(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-28
(45)【発行日】2022-03-08
(54)【発明の名称】電荷輸送性ポリマー及び有機エレクトロニクス素子
(51)【国際特許分類】
H01L 51/50 20060101AFI20220301BHJP
H01L 27/32 20060101ALI20220301BHJP
C08G 61/10 20060101ALI20220301BHJP
G09F 9/30 20060101ALI20220301BHJP
G09F 9/35 20060101ALI20220301BHJP
【FI】
H05B33/22 D
H05B33/14 A
H01L27/32
C08G61/10
G09F9/30 365
G09F9/35
(21)【出願番号】P 2019549980
(86)(22)【出願日】2017-10-27
(86)【国際出願番号】 JP2017038978
(87)【国際公開番号】W WO2019082396
(87)【国際公開日】2019-05-02
【審査請求日】2020-10-27
(73)【特許権者】
【識別番号】000004455
【氏名又は名称】昭和電工マテリアルズ株式会社
(74)【代理人】
【識別番号】100083806
【氏名又は名称】三好 秀和
(74)【代理人】
【識別番号】100101247
【氏名又は名称】高橋 俊一
(74)【代理人】
【識別番号】100095500
【氏名又は名称】伊藤 正和
(74)【代理人】
【識別番号】100098327
【氏名又は名称】高松 俊雄
(72)【発明者】
【氏名】福島 伊織
(72)【発明者】
【氏名】佐久間 広貴
(72)【発明者】
【氏名】石塚 健一
(72)【発明者】
【氏名】加茂 和幸
(72)【発明者】
【氏名】児玉 俊輔
(72)【発明者】
【氏名】杉岡 智嗣
(72)【発明者】
【氏名】内山 知美
(72)【発明者】
【氏名】森山 良太
(72)【発明者】
【氏名】本名 涼
【審査官】中山 佳美
(56)【参考文献】
【文献】特開2013-155294(JP,A)
【文献】特開2017-123438(JP,A)
【文献】特開2014-167976(JP,A)
【文献】国際公開第2010/140553(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 51/50
H01L 27/32
C08G 61/10
G09F 9/30
G09F 9/35
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
分子鎖と、該分子鎖に結合する末端基とを含み、
前記末端基が、重合性官能基を含む末端基Pと、電子求引性置換基により置換された芳
香族炭化水素基を含む末端基EWとを含み、
前記末端基Pが、下記式(P1)で表される末端基を含み、
前記芳香族炭化水素基の環を構成する炭素原子について、前記分子鎖に結合する炭素原
子の番号を1とし、隣接する炭素原子に順に番号をつけたとき、前記電子求引性置換基が
、1+2n(nは、1以上の整数である。)の炭素原子に結合しており、
3価以上の構造単位を含む分岐状ポリマーである、電荷輸送性ポリマー。
【化1】
[式中、Arは、置換又は非置換の芳香環基を表し、Lは、連結基を表し、PGは、置換
又は非置換の重合性官能基を表す。a及びxは、それぞれ独立に0又は1を表し、yは、
1以上の整数を表す。ただし、式(P1)は、
-Ar-CH
2
-O-で表される部分構造を含まない。]
【請求項2】
電荷輸送性ポリマーの全構造単位を基準とし、前記末端基を含む構造単位を3~60モ
ル%含む、請求項1に記載の電荷輸送性ポリマー。
【請求項3】
前記電子求引性置換基が、ハロゲン基、ハロゲン置換アルキル基、ニトロ基、シアノ基
、スルホン酸基、及びスルホキシド基からなる群から選択される1種以上を含む、請求項
1又は2に記載の電荷輸送性ポリマー。
【請求項4】
前記末端基を基準とし、前記末端基EWを15~95モル%含む、請求項1~3のいず
れかに記載の電荷輸送性ポリマー。
【請求項5】
前記末端基を基準とし、前記末端基EWを85~95モル%含む、請求項1~4のいず
れかに記載の電荷輸送性ポリマー。
【請求項6】
前記重合性官能基が、炭素-炭素多重結合を有する基、小員環を有する基、及び複素環
基からなる群から選択される1種以上を含む、請求項1~5のいずれかに記載の電荷輸送
性ポリマー。
【請求項7】
置換又は非置換の、芳香族アミン構造、カルバゾール構造、チオフェン構造、ビチオフ
ェン構造、ベンゼン構造、及びフルオレン構造からなる群から選択される1種以上の構造
を含む、請求項1~6のいずれかに記載の電荷輸送性ポリマー。
【請求項8】
前記末端基Pが、下記式(P2)で表される末端基を含む、請求項1~7のいずれかに記載の電荷輸送性ポリマー。
【化2】
[式中、Arは、置換又は非置換の炭素数2~30の芳香環基を表し、Xは、下記式(X1)~(X10)のいずれかで表される2価の基を表し、Yは、炭素数1~10のアルキレン基を表し、PGは、置換又は非置換の重合性官能基を表す。a~cは、それぞれ独立に0又は1を表し、dは、1又は2を表す。ただし、dが2であるとき、aは1である。]
【化3】
