IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アプライド マテリアルズ インコーポレイテッドの特許一覧

特許7022110多層吸収体を有する極紫外線マスクブランク、及びその製造方法
<>
  • 特許-多層吸収体を有する極紫外線マスクブランク、及びその製造方法 図1
  • 特許-多層吸収体を有する極紫外線マスクブランク、及びその製造方法 図2
  • 特許-多層吸収体を有する極紫外線マスクブランク、及びその製造方法 図3
  • 特許-多層吸収体を有する極紫外線マスクブランク、及びその製造方法 図4
  • 特許-多層吸収体を有する極紫外線マスクブランク、及びその製造方法 図5
  • 特許-多層吸収体を有する極紫外線マスクブランク、及びその製造方法 図6
  • 特許-多層吸収体を有する極紫外線マスクブランク、及びその製造方法 図7
  • 特許-多層吸収体を有する極紫外線マスクブランク、及びその製造方法 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-08
(45)【発行日】2022-02-17
(54)【発明の名称】多層吸収体を有する極紫外線マスクブランク、及びその製造方法
(51)【国際特許分類】
   G03F 1/24 20120101AFI20220209BHJP
   G03F 1/52 20120101ALI20220209BHJP
   G03F 1/54 20120101ALI20220209BHJP
   G03F 7/20 20060101ALI20220209BHJP
   C23C 14/06 20060101ALI20220209BHJP
   C23C 16/42 20060101ALI20220209BHJP
   C23C 16/24 20060101ALI20220209BHJP
   B32B 7/023 20190101ALI20220209BHJP
【FI】
G03F1/24
G03F1/52
G03F1/54
G03F7/20 503
G03F7/20 521
C23C14/06 M
C23C16/42
C23C16/24
B32B7/023
【請求項の数】 13
(21)【出願番号】P 2019503657
(86)(22)【出願日】2017-07-19
(65)【公表番号】
(43)【公表日】2019-09-05
(86)【国際出願番号】 US2017042747
(87)【国際公開番号】W WO2018022371
(87)【国際公開日】2018-02-01
【審査請求日】2020-07-13
(31)【優先権主張番号】62/367,388
(32)【優先日】2016-07-27
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】15/652,499
(32)【優先日】2017-07-18
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】390040660
【氏名又は名称】アプライド マテリアルズ インコーポレイテッド
【氏名又は名称原語表記】APPLIED MATERIALS,INCORPORATED
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林特許業務法人
(72)【発明者】
【氏名】ジンダル, ビブー
【審査官】植木 隆和
(56)【参考文献】
【文献】特開2003-315977(JP,A)
【文献】特開2015-008283(JP,A)
【文献】米国特許出願公開第2015/0212402(US,A1)
【文献】米国特許出願公開第2016/0011500(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/027
G03F 7/20
G03F 1/00~1/86
(57)【特許請求の範囲】
【請求項1】
極紫外線(EUV)マスクブランクを製造する方法であって、
基板を設けることと、
前記基板上に、複数の反射層のペアを含む複数の反射層の積層体を形成することと
前記複数の反射層の積層体上にキャッピング層を形成することと、
前記キャッピング層上に複数の吸収層の積層体を形成することであって、前記複数の吸収層の積層体が、複数の吸収層のペアを含み、各ペアが、異なる吸光係数(k)値、及び異なる屈折率値(n)を有する2つの異なる吸収材料を含前記吸収層のペアが、タンタル(Ta)、窒化タンタル(TaN)、酸窒化タンタル(TaNO)、及びタンタルホウ素酸化物(TaBO)からなる群から選択された吸収材料を含む第1の層と、金(Au)、ニッケル(Ni)、酸化ニッケル(NiO)、酸化銀(Ag2O)、イリジウム(Ir)、鉄(Fe)、二酸化スズ(SnO2)、コバルト(Co)、クロムニッケル合金、Ni8Cr2、酸化スズ(SnO)、アクチニウム(Ac)、ヨウ化セシウム(CsI)、テルル化亜鉛(ZnTe)、クロム(Cr)、窒化クロム(CrN)、及びアンチモン(Sb)からなる群から選択された吸収材料を含む第2の層とを含む、複数の吸収層の積層体を形成することと
含む方法。
【請求項2】
前記複数の反射層のペアが、モリブデン(Mo)含有材料及びケイ素(Si)含有材料から選択された材料から作られる、請求項1に記載の方法。
【請求項3】
前記吸収層のペアが、窒化タンタル(TaN)から選択された吸収材料を含む第1の層、及びニッケル(Ni)から選択された吸収材料を含む第2の層を含む、請求項1に記載の方法。
【請求項4】
前記第1の層及び前記第2の層が、それぞれ、1nmから5nmの範囲内の厚さを有する、請求項に記載の方法。
【請求項5】
極紫外線が、吸収度に起因して、且つ前記複数の反射層の積層体からの光との破壊的干渉で引き起こされた相変化に起因して吸収されるよう、前記吸収層の前記異なる吸収材料及び厚さが選択される、請求項1に記載の方法。
【請求項6】
前記複数の吸収層のペアが、第1の吸収材料を含む第1のカソード、及び第2の吸収材料を含む第2のカソードを有する物理的気相堆積チャンバ内で形成される、請求項1に記載の方法。
【請求項7】
基板、
前記基板上の複数の反射層の積層体であって、反射層のペアを含む複数の反射層を含む、複数の反射層の積層体、
前記複数の反射層の積層体上のキャッピング層、並びに
