(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-07
(45)【発行日】2022-02-16
(54)【発明の名称】造形装置および造形方法
(51)【国際特許分類】
B29C 64/245 20170101AFI20220208BHJP
B29C 64/106 20170101ALI20220208BHJP
B29C 64/264 20170101ALI20220208BHJP
B29C 64/255 20170101ALI20220208BHJP
B33Y 30/00 20150101ALI20220208BHJP
B33Y 10/00 20150101ALI20220208BHJP
【FI】
B29C64/245
B29C64/106
B29C64/264
B29C64/255
B33Y30/00
B33Y10/00
(21)【出願番号】P 2018051501
(22)【出願日】2018-03-19
【審査請求日】2021-01-18
(73)【特許権者】
【識別番号】000006747
【氏名又は名称】株式会社リコー
(74)【代理人】
【識別番号】100089118
【氏名又は名称】酒井 宏明
(72)【発明者】
【氏名】長友 雄司
(72)【発明者】
【氏名】斎藤 啓
(72)【発明者】
【氏名】草原 輝樹
【審査官】関口 貴夫
(56)【参考文献】
【文献】国際公開第2017/116990(WO,A1)
【文献】特開2001-353786(JP,A)
【文献】特表2018-500192(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B29C 64/00-64/40
B33Y 10/00、30/00
(57)【特許請求の範囲】
【請求項1】
放射線の照射により硬化する
、粘度8000mPa・sec以下の硬化性樹脂を貯留する容器と、
前記硬化性樹脂に放射線を照射する照射部と、
少なくとも一部を前記硬化性樹脂に浸漬され、前記硬化性樹脂における前記放射線の照射により硬化した硬化層を保持する保持部材と、
を備え、
前記容器の内壁と前記保持部材との水平方向の間隔が、
下記式(1)を満たす、
造形装置。
CL≦0.5((V/0.29d+d
2
)
0.5
-d) 式(1)
(前記式(1)中、CLは、前記間隔を示し、Vは前記容器内の前記硬化性樹脂の容積を示し、dは、前記保持部材の水平方向の長さを示す。)
【請求項2】
前記間隔が、下記式(2)を満たす、
請求項
1に記載の造形装置。
5≦CL≦1.75H-d/2
5≦CL≦0.5((V/0.29d+d
2)
0.5-d) 式(2)
(前記式(2)中、CLは、前記間隔を示し、Vは前記容器内の前記硬化性樹脂の容積を示し、dは、前記保持部材の水平方向の長さを示す。)
【請求項3】
前記間隔が、下記式(3)を満たす、
請求項1
または請求項2に記載の造形装置。
5≦CL≦40 式(3)
(前記式(3)中、CLは、前記間隔を示す。)
【請求項4】
前記間隔が、下記式(4)を満たす、
請求項1~請求項
3の何れか1項に記載の造形装置。
5≦CL≦20 式(4)
(前記式(4)中、CLは、前記間隔を示す。)
【請求項5】
前記硬化性樹脂は、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、エポキシ樹脂、ウレタン樹脂、アルキド樹脂、およびジアリルフタレート樹脂から選ばれる1種以上の熱硬化性樹脂の前駆体と、重合開始剤と、を含む、
請求項1~請求項
4の何れか1項に記載の造形装置。
【請求項6】
前記硬化性樹脂は、ファイバーおよびフィラーの少なくとも一方を含
み、
前記ファイバーは、ガラスファイバー、カーボンファイバー、アラミドファイバー、およびアルミファイバーから選ばれる1種以上である、
請求項1~請求項
5の何れか1項に記載の造形装置。
【請求項7】
放射線の照射により硬化する
、粘度8000mPa・sec以下の硬化性樹脂を貯留する容器と、前記硬化性樹脂に放射線を照射する照射部と、前記硬化性樹脂における前記放射線の照射により硬化した硬化層を保持する保持部材と、を備え、前記容器の内壁と前記保持部材との間隔が所定値以下である、造形装置を用いた造形方法であって、
前記保持部材の少なくとも一部を前記硬化性樹脂に浸漬させる浸漬工程と、
前記硬化性樹脂に放射線を照射する照射工程と、
放射線の照射によって硬化した前記硬化層を保持した前記保持部材を、反鉛直方向に移動させて前記容器の底面から離間させる離間工程と、
を含
み、
前記容器の内壁と前記保持部材との水平方向の間隔が、下記式(1)を満たす、
造形方法。
CL≦0.5((V/0.29d+d
2
)
0.5
-d) 式(1)
(前記式(1)中、CLは、前記間隔を示し、Vは前記容器内の前記硬化性樹脂の容積を示し、dは、前記保持部材の水平方向の長さを示す。)
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、造形装置および造形方法に関する。
【背景技術】
【0002】
金型などを用いずに造形物を作製する装置として、3Dプリンタが普及しつつある。例えば、刺激硬化性の樹脂溶液に造形ステージを浸漬させ、該樹脂溶液に刺激を加えることで硬化層を形成し、更に該造形ステージを引き上げる、といった一連の工程を繰返すことで、硬化層を積層した造形物を造形する技術が知られている。
【0003】
