IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エーエスエムエル ネザーランズ ビー.ブイ.の特許一覧

特許7019766リソグラフィ装置のための流体ハンドリング構造
<>
  • 特許-リソグラフィ装置のための流体ハンドリング構造 図1
  • 特許-リソグラフィ装置のための流体ハンドリング構造 図2
  • 特許-リソグラフィ装置のための流体ハンドリング構造 図3
  • 特許-リソグラフィ装置のための流体ハンドリング構造 図4
  • 特許-リソグラフィ装置のための流体ハンドリング構造 図5
  • 特許-リソグラフィ装置のための流体ハンドリング構造 図6
  • 特許-リソグラフィ装置のための流体ハンドリング構造 図7
  • 特許-リソグラフィ装置のための流体ハンドリング構造 図8
  • 特許-リソグラフィ装置のための流体ハンドリング構造 図9
  • 特許-リソグラフィ装置のための流体ハンドリング構造 図10
  • 特許-リソグラフィ装置のための流体ハンドリング構造 図11
  • 特許-リソグラフィ装置のための流体ハンドリング構造 図12
  • 特許-リソグラフィ装置のための流体ハンドリング構造 図13
  • 特許-リソグラフィ装置のための流体ハンドリング構造 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-04
(45)【発行日】2022-02-15
(54)【発明の名称】リソグラフィ装置のための流体ハンドリング構造
(51)【国際特許分類】
   G03F 7/20 20060101AFI20220207BHJP
【FI】
G03F7/20 501
G03F7/20 521
【請求項の数】 7
【外国語出願】
(21)【出願番号】P 2020145276
(22)【出願日】2020-08-31
(62)【分割の表示】P 2019513447の分割
【原出願日】2017-08-28
(65)【公開番号】P2020197750
(43)【公開日】2020-12-10
【審査請求日】2020-08-31
(31)【優先権主張番号】16188325.1
(32)【優先日】2016-09-12
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】504151804
【氏名又は名称】エーエスエムエル ネザーランズ ビー.ブイ.
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【弁理士】
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【弁理士】
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【弁理士】
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】ヴァン デン アイデン,ぺピン
(72)【発明者】
【氏名】ロプス,コルネリウス,マリア
(72)【発明者】
【氏名】ポレット,セオドルス,ウィルヘルムス
(72)【発明者】
【氏名】クーケンス,フロア,ルドウィック
(72)【発明者】
【氏名】タナサ,ギョルゲ
(72)【発明者】
【氏名】コーティエ,ロジェ,ヘンドリカス,マグダレーナ
(72)【発明者】
【氏名】カウペルス,クーン
(72)【発明者】
【氏名】ブッデンベルク,ハロルド,セバスチアーン
(72)【発明者】
【氏名】ガットビージョ,ジョヴァンニ,ルカ
(72)【発明者】
【氏名】ヴァン ヴィエト,エヴェルト
(72)【発明者】
【氏名】テン ケイト,ニコラース
(72)【発明者】
【氏名】フレンケン,マルク,ヨハネス,ヘルマヌス
(72)【発明者】
【氏名】ヴァン エルヴェ,ヤンティーン,ローラ
(72)【発明者】
【氏名】テウニッセン,マーセル,マリア,コーネリアス,フランシスカス
【審査官】植木 隆和
(56)【参考文献】
【文献】国際公開第2004/114380(WO,A1)
【文献】特開2006-165550(JP,A)
【文献】国際公開第2014/104107(WO,A1)
【文献】特表2015-515738(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/027
G03F 7/20
(57)【特許請求の範囲】
【請求項1】
リソグラフィ装置のある領域に液浸流体を閉じ込めるように構成された流体ハンドリング構造であって、前記流体ハンドリング構造が、
投影ビームが前記液浸流体を通過するために内部に形成されたアパーチャを画定する第1の部分と、
液浸流体の前記領域へ供給及び/又は前記領域からの抽出のために適合された表面を画定する第2の部分と、
前記第1の部分と前記第2の部分との間に設けられたベアリングと、を備え、
前記第2の部分は、前記流体ハンドリング構造の前記表面に出入りする流体を提供する少なくとも1つの貫通孔と、前記少なくとも1つの貫通孔に流体連通するチャンバとを備え、前記第2の部分の前記第1の部分に対する相対移動が、前記表面に出入りする前記流体の流れの位置を前記アパーチャに対して変化させ、
前記表面は、前記少なくとも1つの貫通孔に流体連通してそこから前記液浸流体を提供する少なくとも1つの出口開口が形成されている、
流体ハンドリング構造。
【請求項2】
前記表面は、前記少なくとも1つの貫通孔に流体連通してそこに前記液浸流体を抽出する少なくとも1つの入口開口が形成されている、請求項1に記載の流体ハンドリング構造。
【請求項3】
前記第1の部分と前記第2の部分との間に延在するホースを通して、前記流体が前記チャンバに供給又は前記チャンバから抽出される、請求項1又は2に記載の流体ハンドリング構造。
【請求項4】
前記ベアリングは、前記液浸流体と流体連通する半径方向内側の液体ベアリングと、半径方向外側の液体又はガスベアリングとを備える、請求項1ないし請求項のいずれか1項に記載の流体ハンドリング構造。
【請求項5】
前記チャンバは、前記少なくとも1つの出口開口の上方に設けられる、請求項1ないし請求項4のいずれか1項に記載の流体ハンドリング構造。
【請求項6】
請求項1から5のいずれか1項に記載の流体ハンドリング構造と、
前記流体ハンドリング構造によって閉じ込められた前記液浸流体を通して、前記投影ビームを支持テーブルに支持された基板に投影するための投影システムと、を備える液浸リソグラフィ装置。
【請求項7】
前記投影システムに対する前記支持テーブルの移動中の前記第1の部分に対する前記第2の部分の相対移動を、前記流体の流れと前記基板との相対速度が前記第1の部分に対する前記第2の部分の相対移動がない場合よりも小さくなるように制御するためのコントローラをさらに備える、請求項6に記載の液浸リソグラフィ装置。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
[0001] この出願は、2016年9月12日に出願された欧州特許出願16188325.1の優先権を主張し、参照によりその全体が本明細書に組み込まれる。
【0002】
[0002] 本発明は流体ハンドリング構造及びリソグラフィ装置に関する。
【背景技術】
【0003】
[0003] リソグラフィ装置は、所望のパターンを基板に、通常は基板のターゲット部分に適用する機械である。リソグラフィ装置は、例えば、集積回路(IC)の製造に使用可能である。このような場合、代替的にマスク又はレチクルとも呼ばれるパターニングデバイスを使用して、ICの個々の層上に形成すべき回路パターンを生成することができる。このパターンを、基板(例えばシリコンウェーハ)上のターゲット部分(例えば1つ又は幾つかのダイの一部を含む)に転写することができる。パターンの転写は通常、基板に設けた放射感応性材料(レジスト)の層への結像により行われる。一般的に、1枚の基板は、順次パターンが付与される隣接したターゲット部分のネットワークを含んでいる。既知のリソグラフィ装置は、パターン全体をターゲット部分に1回で露光することによって各ターゲット部分が照射される、いわゆるステッパと、基板を所与の方向(「スキャン」方向)と平行あるいは逆平行に同期的にスキャンしながら、パターンを所与の方向(「スキャン」方向)に投影ビームでスキャンすることにより、各ターゲット部分が照射される、いわゆるスキャナとを含む。パターンを基板にインプリントすることによっても、パターニングデバイスから基板へとパターンを転写することが可能である。
【0004】