前記キャッピング層上の複数の吸収層の積層体であって、前記複数の吸収層の積層体が、複数の吸収層のペアを含み、各ペアが、異なる吸光係数(k)値、及び異なる屈折率値(n)を有する2つの異なる吸収材料を含前記吸収層のペアが、タンタル(Ta)、窒化タンタル(TaN)、酸窒化タンタル(TaNO)、及びタンタルホウ素酸化物(TaBO)からなる群から選択された吸収材料を含む第1の層と、金(Au)、ニッケル(Ni)、酸化ニッケル(NiO)、酸化銀(Ag2O)、イリジウム(Ir)、鉄(Fe)、二酸化スズ(SnO2)、コバルト(Co)、クロムニッケル合金、Ni8Cr2、酸化スズ(SnO)、アクチニウム(Ac)、ヨウ化セシウム(CsI)、テルル化亜鉛(ZnTe)、クロム(Cr)、窒化クロム(CrN)、及びアンチモン(Sb)からなる群から選択された吸収材料を含む第2の層とを含む、複数の吸収層の積層体
含む、極紫外線(EUV)マスクブランク。
【請求項8】
前記複数の反射層が、モリブデン(Mo)含有材料及びケイ素(Si)含有材料から選択される、請求項に記載の極紫外線(EUV)マスクブランク。
【請求項9】
前記吸収層のペアは、窒化タンタル(TaN)から選択された吸収材料を含む第1の層、及びニッケル(Ni)から選択された吸収材料を含む第2の層を含む、請求項に記載の極紫外線(EUV)マスクブランク。
【請求項10】
前記第1の層及び前記第2の層が、それぞれ、1nmから5nmの範囲内の厚さを有する、請求項に記載の極紫外線(EUV)マスクブランク。
【請求項11】
前記第1の層及び前記第2の層が、それぞれ、1nmから3nmの範囲内の厚さを有する、請求項に記載の極紫外線(EUV)マスクブランク。
【請求項12】
極紫外線が、吸収度に起因して、且つ前記複数の反射層の積層体からの光との破壊的干渉で引き起こされた相変化に起因して吸収されるよう、前記吸収層の前記異なる吸収材料及び厚さが選択される、請求項に記載の極紫外線(EUV)マスクブランク。
【請求項13】
極紫外線(EUV)マスクブランク作製システムであって、
真空を生成するための基板ハンドリング真空チャンバ、
前記基板ハンドリング真空チャンバ内に搬入された基板を搬送するための、前記真空内の基板ハンドリングプラットフォーム、及び
EUVマスクブランクを形成するために、前記基板ハンドリングプラットフォームによってアクセスされる複数のサブチャンバ
備え、前記EUVマスクブランクが、
前記基板上の、複数の反射層のペアを含む複数の反射層の積層体、
前記複数の反射層の積層体上のキャッピング層、並びに
前記キャッピング層上の複数の吸収層の積層体であって、前記複数の吸収層の積層体が、複数の吸収層のペアを含み、各ペアが、異なる吸光係数(k)値、及び異なる屈折率値(n)を有する2つの異なる吸収材料を含前記吸収層のペアが、タンタル(Ta)、窒化タンタル(TaN)、酸窒化タンタル(TaNO)、及びタンタルホウ素酸化物(TaBO)からなる群から選択された吸収材料を含む第1の層と、金(Au)、ニッケル(Ni)、酸化ニッケル(NiO)、酸化銀(Ag2O)、イリジウム(Ir)、鉄(Fe)、二酸化スズ(SnO2)、コバルト(Co)、クロムニッケル合金、Ni8Cr2、酸化スズ(SnO)、アクチニウム(Ac)、ヨウ化セシウム(CsI)、テルル化亜鉛(ZnTe)、クロム(Cr)、窒化クロム(CrN)、及びアンチモン(Sb)からなる群から選択された吸収材料を含む第2の層とを含む、複数の吸収層の積層体
含む、極紫外線(EUV)マスクブランク作製システム。
【発明の詳細な説明】
【技術分野】
【0001】
[0001]本開示は、概して、極紫外線リソグラフィーに関し、より具体的には、多層吸収体を有する極紫外線マスクブランク、及びその製造の方法に関する。
【背景技術】
【0002】
[0002]軟X線投影リソグラフィーとしても知られる極紫外線(EUV)リソグラフィーは、0.0135ミクロンの、及びこれより小さい最小フィーチャーサイズの半導体デバイスを製造するために使用され得る。しかしながら、概して、5から100ナノメートルの波長範囲の極紫外線は、ほとんどすべての物質によって強力に吸収される。この理由により、極紫外線システムは、光の透過よりも反射によって機能する。非反射吸収マスクパターンでコーティングされた一連のミラー、又はレンズ素子、及び反射素子、又はマスクブランクの使用により、パターン化された活性光が、レジストでコーティングされた半導体基板上で反射する。
【0003】
[0003]極紫外線リソグラフィシステムのレンズ素子及びマスクブランクは、モリブデン及びケイ素などの材料の反射多層コーティングでコーティングされる。13.5ナノメートルの紫外線に対して、例えば、12.5から14.5ナノメートルの極めて狭い紫外線帯域通過範囲内で光を強力に反射する多層コーティングでコーティングされた基板を使用することにより、レンズ素子又はマスクブランク当たり約65%の反射率値が得られている。
【0004】
[0004]図1は、EUVマスクブランクから形成された従来のEUV反射マスク10を示す。EUV反射マスク10は、基板14上に反射多層スタック12を含み、これは、ブラッグ干渉(Bragg interference)によりマスキングされていない部分でEUV放射線を反射する。EUV反射マスク10のマスキングされていない(非反射)領域16は、エッチングバッファ層18及び吸収層20によって形成される。吸収層は、通常、51nmから77nmの範囲内の厚さを有する。キャッピング層22が、反射多層スタック12の上に形成されて、エッチング処理中に多層スタック12を保護する。以下でさら説明されるように、EUVマスクブランクは、多層、キャッピング層、及び吸収層でコーティングされた低熱膨張性材料の基板上で作られており、その後、エッチングされて、マスキングされた(非反射)領域16及び反射領域24が設けられる。
【0005】
[0005]国際半導体技術ロードマップ(ITRS)は、ノードのオーバーレイ要件を、技術の最小ハーフピッチフィーチャサイズの幾らかの割合であると特定する。すべての反射リソグラフィシステムに付いて回る画像配置への影響及びオーバレイエラーにより、EUV反射マスクの将来的な生産においては、より精密な平坦度仕様に固執する必要がある。さらに、三次元(3D)マスク効果の減少は、多層リフレクタ及び吸収層を有するEUV反射マスクを使用するEUVリソグラフィーでは極めて困難である。オーバレイエラー及び3Dマスク効果の減少を可能にするEUV反射マスク及びミラーの製作に使用される、EUVマスクブランク、及びEUVマスクブランクを製作する方法を提供する必要がある。
【発明の概要】
【0006】