ここで、造形ステージを樹脂溶液から引き上げた直後の状態では、容器内の樹脂溶液に凹みが生じている場合がある。そして、そのまま次の硬化層の造形を行うと、樹脂溶液の凹み部分が次に形成される硬化層の欠損を引き起こし、欠損を有する造形物が作製される場合がある。特許文献1には、1層の硬化層を造形するごとに、板状の水平化手段を用いて樹脂溶液の凹みを均す技術が開示されている。
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、従来では、樹脂溶液の表面を均すための機構を別途設ける必要があった。また、従来では、容器内に、常に多量の樹脂溶液を貯留させておく必要があった。このため、従来では、簡易な構成で欠損の抑制された造形物を得ることは困難であった。
【0005】
本発明は、上記に鑑みてなされたものであって、簡易な構成で欠損の抑制された造形物を得ることの可能な、造形装置および造形方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
上述した課題を解決するために、造形装置は、放射線の照射により硬化する、粘度8000mPa・sec以下の硬化性樹脂を貯留する容器と、前記硬化性樹脂に放射線を照射する照射部と、少なくとも一部を前記硬化性樹脂に浸漬され、前記硬化性樹脂における前記放射線の照射により硬化した硬化層を保持する保持部材と、を備え、前記容器の内壁と前記保持部材との水平方向の間隔が、所定値以下である。
【発明の効果】
【0007】
本発明によれば、簡易な構成で欠損の抑制された造形物を得ることができる。
【図面の簡単な説明】
【0008】
【
図1】
図1は、造形装置の一例を示す模式図である。
【
図4】
図4は、硬化性樹脂の広がり特性の説明図である。
【
図5】
図5は、広がり距離と時間との関係を示す図である。
【
図6】
図6は、高さとL/Hの関係を示す図である。
【
図7】
図7は、硬化性樹脂の粘度とL/Hとの関係を示す図である。
【
図8】
図8は、実験値と近似値を重ね合わせて示した線図である。
【
図9】
図9は、造形ステージ長さと深さとの関係を示す線図である。
【発明を実施するための形態】
【0009】
以下、添付図面を参照しながら、本実施の形態の造形装置および造形方法の実施の形態を詳細に説明する。なお、本明細書において、同じ構成および機能を示す部分には、同じ符号を付与し、詳細な説明を省略する場合がある。
【0010】
図1は、本実施の形態の造形装置10の一例を示す模式図である。
【0011】
造形装置10は、制御部11と、容器12と、造形ステージ16と、支持部材18と、照射部20と、を備える。
【0012】
制御部11は、造形装置10に設けられた装置各部の駆動を制御する。制御部11は、例えば、CPU(Central Processing Unit)あるいは回路などによって構築されている。制御部11は、造形装置10に設けられた各部と電気的に接続されている。
【0013】
容器12は、硬化性樹脂14を貯留する容器である。容器12は、反鉛直方向ZB側が開口し、鉛直方向ZA側に底部12Aが形成されている。本実施の形態では、底部12Aの底面Aの延伸方向は、水平方向Wに一致する。底部12Aの縁部には、反鉛直方向ZB側に向かって突出した側壁部12Bが設けられている。このため、容器12は、底部12Aおよび側壁部12Bによって形成され、容器12の内側に硬化性樹脂14を貯留可能に構成されている。
【0014】
硬化性樹脂14は、放射線Eの照射により硬化する樹脂溶液である。放射線Eは、例えば、電磁波または粒子線である。本実施の形態では、放射線Eは、電磁波または電子線の少なくとも一方である。
【0015】
また、硬化性樹脂14は、粘性を有する。本実施の形態では、粘性を有する、とは、温度25℃の環境における粘度が、200mP・sec以上であることを示す。なお、硬化性樹脂14の粘度の上限は限定されないが、後述するように、8000mP・sec以下が好ましい。
【0016】
硬化性樹脂14は、例えば、熱硬化性樹脂の前駆体と、重合開始剤と、を含む。
【0017】
熱硬化性樹脂は、例えば、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、エポキシ樹脂、ウレタン樹脂、アルキド樹脂及びジアリルフタレート樹脂から選ばれる1種以上である。
【0018】
熱硬化性樹脂の前駆体は、例えば、放射線Eの照射により重合する、前記熱硬化性樹脂の少なくとも1種以上の混合物からなる。なお、熱硬化性樹脂の前駆体は、アクリルや、ビニルモノマを更に含んだものであってもよい。
【0019】
硬化性樹脂14中の熱硬化性樹脂の前駆体の含有量は、限定されない。
【0020】
また、硬化性樹脂14は、更に、ファイバーおよびフィラーの少なくとも一方を含んでいてもよい。ファイバーまたはフィラーを含むことにより、硬化性樹脂14を用いて作製した造形物の、耐熱性や強度を向上させることができる。
【0021】
ファイバーは、例えば、ガラスファイバー、カーボンファイバー、アラミドファイバー、金属ファイバー等である。金属ファイバーにおける金属は、例えば、アルミニウム、マグネシウム等である。
【0022】
フィラーは、例えば、カーボンナノチューブ、セルロースナノファイバー、ガラスビーズ、フラーレン等である。
【0023】
なお、硬化性樹脂14は、これらのファイバーおよびフィラーの少なくとも一方を、1種含んだものであってもよいし、複数種類含んだものであってもよい。
【0024】
