、被検体の脳画像、並びに処理に必要な情報を含む各種情報が記憶されている。
【0026】
また、メモリ12には、医用画像処理プログラムが記憶されている。医用画像処理プログラムは、CPU11に実行させる処理として、被検体の脳画像B0を取得する画像取得処理、脳画像B0に含まれる疾病領域を判別する判別処理、および判別された疾病領域を表示部14に表示する表示制御処理を規定する。
【0027】
そして、CPU11がプログラムに従いこれらの処理を実行することで、コンピュータは、画像取得部21、判別処理部22および表示制御部23として機能する。
【0028】
画像取得部21は、被検体の脳の脳画像B0を画像保管サーバ3から取得する。なお、脳画像B0が既にストレージ13に記憶されている場合には、画像取得部21は、ストレージ13から脳画像B0を取得するようにしてもよい。
【0029】
判別処理部22は、脳画像B0における疾病領域を判別する。疾病領域としては、本実施形態においては出血領域とする。本実施形態においては、判別処理部22は、複数の処理層が階層的に接続され、深層学習(ディープラーニング)がなされた多層ニューラルネットワークの1つである、畳み込みニューラルネットワーク(以下CNN(Convolutional Neural Network)とする)であるものとする。
【0030】
図3は本実施形態における判別処理部の構成を示す概略図である。図3に示すように、判別処理部22は、脳画像B0から脳画像B0の特徴量マップを生成する第1判別部31と、特徴量マップを対称軸を基準として反転して反転特徴量マップを生成する第2判別部32と、特徴量マップおよび反転特徴量マップを重ね合わせ、重ね合わせた特徴量マップおよび反転特徴量マップを用いて、脳画像B0における出血領域を判別する第3判別部33とを備える。
【0031】
なお、第1判別部31、第2判別部32および第3判別部33のそれぞれがCNNであり、それぞれが少なくとも1つの処理層を有する。第1判別部31の最初の処理層が、判別処理部22を構成するCNNの入力層であり、第3判別部33の最後の処理層が出力層である。
【0032】
第1判別部31、第2判別部32および第3判別部33が有する処理層は、畳み込み層およびプーリング層の少なくとも一方を含む。畳み込み層は、入力される画像に対して各種カーネルを用いた畳み込み処理を行い、畳み込み処理により得られた特徴量データからなる特徴量マップを出力する。カーネルは、n×n画素サイズ(例えばn=3)を有し、各要素に重みが設定されている。具体的には、脳画像B0または特徴量マップといった2次元画像のエッジを強調する微分フィルタのような重みが設定されている。畳み込み層は、カーネルの注目画素をずらしながら、脳画像B0または特徴量マップの全体にカーネルを適用する。さらに、畳み込み層は、畳み込みされた値に対してシグモイド関数等の活性化関数を適用し、特徴量マップを出力する。
【0033】
プーリング層は、畳み込み層が出力した特徴量マップをプーリングすることにより、特徴量マップのデータ量を低減して、データ量が低減された特徴量マップを出力する。
【0034】
本実施形態において、第1判別部31、第2判別部32および第3判別部33は、出血領域を含む多数の脳画像を教師データとして使用して、入力された脳画像の各画素が出血領域であるか否かを判別した判別結果R1を出力するように学習がなされている。これにより、判別処理部22に脳画像B0が入力されると、第1判別部31、第2判別部32および第3判別部33の複数の処理層において、前段の処理層から出力された特徴量マップが次段の処理層に順次入力され、脳画像B0における出血領域の判別結果R1が出力される。
【0035】
ここで、第1判別部31は、複数の処理層からなり、各処理層において特徴量マップを出力する。ここで、特徴量マップは脳画像B0に対してカーネルによる畳み込み処理およびプーリングの少なくとも一方を行うことにより生成されるため、脳画像B0よりも低解像度となっている。図4は脳画像を示す図である。図4に示すように脳画像B0には右脳に出血領域A1が含まれる。なお、脳画像B0においては、画像の左側が右脳となり、画像の右側が左脳となる。ここで、脳画像B0の解像度が例えば1920×1920画素であったとする。図5は第1判別部31から出力される特徴量マップの例を示す図である。なお、図5においては、説明を簡単なものとするために、特徴量マップF1の解像度を5×5画素としているがこれに限定されるものではない。図5に示すように、第1判別部31により出力される特徴量マップF1の解像度は5×5画素となっており、左上の画素に図4に示す脳画像B0の出血領域A1に対応する特徴A2が含まれる。
【0036】