[0006]本開示の1つ又は複数の実施形態は、極紫外線(EUV)マスクブランクを製造する方法を対象としており、当該方法は、基板を設けることと、基板上に複数の反射層の積層体を形成することであって、積層体が、複数の反射層のペアを含む、複数の反射層の積層体を形成することと、積層体上にキャッピング層を形成することと、キャッピング層上に複数の吸収層の積層体を形成することであって、複数の吸収層の積層体が、複数の吸収層のペアを含み、各ペアが、異なる吸光係数(k)値(extinction coefficient (k) values)、及び異なる屈折率値(n)(index of refraction values (n))を有する2つの異なる吸収材料を含む、複数の吸収層の積層体を形成することとを含む。
【0007】
[0007]本開示のさらなる実施形態は、極紫外線(EUV)マスクブランクを対象としており、EUVマスクブランクは、基板、基板上の複数の反射層の積層体であって、積層体が、複数の反射層のペアを含む、複数の反射層の積層体、積層体上のキャッピング層、並びにキャッピング層上の複数の吸収層の積層体であって、複数の吸収層の積層体が、複数の吸収層のペアを含み、各ペアが、異なる吸光係数(k)値、及び異なる屈折率値(n)を有する2つの異なる吸収材料を含む、複数の吸収層の積層体を含む。
【0008】
[0008]本開示のさらなる実施形態は、極紫外線(EUV)マスクブランク生産システムを対象としており、極紫外線(EUV)マスクブランク生産システムは、真空を生成するための基板ハンドリング真空チャンバ、基板ハンドリング真空チャンバ内にロードされた超低膨張基板を搬送するための、真空内の基板ハンドリングプラットフォーム、及びEUVマスクブランクを形成するために、基板ハンドリングプラットフォームによってアクセスされる複数のサブチャンバを備えており、EUVマスクブランクは、基板上の複数の反射層の積層体があって、積層体が、複数の反射層のペアを含む、複数の反射層の積層体、積層体上のキャッピング層、並びにキャッピング層上の複数の吸収層の積層体であって、複数の吸収層の積層体が、複数の吸収層のペアを含み、各ペアが、異なる吸光係数(k)値、及び異なる屈折率値(n)を有する2つの異なる吸収材料を含む、複数の吸収層の積層体を含む。
【図面の簡単な説明】
【0009】
[0009]本開示の上述の特徴を詳細に理解することができるように、上記で簡単に要約された本開示のより具体的な説明は、実施形態を参照することによって、得ることができる。そのうちの幾つかの実施形態は添付の図面で例示されている。しかし、本開示は他の等しく有効な実施形態も許容し得ることから、添付の図面はこの開示の典型的な実施形態のみを例示しており、したがって、本開示の範囲を限定すると見なすべきではないことに留意されたい。
【0010】
図1】従来の吸収体を利用する背景技術のEUV反射マスクを概略的に示す。
図2】極紫外線リソグラフィシステムの実施形態を概略的に示す。
図3】極紫外線反射素子作製システムの実施形態を示す。
図4】EUVマスクブランクなどの極紫外線反射素子の実施形態を示す。
図5】EUVマスクブランクなどの極紫外線反射素子の実施形態を示す。
図6】マスクブランクの反射率曲線である。
図7】マスクブランクの反射率曲線である。
図8】物理的堆積チャンバの実施形態を示す。
【発明を実施するための形態】
【0011】
[0018]本開示の幾つかの例示的な実施形態を説明する前に、本開示は、以下の説明で提示される構成又はプロセスステップの詳細に限定されないことを理解されたい。本開示は、他の実施形態も可能であり、様々な方法で実施又は実行することができる。
【0012】
[0019]本明細書で使用する「水平(horizontal)」という用語は、配向性と関係なく、マスクブランクの面又は表面に対して平行な面であると定義される。「垂直」という用語は、以上で定義されたように、水平に対して直角をなす方向のことを指す。例えば、「上方(above)」、「下方(below)」、「底部(bottom)」、「上部(top)」、(「側壁」等における)「側方(side)」、「高い(higher)」、「低い(lower)」、「上方(upper)」、「上側(over)」、及び「下側(under)」などの用語は、図に示すように、水平面に対して定義される。
【0013】
[0020]「の上(on)」という語は、要素間で直接の接触があることを示す。「すぐ上、真上(directly on)」という語は、介在する要素がない状態での要素間の直接接触を示す。
【0014】
[0021]本明細書及び添付の特許請求の範囲で使用する「前駆体」、「反応物質」、「反応性ガス」などの用語は、基板表面と反応することができる任意のガス種を示すように交換可能に使用される。
【0015】
[0022]当業者であれば、処理領域について説明するために「第1(first)」や「第2(second)」などの序数を使用しても、処理チャンバ内の具体的な位置、又は、処理チャンバ内での曝露の順序を示唆するわけではないことを理解するだろう。
【0016】
[0023]図2を参照すると、極紫外線リソグラフィシステム100の例示的な実施形態が示される。極紫外線リソグラフィシステム100は、極紫外線112を発生させるための極紫外線源102、一組の反射素子、及びターゲットウエハ110を含む。反射素子は、コンデンサ(集光器)104、EUV反射マスク106、光学縮小アセンブリ108、マスクブランク、ミラー、又はこれらの組み合わせを含む。
【0017】
[0024]極紫外線源102は、極紫外線112を生成する。極紫外線112は、5から50ナノメートル(nm)の範囲の波長を有する電磁放射線である。例えば、極紫外線源102は、レーザ、レーザ生成プラズマ、放電生成プラズマ、自由電子レーザ、シンクロトロン放射線、又はこれらの組み合わせを含む。
【0018】
[0025]極紫外線源102は、様々な特徴を有する極紫外線112を生成する。極紫外線源102は、ある波長範囲にわたる広帯域の極紫外線放射線を発生させる。例えば、極紫外線源102は、5から50nmの範囲の波長を有する極紫外線112を生成する。
【0019】
[0026]1つ又は複数の実施形態では、極紫外線源102は、狭い帯域幅を有する極紫外線112を生成する。例えば、極紫外線源102は、13.5nmの極紫外線112を生成する。波長ピークの中心は、13.5nmである。
【0020】
[0027]コンデンサ104は、極紫外線112を反射させ、極紫外線112の焦点を合わせるための光学ユニットである。コンデンサ104は、極紫外線源102からの極紫外線112を反射且つ集中させ、EUV反射マスク106を照らす。
【0021】
[0028]コンデンサ104は、単一の素子として示されているが、コンデンサ104は、極紫外線112を反射且つ集中させるための、凹面ミラー、凸面ミラー、平面ミラー、又はこれらの組み合わせなどの1つ又は複数の反射素子を含み得ることを理解されよう。例えば、コンデンサ104は、凸面、凹面、及び平面光学素子を有する単一の凹面ミラー又は光学アセンブリであり得る。