[式中、Rは、それぞれ独立に、水素原子、炭素数1~22の直鎖状、環状若しくは分岐状のアルキル基、又は、炭素数2~30のアリール基若しくはヘテロアリール基を表す。]
【請求項9】
請求項1~8のいずれかに記載の電荷輸送性ポリマーを含有する、電荷輸送性材料。
【請求項10】
請求項1~8のいずれかに記載の電荷輸送性ポリマー又は請求項9に記載の電荷輸送性
材料と、溶媒とを含有する、インク組成物。
【請求項11】
請求項1~8のいずれかに記載の電荷輸送性ポリマー、請求項9に記載の電荷輸送性材
料、又は、請求項10に記載のインク組成物を用いて形成された、有機層。
【請求項12】
請求項11に記載の有機層を有する、有機エレクトロニクス素子。
【請求項13】
請求項11に記載の有機層を有する、有機エレクトロルミネセンス素子。
【請求項14】
請求項13に記載の有機エレクトロルミネセンス素子を備えた、表示素子。
【請求項15】
請求項13に記載の有機エレクトロルミネセンス素子を備えた、照明装置。
【請求項16】
請求項15に記載の照明装置と、表示手段として液晶素子とを備えた、表示装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、電荷輸送性ポリマー、電荷輸送性材料、インク組成物、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置に関する。
【背景技術】
【0002】
有機エレクトロニクス素子は、有機物を用いて電気的な動作を行う素子であり、省エネルギー、低価格、及び柔軟性といった特長を発揮できると期待され、従来のシリコンを主体とした無機半導体に替わる技術として注目されている。
【0003】
有機エレクトロニクス素子の例として、有機エレクトロルミネセンス素子(有機EL素子)、有機光電変換素子、及び有機トランジスタが挙げられる。
【0004】
有機エレクトロニクス素子の中でも、有機EL素子は、例えば、白熱ランプ又はガス充填ランプの代替えとなる大面積ソリッドステート光源用途として注目されている。また、フラットパネルディスプレイ(FPD)分野における液晶ディスプレイ(LCD)に置き換わる最有力の自発光ディスプレイとしても注目されており、製品化が進んでいる。
【0005】
有機EL素子は、使用される有機材料から、低分子型有機EL素子及び高分子型有機EL素子の2つに大別される。高分子型有機EL素子では、有機材料として高分子材料が用いられ、低分子型有機EL素子では、低分子材料が用いられる。
【0006】
高分子型有機EL素子は、主に真空系で成膜が行われる低分子型有機EL素子と比較して、インクジェット印刷等の湿式プロセスによる簡易成膜が可能なため、今後の大画面有機ELディスプレイには不可欠な素子として期待されている。このため、湿式プロセスに適した材料の開発が進められている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0007】
【発明の概要】
【発明が解決しようとする課題】
【0008】
一般に、高分子材料を使用して湿式プロセスにより作製した有機EL素子は、低コスト化及び大面積化が容易であるという特長を有している。しかし、従来の高分子材料は、溶媒への溶解性及び硬化性といった、湿式プロセス特性において、更なる改善が望まれている。
【0009】
上記に鑑み、本開示は、湿式プロセスに適した電荷輸送性ポリマー、電荷輸送性材料、及びインク組成物を提供する。また、本開示は、耐溶剤性に優れた有機層、並びに、前記有機層を含む有機エレクトロニクス素子、有機EL素子、表示素子、照明装置、及び表示装置を提供する。
【課題を解決するための手段】
【0010】
実施形態の例を以下に列挙する。本発明は以下の実施形態に限定されない。
【0011】
一実施形態は、分子鎖と、該分子鎖に結合する末端基とを含み、前記末端基が、重合性官能基を含む末端基Pと、電子求引性置換基により置換された芳香族炭化水素基を含む末端基EWとを含み、前記末端基Pが下記式(P1)で表される末端基を含み、前記芳香族炭化水素基の環を構成する炭素原子について、前記分子鎖に結合する炭素原子の番号を1とし、隣接する炭素原子に順に番号をつけたとき、前記電子求引性置換基が、1+2n(nは、1以上の整数である。)の炭素原子に結合している、電荷輸送性ポリマーに関する。
【化1】
[式中、Arは、置換又は非置換の芳香環基を表し、Lは、連結基を表し、PGは、置換又は非置換の重合性官能基を表す。a及びxは、それぞれ独立に0又は1を表し、yは、1以上の整数を表す。ただし、式(P1)は、-Ar-CH
2-O-(CH
2)n-O-(nは、1~6の整数である。)で表される部分構造を含まない。]
【0012】
一実施形態において、前記電荷輸送性ポリマーは、電荷輸送性ポリマーの全構造単位を基準とし、前記末端基を含む構造単位を3~60モル%含む。
【0013】
一実施形態において、前記いずれかの電荷輸送性ポリマーは、前記電子求引性置換基が、ハロゲン基、ハロゲン置換アルキル基、ニトロ基、シアノ基、スルホン酸基、及びスルホキシド基からなる群から選択される1種以上を含む。
【0014】
一実施形態において、前記いずれかの電荷輸送性ポリマーは、前記末端基を基準とし、前記末端基EWを15~95モル%含む。
【0015】