[0004] 投影システムの最終要素と基板の間の空間を充填するように、リソグラフィ投影装置内の基板を水などの比較的高い屈折率を有する液浸液に液浸することが提案されている。ある実施形態では、液浸体は超純水であるが、別の液浸液を使用することもできる。本発明の実施形態は、液体について説明されている。しかし別の流体、特にウェッティング流体、非圧縮性流体及び/又は屈折率が空気より高い、望ましくは屈折率が水より高い流体が適切なこともある。気体を除く流体が特に望ましい。そのポイントは、露光放射は液体中の方が波長が短いので、結像するフィーチャの小型化を可能にすることである。(液体の効果は、システムの有効開口数(NA)を大きくでき、焦点深さも大きくすることと見なすこともできる。)固体粒子(例えば石英)が懸濁している水、又はナノ粒子の懸濁(例えば最大10nmの最大寸法の粒子)がある液体などの、他の液浸液も提案されている。懸濁粒子は、これが懸濁している液体と同様の屈折率又は同じ屈折率を有しても、有していなくてもよい。適切になり得る他の液体は、芳香族などの炭化水素、フルオロハイドロカーボン、及び/又は水溶液である。
【0005】
[0005] 液浸装置では、液浸流体が流体ハンドリング構造によって取り扱われる。ある実施形態では、流体ハンドリング構造は液浸流体を供給することができ、流体供給システムと呼ばれる場合がある。ある実施形態では、流体ハンドリング構造は、ある領域に少なくとも部分的に液浸流体を閉じ込めることができ、流体閉じ込めシステムと呼ばれる場合がある。ある実施形態では、流体ハンドリング構造は、液浸流体にバリアを提供することができ、したがってバリア部材と呼ばれる場合がある。ある実施形態では、流体ハンドリング構造は、例えば液浸流体の流れ及び/又は位置の制御に役立てるために、流体の流れ、例えばガス流を生成又は使用する。ガス流は、液浸流体を閉じ込めるシールを形成することができる。
【0006】
[0006] しかしながら、流体ハンドリング構造の使用は、基板の上面に欠陥の形成をもたらすかもしれない。欠陥は、基板が流体ハンドリング構造の下を通過した後に液浸流体の液滴が取り残されることによって生じる可能性がある。基板の表面上の欠陥は、基板の表面上にエラーをもたらす可能性があり、それが歩留まりを低減させる可能性がある。欠陥は、特にウォーターマークを意味してよい、あるいは基板の表面上に発生し得る他の欠陥を意味してもよい。流体ハンドリング構造が通過する、基板を支持する支持テーブル上又は支持テーブル上のオブジェクト上に液浸液が取り残されることも考慮すべきである。
【発明の概要】
【0007】
[0007] 例えば、液浸流体損失が少ない流体ハンドリング構造を提供することが望ましい。
【0008】
[0008] 本発明のある態様によると、リソグラフィ装置のある領域に液浸流体を閉じ込めるように構成された流体ハンドリング構造であって、流体ハンドリング構造が、投影ビームが液浸流体を通過する内部に形成されたアパーチャと、第1の部分と、第2の部分とを備え、第1の部分と第2の部分のうちの少なくとも1つが、領域から液浸流体を抽出するように適合された表面を画定し、流体ハンドリング構造が、流体ハンドリング構造の表面に出入りする流体の流れを提供するように適合され、第2の部分に対する第1の部分の移動が、表面に出入りする流体の流れの位置をアパーチャに対して変化させる効果があり、第1の部分と第2の部分のうちの一方が、流体の流れが通過するための少なくとも1つの貫通孔を備え、第1の部分と第2の部分のうちの他方が、流体の流れが通過するための少なくとも1つの開口を備え、少なくとも1つの貫通孔及び少なくとも1つの開口が位置合わせされたときに流体連通し、移動によって少なくとも1つの開口と少なくとも1つの貫通孔のうちの1つが位置合わせ可能になることによって、表面に出入りする流体の流れの位置をアパーチャに対して変化させる流体ハンドリング構造が提供される。
【図面の簡単な説明】
【0009】
[0009] 対応する参照符号が対応する部分を示す添付の概略図を参照しながら以下に本発明の実施形態について説明するが、これは単に例示としてのものに過ぎない。
【0010】
図1】[00010] 本発明のある実施形態に係るリソグラフィ装置を示す。
図2】[0010] リソグラフィ投影装置において使用される流体ハンドリング構造を示す。
図3】[0011] 別の流体ハンドリング構造を示す側断面図である。
図4】流体ハンドリング構造の底面の斜視図である。
図5】流体ハンドリング構造の底面の平面図である。
図6図4又は図5の流体ハンドリング構造の半分を示す側断面図である。
図7】別の流体ハンドリング構造の平面図である。
図8図7の流体ハンドリング構造の半分の断面図である。
図9】別の流体ハンドリング構造の下面の斜視図である。
図10】別の流体ハンドリング構造の半分の側断面図である。
図11】別の流体ハンドリング構造の下面の斜視図である。
図12】別の流体ハンドリング構造の半分を示す側断面図である。
図13】別の流体ハンドリング構造の半分を示す側断面図である。
図14】別の流体ハンドリング構造の半分を示す側断面図である。
【発明を実施するための形態】
【0011】
[0012] 図1は、本発明の一実施形態によるリソグラフィ装置を概略的に示したものである。この装置は、
a.投影ビームB(例えばUV放射又はDUV放射)を調節するように構成された照明システム(イルミネータ)ILと、
b.パターニングデバイス(例えばマスク)MAを支持するように構築され、特定のパラメータに従ってパターニングデバイスMAを正確に位置決めするように構成された第1のポジショナPMに接続された支持構造(例えばマスクテーブル)MTと、
c.基板(例えばレジストコートウェーハ)Wを保持するように構成され、特定のパラメータに従って基板の表面、例えば基板Wを正確に位置決めするように構成された第2のポジショナPWに接続された支持テーブル、例えば1つ以上のセンサを支持するセンサテーブル又は支持テーブルWTと、
d.パターニングデバイスMAによって投影ビームBに付与されたパターンを基板Wのターゲット部分C(例えば1つ以上のダイを含む)に投影するように構成された投影システム(例えば屈折投影レンズシステム)PSとを備える。
【0012】
[0013] 照明システムILは、放射を誘導し、整形し、又は制御するための、屈折型、反射型、磁気型、電磁型、静電型、又はその他のタイプの光学コンポーネント、あるいはそれらの任意の組み合わせなどの様々なタイプの光学コンポーネントを含むことができる。
【0013】
[0014] 支持構造MTはパターニングデバイスMAを保持する。支持構造MTは、パターニングデバイスMAの方向、リソグラフィ装置の設計等の条件、例えばパターニングデバイスMAが真空環境で保持されているか否かに応じた方法で、パターニングデバイスを保持する。支持構造MTは、パターニングデバイスMAを保持するために、機械的、真空、静電等のクランプ技術を使用することができる。支持構造MTは、例えばフレーム又はテーブルでよく、必要に応じて固定式又は可動式でよい。支持構造MTは、パターニングデバイスMAが例えば投影システムPSなどに対して確実に所望の位置にくるようにできる。本明細書において「レチクル」又は「マスク」という用語を使用した場合、その用語は、より一般的な用語である「パターニングデバイス」と同義と見なすことができる。
【0014】
[0015] 本明細書において使用する「パターニングデバイス」という用語は、基板のターゲット部分にパターンを生成するように、放射ビームの断面にパターンを付与するために使用し得る任意のデバイスを指すものとして広義に解釈されるべきである。ここで、放射ビームに付与されるパターンは、例えばパターンが位相シフトフィーチャ又はいわゆるアシストフィーチャを含む場合、基板のターゲット部分における所望のパターンに正確には対応しないことがある点に留意されたい。一般的に、放射ビームに付与されるパターンは、集積回路などのターゲット部分に生成されるデバイスの特定の機能層に相当する。
【0015】
[0016] 本明細書において使用する「投影システム」という用語は、例えば使用する露光放射、又は液浸液の使用や真空の使用などの他の要因に合わせて適宜、例えば屈折光学システム、反射光学システム、反射屈折光学システム、磁気光学システム、電磁気光学システム及び静電光学システム、又はその任意の組み合わせを含む任意のタイプの投影システムを網羅するものとして広義に解釈されるべきである。本明細書において「投影レンズ」という用語を使用した場合、これはさらに一般的な「投影システム」という用語と同義と見なすことができる。
【0016】
[0017] 本明細書で示すように、本装置は透過タイプである(例えば透過マスクを使用する)。あるいは、装置は反射タイプでもよい(例えば上記で言及したようなタイプのプログラマブルミラーアレイを使用する、又は反射マスクを使用する)。
【0017】