【0022】
[0029]EUV反射マスク106は、マスクパターン114を有する極紫外線反射素子である。EUV反射マスク106は、リソグラフパターンを生成し、それにより、ターゲットウエハ110に形成されるべき回路レイアウトが形成される。EUV反射マスク106は、極紫外線112を反射させる。マスクパターン114は、回路レイアウトの一部を画定する。
【0023】
[0030]光学縮小アセンブリ108は、マスクパターン114の画像を縮小するための光学ユニットである。EUV反射マスク106からの極紫外線112の反射は、光学縮小アセンブリ108によって縮小し、ターゲットウエハ110に反映される。光学縮小アセンブリ108は、マスクパターン114の画像サイズを縮小するために、ミラー及び他の光学素子を含み得る。例えば、光学縮小アセンブリ108は、極紫外線112を反射し、極紫外線112の焦点を合わせるための凹面ミラーを含み得る。
【0024】
[0031]光学縮小アセンブリ108は、ターゲットウエハ110上のマスクパターン114の画像サイズを縮小する。例えば、光学縮小アセンブリ108によって、マスクパターン114を4:1の比率でターゲットウエハ110上に結像することができ、それにより、ターゲットウエハ110上にマスクパターン114によって表される回路が形成される。極紫外線112は、ターゲットウエハ110と同期して反射マスク106を走査することができ、それにより、ターゲットウエハ110上にマスクパターン114が形成される。
【0025】
[0032]これより図3を参照すると、極紫外線反射素子作製システム200の実施形態が示される。極紫外線反射素子は、EUVマスクブランク204、極紫外線(EUV)ミラー205、又はEUV反射マスク106などの他の反射素子を含む。
【0026】
[0033]極紫外線反射素子作製システム200は、マスクブランク、ミラー、又は図2の極紫外線112を反射させる他の素子を作製することができる。極紫外線反射素子作製システム200は、ソース基板203に薄いコーティングを施すことによって反射素子を製作する。
【0027】
[0034]EUVマスクブランク204は、図2のEUV反射マスク106を形成するための多層構造体である。EUVマスクブランク204は、半導体製造技法を使用して形成され得る。EUV反射マスク106は、エッチング及び他の処理によってマスクブランク204上に形成された、図2のマスクパターン114を有し得る。
【0028】
[0035]極紫外線ミラー205は、極紫外線の範囲内で反射する多層構造体である。極紫外線ミラー205は、半導体製造技法を使用して形成され得る。EUVマスクブランク204、及び極紫外線ミラー205は、各素子に形成される層に関して同様の構造であってよいが、極紫外線ミラー205は、マスクパターン114を有しない。
【0029】
[0036]反射素子は、極紫外線112の効率的なリフレクタである。一実施形態では、EUVマスクブランク204及び極紫外線ミラー205は、60%を超える極紫外線反射率を有する。反射素子が60%を超える極紫外線112を反射する場合、反射素子は効率的である。
【0030】
[0037]極紫外線反射素子作製システム200は、ウエハローディング及びキャリアハンドリングシステム202を含む。このシステム202の中にソース基板203がロード(搬入)され、このシステム202から反射素子がアンロード(搬出)される。大気ハンドリングシステム206は、ウエハハンドリング真空チャンバ208へのアクセスをもたらす。ウエハローディング及びキャリアハンドリングシステム202は、基板を大気からシステムの内部の真空へ移送するための基板搬送ボックス、ロードロック、及び他の構成要素を含み得る。EUVマスクブランク204は、非常に小さい寸法のデバイスを形成するために使用されるので、ソース基板203及びEUVマスクブランク204は、汚染及び他の欠陥を防止するために、真空システム内で処理される。
【0031】
[0038]ウエハハンドリング真空チャンバ208は、第1の真空チャンバ210及び第2の真空チャンバ212の2つの真空チャンバを含み得る。第1の真空チャンバ210は、第1のウエハハンドリングシステム214を含み、第2の真空チャンバ212は、第2のウエハハンドリングシステム216を含む。ウエハハンドリング真空チャンバ208は、2つの真空チャンバを有するように記載されているが、当該システムは、任意の数の真空チャンバを有し得ることを理解されたい。
【0032】
[0039]ウエハハンドリング真空チャンバ208は、様々な他のシステムを取り付けるためにその外縁に複数のポートを有し得る。第1の真空チャンバ210は、ガス抜きシステム218、第1の物理的気相堆積システム220、第2の物理的気相堆積システム222、及び予洗浄システム224を有する。ガス抜きシステム218は、基板から水分を熱的に脱着させるためのものである。予洗浄システム224は、ウエハ、マスクブランク、ミラー、又は他の光学部品の表面を洗浄するためのものである。
【0033】
[0040]第1の物理的気相堆積システム220及び第2の物理的気相堆積システム222などの物理的気相堆積システムは、ソース基板203に導電性材料の薄膜を形成するために使用され得る。例えば、物理的気相堆積システムは、マグネトロンスパッタリングシステム、イオンスパッタリングシステム、パルス状レーザ堆積、カソードアーク堆積、又はこれらの組み合わせなどの真空堆積システムを含み得る。マグネトロンスパッタリングシステムなどの物理的気相堆積システムは、ソース基板203にケイ素、金属、合金、化合物、又はこれらの組み合わせの層を含む薄い層を形成する。
【0034】
[0041]物理的気相堆積システムは、反射層、キャッピング層、及び吸収層を形成する。例えば、物理的気相堆積システムは、ケイ素、モリブデン、酸化チタン、二酸化チタン、酸化ルテニウム、酸化ニオブ、ルテニウムタングステン、ルテニウムモリブデン、ルテニウムニオブ、クロム、タンタル、窒化物、化合物、又はこれらの組み合わせの層を形成し得る。幾つかの化合物を酸化物として記載したが、化合物には、酸化物、二酸化物、酸素原子を有する原子混合物、又はこれらの組み合わせが含まれ得ることを理解されたい。
【0035】
[0042]第2の真空チャンバ212は、それに接続された第1のマルチカソードソース226、化学気相堆積システム228、硬化チャンバ230、及び超平滑堆積チャンバ232を有する。例えば、化学気相堆積システム228は、流動性化学気相堆積システム(FCVD)、プラズマ支援化学気相堆積システム(CVD)、エアロゾル支援CVD、ホットフィラメントCVDシステム、又は同様のシステムを含み得る。別の実施例では、化学気相堆積システム228、硬化チャンバ230、及び超平滑堆積チャンバ232は、極紫外線反射素子作製システム200とは別のシステム内にあってよい。