第2判別部32は、第1判別部31が出力した特徴量マップF1を、その対称軸を基準として反転して反転特徴量マップF2を生成する。このために、第2判別部32の処理層は、特徴量マップF1を対称軸を基準として反転する畳み込み処理を行う。図6は反転特徴量マップを示す図である。図6に示すように反特徴量マップF2は、図5に示す特徴量マップF1を対称軸X0を基準として左右反転することにより生成される。このため、特徴量マップF1の左上に存在した右脳の特徴A2は、反転特徴量マップF2の右上に特徴A3として存在することとなる。なお、第2判別部32は、特徴量マップF1から反転特徴量マップF2を生成することができれば、1つの処理層のみを有するものであってもよく、複数の処理層を有するものであってもよい。
【0037】
第3判別部33は複数の処理層からなり、最初の処理層において、第1判別部31が出力した特徴量マップF1および第2判別部32が出力した反転特徴量マップF2を重ね合わせることにより重ね合わせマップを生成する。図7は重ね合わせマップを示す図である。第3判別部33は、最初の処理層以降において、重ね合わせマップF3に基づいて、脳画像B0における出血領域を判別する。ここで、第3判別部33の前段は、重ね合わせマップに基づいて、重ね合わせマップのサイズを変更することなく出血領域を特定する処理を行い、後段は出血領域が特定された特徴量マップを、脳画像B0の解像度となるように高解像度化しつつ、脳画像B0における各画素を出血領域と出血領域でない画素に分類する処理を行う。これにより、第3判別部33からは、脳画像B0における各画素についての出血領域の判別結果R1が出力される。
【0038】
表示制御部23は、出血領域が判別された脳画像を表示部14に表示する。図8は表示された脳画像を示す図である。なお、図8においては、脳画像B0の1つの断層面のスライス画像を示している。図8に示すように、脳画像B0において判別された出血領域A1がハイライトされて表示されている。なお、ハイライトは、出血領域A1を線で囲む、出血領域A1に特定の色を付与する、および出血領域A1に矢印を付与する等、任意の態様を用いることができる。
【0039】
次いで、本実施形態において行われる処理について説明する。図9は本実施形態において行われる処理を示すフローチャートである。まず、画像取得部21が、被検体の脳画像B0を取得する(ステップST1)。次いで、判別処理部22が脳画像B0内における出血領域を判別し(ステップST2)、表示制御部23が出血領域が判別された脳画像B0を表示部14に表示し(ステップST3)、処理を終了する。
【0040】
ここで、脳画像B0に含まれる脳は基本的に図10に示すように対称軸X0に関して線対称な構造物である。脳溝および脳室はCT画像においては高濃度(高輝度)の領域となるため、正常な脳画像においては脳溝および脳室は対称軸X0に関して対称に存在する。図10に示す脳画像B0においては、左脳の脳溝40Lおよび右脳の脳溝40Rを確認することができる。
【0041】
一方、脳内出血があると、血液は脳溝および脳室に流入するため、血液が流入した脳溝および脳室は、脳実質と同程度の濃度となる。ここで、脳内出血が発症した場合、左右の脳の双方に出血が発症することは極めて希である。例えば、右脳の脳溝40Rにおいて脳内出血が発症した場合、左脳の脳溝40Lにおいて脳内出血が発症することは希である。このような状況においては、図11に示すように脳画像B0において左脳の脳溝40Lを確認することができるが、右脳の脳溝40Rは脳実質と同程度の濃度となるため、確認しにくいものとなる。このため、左右の脳を比較し、左脳の脳溝40Lおよび右脳の脳溝40Rの濃度の相違を確認することにより、出血領域を特定することができる。
【0042】
しかしながら、脳画像においては、脳の対称軸が脳画像に対して必ずしも垂直とならない場合がある。また、脳の形状が左脳と右脳とで異なる場合もある。このため、脳画像に含まれる脳が、厳密に左右対称とならないことがある。上記特許文献1においては、医用画像そのものを判別器に入力している。このため、特許文献1に記載された手法においては、脳の左右対領域を比較しているものの、厳密に対称軸に対して対称でない脳が含まれる脳画像においては、疾病領域を精度よく判別することは困難である。
【0043】
本実施形態においては、第1判別部31において生成された特徴量マップF1を、第2判別部32において反転することにより反転特徴量マップF2を生成し、第3判別部33において反転特徴量マップF2を用いて出血領域を判別している。特徴量マップF1は、脳画像B0と比較して低解像度であるため、対称軸に対する対称性のずれ等が吸収され、かつ出血領域が判別されたものとなっている。このため、本実施形態によれば、厳密に対称軸に対して対称でない脳が含まれる脳画像であっても、精度よく出血領域を判別することができる。