[0018] リソグラフィ装置は、2つ以上のテーブル(又はステージ又は支持体)、例えば2つ以上の支持テーブル、又は1つ以上の支持テーブルと1つ以上のクリーニング、センサ又は測定テーブルとの組み合わせを有するタイプであり得る。例えば、ある実施形態では、リソグラフィ装置は、投影システムの露光側に位置決めされた2つ以上のテーブルを備えるマルチステージ装置であり、各テーブルは1つ以上のオブジェクトを備える及び/又は保持する。ある実施形態では、テーブルのうち1つ以上は放射線感応性基板を保持することができる。ある実施形態では、テーブルのうち1つ以上は投影システムからの放射を測定するセンサを保持することができる。ある実施形態では、マルチステージ装置は、放射感応性基板を保持するように構成された第1のテーブル(すなわち支持テーブル)と、放射感応性基板を保持するように構成されていない第2のテーブル(以降は一般に、測定及び/又はクリーニングテーブルと呼ぶが、これに限定されない)とを備える。第2のテーブルは、放射感応性基板以外に1つ以上のオブジェクトを備える、及び/又は保持することができる。このような1つ以上のオブジェクトには、以下から選択される1つ以上がある。すなわち、投影システムからの放射を測定するセンサ、1つ以上の位置合わせマーク、及び/又は(例えば液体閉じ込め構造をクリーニングする)クリーニングデバイスである。
【0018】
[0019] そのような「マルチステージ」機械では、複数のテーブルを並行して使用することができ、あるいは1つ以上の他のテーブルを露光に使用しながら予備工程を1つ以上のテーブルで実行することができる。リソグラフィ装置は、基板、クリーニング、センサ及び/又は測定テーブルと同様の方法で並行して使用することができる2つ以上のパターニングデバイステーブル(又はステージ又は支持体)を有することができる。
【0019】
[0020] 図1を参照すると、照明システムILは放射源SO又は放射から放射ビームを受ける。放射源SO及びリソグラフィ装置は、例えば放射源SOがエキシマレーザである場合に、別々の構成要素であってもよい。このような場合、放射源SOはリソグラフィ装置の一部を形成すると見なされず、放射ビームは、例えば適切な誘導ミラー及び/又はビームエクスパンダなどを備えるビームデリバリシステムBDの助けにより、放射源SOから照明システムILへと渡される。他の事例では、例えば放射源SOが水銀ランプの場合は、放射源SOがリソグラフィ装置の一体部分であってもよい。放射源SO及び照明システムILは、必要に応じてビームデリバリシステムBDとともに放射システムと呼ぶことができる。
【0020】
[0021] 照明システムILは、放射ビームの角度強度分布を調整するためのアジャスタADを備えていてもよい。一般に、照明システムILの瞳面における強度分布の外側及び/又は内側半径範囲(一般にそれぞれ、σ-outer及びσ-innerと呼ばれる)を調節することができる。また、照明システムILは、インテグレータIN及びコンデンサCOなどの他の種々のコンポーネントを備えていてもよい。照明システムILを用いて放射ビームを調節し、その断面にわたって所望の均一性と強度分布とが得られるようにしてもよい。放射源SOと同様、照明システムILは、リソグラフィ装置の一部を形成すると考えてもよいし、又は考えなくてもよい。例えば、照明システムILは、リソグラフィ装置の一体化部分であってもよく、又はリソグラフィ装置とは別の構成要素であってもよい。後者の場合、リソグラフィ装置は、照明システムILをその上に搭載できるように構成することもできる。任意選択として、照明システムILは着脱式であり、別に提供されてもよい(例えば、リソグラフィ装置の製造業者又は別の供給業者によって)。
【0021】
[0022] 投影ビームは、支持構造MT上に保持されたパターニングデバイスMAに入射し、パターニングデバイスMAによってパターン形成される。パターニングデバイスMAを横断した投影ビームは、投影システムPSを通過し、投影システムPSは、ビームを基板Wのターゲット部分C上に合焦させる。第2のポジショナPW及び位置センサIF(例えば、干渉計デバイス、リニアエンコーダ又は容量センサ)の助けにより、支持テーブルWTを、例えば様々なターゲット部分Cを放射ビームBの経路に位置決めするように正確に移動できる。同様に、第1のポジショナPMと別の位置センサ(図1には明示されていない)を用いて、マスクライブラリからの機械的な取り出し後又はスキャン中などに投影ビームの経路に対してパターニングデバイスMAを正確に位置決めできる。一般に、支持構造MTの移動は、第1のポジショナPMの部分を形成するロングストロークモジュール(粗動位置決め)及びショートストロークモジュール(微動位置決め)の助けにより実現できる。同様に、支持テーブルWTの移動は、第2のポジショナPWの部分を形成するロングストロークモジュール及びショートストロークモジュールを用いて実現できる。ステッパの場合(スキャナとは対照的に)、支持構造MTをショートストロークアクチュエータのみに接続するか、又は固定してもよい。パターニングデバイスMA及び基板Wは、パターニングデバイスアライメントマークM1、M2及び基板アライメントマークP1、P2を使用して位置合わせすることができる。図示のような基板アライメントマークは、専用のターゲット部分を占有するが、ターゲット部分Cの間の空間に位置してもよい(スクライブラインアライメントマークとして周知である)。同様に、パターニングデバイスMA上に複数のダイを設ける状況では、パターニングデバイスアライメントマークをダイ間に配置してもよい。
【0022】
[0023] ICの製造におけるリソグラフィ装置の使用に対して、具体的な言及がこの説明において行われることがあるが、本明細書に記載したリソグラフィ装置には、集積光学システム、磁気ドメインメモリ用の誘導パターン及び検出パターン、フラットパネルディスプレイ、液晶ディスプレイ(LCD)、薄膜磁気ヘッドなどの製造など、マイクロスケール、さらにはナノスケールのフィーチャを備えたコンポーネントの製造における他の用途があり得ることを理解されたい。
【0023】
[0024] 投影システムPSの最終要素と基板の間に液浸液を提供するための構成は、3つの一般的なカテゴリに分類することができる。これらは浴式構成、いわゆる局所液浸システム、及びオールウェット液浸システムである。浴式構成では、基板Wの実質的に全体及び任意選択的に支持テーブルWTの一部が液浸液の槽に沈められる。オールウェット液浸システムでは、基板の上面の全体が液浸液に覆われる。
【0024】
[0025] 局所液浸システムは、基板の局所エリアにのみ液浸液が提供される液体供給システムを使用する。液浸液が充填される領域は、上から見て基板の上面より小さく、また、液浸液が充填される領域は、投影システムPSに対して実質的に静止状態を維持する一方、基板Wはその領域の下方を移動する。図2及び図3は、このようなシステムに使用することができる異なる流体ハンドリング構造を示す。液浸液を局所エリアに封止するために底面20に封止フィーチャが存在する。これを構成するために提案された1つの方法が、PCT特許出願公報第WO99/49504号に開示されている。
【0025】
[0026] 提案されている構成は、投影システムPSの最終要素と支持テーブルWTの間の空間の境界の少なくとも一部に沿って延びる構造を流体ハンドリング構造に提供することである。そのような構成を図2に示す。
【0026】
[0027] 図2は、局所流体ハンドリング構造12を概略的に示している。流体ハンドリング構造12は、投影システムPSの最終要素と支持テーブルWT又は基板Wの間の空間11の境界の少なくとも一部に沿って延びる。(特に明記しない限り、基板Wの表面に関する以下の記載は、追加的又は代替的に支持テーブルWTの表面、又は支持テーブルWT上のセンサなどのオブジェクトも意味することに留意されたい。)流体ハンドリング構造12は、XY平面では投影システムPSに対して実質的に静止しているが、Z方向に(光軸の方向に)いくらかの相対的移動があってもよい。ある実施形態では、流体ハンドリング構造12と基板Wの表面の間にシールが形成され、シールは、ガスシール(このようなガスシールを備えたシステムは、欧州特許出願公開第EP1,420,298A号に開示されている)又は液体シールなどの非接触シールであってよい。
【0027】
[0028] 流体ハンドリング構造12は、投影システムPSの最終要素と基板Wの間の空間11に液浸液を少なくとも部分的に閉じ込める。基板Wの表面と投影システムPSの最終要素の間の空間11内に、より一般的には流体ハンドリング構造12と空間11に隣接する基板Wの間を含む領域に液浸液が閉じ込められるように、基板Wに対する非接触シールを投影システムPSのイメージフィールドの周りに形成することができる。空間11は、投影システムPSの最終要素の下方に配置され、且つこれを取り囲む流体ハンドリング構造12によって少なくとも一部が形成される。液浸液が、投影システムPSの下方、且つ流体ハンドリング構造12の内側にある空間11に、液体開口3の1つによって引き入れられる。液浸液は、もう1つの液体開口によって除去することができる。液浸液は少なくとも2つの液体開口3から空間11に引き入れられてよい。液浸液を供給するためにどちらの液体開口3が使用されるか、及び任意選択的に液浸液を除去するためにどちらが使用されるかは、支持テーブルWTの動きの方向に依存し得る。流体ハンドリング構造12は、投影システムPSの最終要素よりわずかに上方に延在してよい。液浸液のバッファが提供されるように、液面が最終要素より上方に上昇する。ある実施形態では、流体ハンドリング構造12は、上端部で投影システムPS又はその最終要素の形状に密に共形になり、例えば円形の場合もある内周を有する。底部では、内周は、例えば矩形であるイメージフィールドの形状に密に共形になるが、そうである必要はない。