【0036】
[0043]化学気相堆積システム228は、ソース基板203上に材料の薄膜を形成し得る。例えば、化学気相堆積システム228は、単結晶層、多結晶層、アモルファス層、エピタキシャル層、又はこれらの組み合わせを含むソース基板203上に材料の層を形成するために使用され得る。化学気相堆積システム228は、ケイ素、酸化ケイ素、オキシ炭化ケイ素、炭素、タングステン、炭化ケイ素、窒化ケイ素、窒化チタン、金属、合金、及び化学気相堆積に適切な他の材料の層を形成し得る。例えば、化学気相堆積システムは、平坦化層を形成し得る。
【0037】
[0044]第1のウエハハンドリングシステム214は、連続的な真空下で、大気ハンドリングシステム206と、第1の真空チャンバ210の外縁の様々なシステムとの間でソース基板203を移動させることができる。第2のウエハハンドリングシステム216は、ソース基板203を連続的な真空下で維持している間、ソース基板203を第2の真空チャンバ212の周辺で移動させることができる。極紫外線反射素子作製システム200は、連続的な真空下で、第1のウエハハンドリングシステム214と第2のウエハハンドリングシステム216との間でソース基板203及びEUVマスクブランク204を移送することができる。
【0038】
[0045]これより図4を参照すると、極紫外線反射素子302の実施形態が示されている。1つ又は複数の実施形態では、極紫外線反射素子302は、図3のEUVマスクブランク204又は図3の極紫外線ミラー205である。EUVマスクブランク204及び極紫外線ミラー205は、図2の極紫外光112を反射させるための構造体である。EUVマスクブランク204は、図2に示すEUV反射マスク106を形成するために使用され得る。
【0039】
[0046]極紫外線反射素子302は、基板304、反射層の多層スタック(複数の反射層の積層体)306、及びキャッピング層308を含む。1つ又は複数の実施形態では、極紫外線ミラー205は、図2のコンデンサ104又は図2の光学縮小アセンブリ108における使用のための反射構造体を形成するように使用される。
【0040】
[0047]例えば、EUVマスクブランク204であり得る極紫外線反射素子302は、基板304、反射層の多層スタック306、キャッピング層308、及び吸収層310を含む。極紫外線反射素子302は、EUVマスクブランク204であり得、これは、必要とされる回路のレイアウトを用いて吸収層310をパターニングすることによって図2の反射マスク106を形成するために使用される。
【0041】
[0048]以下のセクションでは、EUVマスクブランク204という用語は、簡略化のため、極紫外線ミラー205という用語と交互に使用される。1つ又は複数の実施形態では、マスクブランク204は、図2のマスクパターン114を形成するために、さらに吸収層310が追加された状態で極紫外線ミラー205の構成要素を含む。
【0042】
[0049]EUVマスクブランク204は、マスクパターン114を有する反射マスク106を形成するために使用される光学的に平坦な構造体である。1つ又は複数の実施形態では、EUVマスクブランク204の反射面は、図2の極紫外線112などの入射光を反射するための平坦な焦点面を形成する。
【0043】
[0050]基板304は、極紫外線反射素子302に対する構造的支持をもたらす要素である。1つ又は複数の実施形態では、基板304は、低い熱膨張係数(CTE)を有する材料から作られ、温度変化の間の安定性をもたらす。1つ又は複数の実施形態では、基板304は、機械的循環、熱循環、結晶形成、又はこれらの組み合わせに対する安定性などの特性を有する。1つ又は複数の実施形態に係る基板304は、ケイ素、ガラス、酸化物、セラミック、ガラスセラミック、又はこれらの組み合わせなどの材料から形成される。
【0044】
[0051]多層スタック306は、極紫外線112を反射させる構造である。多層スタック306は、第1の反射層312と第2の反射層314が交互する反射層を含む。
【0045】
[0052]第1の反射層312と第2の反射層314は、図4の反射ペア316を形成する。非限定的な実施形態では、多層スタック306は、合計で最大120個の反射層に対して、20から60個の範囲の反射ペア316を含む。
【0046】
[0053]第1の反射層312及び第2の反射層314は、様々な材料から形成され得る。一実施形態では、第1の反射層312及び第2の反射層314は、それぞれ、ケイ素及びモリブデンから形成される。ケイ素及びモリブデンの層を図示したが、交互層は、他の材料から形成されてもよく、又は、他の内部構造を有することを理解されたい。
【0047】
[0054]第1の反射層312及び第2の反射層314は、様々な構造を有し得る。一実施形態では、第1の反射層312と第2の反射層314の両方が、単一層、多層、分割層構造、非均一構造、又はこれらの組み合わせで形成される。
【0048】
[0055]ほとんどの材料が極紫外線波長で光を吸収するため、使用される光学素子は、他のリソグラフィシステムにおいて使用されるような透過性でなく、反射性である。多層スタック306は、異なる光学特性を有する材料の薄い交互層を有することで、反射性構造を形成し、ブラッグリフレクタ又はミラーが作製される。
【0049】
[0056]一実施形態では、交互層は、それぞれ極紫外線112に対して異なる光学定数を有する。交互層の厚さの周期が極紫外線112の波長の半分であるとき、交互層は共鳴反射性(resonant reflectivity)をもたらす。一実施形態では、波長13nmの極紫外線112に対し、交互層は、約6.5nmの厚さである。提示されるサイズ及び寸法は、典型的な要素の通常の工学的許容誤差内であることを理解されたい。
【0050】
[0057]多層スタック306は、様々な方法で形成され得る。一実施形態では、第1の反射層312及び第2の反射層314は、マグネトロンスパッタリング、イオンスパッタリングシステム、パルス状レーザ堆積、カソードアーク堆積、又はこれらの組み合わせで形成される。
【0051】