一実施形態において、前記いずれかの電荷輸送性ポリマーは、前記重合性官能基が、炭素-炭素多重結合を有する基、小員環を有する基、及び複素環基からなる群から選択される1種以上を含む。
【0016】
一実施形態において、前記いずれかの電荷輸送性ポリマーは、置換又は非置換の、芳香族アミン構造、カルバゾール構造、チオフェン構造、ビチオフェン構造、ベンゼン構造、及びフルオレン構造からなる群から選択される1種以上の構造を含む。
【0017】
一実施形態において、前記いずれかの電荷輸送性ポリマーは、3方向以上に分岐した構造を有する。
【0018】
他の一実施形態は、前記いずれかの電荷輸送性ポリマーを含有する、電荷輸送性材料に関する。
【0019】
他の一実施形態は、前記いずれかの電荷輸送性ポリマー又は前記電荷輸送性材料と、溶媒とを含有する、インク組成物に関する。
【0020】
他の一実施形態は、前記いずれかの電荷輸送性ポリマー、前記電荷輸送性材料、又は、前記インク組成物を用いて形成された、有機層に関する。
【0021】
他の一実施形態は、前記有機層を有する、有機エレクトロニクス素子に関する。
【0022】
他の実施形態は、前記有機層を有する、有機エレクトロルミネセンス素子に関する。
【0023】
また、他の実施形態は、前記有機エレクトロルミネセンス素子を備えた、表示素子;前記有機エレクトロルミネセンス素子を備えた、照明装置;及び、前記照明装置と、表示手段として液晶素子とを備えた、表示装置に関する。
【発明の効果】
【0024】
本開示によれば、湿式プロセスに適した電荷輸送性ポリマー、電荷輸送性材料、及びインク組成物が提供される。また、本開示によれば、耐溶剤性に優れた有機層、並びに、前記有機層を含む有機エレクトロニクス素子、有機EL素子、表示素子、照明装置、及び表示装置が提供される。
【図面の簡単な説明】
【0025】
【
図1】実施例で用いた評価用のデバイスを示す断面模式図である。
【発明を実施するための形態】
【0026】
以下、本発明の実施形態について説明する。本発明はこれらの実施形態に限定されない。
【0027】
<電荷輸送性ポリマー>
一実施形態によれば、電荷輸送性ポリマーは、分子鎖と、該分子鎖に結合する末端基とを含み、前記末端基が、重合性官能基を含む末端基Pと、電子求引性置換基により置換された芳香族炭化水素基を含む末端基EWとを含む。前記末端基Pは、後述の式(P1)で表される末端基を含む。前記芳香族炭化水素基の環を構成する炭素原子について、前記分子鎖に結合する炭素原子の番号を1とし、隣接する炭素原子に順に番号をつけたとき、前記電子求引性置換基は、1+2n(nは、1以上の整数である。)の炭素原子に結合している。
【0028】
電荷輸送性ポリマーは、電荷を輸送する能力を有するポリマーである。本開示において、「ポリマー」には、構造単位の数が小さい、いわゆる「オリゴマー」も含まれる。
【0029】
電荷輸送性ポリマーに、末端基Pと末端基EWとを導入することにより、湿式プロセスにおいて、電荷輸送性ポリマーの溶媒への溶解性を向上させることができ、かつ、優れた硬化性を得ることができる。
【0030】
[重合性官能基を含む末端基P]
電荷輸送性ポリマーは、分子鎖の末端に、重合性官能基を含む末端基Pを有する。末端基Pは、重合性官能基以外に任意の基を含んでもよい。末端基Pの例として、「重合性官能基」、「重合性官能基を含む基により置換された芳香環基」等が挙げられる。末端基Pは、後述する式(P1)で表される末端基を少なくとも含む。
【0031】
(重合性官能基)
「重合性官能基」は、熱及び/又は光を加えることにより、互いに結合を形成し得る官能基である。電荷輸送性ポリマーは、重合性官能基を含むことで、硬化性を示す。電荷輸送性ポリマーを用いて形成した塗布膜を硬化させ、有機層(本開示において、「硬化膜」ともいう。)を形成することで、有機層に、湿式プロセスにより上層を積層するために必要な耐溶剤性を付与することができる。
【0032】
ゆえに、例えば、正孔輸送層の形成に、重合性官能基を有する電荷輸送性ポリマーを用いた場合、正孔輸送層が耐溶剤性を有するものとなる。これによって、その上層として発光層を、正孔輸送層を溶解させることなく、インク組成物等を用いて形成することが可能となる。一般に、発光層は芳香族炭化水素系溶媒で塗布されることが多い。そのため、電荷輸送性ポリマーは、トルエン等の芳香族炭化水素系溶媒に浸漬しても溶解しにくい電荷輸送層を形成できる電荷輸送性ポリマーであることが好ましい。
【0033】
湿式プロセスにおいて、重合性官能基を有しない電荷輸送性ポリマーを用いて形成した塗布膜の上へ上層材料のインク組成物を塗布した場合、電荷輸送性ポリマーの成分が上層材料のインク組成物内へ溶出することがある。電荷輸送性ポリマーの成分の溶出は、その程度によっては、有機エレクトロニクス素子の駆動電圧の上昇、発光効率、寿命の低下等の原因の一つとなり得る。
【0034】