ファイバーの形状は限定されない。例えば、ファイバーの繊維径は、1μm~30μmが好ましく、2μ~25μmがより好ましく、4μm~15μmがさらに好ましい。また、ファイバーの繊維長は、50μm以上3000μm以下が好ましく、100μm以上3000μm以下がより好ましく、300μm以上3000μm以下が特に好ましい。
【0025】
ファイバーの繊維径および繊維長は、平均値を表し、硬化物について、走査型電子顕微鏡(Scanning Electron Microscope、SEM)により測定を行い、5箇所の平均を求めて得られる。
【0026】
なお、ファイバーおよびフィラーと熱硬化性樹脂との密着性向上の観点から、収束剤の添加や、ファイバーおよびフィラーの表面処理を行うことが好ましい。
【0027】
ファイバーおよびフィラーの表面処理は、例えば、表面の疎水化処理である。疎水化処理の方法は、限定されない。疎水化処理に用いる疎水化処理剤は、例えば、ヘキサメチルジシラザン(HMDS)、ジメチルジクロロシラン(DMDS)等のシランカップリング剤、ジメチルシリコーンオイル、アミノ変性シリコーンオイル等のシリコーンオイル処理剤などである。これらの中では、シランカップリング剤を用いることが好ましい。
【0028】
硬化性樹脂14におけるファイバーおよびフィラーの含有量は限定されない。例えば、硬化性樹脂14におけるファイバーおよびフィラーの含有量は、合計で、5質量%以上90質量%以下が好ましく、10質量%以上60質量%以下が更に好ましく、20質量%以上60質量%以下が特に好ましい。
【0029】
硬化性樹脂溶液に含まれる重合開始剤は、放射線Eを吸収する重合開始剤である。硬化性樹脂溶液に含まれる硬化性樹脂の前駆体は、重合開始剤が放射線Eを吸収することで重合反応が進行し、硬化する。
【0030】
重合開始剤は、例えば、ラジカル重合開始剤、カチオン重合開始剤、アニオン重合開始剤及び光熱変換剤から選ばれる1種以上である。
【0031】
硬化性樹脂溶液中の重合開始剤の含有量は限定されない。例えば、硬化性樹脂溶液中の重合開始剤の含有量は、0.01質量%~5質量%である。
【0032】
なお、硬化性樹脂溶液は、必要に応じて、他の成分を含んでいてもよい。
【0033】
次に、造形ステージ16について説明する。造形ステージ16は、保持部材の一例である。造形ステージ16は、硬化性樹脂14における放射線Eの照射により硬化した硬化層22を保持する。詳細には、造形ステージ16は、硬化性樹脂14に浸漬された状態で硬化性樹脂14に放射線Eが照射されることにより硬化した硬化層22を保持する(詳細後述)。
【0034】
図2は、造形装置10の上面図の一例である。
図1および
図2に示すように、造形ステージ16は、容器12の反鉛直方向ZB側に配置されている。造形ステージ16は、容器12の開口12Cを介して、容器12内に貯留された硬化性樹脂14に浸漬および硬化性樹脂14から離間可能な位置に配置されている。
【0035】
詳細には、造形ステージ16は、容器12の開口12Cに対向する位置に配置されている。言い換えると、造形ステージ16は、造形ステージ16の鉛直方向ZA側端面と、容器12に貯留された硬化性樹脂14の液面(硬化性樹脂14の反鉛直方向ZB側端面)と、が対向するように配置されている。なお、造形ステージ16は、容器12の開口12Cの中央に対向する位置に配置されていることが好ましい。
【0036】
造形ステージ16の形状は限定されない。造形ステージ16の形状は、少なくとも硬化性樹脂14に対向する側の面が水平方向Wに一致する平面であればよく、その形状は限定されない。例えば、造形ステージ16は、板状の部材である。具体的には、造形ステージ16の形状は、立方体状、直方体状、円柱状、などである。本実施の形態では、造形ステージ16が、直方体である場合を一例として説明する。
【0037】
造形ステージ16の水平方向Wの大きさは、少なくとも、容器12の開口12Cを介して造形ステージ16を鉛直方向ZAと反鉛直方向ZBに往復移動可能な大きさであればよい。このため、造形ステージ16の水平方向Wの大きさは、少なくとも、容器12の開口12Cの面積(水平方向Wの面積)より小さいことが必須である。
【0038】
なお、水平方向Wは、
図2に示す例では、鉛直方向ZAに垂直な2軸方向(第1方向X、第2方向Y)に沿った平面で表される。なお、第1方向Xおよび第2方向Yは、互いに直交し、且つ、鉛直方向ZAに対して直交する方向である。
【0039】
以下、鉛直方向ZAおよび反鉛直方向ZBを総称して説明する場合には、高さ方向Z方向と称して説明する場合がある。
【0040】
図1に戻り説明を続ける。支持部材18は、造形ステージ16を支持する。支持部材18は、例えば、高さ方向Zに長い棒状部材である。支持部材18の鉛直方向ZAの下流側端部には造形ステージ16設けられている。造形ステージ16から造形物を取り外す作業を容易にするため、造形ステージ16は支持部材18から取り外し可能であることが好ましい。支持部材18の鉛直方向ZAの上流側端部は、駆動部を介して制御部11に接続されている。駆動部は、支持部材18を高さ方向Z(鉛直方向ZAおよび反鉛直方向ZB)に往復移動させる。
【0041】
このため、支持部材18によって支持された造形ステージ16は、容器12に貯留された硬化性樹脂14に接する方向(鉛直方向ZA方向)と、硬化性樹脂14から離間する方向(反鉛直方向ZB)と、に往復移動可能に保持されている。
【0042】