[0058]例示的な実施例では、多層スタック306は、マグネトロンスパッタリングなどの物理的気相堆積技法を使用して形成される。一実施形態では、多層スタック306の第1の反射層312及び第2の反射層314は、正確な厚さ、低粗度、及び層間の清浄な界面を含む、マグネトロンスパッタリング技法によって形成されるという特徴を有する。一実施形態では、多層スタック306の第1の反射層312及び第2の反射層314は、正確な厚さ、低粗度、及び層間の清浄な界面を含む、物理的気相堆積技法によって形成されるという特徴を有する。
【0052】
[0059]物理的気相堆積技法を使用して形成された多層スタック306の層の物理的寸法を正確に制御して、反射率を上げることができる。一実施形態では、ケイ素の層などの第1の反射層312は、4.1nmの厚さを有する。モリブデンの層などの第2の反射層314は、2.8nmの厚さを有する。層の厚さにより、極紫外線反射素子のピーク反射波長が決まる。層の厚さが正確でない場合、所望の波長13.5nmにおける反射率が低下する恐れがある。
【0053】
[0060]一実施形態では、多層スタック306は、60%を超える反射率を有する。一実施形態では、物理的気相堆積を使用して形成された多層スタック306は、66%から67%の範囲内の反射率を有する。1つ又は複数の実施形態では、より硬い材料で形成された多層スタック306の上にキャッピング層308を形成することで、反射率が改善される。幾つかの実施形態では、低粗度層、層間の清浄な界面、改良された層材料、又はこれらの組み合わせを使用して、70%を超える反射率が達成される。
【0054】
[0061]1つ又は複数の実施形態では、キャッピング層308は、極紫外線112の透過を可能にする保護層である。一実施形態では、キャッピング層308は、多層スタック306上に直接形成される。1つ又は複数の実施形態では、キャッピング層308は、多層スタック306を汚染及び機械的損傷から保護する。一実施形態では、多層スタック306は、酸素、炭素、炭化水素、又はこれらの組み合わせによる汚染に敏感である。実施形態に係るキャッピング層308は、汚染物質と相互作用し、これらを中和する。
【0055】
[0062]1つ又は複数の実施形態では、キャッピング層308は、極紫外線112に対して透過的な光学的に均一な構造である。極紫外線112は、キャッピング層308を通過して、多層スタック306で反射される。1つ又は複数の実施形態では、キャッピング層308は、1%から2%の総反射率損失を有する。1つ又は複数の実施形態では、異なる材料は各々、厚さに応じて異なる反射率損失を有するが、それらは全て1%から2%の範囲内になるであろう。
【0056】
[0063]1つ又は複数の実施形態では、キャッピング層308は、滑らかな表面を有する。例えば、キャッピング層308の表面は、0.2nmRMS(二乗平均平方根測定)未満の粗度を有し得る。別の実施例では、キャッピング層308の表面は、1/100nmと1/1μmの範囲内の長さに対して、0.08nmRMSの粗度を有する。RMS粗度は、測定範囲によって変化する。100nmから1ミクロンの特定範囲に対しては、粗度は0.08nm以下である。より広い範囲では、粗度も上がる。
【0057】
[0064]キャッピング層308は、様々な方法で形成され得る。一実施形態では、キャッピング層308は、マグネトロンスパッタリング、イオンスパッタリングシステム、イオンビーム堆積、エレクトロンビーム蒸発、高周波(RF)スパッタリング、原子層堆積(ALD)、パルス状レーザ堆積、カソードアーク堆積、又はこれらの組み合わせで、多層スタック306に、又は多層スタック306のすぐ上に形成される。1つ又は複数の実施形態では、キャッピング層308は、正確な厚さ、低粗度、及び層間の清浄な界面を含む、マグネトロンスパッタリング技法によって形成されるという物理的特徴を有する。一実施形態では、キャッピング層308は、正確な厚さ、低粗度、及び層間の清浄な界面を含む、物理的気相堆積によって形成されるという物理的特徴を有する。
【0058】
[0065]1つ又は複数の実施形態では、キャッピング層308は、洗浄中において十分な耐浸食性のある硬度を有する様々な材料から形成される。一実施形態では、ルテニウムは良好なエッチングストップであり、動作条件下で比較的不活性であるため、キャッピング層の材料として使用されている。しかしながら、キャッピング層308を形成するために他の材料が使用され得ることを理解されたい。特定の実施形態では、キャッピング層308は、2.5から5.0nmの範囲内の厚さを有する。
【0059】
[0066]1つ又は複数の実施形態では、吸収層310は、極紫外線112を吸収する層である。一実施形態では、吸収層310は、極紫外線112を反射させない領域が設けられることにより、反射マスク106にパターンを形成するよう使用される。1つ又は複数の実施形態に係る吸収層310は、極紫外線112の特定の周波数(約13.5nm等)に対して高吸収係数を有する材料を含む。一実施形態では、吸収層310は、キャッピング層308上に直接形成される。そして、吸収層310は、フォトリソグラフィプロセスを用いてエッチングされ、それにより、反射マスク106のパターンが形成される。
【0060】
[0067]1つ又は複数の実施形態によれば、極紫外線ミラー205などの極紫外線反射素子302は、基板304、多層スタック306、及びキャッピング層308で形成される。極紫外線ミラー205は、光学的に平坦な表面を有し、極紫外線112を効率的且つ均一に反射させ得る。
【0061】
[0068]1つ又は複数の実施形態によれば、EUVマスクブランク204などの極紫外線反射素子302は、基板304、多層スタック306、キャッピング層308、及び吸収層310で形成される。マスクブランク204は、光学的に平坦な表面を有し、極紫外線112を効率的且つ均一に反射させ得る。一実施形態では、マスクパターン114は、マスクブランク204の吸収層310で形成される。
【0062】
[0069]1つ又は複数の実施形態によれば、キャッピング層308の上に吸収層310を形成することで、反射マスク106の信頼性が高まる。キャッピング層308は、吸収層310のエッチングストップ層として機能する。図2のマスクパターン114が吸収層310内にエッチングされるとき、吸収層310の下方のキャッピング層308によりエッチング作用が停止し、多層スタック306が保護される。
【0063】