重合性官能基としては、炭素-炭素多重結合を有する基(例えば、ビニル基、アリル基、ブテニル基、エチニル基、アクリロイル基、アクリロイルオキシ基、アクリロイルアミノ基、メタクリロイル基、メタクリロイルオキシ基、メタクリロイルアミノ基、ビニルオキシ基、ビニルアミノ基等)、小員環を有する基(例えば、シクロプロピル基、シクロブチル基等の環状アルキル基;エポキシ基(オキシラニル基)、オキセタン基(オキセタニル基)等の環状エーテル基;エピスルフィド基等の環状チオエーテル基;ジケテン基、ラクトン基等の環状エステル基;ラクタム基等の環状アミド基)、複素環基(例えば、フラン-イル基、ピロール-イル基、チオフェン-イル基、シロール-イル基)などが挙げられる。重合性官能基は、炭素-炭素多重結合を有する基、小員環を有する基、及び複素環基からなる群から選択される1種以上を含むことが好ましく、炭素-炭素二重結合を有する基、環状エーテル基、及び複素環基からなる群から選択される1種以上を含むことがより好ましい。具体的には、重合性官能基としては、ビニル基、アクリロイル基、メタクリロイル基、エポキシ基、オキセタン基、ピロール-イル基、及びチオフェン-イル基が好ましく、電荷輸送性ポリマーの溶解性及び硬化性の観点から、ビニル基、オキセタン基、及びチオフェン-イル基がより好ましい。重合性官能基は、置換又は非置換の重合性官能基であってよく、重合性官能基が有することができる置換基として、例えば、メチル基、エチル基等の炭素数1~6のアルキル基が挙げられる。一実施形態において、末端基Pは、「重合性官能基」である。
【0035】
(芳香環基)
一実施形態において、末端基Pは、「重合性官能基を含む基により置換された芳香環基」である。
【0036】
重合性官能基の自由度を上げ、重合反応を生じさせやすくする観点からは、重合性官能基と芳香環基とが、アルキレン鎖(例えば、炭素数1~10)等の連結基を介して結合していることが好ましい。また、例えば、電極上に有機層を形成する場合、ITO等の親水性電極との親和性を向上させる観点からは、エチレングリコール鎖、ジエチレングリコール鎖等の親水性の連結基を介して結合していることが好ましい。さらに、電荷輸送性ポリマーに重合性官能基を導入するために用いられるモノマーの入手又は合成が容易になる観点からは、重合性官能基と芳香環基との間に、エーテル結合、エステル結合等から選択される1種以上を含む連結基を有していてもよい。
【0037】
本開示において、「重合性官能基」それ自体、又は、「重合性官能基とアルキレン鎖、エーテル結合等の連結基とを合わせた基」を「重合性官能基を含む基」という。重合性官能基を含む基として、例えば、国際公開第2010/140553号に例示された基が挙げられる。
【0038】
「芳香環基」は、好ましくは炭素数2~30の芳香環基である。芳香環の例には、芳香族炭化水素及び芳香族複素環が含まれる。また、芳香環の例には、単環、縮合多環式芳香族炭化水素、及び縮合多環式芳香族複素環が含まれる。芳香族炭化水素としては、ベンゼン、ナフタレン、アントラセン、テトラセン(ナフタセン)、フルオレン、フェナントレン、9,10-ジヒドロフェナントレン、トリフェニレン、ピレン、クリセン、ペリレン、トリフェニレン、ペンタセン、ベンゾピレン等が挙げられる。芳香族複素環としては、ピリジン、ピラジン、キノリン、イソキノリン、カルバゾール、アクリジン、フェナントロリン、フラン、ピロール、チオフェン、オキサゾール、オキサジアゾール、チアジアゾール、トリアゾール、ベンゾオキサゾール、ベンゾオキサジアゾール、ベンゾチアジアゾール、ベンゾトリアゾール、ベンゾチオフェン等が挙げられる。芳香環は、独立した単環又は縮合環から選択される2個以上が結合した構造であってもよい。該構造としては、ビフェニル、ターフェニル、トリフェニルベンゼン、ビチオフェン等が挙げられる。芳香環基は置換基を有してもよく、置換基の例として、後述の構造単位LにおけるR(ただし、重合性官能基を含む基を除く。)が挙げられる。
【0039】
芳香環は、末端基Pを導入するためのモノマーの商業的な入手のしやすさ及び合成のしやすさの観点から、芳香族炭化水素であることが好ましく、ベンゼンであることがより好ましい。
【0040】
(式(P1)で表される末端基)
末端基Pは、少なくとも下記式(P1)で表される末端基を含む。式(P1)で表される末端基は、良好な耐熱性を得る観点から好ましい基である。
【0041】
【0042】
式中、Arは、置換又は非置換の芳香環基を表し、Lは、連結基を表し、PGは、置換又は非置換の重合性官能基を表す。a及びxは、それぞれ独立に0又は1を表し、yは、1以上の整数を表す。ただし、式(P1)は、-Ar-CH2-O-(CH2)n-O-(nは、1~6の整数である。)で表される部分構造を含まない。「*」は、本開示において、他の構造との結合部位を表す。
【0043】
yの上限は、Arの構造によって定められる。例えば、Arがベンゼン環である場合、yは5以下であり、2以下であることが好ましい。
【0044】
式(P1)で表される末端基は、-Ar-CH2-O-(CH2)n-O-(nは、1~6の整数である。)で表される構造を含まない。式(P1)で表される末端基に、-Ar-CH2-O-(CH2)n-O-で表される構造を含む場合、この構造に含まれる-CH2-O-は、加熱によって-CH2-O-間の結合が切断されやすい傾向がある。耐熱性の観点から、好ましくは、式(P1)で表される末端基は、-Ar-CH2-O-で表される構造を含まない。式(P1)で表される末端基は、有機層の耐熱性の向上に寄与すると考えられる。
【0045】
また、一実施形態において、式(P1)で表される末端基の例として、下記式(P2)で表される末端基が挙げられる。式(P2)で表される末端基は、良好な耐熱性を得る観点から好ましい基である。
【0046】
【0047】