【0044】
なお、上記実施形態においては、第1判別部31から出力された特徴量マップF1を第2判別部32に入力しているが、第2判別部32に入力される特徴量マップF1は、第1判別部31の途中の処理層から出力されたものであってもよい。
【0045】
また、上記実施形態においては、疾病領域として出血領域を用いているが、これに限定されるものではなく、梗塞領域を用いるようにしてもよい。
【0046】
また、上記実施形態においては、脳画像B0における各画素を出血領域と出血領域でない画素に分類した判別結果R1を判別処理部22が出力しているが、脳画像B0における出血領域の有無を判別結果R1として出力するようにしてもよい。この場合、第1判別部31、第2判別部32および第3判別部33は、脳画像B0が入力されると疾病領域の有無を判別結果R1として出力するように学習がなされることとなる。
【0047】
また、上記実施形態においては、脳画像B0としてCT画像を用いているが、これに限定されるものではなく、MRI画像およびPET画像等の他の医用画像を用いてもよい。
【0048】
また、上記実施形態においては、医用画像として脳画像を用いているが、これに限定されるものではない。例えば、肺、腎臓、眼球および耳等の線対称に存在する一対または複数対の構造物を含む医用画像における疾病領域を判別する場合にも、本開示を適用することができる。
【0049】
また、上記実施形態においては、第1判別部31、第2判別部32および第3判別部33として、CNN(畳み込みニューラルネットワーク)を用いているが、これに限定されるものではない。疾病領域を判別することができれば、サポートベクタマシン(SVM(Support Vector Machine)、ディープニューラルネットワーク(DNN(Deep Neural Network))およびリカレントニューラルネットワーク(RNN(Recurrent Neural Network))等を用いることができる。また、第1判別部31、第2判別部32および第3判別部33は、同一種類のニューラルネットワークでなくてもよい。例えば、第1判別部3および第2判別部32を畳み込みニューラルネットワークとし、第3判別部33をリカレントニューラルネットワークとしてもよい。
【0050】
また、上記各実施形態において、例えば、画像取得部21、判別処理部22および表示制御部23といった各種の処理を実行する処理部(processing unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(processor)を用いることができる。上記各種のプロセッサには、上述したように、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPUに加えて、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device :PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
【0051】
1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせまたはCPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。
【0052】
複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントおよびサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアとの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。
【0053】
さらに、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(circuitry)を用いることができる。
【符号の説明】
【0054】
1 医用画像処理装置
2 3次元画像撮影装置
3 画像保管サーバ
4 ネットワーク
11 CPU
12 メモリ
13 ストレージ
14 ディスプレイ
15 入力部
21 画像取得部
22 判別処理部
23 表示制御部
30 CNN
31 第1判別部
32 第2判別部
33 第3判別部
40R,40L 脳溝
A1 出血領域
A2,A3 特徴
B0 脳画像
F1 特徴量マップ
F2 反転特徴量マップ
F3 重ね合わせマップ
R1 判別結果
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11