[0070]これより図5を参照すると、極紫外線(EUV)マスクブランク400は、基板414、及び基板414上の反射層412の多層スタックを含み、反射層412の多層スタックは、複数の反射層のペアを含むように示されている。EUVマスクブランク400は、反射層412の多層スタック上にキャッピング層422をさらに含み、キャッピング層422上には、吸収層420の多層スタック(複数の吸収層の積層体)420がある。吸収層の多層スタック420は、複数の吸収層のペア420a、420b、420c、420d、420e、420f(420a/420b、420c/420d、420e/420f)を含み、これらは、異なる吸光係数(k)値と、異なる屈折率値(n)とを有する2つの異なる吸収材料を含む。例えば、吸収層420aは、吸収層420bを形成する材料の吸光係数値(k)と異なる吸光係数値(k)を有する材料から作られる。同様に、吸収層420cは、吸収層420dを形成する材料の吸光係数値(k)と異なる吸光係数値(k)を有する材料から作られ、吸収層420eは、吸収層420fを形成する材料の吸光係数値(k)と異なる吸光係数値(k)を有する材料から作られる。例えば、吸収層420aは、吸収層420bを形成する材料の屈折率値(n)と異なる屈折率値(n)を有する材料から作られる。同様に、吸収層420cは、吸収層420dを形成する材料の屈折率値(n)と異なる屈折率値(n)を有する材料から作られ、吸収層420eは、吸収層420fを形成する材料の屈折率値(n)と異なる屈折率値(n)を有する材料から作られる。
【0064】
[0071]一実施形態では、極紫外線マスクブランク400は、モリブデン(Mo)含有材料及びケイ素(Si)含有材料、例えば、モリブデン(Mo)及びケイ素(Si)から選択された複数の反射層412を含む。吸収層420a、420b、420c、420d、420e、及び420fを形成するために使用される吸収材料は、プラチナ(Pt)、亜鉛(Zn)、金(Au)、酸化ニッケル(NiO)、酸化銀(AgO)、イリジウム(Ir)、鉄(Fe)、二酸化スズ(SnO)、コバルト(Co)、クロムニッケル合金、NiCr、酸化スズ(SnO)、銅(Cu)、銀(Ag)、アクチニウム(Ac)、テルリウム(Te)、ヨウ化セシウム(CsI)、スズ(Sn)、テルル化亜鉛(ZnTe)、アンチモン(Sb)、タンタル(Ta)、窒化タンタル(TaN)、酸窒化タンタル(TaNO)、クロム(Cr)、窒化クロム(CrN)、及びタンタルホウ素酸化物(TaBO)からなる群から選択される。
【0065】
[0072]1つ又は複数の実施形態では、吸収層のペア420a/420b、420c/420d、420e/420fは、タンタル(Ta)、窒化タンタル(TaN)、酸窒化タンタル(TaNO)、タンタルホウ素酸化物(TaBO)からなる群から選択された吸収材料を含む第1の層(420a、420c、420e)を含み、プラチナ(Pt)、亜鉛(Zn)、金(Au)、酸化ニッケル(NiO)、酸化銀(AgO)、イリジウム(Ir)、鉄(Fe)、二酸化スズ(SnO)、コバルト(Co)、クロムニッケル合金、具体的には、NiCr、酸化スズ(SnO)、銅(Cu)、銀(Ag)、アクチニウム(Ac)、テルリウム(Te)、ヨウ化セシウム(CsI)、スズ(Sn)、テルル化亜鉛(ZnTe)、クロム(Cr)、窒化クロム(CrN)、及びアンチモン(Sb)からなる群から選択された吸収材料を含む第2の層(420b、420d、420f)を含む。特定の実施形態では、吸収層のペアは、ニッケル(Ni)から選択された吸収材料を含む第1の層(420a、420c、420e)、及び窒化タンタル(TaN)から選択された吸収材料を含む第2の層(420b、420d、420f)を含む。
【0066】
[0073]1つ又は複数の実施形態によると、吸収層のペアは、第1の層(420a、420c、420e)、及び第2の吸収層(420b、420d、420f)を含み、第1の吸収層(420a、420c、420e) 及び第2の吸収層(420b、420d、420f)は、それぞれ、0.1nmから10nmの範囲内、例えば、1nmから5nmの範囲内、又は1nmから3nmの範囲内の厚さを有する。1つ又は複数の特定の実施形態では、第1の層420aの厚さは、0.5nm、0.6nm、0.7nm、0.8nm、0.9nm、1nm、1.1nm、1.2nm、1.3nm、1.4nm、1.5nm、1.6nm、1.7nm、1.8nm、1.9nm、2nm、2.1nm、2.2nm、2.3nm、2.4nm、2.5nm、2.6nm、2.7nm、2.8nm、2.9nm、3nm、3.1nm、3.2nm、3.3nm、3.4nm、3.5nm、3.6nm、3.7nm、3.8nm、3.9nm、4nm、4.1nm、4.2nm、4.3nm、4.4nm、4.5nm、4.6nm、4.7nm、4.8nm、4.9nm、及び5nmである。1つ又は複数の実施形態では、各ペアの第1の吸収層及び第2の吸収層の厚さは、同じであるか、又は異なる。例えば、第1の吸収層及び第2の吸収層は、第1の吸収層の厚さ対第2の吸収層の厚さの比が、1:1、1.5:1、2:1、2.5:1、3:1、3.5:1、4:1、4.5:1、5:1、6:1、7:1、8:1、9:1、10:1、11:1、12:1、13:1、14:1、15:1、16:1、17:1、18:1、19:1、又は20:1となるような厚さを有し、各ペアで第1の吸収層の厚さが、第2の吸収層の厚さと等しいか又はそれを超える結果となる。代替的に、第1の吸収層及び第2の吸収層は、第2の吸収層の厚さ対第1の吸収層の厚さの比が、1.5:1、2:1、2.5:1、3:1、3.5:1、4:1、4.5:1、6:1、7:1、8:1、9:1、10:1、11:1、12:1、13:1、14:1、15:1、16:1、17:1、18:1、19:1、又は20:1となるような厚さを有し、各ペアで第2の吸収層の厚さが、第1の吸収層の厚さと等しいか又はそれを超える結果となる。
【0067】
[0074]1つ又は複数の実施形態によると、極紫外線が、吸収度に起因して、且つ反射層の多層スタックからの光との破壊的干渉で引き起こされた相変化により吸収されるよう、吸収層の種々の吸収材料及び厚さが選択される。図5に示す実施形態は、3つの吸収層のペア420a/420b、420c/420d、及び420e/420fを示すが、特許請求の範囲は、特定の数の吸収層のペアに限定されるべきではない。1つ又は複数の実施形態によると、EUVマスクブランク400は、5から60個の範囲内の吸収層のペア、及び10から40個の範囲内の吸収層のペアを含み得る。
【0068】
[0075]1つ又は複数の実施形態によると、吸収層は、2%未満の反射率及びその他のエッチング特性をもたらす厚さを有する。供給ガスは、吸収層の材料特性をさらに改質するために使用され得、例えば、窒素(N)ガスは、以上で提供された材料の窒化物を形成するために使用され得る。1つ又は複数の実施形態に係る吸収層の多層スタックは、種々の材料の個々の厚さの反復パターンであり、それにより、EUV光は、吸収度により吸収されるだけでなく、多層吸収スタックが引き起こす相変化によって吸収される。多層吸収スタックは、下方の反射材料の多層スタックからの光に破壊的に干渉し、より優れたコントラストをもたらす。