【0028】
[0029] 液浸液は、使用中に流体ハンドリング構造12の底面20と基板Wの表面の間に形成されたガスシール16によって空間11に閉じ込めることができる。表面20は基板Wに面し、その表面20と基板Wの間にシールが形成される。流体ハンドリング構造12には空間11内の液浸液を投影ビームが通過するためのアパーチャ15が形成される。ガスシール16はガスによって形成される。ガスシール16内のガスは、加圧下で入口25を介して流体ハンドリング構造12と基板Wの間のギャップに提供される。ガスは出口14を介して抽出される。ガス入口25にかかる過剰圧力、出口14に対する真空レベル、及びギャップのジオメトリは、内向きに高速ガス流があり、それが液浸液を閉じ込めるように構成される。流体ハンドリング構造12と基板Wの間にある液浸液にかかるガスの力は、液浸液を空間11に閉じ込める。入口/出口は、空間11を取り囲む環状溝であってよい。環状溝は、連続でも不連続でもよい。ガス流は、液浸液を空間11に閉じ込める効果がある。そのようなシステムが、米国特許出願公開第US2004-0207824号に開示されており、参照によりその全体が本明細書に組み込まれる。ある実施形態では、流体ハンドリング構造12にガスシール16がない。
【0029】
[0030] 図3は、代替的な流体ハンドリング構造12の表面20に形成されたフィーチャを概略的に示している。表面20は、表面20を領域からの液浸液の抽出に適合させるためのフィーチャを含む。図3は、流体ハンドリング構造12のメニスカス制御フィーチャを概略的に平面図として示す。これはガスドラッグの原理を利用する出口を有してよく、本発明のある実施形態はこれに関連し得る。メニスカス制御フィーチャの各フィーチャが示されており、これらは例えば、図2において入口15及び出口14により提供されるガスシール16によって示されたメニスカス制御フィーチャに代わり得る。図3のメニスカス制御フィーチャは、抽出器、例えば二相抽出器の形態をとる。メニスカス制御フィーチャは、流体ハンドリング構造12の表面20に複数の離散的な開口50を備えている。したがって、表面20は、領域からの液浸流体の抽出に適合されている。各離散的な開口50は円形であるものとして示されているが、必ずしもそうとは限らない。実際、この形状は必須ではなく、離散的な開口50のうちの1つ以上は、円形、楕円形、直線的形状(例えば正方形又は長方形)、三角形などから選択された1つ以上であってもよいし、1つ以上の開口は細長であってもよい。
【0030】
[0031] 離散的な開口50の半径方向内側且つ流体ハンドリング構造12の表面20に複数の入口開口13がある。液浸液が提供された領域に入口開口13から液浸液が提供される。入口開口13は、流体ハンドリング構造12に形成されたアパーチャ15によって囲まれた空間11を取り囲む。
【0031】
[0032] 開口50の半径方向内側にはメニスカス制御フィーチャが存在しなくてよい。メニスカス320は、離散的な開口50に入るガス流によって誘発されたドラッグ力によって、離散的な開口50の間にピン止めされる。約15m/s、望ましくは約20m/sよりも速いガスドラッグ速度であれば十分である。基板Wから流体が飛び散る又は漏出する量は減少し、それによって流体の蒸発が減少し、ひいては熱膨張/収縮効果が低下する可能性がある。
【0032】
[0033] 流体ハンドリング構造の底部は様々なジオメトリが可能である。例えば、米国特許出願公開第US2004-0207824号又は米国特許出願公開第US2010-0313974号に開示されている構造は、いずれも本発明の実施形態において使用され得る。本発明のある実施形態は、上から見て任意の形状を有する、又は任意の形状に配置された出口などの構成要素を有する流体ハンドリング構造12に適用されてよい。そのような形状を非制限的に挙げると、円のような楕円形、矩形、例えば正方形のような直線的形状、菱形のような平行四辺形、又は、例えば図3に示す4つ以上の頂点を持つ星のような4つよりも多くの角を有する角のある形状が含まれ得る。
【0033】
[0034] 既知のリソグラフィ装置は、ガスナイフを備えた流体ハンドリング構造12を備え得る。ガスナイフは、液浸流体を空間11に閉じ込めるのを助けるために用いることができる。したがって、ガスナイフは、後で欠陥をもたらすおそれがある液浸流体の空間11からの漏出を防止するのに有用であり得る。強いガスナイフを提供することは、膜引張りの防止に有用である。なぜなら、強いガスナイフは、流体ハンドリング構造12に引きずられる液浸流体の量を減少させる又は抑えるであろうし、より迅速に膜を破壊して流体ハンドリング構造12に取り残される液浸流体の量を減少させ得るからである。
【0034】
[0035] 流体ハンドリング構造12は、液浸流体をある領域に閉じ込めるように構成され、ガスナイフシステムを備える。ガスナイフシステムは、使用中のガスナイフを生成するように構成されてよい。ガスナイフは、空間11の半径方向外側にあってよく、液浸流体の閉じ込めに寄与し得る。ガスナイフシステムは、それぞれが出口60を有する通路を備える。ガスナイフは、使用中に出口60から出ていくガスによって形成され得る。出口60は、平面視である形状の少なくとも1つの辺を形成する。出口60は、平面視でその形状の少なくとも1つ、複数、又はすべての辺を形成してよい。例えば、出口60は、図3に示すような4つの頂点を持つ星の辺を形成してよい。形状は複数の辺を有してよく、例えば、3つ、4つ、5つ、6つ、7つ、8つ、9つ、10又はそれ以上の任意の適切な数の辺が提供され得る。上記のように、出口60は任意の形状の辺を形成してよく、これは制限的ではない。図3は、スキャン方向110を、4つの頂点を持つ星の頂点のうちの2つと一列になるものとして示しているが、そうでなくてもよい。ガスナイフによって形成される形状は、任意の選択された配向でスキャン方向110と位置合わせされてよい。
【0035】
[0036] 図3の実施形態では、液体開口13(液浸液)及び出口60(ガスナイフを形成するためのガス流)を介した表面20からの流体の流れが見られる。また、離散的な開口50を介した表面20への流体(ガスと液浸液の混合物)の流れもある。
【0036】
[0037] 本発明では、流体ハンドリング構造12は、表面20に出入りする流体の流れ(例えば流体開口13からの流出、離散的な開口50への流入、出口60からの流出)を提供するように適合される。流体ハンドリング構造12は、表面20に出入りする流体の流れの位置をアパーチャ15に対して、例えば半径方向に変化させるように適合される。
【0037】
[0038] 流体ハンドリング構造12と基板Wとの間の相対移動が速ければ速いほど、液浸液の漏出が起こる可能性が高くなる。しかしながら、装置のスループットを最大化するために、流体ハンドリング構造12と基板Wの相対速度を最大化することが望ましい。したがって、基板W上に取り残される液浸液をなくす又はわずかな量にして、流体ハンドリング構造12と基板Wの最高相対速度を高めることが望ましい。アパーチャ15に対する流体の流れの位置を変えることによって、液浸液が基板Wの表面上に取り残される前に達成可能な、基板Wの投影システムPSに対する相対速度を高めることが可能になる。
【0038】
[0039] ある実施形態では、メニスカス制御フィーチャに関連する流体の流れは、基板Wと同じ方向に移動することができ、これによってメニスカス制御フィーチャに関連する流れと基板Wに関連する流れの相対速度が低下する。したがって、ある実施形態では、流体の流れの位置の変化は、流体の流れが衝突する基板Wの表面上の位置の相対速度が、相対移動がない場合のアパーチャ15に対する流体が表面に出入りする位置と比較して低下した速度を有することを意味する。この相対速度の低下は、液体損失の可能性が低いこと、及び/又は投影システムPSに対する基板Wのより速い速度が、液浸液が基板W上に取り残される前に使用可能であることを意味する。
【0039】