照射部20は、硬化性樹脂14に放射線Eを照射する。本実施の形態では、照射部20は、容器12の底部12Aを介して、容器12内に貯留された硬化性樹脂14に放射線Eを照射する。
【0043】
容器12の底部12Aは、放射線Eを透過する材料で構成されている。例えば、容器12の底部12Aを、アクリル樹脂で構成する。照射部20から照射された放射線Eは、容器12の底部12Aを透過して硬化性樹脂14に到る。そして、硬化性樹脂14における、放射線Eの照射された領域が硬化し、硬化層22が造形される。
【0044】
本実施の形態では、照射部20は、造形領域Pに、放射線Eを照射する。造形領域Pは、造形ステージ16の鉛直方向ZA側端面と、容器12の底部12Aの底面Aと、の間の領域である。
【0045】
なお、照射部20は、容器12に収容されている硬化性樹脂14が硬化する放射線Eを、造形領域Pに照射可能な機器であればよい。
【0046】
例えば、硬化性樹脂14が、放射線Eとして、電子線または電磁波により硬化すると仮定する。この場合、照射部20は、例えば、紫外線(UV)、半導体レーザ、高圧水銀ランプや、赤外線レーザ等の光源から放射線Eを照射する照射部20を用いればよい。
【0047】
そして、照射部20は、これらの光源から出射した放射線Eを、必要に応じて、コリメーターレンズ、fθレンズ、ガルバノミラー、ポリゴンミラーなどにより制御し、造形領域Pに照射する。なお、照射部20には、DLP(Digital Light Processing、登録商標)を用いてもよい。
【0048】
照射部20が照射する放射線Eの波長は、硬化性樹脂14が硬化する波長の放射線Eであればよく、限定されない。例えば、硬化性樹脂14が、紫外線、可視光線、赤外線などの電磁波の照射によって硬化する樹脂である場合、照射部20は、365nm~2000nmの電磁波を照射する機器であればよい。
【0049】
照射部20によって硬化性樹脂14が硬化することで、硬化性樹脂14の硬化によって形成された硬化層22が、造形ステージ16によって保持されることとなる。すなわち、造形ステージ16は、造形ステージ16が硬化性樹脂14に浸漬された状態のときに造形領域Pに放射線Eが照射されることで硬化した硬化層22を、保持する。
【0050】
次に、本実施の形態の造形装置10における、造形物の造形方法を説明する。
【0051】
図3は、造形物24の造形方法の一例の説明図である。
【0052】
まず、容器12内に、硬化性樹脂14を供給する(
図3(A)参照)。そして、造形ステージ16を、硬化性樹脂14を貯留した容器12の開口12C上に配置する。
【0053】
そして、硬化性樹脂14を貯留した容器12の底部12Aの底面Aに向かって、造形ステージ16を鉛直方向ZAに下降させる(
図3(B)参照)。制御部11が、支持部材18を鉛直方向ZAへ移動するように駆動部を制御することで、支持部材18によって支持された造形ステージ16が、鉛直方向ZA方向に移動する。この工程により、造形ステージ16の少なくとも一部を硬化性樹脂14に浸漬させる(浸漬工程)。
【0054】
なお、硬化性樹脂14に浸漬させるとは、造形ステージ16を硬化性樹脂14の表面に接触、または、該硬化性樹脂14内に造形ステージ16の少なくとも一部を侵入させることを意味する。硬化性樹脂14内に造形ステージ16が侵入すると、硬化性樹脂14が造形ステージ16の周囲に押し退けられる(
図3(B)参照)。
【0055】
なお、浸漬工程において、制御部11は、造形ステージ16の鉛直方向ZAの下流側端面と、底部12Aの底面Aと、の距離が、造形対象の1層分の硬化層22の厚みと一致する距離となるように、造形ステージ16の高さ方向Zにおける位置を調整する。造形対象の1層分の硬化層22の厚みは、例えば、20μm~100μmである。そして、該距離となったときに、制御部11は、造形ステージ16の鉛直方向ZAへの移動を停止する。
【0056】
次に、照射部20が、硬化性樹脂14における、造形ステージ16の鉛直方向ZA側端面と、容器12の底部12Aの底面Aと、の間の造形領域Pに放射線Eを照射する(照射工程)。このため、硬化性樹脂14における放射線Eによって照射された領域が硬化し、硬化した硬化性樹脂14である硬化層22が、造形ステージ16の鉛直方向ZA下流端面に保持される。
【0057】
次に、
図3(C)に示すように、制御部11は、造形ステージ16を反鉛直方向ZBに移動させる。この処理により、制御部11は、放射線Eの照射によって硬化した硬化層22を保持した造形ステージ16を、容器12の底面Aから離間させる(離間工程)。
【0058】
なお、造形ステージ16を反鉛直方向ZBに引き上げる前の状態では、硬化層22は、造形ステージ16の鉛直方向ZA下流側端面と容器12の底部12Aとの双方に接着した状態となっている。そして、離間工程において、制御部11は、造形ステージ16を反鉛直方向ZBに移動させることで、造形ステージ16によって保持された硬化層22と、容器12の底部12Aと、を引きはがす。このため、硬化層22が容器12の底部12Aに接着することを抑制する観点から、容器12の底部12Aの底面Aは、硬化層22の離間を促進する材料で予めコーティングされていることが好ましい。このような材料には、例えば、シリコーン樹脂を用いればよい。
【0059】
上記浸漬工程、上記照射工程、および上記離間工程を経ることで、造形ステージ16には、1層分の硬化層22が造形される。
【0060】
そして、制御部11は、必要に応じて、容器12内への硬化性樹脂14の補充と、上記浸漬工程、上記照射工程、および上記離間工程(