【0069】
[0076]例えば、第1の事例として、15nmのTaNが40MLのMo及びSiの上にある状態の10nmのNiの吸収スタックを検討してみる。吸収スタックは、Ni及びTaNのn及びkに基づいて、13.5nmでEUVを吸収するようになる。実施形態に係る第2の事例では、40MLのMo及びSiの上部に厚さ2nm及び3nmのNiとTaNの5つの二重層が作製され得る。第2の事例では、光が10nmのNi及び15nmのTaNの総厚によって吸収されるだけでなく、さらに光の相変化がもたらされ、これにより、40MLのMo及びSiミラーからの反射光が破壊的に干渉され、コントラストが向上する。したがって、第2の事例のスタックは、反射率損失において50%を越える改善をもたらす。NiとTanとの厚さの比であるガンマ、個々の層の厚さ、及び多層の数をさらに最適化して、さらに多くのコントラストをもたらすことができる。図6は、第1の事例の反射率曲線であり、図7は、第2の事例の反射率曲線である。
【0070】
[0077]本開示の別の態様は、極紫外線(EUV)マスクブランクを製造する方法を対象としており、当該方法は、基板を設けることと、基板上に反射層の多層スタックを形成することであって、多層スタックが、複数の反射層のペアを含む、反射層の多層スタックを形成することと、反射層の多層スタック上にキャッピング層を形成することと、キャッピング層上に吸収層の多層スタックを形成することであって、吸収層の多層スタックが、複数の吸収層のペアを含み、各ペアが、異なる吸光係数(k)値、及び異なる屈折率値(n)を有する2つの異なる吸収材料を含む、吸収層の多層スタックを形成することとを含む。EUVマスクブランクは、図4及び図5に関連して以上で記載された実施形態の任意の特徴を有し得、当該方法は、図3に関連して説明されたシステムにおいて実行され得る。
【0071】
[0078]したがって、一実施形態では、複数の反射層が、モリブデン(Mo)含有材料及びケイ素(Si)含有材料から選択され、吸収材料は、プラチナ(Pt)、亜鉛(Zn)、金(Au)、酸化ニッケル(NiO)、酸化銀(AgO)、イリジウム(Ir)、鉄(Fe)、二酸化スズ(SnO)、コバルト(Co)、クロムニッケル合金、NiCr、酸化スズ(SnO)、銅(Cu)、銀(Ag)、アクチニウム(Ac)、テルリウム(Te)、ヨウ化セシウム(CsI)、スズ(Sn)、テルル化亜鉛(ZnTe)、アンチモン(Sb)、タンタル(Ta)、窒化タンタル(TaN)、酸窒化タンタル(TaNO)、及びタンタルホウ素酸化物(TaBO)からなる群から選択された材料から作られる。代替的に、一実施形態では、吸収層のペアは、タンタル(Ta)、窒化タンタル(TaN)、酸窒化タンタル(TaNO)、タンタルホウ素酸化物(TaBO)からなる群から選択された材料から作られた第1の層、並びにプラチナ(Pt)、亜鉛(Zn)、金(Au)、酸化ニッケル(NiO)、酸化銀(AgO)、イリジウム(Ir)、鉄(Fe)、二酸化スズ(SnO)、コバルト(Co)、クロムニッケル合金、具体的には、NiCr、酸化スズ(SnO)、銅(Cu)、銀(Ag)、アクチニウム(Ac)、テルリウム(Te)、ヨウ化セシウム(CsI)、スズ(Sn)、テルル化亜鉛(ZnTe)、クロム(Cr)、窒化クロム(CrN)、及びアンチモン(Sb)からなる群から選択された材料から作られた第2の層を含む。特定の実施形態では、吸収層のペアは、ニッケル(Ni)から選択された吸収材料を含む第1の層、及び窒化タンタル(TaN)から選択された第2の層を含む。
【0072】
[0079]別の特定の方法の実施形態では、種々の吸収層が、第1の吸収材料を含む第1のカソード、及び第2の吸収材料を含む第2のカソードを有する物理的堆積チャンバ内で形成される。これより図8を参照すると、一実施形態に係るマルチカソードチャンバ500の上部が示されている。第1のマルチカソードチャンバ500は、上部アダプタ504によって覆われている円筒形本体部502を有する基礎構造501を含む。上部アダプタ504は、上部アダプタ504の周りに位置付けされたカソードソース506、508、510、512、及び514などの数々のカソードソースのための設置部を有する。
【0073】
[0080]マルチカソードソースチャンバ500は、図3に示すシステムの一部であり得る。一実施形態では、極紫外線(EUV)マスクブランク作製システムは、真空を生成するための基板ハンドリング真空チャンバ、基板ハンドリング真空チャンバ内にロードされた基板を搬送するための、真空内の基板ハンドリングプラットフォーム、及びEUVマスクブランクを形成するために、基板ハンドリングプラットフォームによってアクセスされる複数のサブチャンバを備えており、EUVマスクブランクは、基板上の反射層の多層スタックであって、多層スタックが、複数の反射層のペアを含む、反射層の多層スタック、反射層の多層スタック上のキャッピング層、並びにキャッピング層上の吸収層の多層スタックであって、吸収層の多層スタックが、複数の吸収層のペアを含み、各ペアが、異なる吸光係数(k)値、及び異なる屈折率値(n)を有する2つの異なる吸収材料を含む、吸収層の多層スタックを含む。当該システムは、図4又は図5に関連して示されたEUVマスクブランクを作るために使用され得、上述の図4又は図5に関連して説明されたEUVマスクブランクに関連して説明された任意の特性を有する。
【0074】
[0081]この明細書全体を通じて「一実施形態」、「特定の実施形態」、「1つ又は複数の実施形態」、又は「実施形態」に対する言及は、これらの実施形態に関連して説明されている特定の特徴、構造、材料、又は特性が、本開示の少なくとも1つの実施形態に含まれることを意味する。ゆえに、この明細書全体の様々な箇所での「1つ又は複数の実施形態で」、「特定の実施形態で」、「一実施形態で」、又は「実施形態で」などの表現は、必ずしも、本開示の同一の実施形態に言及するものではない。さらに、特定の特徴、構造、材料、又は特性は、1つ又は複数の実施形態において任意の適切な態様で組み合わせることができる。
【0075】
[0082]本明細書の開示は、特定の実施形態を参照して説明されているが、これらの実施形態は、本開示の原理及び用途の例示にすぎないことを理解されたい。当業者であれば、本開示の精神及び範囲から逸脱せずに、本開示の方法及び装置に対して様々な改変及び変形を行うことができることが明らかであろう。ゆえに、本開示は、添付の特許請求の範囲及びその均等物に含まれる改変例及び変形例を含むことが意図されている。
図1
図2
図3
図4
図5
図6
図7
図8