式中、Arは、置換又は非置換の炭素数2~30の芳香環基を表し、Xは、下記式(X1)~(X10)のいずれかで表される2価の基を表し、Yは、炭素数1~10のアルキレン基を表し、PGは、置換又は非置換の重合性官能基を表す。a~cは、それぞれ独立に0又は1を表し、dは、1又は2を表す。ただし、dが2であるとき、aは1である。
【0048】
【0049】
式中、Rは、それぞれ独立に、水素原子、炭素数1~22の直鎖状、環状若しくは分岐状のアルキル基、又は、炭素数2~30のアリール基若しくはヘテロアリール基を表す。
【0050】
良好な耐熱性を得る観点から、Xは、bが1である場合、(X1)で表される基であることが好ましい。
【0051】
一実施形態において、末端基Pは、式(P2)において次を満たす基を含むことが好ましい。Arが芳香族炭化水素基であり、Xが(X1)で表される基であり、Yが炭素数1~6のアルキレン基であり、PGが置換又は非置換の小員環を有する基であり、a~dが1である。Arは、ベンゼン環であることが好ましい。PGは、置換又は非置換の環状エーテル基であることが好ましく、置換又は非置換のオキセタン基、又は、置換又は非置換のエポキシ基であることがより好ましく、置換又は非置換のオキセタン基であることが好ましい。この実施形態において、より良好な溶解性が得られる傾向がある。
【0052】
一実施形態において、末端基Pは、式(P2)において次を満たす基を含むことが好ましい。Arが芳香族炭化水素基であり、PGが置換又は非置換の炭素-炭素多重結合を有する基であり、a及びdが1であり、b及びcが0である。Arは、ベンゼン環であることが好ましい。PGは、置換又は非置換の炭素-炭素二重結合を有する基であることが好ましく、置換又は非置換のビニル基であることがより好ましい。
【0053】
一実施形態において、末端基Pは、式(P2)において次を満たす基を含むことが好ましい。PGが置換又は非置換の複素環基であり、a~cが0であり、dが1である。PGは、置換又は非置換のピロール-イル基、又は、置換又は非置換のチオフェン-イル基であることが好ましく、置換又は非置換のチオフェン-イル基であることがより好ましい。
【0054】
末端基Pは、末端基EWとは異なる基であり、電荷輸送性ポリマーは、末端に両方の基を有することによって、溶媒への溶解性が向上し、かつ、優れた硬化性を示す。電荷輸送性ポリマーに優れた硬化性を付与し、耐溶剤性に優れた有機層を得る観点から、末端基Pの比率は、電荷輸送性ポリマーに含まれる末端基の合計を基準として、5モル%以上が好ましく、10モル%以上がより好ましく、20モル%以上が更に好ましい。有機層が優れた耐溶剤性を有すると、電荷輸送性ポリマーの成分が上層を形成する際のインク組成物内へ溶出することを防止できる。一方、溶解性を向上させる観点、及び、耐熱性を向上させる観点から、末端基Pの比率は、電荷輸送性ポリマーに含まれる末端基の合計を基準として、85モル%以下が好ましく、80モル%以下がより好ましく、75モル%以下が更に好ましい。前記範囲は、重合性官能基同士の結合により形成される連結基が電荷輸送性の妨げになることを防止する観点からも好ましい範囲である。電荷輸送性が妨げられると、有機エレクトロニクス素子の駆動電圧の上昇につながる傾向がある。
【0055】
電荷輸送性ポリマーの硬化性、及び、有機層の耐溶剤性を確認する方法としては、(1)残膜率試験と(2)溶出量試験とが挙げられる。(1)残膜率試験は、電荷輸送性ポリマーを用いて形成した硬化膜である有機層を溶剤に浸漬し、有機層の膜厚の減少率から硬化性及び耐溶剤性の度合いを確認する方法である。(2)溶出量試験は、電荷輸送性ポリマーを用いて形成した硬化膜である有機層を溶剤に浸漬し、溶剤中への電荷輸送性ポリマーの成分の溶出量から硬化性及び耐溶剤性の度合いを確認する方法である。(1)残膜率試験において、残膜率は、有機層の膜厚の測定値の比、又は、有機層の吸光度の測定値の比により求めることができる。(1)残膜率試験の詳細については後述する。
【0056】
残膜率は、50%以上が好ましく、80%以上がより好ましく、90%以上が更に好ましく、95%以上が特に好ましい。
【0057】
有機エレクトロニクス素子の作製において、湿式プロセスに用いられる溶媒に限定はないが、一般に、トルエン等の芳香族炭化水素系溶媒、アニソール等の芳香族エーテル系溶媒、安息香酸ブチル等の芳香族エステル系溶媒などが用いられることが多い。有機層は、少なくとも、トルエンに対し耐溶剤性を有することが好ましい。より好ましくはトルエン及びアニソール、又は、トルエン及び安息香酸ブチルに対し耐溶剤性を有する。したがって、(1)残膜率試験と(2)溶出量試験とにおいては、溶剤として、少なくともトルエンを用いることが好ましい。
【0058】
また、優れた耐熱性を得る観点から、式(P1)で表される末端基Pの比率は、末端基Pを基準として、50モル%以上が好ましく、70モル%以上がより好ましく、90モル%以上が更に好ましい。上限は特に限定されず、100モル%であると特に好ましい。
【0059】
[電子求引性置換基により置換された芳香族炭化水素基を含む末端基EW]
電荷輸送性ポリマーは、分子鎖の末端に、電子求引性置換基により置換された芳香族炭化水素基を含む末端基EWを有する。電子求引性置換基は、芳香族炭化水素基の環を構成する炭素原子について、分子鎖に結合する炭素原子の番号を1とし、隣接する炭素原子に順に番号をつけたとき、1+2n(nは、1以上の整数である。)の炭素原子に結合している。