図3(B)~
図3(C))と、を繰り返すように、支持部材18に接続された駆動部および照射部20を制御する。この繰返しの制御により、造形ステージ16には、硬化層22を複数積層した積層体である造形物24が造形される。
【0061】
なお、複数の硬化層22の厚みは、同じ厚みであってもよいし、少なくとも1層が他の層と異なる厚みであってもよい。この場合、制御部11が、上記浸漬工程において、造形ステージ16の鉛直方向ZA下流側端面と、底部12Aの底面Aと、の距離を調整することで、硬化層22の厚みを調整することができる。
【0062】
ここで、硬化性樹脂14の粘度が高いほど、造形領域Pに硬化性樹脂14が流入しにくくなる。詳細には、
図3(B)および
図3(C)に示すように、前回の硬化層22の造形時に硬化性樹脂14に形成された硬化層22による凹みQが、次回の硬化層22の造形時までに硬化性樹脂14によって充填されない場合がある。すると、硬化性樹脂14の凹みQ部分が、次回形成される硬化層22に欠損を引き起こし、欠損を有する造形物24が作製される場合がある。
【0063】
そこで、本実施の形態の造形装置10では、容器12の内壁Bと、造形ステージ16と、の水平方向Wの間隔を、所定値以下とする。
【0064】
図1および
図2を用いて説明する。容器12の内壁Bとは、容器12の側壁部12Bにおける内側の面を示す。内側の面とは、容器12の内側の面を意味する。また、容器12の内壁Bと造形ステージ16との水平方向Wの間隔CLは、内壁Bと、造形ステージ16と、の対向面間の水平方向Wにおける最短距離を示す。
【0065】
容器12の内壁Bと造形ステージ16との水平方向Wの間隔CLが所定値以下であると、容器12に貯留された硬化性樹脂14の量が少量であっても、造形ステージ16が硬化性樹脂14から離間されたときに、該離間のタイミングから短時間で造形領域Pに硬化性樹脂14が流れ込む。
【0066】
すなわち、容器12の内壁Bと、造形ステージ16と、の水平方向Wが所定値以下であると、造形ステージ16を反鉛直方向ZBに引き上げた際に、重力の作用により、硬化性樹脂14の凹みQに硬化性樹脂14が流れこむ。このため、硬化層22に欠損が生じる事を抑制することができる。
【0067】
詳細には、上述したように、照射部20が放射線Eを照射している間(照射工程)、制御部11は、造形ステージ16の移動を停止する。そして、制御部11は、造形ステージ16の鉛直方向ZA下流側端面と容器12の底面Aとの距離を、造形対象の1層分の硬化層22の厚みと一致する距離とした状態で維持する。
【0068】
このため、浸漬工程において造形ステージ16によって押し出されることで一時的に厚みが不均一となった硬化性樹脂14は、次の照射工程において造形ステージ16の移動が停止することで、造形領域P以外の領域の厚みが均一化される。この状態から、離間工程によって造形ステージ16が反鉛直方向ZBに引き上げられると、造形ステージ16および硬化層22が存在していた造形領域Pに、硬化性樹脂14が流れ込む。
【0069】
硬化性樹脂14が造形領域Pに流れ込む現象は、2つの作用によって引き起こされる。
【0070】
詳細には、上記現象は、造形ステージ16を反鉛直方向ZBに引き上げたときに、容器12と造形ステージ16との間の造形領域Pが低圧となることで、周囲の硬化性樹脂14が該造形領域Pに引き込まれる作用によって引き起こされる。
【0071】
また、上述したように、硬化性樹脂14は、粘性を有する。硬化性樹脂14の粘性は、硬化性樹脂14を構成する材料の種類や混合比などによって調整される。特に、硬化性樹脂14がガラスフィラーを含む場合には、硬化性樹脂14の粘度が高くなる。
【0072】
そして、硬化性樹脂14の粘度が高いほど、造形ステージ16を反鉛直方向ZBに上昇させることで周囲の硬化性樹脂14が造形領域Pに引き込まれる際に、硬化性樹脂14が追従せずに空気が入り込む現象が発生する。この場合、造形ステージ16が反鉛直方向ZBに上昇することにより生じる造形領域Pの低圧化による引込作用が、生じにくくなる。このため、この場合、重力による硬化性樹脂14への作用によって、硬化性樹脂14が造形領域Pへ流れ込むと考えられる。
【0073】
ここで、本発明者らは、重力の作用のみで、造形対象の硬化層22を作製するために十分な量の硬化性樹脂14が造形領域Pへ流れ込むのであれば、硬化性樹脂14の粘度に拘らず、硬化層22への欠損の発生が抑制されると考えた。すなわち、硬化性樹脂14に空気が入り込んだ場合であっても、重力の作用によって硬化性樹脂14が造形領域Pに十分に流れ込めば、硬化層22の欠損の発生が抑制されると考えた。
【0074】
そこで、本発明者らは、鋭意研究した結果、間隔CLが、下記式(1)を満たすことが好ましい事を見出した。
【0075】
CL≦0.5((V/0.29d+d2)0.5-d) 式(1)
【0076】
式(1)中、CLは、容器12の内壁Bと、造形ステージ16と、の水平方向Wの間隔CLを示す。また、式(1)中、Vは、容器12内の硬化性樹脂14の容積を示す。式(1)中、dは、造形ステージ16の水平方向Wの長さを示す。
【0077】
容器12内における硬化性樹脂14の深さHとは、造形ステージ16の鉛直方向ZAの端面が容器12の底部12A(の底面A)に接触した状態であるときの、容器12内における硬化性樹脂14の深さHを示す。このとき、造形ステージ16を保持する支持部材18は、硬化性樹脂14内に浸かっていない状態であるとする。このため、硬化性樹脂14の深さHは、詳細には、後述する