[0040] ある実施形態では、アパーチャに対する表面20に出入りする流体の流れの位置の変化を可能にすることによって、メニスカス制御フィーチャに関連する特定方向の流体の流れの上から見た形状のアライメントが可能になる。例えば上から見た形状は、角のある形状であってよく、その形状の角は、液浸液を閉じ込めるという点で最適な対向する基板に面するように常に回転することができる。具体的には、このようなシステムは、図3に示すようなスキャン方向110との固定アライメントではなく、上から見て図3の開口50によって作られた形状全体の角の、投影システムPSに対する基板Wの実際の移動方向とのアライメントを可能にし得る。これによって、液体損失がない、図3の固定流体ハンドリング構造12の場合に考えられるよりも速度が向上した基板Wの非スキャン動作が可能になる。したがって、これによって、流体ハンドリング構造12下における基板Wの移動方向に対して最適にアライメントされる領域に液浸液を閉じ込めるためのフィーチャのアライメントが可能になる。
【0040】
[0041] ある実施形態では、位置の変化は、何とかメニスカス制御フィーチャを越えてアパーチャ15のより近くに流れる液浸液が流体の流れによって封じ込められるように、流体の流れが基板Wの特定領域を数回通過することを可能にする。
【0041】
[0042] 流体の流れの位置の変化は、流体ハンドリング構造12の第1の部分を流体ハンドリング構造12の第2の部分に対して移動可能にすることによって達成される。移動はコントローラ500によって制御することができる。位置の変化は、第1の部分と第2の部分のうちの一方が流体の流れが通過するための少なくとも1つの貫通孔を備える構成とすることによって達成される。第1の部分と第2の部分のうちの他方は、流体の流れが通過するための少なくとも1つの開口を備える。少なくとも1つの貫通孔及び少なくとも1つの開口は、位置合わせされたときに流体連通する。第1の部分及び第2の部分を互いに対して移動させることによって、少なくとも1つの開口は、少なくとも1つの貫通孔のうちの異なる1つと整列することになる。このように、流体の流れを少なくとも1つの貫通孔の異なるものの中から選択することによって、表面に出入りする流体の流れの位置をアパーチャに対して変化させることができる。このような構成は、流体ハンドリング構造12の容積を実質的に増加させることなく、表面20に出入りする流体の流れがそのアパーチャ15に対する位置を変えられるように流体ハンドリング構造12を効率的に適合させることが可能であるために有利である。また、流体ハンドリング構造12を投影システムPSに対して適切な位置に保持するための流体ハンドリング構造12のいかなる支持体も、投影システムPSに対して移動しないように構成可能な流体ハンドリング構造12の第1の部分に取り付けることができる。これは、投影システムPSに対する流体の流れの位置を変化させるために流体ハンドリング構造12全体が回転又は移動する場合と比較して、流体ハンドリング構造12の支持を大幅に簡略化する。また、流体ハンドリング構造12の全体を移動させる代わりに、流体ハンドリング構造12の一部のみを移動させることによって、可動部の全体的な質量は、流体ハンドリング構造12全体が移動する場合より小さくなる。一般に、開口より大きい断面積を有するチャンバが少なくとも1つの開口を備えた第1の部分又は第2の部分に設けられる。チャンバは、圧力変動を吸収することによって開口を通る流れを円滑にする。好適な実施形態では、チャンバは、有利にはチャンバを画定する部分が移動する必要性をなくすことによって移動質量が低下するように非可動部に設けられる。少なくとも1つの貫通孔をその中に備えた部分は、比較的薄く保たれることによってその質量を低く保つことができ、ひいては移動の動作が簡単になる。
【0042】
[0043] ある実施形態では、第2の部分に対する第1の部分の移動は、第2の部分に対する第1の部分の回転移動を含む。ある実施形態では、第2の部分に対する第1の部分の移動は、第2の部分に対する第1の部分の並進移動を含む。
【0043】
[0044] これから本発明の第1の実施形態を、単なる例として図4を参照して説明する。流体ハンドリング構造12に流体が出入りするための様々な開口、入口、出口などが本実施形態及び他の実施形態において説明される。開口、入口、出口などは、任意の断面形状及び任意の数の1つ以上の開口、入口、出口などの形態をとってよい。例えば開口、入口、出口などは、図示されるような個別の孔ではなく単一のスリットの形態をとってもよい。図4は、流体ハンドリング構造12の表面20の概略的な斜視図である。図4の流体ハンドリング構造は、下記に記載されている以外は図3と同じである。流体ハンドリング構造12は、図3の離散的な開口50及び出口60と同じ機能を有する離散的な開口50及び出口60a、60b、60cを備える。液浸液を抽出するための表面20の離散的な開口50は、出口60よりアパーチャ15に近い。
【0044】
[0045] 流体ハンドリング構造12は、第1の部分100と第2の部分200とを備える。第1の部分100は、投影システムPSに対して実質的に静止して取り付けられる。第2の部分200は、(流体ハンドリング構造12の下面である)表面20が第1の部分100により部分的に、且つ第2の部分200により部分的に形成されるように第1の部分100の底部に形成された溝に位置する。第1の部分100及び第2の部分200の底面は実質的に同一平面上の面であり、液浸液が抽出される表面20をともに画定する。
【0045】
[0046] 流体ハンドリング構造12は、第2の部分200が第1の部分100に対して回転できるように適合される。回転移動は、流体ハンドリング構造12の中心軸を軸とする。ある実施形態では、流体ハンドリング構造12の中心軸は、リソグラフィ装置の投影システムPSの中心軸と一致する。
【0046】
[0047] 出口60は、表面20の出口開口の形態をとる。出口60a、60b、60cからの流体の流れは、上から見て出口60a、60b、60cが1本の線に沿って配置されているため、上から見て少なくとも1本の線に沿って表面20から排出される。出口60a、60b、60cからの流体(例えばガス)の流れは、ガスナイフの形態をとる。図4に示す実施形態では、出口60a、60b、60cは、上から見て3本の線を形成する。しかしながら、本実施形態は3本の線に限定されず、出口60a、60b、60cにより何本の線が形成されてもよい。
【0047】
[0048] 出口60a、60b、60cの線は、出口60a、60b、60cからの流体の流れが、流体の流れの位置の変化に基づいて液浸液の液滴をアパーチャ15方向に操作する効果があるように形成される。これは、上から見て出口60が刃の形をした5本の線(60a、60b、60c、60d、60e)状に形成される点で異なる、図4に示した表面20の平面図である図5に概略的に示されている。
【0048】
[0049] 液浸液の液滴62が、出口60eの線からガス流によって押され、離散的な開口50方向に流される様子が示されている。第2の部分200の回転は、複数のガスナイフを備えたダイオードのような働きをする。ガスナイフは、半径方向内側の閉じ込めフィーチャから漏れるすべての液浸液を、液浸液があるべき領域に半径方向内側に強引に押し戻す。そして液浸液は、離散的な開口50などの抽出フィーチャにより抽出することができる。
【0049】
[0050] 出口60a~60eの線は円周方向に延び、且つその長さに沿って徐々にアパーチャ15からさらに遠ざかる。第2の部分200は、投影システムPS又はアパーチャ15に対する所与の一定の半径方向位置において、所与の線がその一定の半径方向位置にあるその半径方向の位置を通過するときに投影システムPS及びアパーチャ15により近づくように回転する。第1の部分100に対する第2の部分200の回転の方向は矢印63で示されている。(流体ハンドリング構造12の下方の基板W上にある)液滴62に対して線が移動する結果、液滴62はアパーチャ15に向かって64の方向に移動することになる。
【0050】
[0051] 液滴62の移動は、出口60eから出る流体の流れのアパーチャ15に対する位置の移動に起因する。
【0051】
[0052] 液滴62は、アパーチャ15に近づくと、離散的な開口50の1つから抽出されることになる。液滴62が出口60eの線を越えて移動したとしても、出口60eの線が液滴62に与えている力に関して説明したのと同様に液滴62に力を与える出口60dの次の線によって捕らえられることになる。このように、アパーチャ15から離れる方向に離散的な開口50を越えて移動する液浸液のいずれの液滴も、出口60a、60b、60c、60d、60eの線からの流体の流れによって開口50の方向に流し戻される。
【0052】
[0053] 図4及び図5に示すように、出口60a~60eの線は直線でなく、例えば曲線でもよい。出口60a~60eの線は、円周方向に重なる場合もあれば重ならない場合もある。