【0060】
(電子求引性置換基)
「電子求引性置換基」は、水素原子と比べて、結合原子側から電子を引きつけやすい置換基である。電荷輸送性ポリマーは、分子鎖の末端に、特定の炭素原子に結合する水素原子が電子求引性置換基によって置換された芳香族炭化水素基を含むことで、溶媒への優れた溶解性を示す。特定の炭素原子に結合する電子求引性置換基の存在が、電荷輸送性ポリマーの溶解性を向上させていると推測される。
【0061】
湿式プロセスでは、電荷輸送性ポリマーを溶媒へ溶解させて、インク組成物を作製する。例えば、電荷輸送性ポリマーが末端基EWを含まない場合、電荷輸送性ポリマーの溶解性が低下し、溶媒に対しての溶解時間の増加、溶解濃度の低下、又は、場合によっては、不溶化が生じることがある。これらにより、湿式プロセスにおいて、インク組成物の作製時に加温等のプロセスの追加、作業時間の増加等が生じ、生産性が低下する。
【0062】
電子求引性置換基としては、例えば、ハロゲン基、ハロゲン置換アルキル基、ニトロ基、シアノ基、スルホン酸基、スルホキシド基等が挙げられる。ただし、これらに限定されるものではない。ハロゲン基としては、フルオロ基、クロロ基、ブロモ基、ヨード基等が挙げられる。アルキル基の炭素数は、好ましくは1~6であり、より好ましくは1~3であり、更に好ましくは1である。電子を引きつける強さの観点から、ハロゲン基はフルオロ基であることが好ましく、ハロゲン置換アルキル基はフルオロアルキル基であることが好ましい。電荷輸送性ポリマーの熱安定性を考慮すると、電子求引性置換基は、フルオロ基、フルオロアルキル基、スルホン酸基、又はスルホキシド基であることが好ましく、フルオロ基又はフルオロアルキル基であることがより好ましく、フルオロアルキル基であることが更に好ましい。末端基EWが複数の電子求引性置換基を含む場合、複数の電子求引性置換基は、互いに同一であっても異なっていてもよい。
【0063】
(芳香族炭化水素基)
「芳香族炭化水素基」は、好ましくは炭素数6~30の芳香族炭化水素基である。芳香族炭化水素の例は上記のとおりである。芳香族炭化水素が縮合多環式芳香族炭化水素である場合、芳香族炭化水素を構成する環の全てがベンゼン環であることが好ましい。
【0064】
芳香族炭化水素基の炭素数は、6以上である。末端基EWを導入するためのモノマーの商業的な入手のしやすさ及び合成のしやすさの観点から、芳香族炭化水素基の炭素数は、18以下が好ましく、また、溶解性の観点から、12以下であることがより好ましく、10以下であることが更に好ましい。芳香族炭化水素基の炭素数が少ないほど、溶解性が向上する傾向がある。
【0065】
末端基EWにおいて、電子求引性置換基は芳香族炭化水素基に結合し、電荷輸送性ポリマーにおいて、芳香族炭化水素基は分子鎖に結合している。芳香族炭化水素基と分子鎖との結合位置は、限定されない。
【0066】
芳香族炭化水素基の例を以下に示す。本開示において、式中の波線は、他の構造との結合部位を表す。
【0067】
【0068】
電子求引性置換基は、芳香族炭化水素基の環を構成する炭素原子について、分子鎖に結合する炭素原子の番号を1とし、隣接する炭素原子に順に番号をつけたとき、1+2n(nは、1以上の整数である。)の炭素原子に結合している。nの上限は、芳香族炭化水素基の環を構成する炭素原子の数に応じて定められる。本開示において、炭素原子につけた番号を「置換位置番号」ともいう。置換位置番号のつけ方は以下に従う。
【0069】
(1)芳香族炭化水素基の環を構成する炭素原子であって、分子鎖と結合する炭素原子の置換位置番号を1(起点)とする。
(2)置換位置番号1の炭素原子を起点とし、芳香族炭化水素基の外周に沿って一方向に向かい、隣接する炭素原子毎に順に番号をつける。
【0070】
炭素原子に置換位置番号をつけた芳香族炭化水素基の例を以下に示す。
【0071】
【0072】
末端基EWにおいて、少なくとも1つの電子求引性置換基が、置換位置番号1+2nの炭素原子に結合している。置換位置番号1+2nの位置は、末端基EWの共鳴構造を記述した際に、電子の局在化構造を記すことができない位置に該当する。なお、末端基EWの共鳴構造は、芳香族炭化水素基が、芳香族炭化水素基に電子を供与し得る分子鎖に結合している状態で記述する。例えば、分子鎖の端の構造が芳香環(例えばベンゼン環)であり、芳香族炭化水素基が該芳香環に結合している状態で、末端基EWの共鳴構造を記述する。以下に共鳴構造の例を示す。式中、EWGは、電子求引性置換基(Electron Withdrawing Group)を示す。
【0073】
(置換位置番号2n:局在化構造を記述できる場合)
末端基EWの共鳴構造を記述した際、分子鎖と結合する炭素原子の置換位置番号を1とするとき、置換位置番号2n(nは、1以上の整数)(すなわち、2nは偶数)の位置には、局在化構造を記すことができる。以下は、置換位置番号2n(n=2)の炭素原子に電子求引性置換基を有する例である。
【0074】
【0075】
(置換位置番号1+2n:局在化構造を記述できない場合)