図10に示す状態における、硬化性樹脂14の深さHを示す。
【0078】
造形ステージ16の水平方向Wの長さdとは、造形ステージ16の鉛直方向ZA下流側端面における、水平方向Wの長さdを示す。なお、造形ステージ16の水平方向Wの断面形状および大きさが、造形ステージ16の高さ方向Zに一定である場合には、長さdは、造形ステージ16の水平方向Wの断面の長さであればよい。
【0079】
なお、式(1)における、容器12の内壁Bと造形ステージ16との水平方向Wの間隔CLと、造形ステージ16の水平方向Wの長さdは、水平方向Wにおける同じ方向(例えば、第1方向X)における長さを意味する。このため、式(1)に、第1方向Xにおける造形ステージ16の長さを当てはめる場合には、該式(1)によって算出される間隔CLは、容器12と造形ステージ16との該第1方向Xにおける間隔CLを意味する。同様に、式(1)に、第2方向Yにおける造形ステージ16の長さを当てはめる場合には、該式(1)によって算出される間隔CLは、容器12と造形ステージ16との該第2方向Yにおける間隔CLを意味する。
【0080】
なお、
図2には、造形ステージ16が、容器12の開口12Cの中心に配置された形態を示した。しかし、造形ステージ16が、容器12の開口12Cの中心からずれた位置に配置される場合がある。この場合、式(1)における、容器12の内壁Bと造形ステージ16との水平方向Wの間隔CLと、造形ステージ16の水平方向Wの長さdは、所定方向(例えば、第1方向X)における、該所定方向の一端側の間隔CLと他端側の間隔CLの双方が、各々、式(1)を満たすことが好ましい。
【0081】
なお、間隔CLは、更に、下記式(2)を満たすことが好ましい。
【0082】
5≦CL≦0.5((V/0.29d+d2)0.5-d) 式(2)
【0083】
式(2)中、CLは、間隔CLを示し、Vは容器12内の硬化性樹脂14の容積を示し、dは、造形ステージ16の水平方向の長さを示す。
【0084】
また、間隔CLは、更に、下記式(3)を満たすことが好ましい。
【0085】
5≦CL≦40 式(3)
【0086】
また、間隔CLは、更に、下記式(4)を満たすことが好ましい。
【0087】
5≦CL≦20 式(4)
【0088】
式(2)~式(4)中、CL、V、およびdは、上記式(1)と同様である。
【0089】
次に、上記(1)の導出の過程を説明する。
【0090】
まず、硬化性樹脂14が重力の作用により広がる特性を調べた。
図4は、硬化性樹脂14の重力の作用による広がり特性の計測の説明図である。
【0091】
まず、容器12として、DWS(DigitalWax)社製の光造形装置(DigitalWax 028J)用のトレイRT800を用意した。そして、硬化性樹脂14として、DWS社の材料AB001に、日東紡績製ガラスファイバー SS 05C-404を混合し、混合比を調整することで、粘度η[mP・sec]が800、1500、3100、6500の4種類の硬化性樹脂14を得た。
【0092】
次に、可動板30を用いて、容器12内の25mm幅の領域に、硬化性樹脂14を充填した。充填したときの硬化性樹脂14の深さHを測定した(
図4(A)参照)。そして、可動板30を取り除いてからt秒後における、硬化性樹脂14の広がり距離Lを計測した(
図4(B)参照)。
【0093】
なお、硬化性樹脂14の深さHを5mm、10mm、15mm、25mmの4条件とし、各条件において、5秒、10秒、15秒、20秒、30秒、60秒の各々の後の距離Lを計測した。
【0094】
図5に、800、1500、3100、6500の各々の粘度の硬化性樹脂14を用いた場合の、上記深さHの条件を上記4種類の条件の各々とした場合の、広がり距離Lと時間tとの関係を示した(
図5(A)~
図5(D)参照)。
【0095】
図5に示すように、硬化性樹脂14の深さHが深いほど、硬化性樹脂14の広がり距離Lは長くなった。
【0096】
ここで、上記離間工程において造形ステージ16を反鉛直方向ZBに上昇させると、造形ステージ16と容器12の底部12Aとの間の造形領域Pに、硬化性樹脂14の存在しない凹みQが生じる。この造形領域P(凹みQ)に周囲の硬化性樹脂14が広がって流れ込むことで、該造形領域Pが硬化性樹脂14によって再充填される。
【0097】
なお、造形ステージ16を反鉛直方向ZBに上昇させた状態を維持する時間が長くなるほど、硬化性樹脂14が広がって造形領域Pが硬化性樹脂14によって再充填されやすくなるが、造形時間の増大を招く。
【0098】
このため、造形ステージ16を反鉛直方向ZBに上昇させた状態を維持する時間、すなわち、上記可動板30を取り除いてからt秒後に相当する時間を、5秒と仮定する。そして、硬化性樹脂14の深さHに対する広がり距離L、すなわち、L/Hを算出すると、
図6に示す結果が得られた。
【0099】
図6に示すように、硬化性樹脂14の深さHが15mm以上となると、L/Hの値が略一定となった。
【0100】
このため、硬化性樹脂14の深さHとして、15mm以上の深さを想定し(H≧15mm)し、硬化性樹脂14の粘度とL/Hの値との関係を導出した。導出結果を
図7に示した。
【0101】
図7に示す導出結果から、L/Hは、下記式(A)で近似できる。
【0102】
L/H=4000/(η+900)+1.3 ・・・(A)
【0103】
なお、式(A)中、ηは、硬化性樹脂14の粘度を示す。