【0053】
[0054] 図示されていないが、第1の部分100の表面20にアパーチャ15と隣接して開口13が設けられてもよい。
【0054】
[0055] 図5に示すように、第2の部分200の半径方向内側の第1の部分100に液体開口13が存在する。液体開口13は本実施形態では任意選択的であり、図3の流体ハンドリング構造12の液体開口13と同じ機能を有する。
【0055】
[0056] 第2の部分200は、第1の部分100によって摩擦のない状態で懸架されている。第2の部分200は第1の部分100に対して、例えば0.1から100Hz、好ましくは1から10Hz、例えば数ヘルツの速度で回転することができる。回転速度が一定に保たれる場合、有利には装置に加速力又は減速力がもたらされない。
【0056】
[0057] 第1の部分100に対する第2の部分200の移動は、空気圧又は油圧によって駆動することができる。図6は、図4及び図5の流体ハンドリング構造12の断面図である。空気圧又は油圧作動のベイン120が示されている。空気圧作動は、出口60で使用されるガスと同じガス、例えば二酸化炭素を使用することができる。油圧作動は、例えばベイン120を通過した液浸液をポンピングすることにより、液浸液と同じ液体を使用することができる。第1の部分100に対して第2の部分200を移動させる他の方法には、(サーボ/ステッパ)モータを任意選択的にギア、ベルト、又はロッドと組み合わせて使用することが含まれる。ベルト又はロッドを使用してモータから第2の部分200に動きを伝達することは、モータを第2の部分200から離れた場所に配置することを可能にするため有利な場合がある。これは特に流体ハンドリング構造12の容積が制限されている場合に有利な場合がある。第2の部分200に対する第1の部分100の回転の速度を検出する回転センサ(図示せず)を設けてもよい。回転中の液浸液/ガスの速度を測定する流量センサ(図示せず)を設けてもよい。センサはコントローラ500により使用されて、閉ループにおいて第1の部分100に対する第2の部分200の回転速度を制御することができる。
【0057】
[0058] 図6に示すように、ある実施形態では、第1の部分100と第2の部分200の間に外側ベアリング130及び内側ベアリング140が設けられる。内側ベアリング140は、例えば空間11内にあるものと同じ液体を使用した液体ベアリングであってよい。外側ベアリング130は、例えば出口60から出るガスと同じガスを使用したガスベアリングであってよい。ベアリング130、140の1つだけが設けられてもよく、ベアリングは、上記空気圧及び油圧を含む任意のタイプの非接触及び/又は無摩擦ベアリングであってよい。
【0058】
[0059] 内側ベアリング140を除去し、外側ベアリング130のみを備えることは、第2の部分200の内側より外側でより多くの空間が利用可能になるため有利な場合がある。結果として、回転リング状の第2の部分200のサイズは、内側ベアリング140のための空間が必要ないために小さくすることができる。これによって回転する第2の部分200の半径が小さくなるために遮蔽ガス(例えば二酸化炭素)フットプリントが小さくなる。また、これは出口60が少なくて済むことを意味する。しかしながら、第2の部分200の剛性は、内側ベアリング140を設けた場合と比較して高める必要がある場合がある。
【0059】
[0060] 図4図6の実施形態は、離散的な開口50が第2の部分200に設けられることを示している。ただし、必ずしもそうである必要はなく、ある実施形態では、離散的な開口50は第1の部分100に設けられる。図4図6の実施形態の構成は、離散的な開口50と流体ハンドリング構造12の下方の基板Wとの相対速度がより低い、つまり開口50と基板Wの間の相対運動に起因してメニスカスにより小さな力が作用するため有利な場合がある。結果として、離散的な開口50を越えた領域からの液体損失を減らすことができる。また、離散的な開口50が成す形状は、上から見て円形以外の形状であってもよい。例えば、図3に示したような、角がスキャン方向と位置合わせされた角のある形状の離散的な開口を備えることが望ましい場合がある。しかしながら、流体ハンドリング構造12のサイズを最小限に抑えるという観点からは、離散的な開口50が成す上から見た形状は、離散的な開口50が第1の部分100にあるか第2の部分200にあるか否かにかかわらず、図示するように円形であることが望ましい。
【0060】
[0061] 図6に示すように、第2の部分200からの流体の流れのそれぞれに対して環状チャンバ55、65が設けられる。例えば、図6の実施形態では、第2の部分200の貫通孔51を介して離散的な開口50と流体連通する環状チャンバ55が設けられる。チャンバ55には負圧が与えられる。この負圧によって、離散的な開口50を通る流体(液浸液及びガス)の流れが生じる。同様に、出口60より上に環状チャンバ65が設けられ、第2の部分200の貫通孔61を介して出口60と流体連通している。環状チャンバ65には正のガス圧が供給される。環状チャンバ65は出口60a~60eのすべてと流体連通しているため、出口60a~60eのすべてから均一なガス流がもたらされる。
【0061】
[0062] 環状チャンバ55及び65は、第2の部分200の貫通孔51、61と流体連通する第1の部分100の開口であると見ることができる。このように、環状チャンバ55、65は、表面20の離散的な開口50及び出口60と流体連通している。環状チャンバ55は、貫通孔51の総容積と比べて比較的大きいチャンバである。これによって、液浸液が貫通孔51を通過するがために存在する圧力変動を安定させることができる。同様の原理が環状チャンバ65にも適用される。ただし、第1の部分100の環状チャンバ65に対応する開口の表面積が大きいことは、アパーチャ15に対して異なる半径方向位置にある表面20の出口60a~60eのそれぞれが1つの環状チャンバ65と流体連通していることも意味する。
【0062】
[0063] ある実施形態では、遠心力を利用して、環状チャンバ55内の液浸液とガスを分離することができる。これは外乱力及び環状チャンバ55内の液浸液の蒸発を低減するため有益である。
【0063】
[0064] 第2の部分200は、フライス加工ではなく旋盤加工により製造されてもよい。これは、旋盤加工がフライス加工より安価で速く且つ精度が良いために有利である。したがって、製造コストが一般にフライス加工により製造される図3の流体ハンドリング構造12と比べて低い。
【0064】
[0065] ある実施形態では、第2の部分200は、クリーニング及び/又はアップグレードに役立つため、及び/又は、第2の部分200の表面20上にあり得る離散的な開口50、出口60及び/又は任意の他のフィーチャのパターンを変更するために第1の部分100から取外し可能である。
【0065】
[0066] 図示されていないが、第2の部分200の半径方向外側の第1の部分100に外側抽出孔が形成されてもよい。外側抽出孔は、第1の部分100の本体のチャンバを介して負圧に接続されてよい。外側抽出孔は、外側抽出孔の半径方向内側からガスを除去するのに使用することができる。外側抽出孔は、出口60a~60eから出るガス流に空気(例えば二酸化炭素)以外の遮蔽ガスを使用する場合に望ましい。外側抽出孔の使用は、リソグラフィ装置の環境が危険レベルの遮蔽ガスで汚染されないことを保証することができる。また、遮蔽ガスがリソグラフィ装置の残りの部分に漏れ出すことを許すことは、その後結像センサ及び/又はアライメントセンサの放射ビームの光路に到達し、行われた測定に誤差をもたらす可能性があるため望ましくない場合がある。別の実施形態では、外側抽出孔は第2の部分200に設けられ、離散的な開口50と同様に負圧源に接続されてよい。
【0066】
[0067] 図7図9は、図4図6の実施形態の原理と同様の原理に基づいて機能する代替的な実施形態を示す。図7図9の実施形態は、下記に記載されている以外は図4図6の実施形態と同じである。図7図9の実施形態では、入口開口13及び出口60は第1の部分100に形成されている。離散的な開口50は第2の部分200に形成されている。他のすべての実施形態と同様に、第1の部分100に設けられる、そして第2の部分200に設けられる実際の開口は、図示された構成と異なる可能性がある。例えば、入口開口13と出口60のうちの1つ以上は、実質的に静止した第1の部分100ではなく、回転する第2の部分200に設けることができる。また、図4図6の実施形態と同様に、静止した第1の部分100又は回転する第2の部分200の出口60の半径方向外側に外側抽出開口を設けてもよい。
【0067】
[0068] 図7図9の実施形態は、離散的な開口50の形態をとる液体閉じ込めフィーチャに関して説明されているが、同じ原理は、表面20に出入りする流体の流れを生じさせる任意のタイプの液体閉じ込めフィーチャに用いることができる。