末端基EWの共鳴構造を記述した際、分子鎖と結合する炭素原子の置換位置番号を1とするとき、置換位置番号1+2n(nは、1以上の整数)(すなわち、1+2nは奇数)の位置に、局在化構造を示すことができない。以下は、置換位置番号1+2n(n=1)の炭素原子に電子求引性置換基を有する例と、置換位置番号1+2n(n=1)及び置換位置番号1+2n(n=2)の炭素原子にそれぞれ電子求引性置換基を有する例である。
【0076】
【0077】
末端基EWにおいて、芳香族炭化水素基の置換位置番号2n(nは、1以上の整数である)の炭素原子への置換基の有無については、限定されない。一実施形態において、溶解性への影響を考慮すると、芳香族炭化水素基の置換位置番号2n(nは、1以上の整数である)の炭素原子は、置換基を有しない。
【0078】
(末端基EWの構造例)
末端基EWは、芳香族炭化水素基の置換位置番号1+2n(nは、1以上の整数)の炭素原子に電子求引性置換基を有する構造を有する。末端基EWの具体例として、以下の式(EW1)~式(EW5)で表される基が挙げられる。ただし、末端基EWは、これらに限定されるものではなく、電子求引性置換基により置換された芳香族炭化水素基を含み、かつ、芳香族炭化水素基の置換位置番号1+2n(nは、1以上の整数)の炭素原子に電子求引性置換基が結合している構造を満足すれば、電子求引性置換基の結合位置及び数に対しての限定はない。溶解性の向上を考慮すると、電子求引性置換基の数は、2以上が好ましい。溶解性の向上を考慮すると、式(EW1)~式(EW5)のいずれかで表される基が好ましく、式(EW1)又は式(EW2)で表される基がより好ましく、式(EW2)で表される基が更に好ましい。
【0079】
【0080】
式中、EWGは、電子求引性置換基を表す。
【0081】
EWGの具体例としては、以下の置換基が挙げられる。Rは、アルキル基を表し、アルキル基の炭素数は、例えば1~6である。ただし、これらに限定されるものではない。EWGは、-X又は-CX3であることが好ましい。Xは、-Fであることが好ましい。
【0082】
【0083】
末端基EWのより具体的な例として、以下が挙げられる。ただし、これらに限定されるものではない。
【0084】
【0085】
電荷輸送性ポリマーに優れた溶解性を付与する観点から、末端基EWの比率は、電荷輸送性ポリマーに含まれる末端基の合計を基準として、15モル%以上が好ましく、20モル%以上がより好ましく、25モル%以上が更に好ましい。更に、溶媒の選択尤度を高めたい場合には、40モル%以上が好ましく、75モル%以上がより好ましく、85モル%以上が更に好ましい。電荷輸送性ポリマーが優れた溶解性を有すると、インク組成物の調製条件に十分なマージンを確保できる。一方、電荷輸送性ポリマーに硬化性を付与する観点から、末端基EWの比率は、電荷輸送性ポリマーの分子鎖の末端のモル数を基準として、95モル%以下が好ましく、90モル%以下がより好ましく、80モル%以下が更に好ましい。
【0086】
電荷輸送性ポリマーの溶解性を確認する方法としては、(1)溶解時間試験と(2)溶解濃度試験とが挙げられる。(1)溶解時間試験は、電荷輸送性ポリマーを溶媒に溶解し、溶解に要した時間を評価する方法である。(2)溶解濃度試験は、電荷輸送性ポリマーが溶媒に溶解し得る濃度を評価する方法である。(1)溶解時間試験及び(2)溶解濃度試験の詳細については後述する。電荷輸送性ポリマーは、少なくとも、トルエンに対し良好な溶解性を有することが好ましい。より好ましくはトルエン及びアニソール、又は、トルエン及び安息香酸ブチルに対し良好な溶解性を有し、更に好ましくはトルエン、アニソール及び安息香酸ブチルに対し良好な溶解性を有する。したがって、(1)溶解時間試験と(2)溶解濃度試験とにおいては、溶剤として、少なくともトルエンを用いる。トルエンと、アニソール及び/又は安息香酸ブチルとを用いてもよい。
【0087】
[電荷輸送性ポリマーの構造]
電荷輸送性ポリマーは、直鎖状であっても、又は、分岐構造を有する分岐状であってもよい。電荷輸送性ポリマーは、好ましくは、電荷輸送性を有する2価の構造単位Lと1価の構造単位Tとを少なくとも含み、分岐部を構成する3価以上の構造単位Bを更に含んでもよい。また、電荷輸送性ポリマーは、好ましくは、電荷輸送性を有し、分岐部を構成する3価以上の構造単位Bと1価の構造単位Tとを少なくとも含み、2価の構造単位を更に含んでもよい。分子鎖は、2価の構造単位及び/又は3価の構造単位を含む鎖状構造を有する。分岐状の電荷輸送性ポリマーは、耐熱性に優れ、また、末端基を多く導入することができることから、良好な溶解性及び硬化性を示す。電荷輸送性ポリマーは、各構造単位を、それぞれ1種のみ含んでいても、又は、それぞれ複数種含んでいてもよい。電荷輸送性ポリマーにおいて、各構造単位は、「1価」~「3価以上」の結合部位において互いに結合している。
【0088】
電荷輸送性ポリマーに含まれる部分構造の例として、以下が挙げられる。電荷輸送性ポリマーは以下の部分構造を有するポリマーに限定されない。部分構造中、「L」は構造単位Lを、「T」は構造単位Tを、「B」は構造単位Bを表す。以下では、「*」は、他の構造単位との結合部位を表す。以下の部分構造中、複数のLは、互いに同一の構造単位であっても、互いに異なる構造単位であってもよい。T及びBについても、同様である。
【0089】
直鎖状の電荷輸送性ポリマー
【0090】
【0091】
分岐状の電荷輸送性ポリマー
【0092】
【0093】