【0104】
図8は、
図7に示す実験値に、上記式(A)から算出したL/Hの近似値を重ね合わせて示した線図である。
図8に示すように、上記式(A)によって表されるL/Hの近似値は、実際の実験結果と略一致しているといえる。
【0105】
次に、本実施の形態の造形装置10にあてはめて考察した。例えば、
図2に示すように、容器12および造形ステージ16の水平方向Wの断面形状が正方形であると仮定する。また、造形ステージ16は、容器12の水平方向Wの中央に配置されていると仮定する。
【0106】
すると、造形ステージ16を反鉛直方向ZBに引き上げたときに、造形ステージ16と容器12の底部12Aとの間の造形領域P(
図3(C)も参照)に硬化性樹脂14が流れ込む条件は、下記式(B)に示される関係となる。
【0107】
L≧d/2 ・・・式(B)
【0108】
式(B)中、dは、上記式(1)と同様である。すなわち、式(B)中、dは、造形ステージ16の水平方向Wの一辺の長さd[mm]を示す。Lは、上記式(A)と同様であり、可動板30を取り除いてから5秒後の硬化性樹脂14の広がり距離Lを示す。
【0109】
ここで、境界条件に着目すると、下記式(C)が得られる。式(C)中、L、CL、およびdは、式(B)と同様である。
【0110】
L=d/2 ・・・式(C)
【0111】
そして、式(C)を式(A)に代入すると、下記式(D)が得られる。
【0112】
d/2H=4000/(η+900)+1.3 ・・・式(D)
【0113】
(D)中、dは、上記式(B)と同様である。式(D)中、H、ηは、上記式(A)と同様である。
【0114】
上記式(D)より、dとHの関係は
図9のようになる。
図9は、造形ステージ長さと深さとの関係を示す線図である。
図10に示すように、容器12の底面に、長さGの造形ステージ16を接触させた状態の深さHを想定する。
【0115】
つまり、dを固定して考えると、粘度が高いほど必要な硬化性樹脂14の深さHが深くなる。ここで、硬化性樹脂14の粘度について考察した。上述した造形装置10では、流動性を有する硬化性樹脂14を用いる必要がある。流動性を有するためには、実質的に8000mPa・sec以下であればよい。つまり8000mPa・secの粘度の硬化性樹脂14が適用できれば、実質的にどのような粘度の硬化性樹脂14であっても適用可能と言える。
【0116】
図7に示すように粘度が高いほど広がり難くなる。このため、粘度が高いほど欠損が生じやすくなる。そのため、8000mPa・secの粘度で欠損しない条件であれば、実質的にどのような硬化性樹脂14でも欠損が生じなくなる。そこで以下は粘度8000mPa・secの硬化性樹脂について考える。
【0117】
式(D)にη=8000を代入すると、下記式(E)が得られる。
【0118】
H=0.29d ・・・(E)
【0119】
ここで、必要な硬化性樹脂14の容積V [cc]を求める。造形ステージ16の高さが硬化性樹脂14の深さHよりも充分に高いと仮定すると、Vは下記式(F)で求められる。
【0120】
V=H((2CL+d)2-d2) (F)
【0121】
式(F)に式(E)を代入すると、下記式(G)が得られる。
【0122】
V=0.29d((2CL+d)2-d2) (G)
【0123】
式(G)から、CLとVの関係を図示すると、
図11のようになる。
【0124】
例えばd=75の場合を考えると、CL=20のときV=163、CL=40のときV=394、CL=100のときV=1500となり、CLが大きいほど必要な硬化性樹脂14の容積が増えることがわかる。
【0125】
従来の構成の造形装置(例えば、DWS社のDigitalWax028J)は、d=75、CLが100mm程度である。このため粘度8000mP・secの硬化性樹脂14を用いる場合、欠損のない造形物を得るためには1500[cc]もの多量の硬化性樹脂14を容器12内に貯蔵する必要がある。
【0126】
なお、容器12および造形ステージ16の水平方向Wの断面形状が正方形であると仮定して、上記式(H)を算出した。
【0127】
容器12および造形ステージ16の少なくとも一方の水平方向Wの断面形状が長方形の場合には、長軸方向および短軸方向の少なくとも一方が、式(1)を満たせばよい。
【0128】
また、造形ステージ16は、容器12の水平方向Wの中央からずれた位置に配置されていてもよい。この場合も、上記式(1)を満たすことで、欠損の抑制された造形物24が得られる。
【0129】
なお、間隔CLが小さいほど、造形ステージ16の上下駆動の際に、造形ステージ16を支持する支持部材18に接続された駆動部に対する負荷が大きくなる。このため、間隔CLは、5mm以上であることが好ましい。この観点から、間隔CLは、上記式(2)(5≦CL≦0.5((V/0.29d+d2)0.5-d)を満たすことが好ましい。
【0130】
以上説明したように、本実施の形態の造形装置10は、容器12と、照射部20と、造形ステージ16(保持部材)と、を備える。容器12は、放射線Eの照射により硬化する硬化性樹脂14を貯留する。照射部20は、硬化性樹脂14に放射線Eを照射する。造形ステージ16は、少なくとも一部を硬化性樹脂14に浸漬され、硬化性樹脂14における放射線Eの照射により硬化した硬化層22を保持する。容器12の内壁Bと造形ステージ16との水平方向Wの間隔CLが、所定値以下である。
【0131】
従って、本実施の形態の造形装置10は、簡易な構成で欠損の抑制された造形物24を得ることができる。