【0068】
[0069] 図7図9に見られるように、離散的な開口50は、上から見てアパーチャ15を取り囲む非円形形状に形成される。形状は、隣接する離散的な開口50間の方向に垂直な線に対する基板Wの相対速度を低下させるように設計される。これは(図3の形状に似ている)離散的な開口50の間に延在するメニスカス320にかかる力を低下させる効果がある。したがって、第2の部分200は、形状が流体ハンドリング構造12下における基板Wの移動の方向に対して液浸液を閉じ込めるのに最適な方向に位置合わせされるように回転することができる。この構成は、第1の部分100の第2の部分200に対する相対位置を連続的に調整して、離散的な開口50が成す形状の配向を、流体ハンドリング構造12下における基板Wの変化する移動方向に対して最適化できる点で図3の実施形態に優る利点を有する。他の実施形態と同様に、コントローラ500が第2の部分200に対する第1の部分100の移動を制御する。これは流体ハンドリング構造12下における基板Wの既知の経路に基づいてよい、又は代替的又は付加的に、流体ハンドリング構造12下における基板Wの検知された運動方向に基づいてもよい。
【0069】
[0070] 図7及び図8の実施形態の離散的な開口50が成す上から見た形状の全体は、軸外楕円又は別の(経路が)最適化された細長い形状である。図9の実施形態の離散的な開口50が成す上から見た形状は、前縁が丸く、実質的な直線同士が後縁で交わる角に向かって細長い形状である。どちらの実施形態も、単位面積又は単位長さ当たりの離散的な開口50の数は、後縁の領域で増加する可能性がある。これらの形状は、後縁において図3の流体ハンドリング構造12の形状と同じ原理に基づいて機能する。つまり、流体ハンドリング構造12下を移動する基板Wの相対速度は、隣接する離散的な開口50の間の方向に垂直な方向に対して低下する。結果として、離散的な開口50によって液浸液がもはや封じ込められなくなる速度は上昇する。
【0070】
[0071] 図10は、下記に記載されている以外は前述の実施形態と同じである本発明の別の実施形態を示している。図10の実施形態では、アパーチャ15は第1の部分100により画定される。
【0071】
[0072] 図10の実施形態では、第2の部分200はプレートの形態をとる。第2の部分200は表面20全体を形成する。表面20に出入りするいずれの流体の流れも、第2の部分200を通して発生する。このため第2の部分200には、複数の貫通孔51、131がある。貫通孔には、液体開口13を液体が流れるための貫通孔131と、液浸液及びガスを抽出することによってメニスカス320をピン止めするための離散的な開口50用の貫通孔51とが含まれる。前述の実施形態と同様、離散的な開口50の上方に環状チャンバ55が設けられる。液体開口13の上方には液体開口13から液浸液を提供するための別の環状チャンバ135が設けられる。環状チャンバ135は、本明細書に記載の他の環状チャンバと同じ原理に基づいて機能する。
【0072】
[0073] 第2の部分200は、第1の部分100に対して平面内を並進可能である。第2の部分200が移動可能な平面は、基板Wと略平行な平面である。平面は表面20の平面にも平行である。
【0073】
[0074] 第2の部分200には、液体開口13の半径方向内側にアパーチャ27がある。第2の部分200のアパーチャ27は、第1の部分100のアパーチャ15より大きい。これによって、基板Wに結像するために投影ビームが通過するアパーチャ15を第2の部分200が遮ることなく第2の部分200が第1の部分100に対して移動することができる。このことは、この点において同様の図11の実施形態に最もはっきりと見ることができる。第2の部分200のアパーチャ27はどんな形状であってもよい。図11の実施形態では、形状は上から見て丸みのある正方形である。この形状は、第2の部分200が第1の部分100のアパーチャ15を遮ることなく、第1の部分100に対する第2の部分200の移動の範囲を望ましくするように選ばれる。
【0074】
[0075] 環状チャンバ55、135は、図6の実施形態と同様に第1の部分100の開口を有するものと見ることができる。環状チャンバ55、135の開口及び貫通孔51、131は、位置合わせされたときに流体連通する。第2の部分200の第1の部分100に対する相対移動は、アパーチャ15に対する貫通孔51、131の移動をもたらす。このように表面20に出入りする(すなわち液体開口13から出る及び離散的な開口50に入る)流体の流れの位置はアパーチャ15に対して変化する。
【0075】
[0076] 図10の実施形態では、少なくとも1つの貫通孔131、51の断面積は、環状チャンバ135、55の開口の断面積より小さい。これによって第2の部分200の第1の部分100に対する相対移動が可能になり、結果として、貫通孔131、51の位置を第1の部分100のアパーチャ15に対して移動させることができる。この移動は、環状チャンバ135、55とこれらに対応する貫通孔131、51の間の流体連通を維持しながら達成される。このように、流体ハンドリング構造12と基板Wの間の貫通孔131、51に対する一定の流体の流れが可能になる。
【0076】
[0077] 図10の実施形態では、第1の部分100と第2の部分200の間にベアリングが設けられる。ベアリングは無摩擦ベアリングであってよい。一実施形態ではベアリングは、例えば液体ベアリング又はガスベアリングなどの流体ベアリングである。好適な実施形態では、半径方向内側のベアリング140は液体ベアリングである。液体ベアリングは、液浸空間11に提供されるのと同じ液体を使用してよい。これは、ベアリング140から空間11又は環状チャンバ135に液浸液が漏れ出しても空間11内の液浸液に有害でないという利点を有する。
【0077】
[0078] 半径方向外側のベアリング130は、ガスベアリング又は液体ベアリングであってよい。好適な実施形態では、半径方向外側のベアリング130はガスベアリングである。これは、第2の部分200の離散的な開口50の半径方向外側に、(図3の実施形態と同様に)基板W上にガスのガスナイフ流を提供するために別の貫通孔を設ける場合に特に好適である。その場合、そのガス流に提供されるのと同じガスが、半径方向外側のベアリング130に使用され得る。
【0078】
[0079] 図10の実施形態では、コントローラ500は、第1の部分100に対して、基板Wが第1の部分100に対して移動するのと同じ方向に第2の部分200を移動させる。この結果、第1の部分100と第2の部分200の間の相対的移動が生じない場合と比較して、第2の部分200と基板Wとの相対速度が低下する。このように第2の部分200と基板Wとの相対速度が低下することは、メニスカス320がより安定的であり、液浸液の損失の可能性が低いことを意味する。
【0079】
[0080] 第1の部分100に対する第2の部分200の相対移動は、どんな方法で達成されてもよい。図10の実施形態では、一方向の移動は第2の部分200を一端において巻き上げることによって達成される。これは第2の部分200を巻く軸300を設けることによって達成される。軸300(及び流体ハンドリング構造12の反対側の対応する軸を反対方向に)を駆動することによって、一方向の移動が達成可能である。軸300の軸に垂直な方向の移動は、軸300を軸の長手軸に沿って移動させることによって達成することができる。
【0080】
[0081] 図11の実施形態では、第2の部分200と第1の部分100の間の相対移動を達成する異なる機構が利用される。これらは、図10の実施形態を含む他の実施形態でも巻上機構の代わりに使用することができる。作動は、(線形)作動ロッド又はワイヤを用いて、リニアモータ(アクチュエータ)を用いて、又は他のいかなる手段によって行われてもよい。リニアアクチュエータを用いることで設計の自由度が増し、不要粒子が発生するリスクが低下し、制御が良好になり移動精度が向上する。2つ又は3つのリニアアクチュエータがロッドにより第2の部分200に接続されている場合、第2の部分200の移動質量は(図10に示す巻上式の実施形態と比較して)最小限に抑えられる。
【0081】
[0082] 図11の実施形態では、ガス流が通る出口60は、第1の部分100の底面に設けられてよく、その場合アパーチャ15との関連で固定される。したがって、表面20は、図4の実施形態のように、第1の部分100と第2の部分200の両方によって画定される。
【0082】
[0083] 図10及び11の実施形態は、可動部が低質量であるために有利である。つまり、第2の部分200を形成するプレートは比較的薄く製造することができ、これはプレートを加速及び減速させる力が小さくて済むことを意味する。
【0083】