【0132】
また、本実施の形態の造形装置10は、上記効果に加えて、多量の硬化性樹脂14を容器12内に貯留させることなく、簡易な構成で欠損の抑制された造形物24を得ることができる。
【0133】
上記間隔CLは、上記式(1)~式(4)の少なくとも1つを満たす。
【0134】
硬化性樹脂14は、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、エポキシ樹脂、ウレタン樹脂、アルキド樹脂、およびジアリルフタレート樹脂から選ばれる1種以上の熱硬化性樹脂の前駆体と、重合開始剤と、を含む。
【0135】
硬化性樹脂14は、ファイバーおよびフィラーの少なくとも一方を含む。
【0136】
ファイバーは、ガラスファイバー、カーボンファイバー、アラミドファイバー、およびアルミファイバーから選ばれる1種以上である。
【0137】
本実施の形態の造形方法は、放射線Eの照射により硬化する硬化性樹脂14を貯留する容器12と、硬化性樹脂14に放射線Eを照射する照射部20と、硬化性樹脂14における放射線Eの照射により硬化した硬化層22を保持する造形ステージ16と、を備え、容器12の内壁Bと造形ステージ16との間隔CLが所定値以下である、造形装置10を用いた造形方法である。造形方法は、造形ステージ16の少なくとも一部を硬化性樹脂14に浸漬させる浸漬工程と、硬化性樹脂14に放射線Eを照射する照射工程と、放射線Eの照射によって硬化した硬化層22を保持した造形ステージ16を、反鉛直方向ZAに移動させて容器12の底面から離間させる離間工程と、を含む。
【実施例】
【0138】
以下の実施例および比較例において、造形装置10および比較造形装置を用いて、造形物を作製した。
【0139】
造形装置10には、
図1に示す造形装置10を用いた。
【0140】
比較造形装置には、DWS社製 DigitalWax028Jを用いた。
【0141】
また、造形対象の1層分の硬化層22の厚みは、50μmとした。
【0142】
硬化性樹脂14として、以下の硬化性樹脂1~硬化性樹脂3を用意した。なお、これらの硬化性樹脂14(硬化性樹脂1~硬化性樹脂3)の粘度は、東機産業製 TVE-22形粘度計を用い、回転数を調整して25℃の条件で測定した。
【0143】
・硬化性樹脂1:DWS社製のアクリル樹脂を含有するAB001に、日東紡績製ガラスファイバーSS 05C-404を10質量%添加することで作製した。硬化性樹脂1の粘度は、1000mP・secであった。
・硬化性樹脂2:DWS社製のアクリル樹脂を含有するAB001に、日東紡績製ガラスファイバーSS 05C-404を40質量%添加することで作製した。硬化性樹脂2の粘度は、3000mP・secであった。
・硬化性樹脂3:DWS社製のアクリル樹脂を含有するAB001に、日東紡績製ガラスファイバーSS 05C-404を60質量%添加することで作製した。この硬化性樹脂3の粘度は、8000mP・secであった。
【0144】
なお、日東紡績製ガラスファイバーSS 05C-404は、直径10μm、平均繊維長100μmであった。
【0145】
上記硬化性樹脂1~硬化性樹脂3を用いて、硬化性樹脂14の深さHおよび間隔CLを調整し、第1方向X(幅方向)の長さ50mm、第2方向Y(奥行方向)の長さ50mm、高さ方向Z方向(高さ方向)の長さ10mm、の直方体形状の造形物24を作製した。
【0146】
なお、容器12には、DWS社製RT800を用いた。そして、容器12の内側にガラス板を用いることで、硬化性樹脂14(硬化性樹脂1~硬化性樹脂3)を貯留する領域を調整し、間隔CLおよび容器12内の硬化性樹脂14(硬化性樹脂1~硬化性樹脂3)の深さHを調整した。
【0147】
そして、作製した造形物24および比較造形物について、欠損の有無と、その他の異常を評価した。評価条件および評価結果を、
図12に示した。
【0148】
なお、
図12中、幅方向は、第1方向Xを示す(
図2参照)。また、
図12中、奥行き方向は、第2方向Yを示す(
図2参照)。
【0149】
図12に示すように、容器12の内壁Bと造形ステージ16との水平方向Wの間隔CLが、所定値以下の関係を満たす(すなわち、式(1)に示す関係を満たす)実施例1~実施例5は、欠損の無い造形物24が得られた。また、実施例1~実施例4については、その他の異常も見られなかった。その他の異常とは、造形中の異音の発生などである。
【0150】
一方、容器12の内壁Bと造形ステージ16との水平方向Wの間隔CLが、所定値以下の関係を満たさない(すなわち、式(1)に示す関係を満たさない)比較例1~比較例3では、欠損を含む比較造形物が得られた。
【0151】
このため、本実施例1~実施例5では、簡易な構成で、欠損の抑制された造形物24を得ることができることが、確認できた。
【0152】
なお、上記には、実施の形態および変形例を説明したが、上記実施の形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。上記新規な実施の形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。上記実施の形態および変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0153】
10 造形装置
12 容器
14 硬化性樹脂
16 造形ステージ
20 照射部
【先行技術文献】
【特許文献】
【0154】