[0084] 図10及び11の実施形態は、液浸液を提供するための液体開口13と、液浸液及びガスを抽出するための離散的な開口50とを備えるように示されているが、第2の部分200に他の開口及び出口が(対応するチャンバを備えて)設けられてもよい。例えば、外側抽出開口を設けることができる。
【0084】
[0085] 図12には別の実施形態が概略的に示されている。図12の実施形態は、下記に記載されている以外は図10及び11の実施形態と同じである。
【0085】
[0086] 図12の実施形態では、環状チャンバ135、55を第1の部分100に形成するのではなく、第2の部分200に形成する。前述の実施形態と同様に、表面20に出入りする流体の流れのための開口13、50及び出口60の数はいくつでも可能であるが、簡単化のために開口13及び50だけが示されている。図12に示す実施形態では、液浸流体を提供するための液体開口13が、流体ハンドリング構造12の下から液浸液及びガスを抽出するための離散的な開口50とともに示されている。
【0086】
[0087] 図12の実施形態では、流体は、第1の部分100と第2の部分200の間に延在するホースを通して環状チャンバ135、55に対する供給及び抽出が行われてよい。結果として、第1の部分100と第2の部分200の間のベアリングは、いずれも流体密封である必要がないため、前述の実施形態より要件が低くなる。したがって設計は、実質的に静止した第1の部分100に対して移動する第2の部分200の質量の増加を犠牲にして、図4図9の実施形態と比較して簡略になる。
【0087】
[0088] 図12の実施形態は、領域の液浸流体と流体連通する(任意選択的な)内側ベアリング140を除いて可動部がないという利点を有する。したがって、互いに対して移動する2つの表面によって生成され得る粒子が、(図12の左側の)液浸空間に進入することができない。
【0088】
[0089] 図13の実施形態は、下記に記載されている以外は前述の実施形態と同じである。図13の実施形態では、液体開口13及び離散的な開口50(及び出口60、図示せず)は、第1の部分100に設けられる。液体開口13及び離散的な開口50(及び出口60)は、第1の部分100を貫通する貫通孔131、51に接続される。移動可能な第2の部分200は、第1の部分100のキャビティ内にあり、貫通孔131、51に対して移動し、貫通孔131、51は、第2の部分200の環状チャンバ135、55と選択的に流体連通する。ある実施形態では、環状チャンバ135、55は、第1の部分100の貫通孔131、51と同様の断面積を有する開口を有する。ある実施形態では、環状チャンバ135、55の開口はスリットの形態をとってよい。したがって、第2の部分200の第1の部分100に対する相対移動によって、第1の部分100の貫通孔131、51のうちのどれが環状チャンバ135、55と流体連通し、結果としてそこを通る流体の流れを作るかを選択することが可能になる。結果として、液体開口13及び離散的な開口50のうちのどれが環状チャンバ135、55と流体連通するかを変えることによって、表面20に出入りする流体の流れの位置をアパーチャ15に対して変化させることが可能になる。
【0089】
[0090] 例えば、第2の部分200が第1の部分100に対して図示する左側に移動した場合、対応する開口13を有する最も左側の貫通孔131が内側の環状チャンバ135と流体連通し、最も内側の離散的な開口50が外側の環状チャンバ55と流体連通することになる。しかしながら、外側の液体開口13及び外側の離散的な開口50は、それぞれの環状チャンバ135、55と流体連通せず、したがって、そこを通る流体の流れはない。
【0090】
[0091] ここで第2の部分200が第1の部分100に対して右に移動した場合、対応する液体開口13を有する外側貫通孔131及び対応する離散的な開口50を有する外側貫通孔51は、(液浸液の)流体ハンドリング構造12からの流出位置がアパーチャ15に対して半径方向外側に移動することになり、開口50からの液浸液及びガスの抽出が行われる位置もアパーチャ15に対して半径方向外側に移動することになるように、それぞれ環状チャンバ135、55と流体連通することになる。
【0091】
[0092] 一実施形態では、一組又は二組の貫通孔131、51のアレイを第1の部分100を貫通するように設けてよい。貫通孔131、51は、例えばマイクロシーブの形態をとってよい。マイクロシーブの貫通孔は、例えばサイズが約20μmで、ピッチが30μmである。したがって、第2の部分200の第1の部分100に対する相対移動によって、表面20に出入りする流体の流れの無限に近い数の異なる位置を得ることができる。なぜなら環状チャンバ135、55から続く通路は、マイクロシーブのどの貫通孔に流体の流れを作るかを選べるように、マイクロシーブの任意の貫通孔と位置合わせできるためである。このような構成は、流体ハンドリング構造12下における基板Wの移動の方向及び速度に依存してアパーチャ15に対する流体の抽出距離及び/又は供給距離を滑らかに変化させることができるために有利である。
【0092】
[0093] 図14は、下記に記載されている以外は図13と同じ実施形態を示している。図14の実施形態では、液体開口13、出口60及び外側抽出開口800が第1の部分100に形成され、結果としてアパーチャ15に対して所定の位置に固定される。外側抽出開口800は、表面20の平面より基板Wから離れた平面にある表面にあるものとして示されているが、そうである必要はない。ある実施形態では、抽出開口800は表面20に形成されてよい。離散的な開口は、複数の貫通孔51を有するマイクロシーブにより形成される。第2の部分200は第1の部分100のキャビティ内にあり、貫通孔51に対して移動する。貫通孔51は、第2の部分200の環状チャンバ55と選択的に流体連通される。このように、流体ハンドリング構造12と基板Wの間において液浸液及び/又はガスが抽出される半径方向位置は移動可能である。
【0093】
[0094] すべての実施形態において、第1の部分100の第2の部分200に対する相対位置を制御するコントローラ500を使用して、表面20に出入りする流体の流れの位置を最適化することによって、液浸液が領域から漏出する前に投影システムPSと基板Wとの最高相対速度を高めることができる。
【0094】
[0095] 上述の実施形態の組み合わせである他の構成も可能である。例えば、流体ハンドリング構造12は、図13の実施形態の第1の部分100の底部として、第2の部分200に対して移動可能な第3の部分(図示せず)を備えてよい。このように、投影システムPSと基板W及び/又は支持テーブルWTとの間の相対速度を与え、これによってスループットを一層高めるより広範囲の動きが達成可能である。
【0095】
[0096] 理解されるように、上記の特徴はいずれもその他の特徴とともに用いることができ、本出願がカバーするのは明記された組み合わせだけではない。
【0096】
[0100] 理解されるように、上記の特徴はいずれもその他の特徴とともに用いることができ、本出願がカバーするのは明記された組み合わせだけではない。例えば、本発明のある実施形態は、図3の実施形態に適用し得る。
【0097】
[0101] こうした代替的な用途に照らして、本明細書で「ウェーハ」又は「ダイ」という用語を使用している場合、それぞれ「基板」又は「ターゲット部分」という、より一般的な用語と同義と見なしてよいことが当業者には認識される。本明細書に述べている基板は、露光前又は露光後に、例えばトラック(通常はレジストの層を基板に塗布し、露光したレジストを現像するツール)、メトロロジーツール及び/又はインスペクションツールで処理することができる。適宜、本明細書の開示は、以上及びその他の基板プロセスツールに適用することができる。さらに基板は、例えば多層ICを生成するために、複数回処理することができ、したがって本明細書で使用する基板という用語は、既に複数の処理済み層を含む基板も指すことができる。
【0098】
[0102] 本明細書で使用する「放射」及び「ビーム」という用語は、紫外線(UV)放射(例えば、365nm、248nm、193nm、157nmもしくは126nm、又はこれら辺りの波長を有する)を含むあらゆるタイプの電磁放射を網羅する。「レンズ」という用語は、状況が許せば、屈折及び反射光学コンポーネントを含む様々なタイプの光学コンポーネントのいずれか一つ、又はその組み合わせを指す。
【0099】
[0103] 以上、本発明の特定の実施形態を説明したが、説明とは異なる方法でも本発明を実践できることは理解されよう。上記の説明は例示的であり、限定的ではない。したがって、請求の範囲から逸脱することなく、記載されたような本発明を変更できることが当業者には明白である。


図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14