一実施形態において電荷輸送性ポリマーは、電荷輸送性の2価の構造単位を有することが好ましい。また、一実施形態において電荷輸送性ポリマーは、3方向以上に分岐した構造を有する、すなわち構造単位Bを有することが好ましい。
【0094】
電荷輸送性ポリマーは、芳香族アミン構造、カルバゾール構造、チオフェン構造、ビチオフェン構造、ベンゼン構造、及びフルオレン構造からなる群から選択される1以上の構造を含むことが好ましい。これらの構造は、好ましくは構造単位L又は構造単位Bに含まれている。また、構造単位Lと構造単位Bの両方に含まれていてもよい。これらのいずれかの構造を含むことにより、電荷輸送性、特に正孔輸送性が向上する。
【0095】
(構造単位L)
構造単位Lは、電荷輸送性を有する2価の構造単位である。構造単位Lは、電荷を輸送する能力を有する原子団を含んでいればよく、特に限定されない。例えば、構造単位Lは、置換又は非置換の、芳香族アミン構造、カルバゾール構造、チオフェン構造、ビチオフェン構造、フルオレン構造、ベンゼン構造、ビフェニレン構造、ターフェニレン構造、ナフタレン構造、アントラセン構造、テトラセン構造、フェナントレン構造、ジヒドロフェナントレン構造、ピリジン構造、ピラジン構造、キノリン構造、イソキノリン構造、キノキサリン構造、アクリジン構造、ジアザフェナントレン構造、フラン構造、ピロール構造、オキサゾール構造、オキサジアゾール構造、チアゾール構造、チアジアゾール構造、トリアゾール構造、ベンゾチオフェン構造、ベンゾオキサゾール構造、ベンゾオキサジアゾール構造、ベンゾチアゾール構造、ベンゾチアジアゾール構造、ベンゾトリアゾール構造、N-アリールフェノキサジン構造、及び、これらの1種又は2種以上を含む構造から選択される。芳香族アミン構造は、好ましくはトリアリールアミン構造であり、より好ましくはトリフェニルアミン構造である。
【0096】
一実施形態において、構造単位Lは、優れた正孔輸送性を得る観点から、置換又は非置換の、芳香族アミン構造、カルバゾール構造、チオフェン構造、ビチオフェン構造、ベンゼン構造、フルオレン構造、及びピロール構造からなる群から選択される1種以上の構造を含むことが好ましく、置換又は非置換の、芳香族アミン構造、カルバゾール構造、チオフェン構造、ビチオフェン構造、ベンゼン構造、及びフルオレン構造からなる群から選択される1種以上の構造を含むことがより好ましく、置換又は非置換の、芳香族アミン構造及びカルバゾール構造からなる群から選択される1種以上の構造を含むことがより好ましい。他の実施形態において、構造単位Lは、優れた電子輸送性を得る観点から、置換又は非置換の、フルオレン構造、ベンゼン構造、フェナントレン構造、ピリジン構造、及びキノリン構造からなる群から選択される1種以上の構造を含むことが好ましい。
【0097】
構造単位Lの具体例として、以下が挙げられる。構造単位Lは、以下に限定されない。
【0098】
【0099】
【0100】
Rは、それぞれ独立に、水素原子又は置換基を表す。好ましくは、Rは、それぞれ独立に、-R1、-OR2、-SR3、-OCOR4、-COOR5、-SiR6R7R8、ハロゲン原子、及び、前述の重合性官能基を含む基からなる群から選択される。R1~R8は、それぞれ独立に、水素原子;炭素数1~22個の直鎖状、環状又は分岐状アルキル基;又は、炭素数2~30個のアリール基又はヘテロアリール基を表す。アリール基は、芳香族炭化水素から水素原子1個を除いた原子団である。ヘテロアリール基は、芳香族複素環から水素原子1個を除いた原子団である。アルキル基は、更に、炭素数2~20個のアリール基又はヘテロアリール基により置換されていてもよく、アリール基又はヘテロアリール基は、更に、炭素数1~22個の直鎖状、環状又は分岐状アルキル基により置換されていてもよい。特定の末端基を有することによって電荷輸送性ポリマーが良好な溶解性及び硬化性を示すために、Rは、特に制限されることなく、電荷輸送性ポリマーに求められる機能に応じ、選択することができる。例えば、Rがハロゲン原子である場合にも、電荷輸送性ポリマーは良好な溶解性を示す。Rは、好ましくは水素原子、ハロゲン原子、アルキル基、アリール基、アルキル置換アリール基であり、溶解性向上の観点から、より好ましくはアルキル基である。Arは、炭素数2~30個のアリーレン基又はヘテロアリーレン基を表す。アリーレン基は、芳香族炭化水素から水素原子2個を除いた原子団である。ヘテロアリーレン基は、芳香族複素環から水素原子2個を除いた原子団である。Arは、好ましくはアリーレン基であり、より好ましくはフェニレン基である。
【0101】
芳香族炭化水素としては、単環、縮合環、又は、単環及び縮合環から選択される2個以上が単結合を介して結合した多環が挙げられる。芳香族複素環としては、単環、縮合環、又は、単環及び縮合環から選択される2個以上が単結合を介して結合した多環が挙げられる。
【0102】
(構造単位B)
構造単位Bは、電荷輸送性ポリマーが分岐構造を有する場合に、分岐部を構成する3価以上の構造単位である。構造単位Bは、有機エレクトロニクス素子の耐久性向上の観点から、好ましくは6価以下であり、より好ましくは3価又は4価である。構造単位Bは、電荷輸送性を有する単位であることが好ましい。例えば、構造単位Bは、有機エレクトロニクス素子の耐久性向上の観点から、置換又は非置換の、芳香族アミン構造、カルバゾール構造、縮合多環式芳香族炭化水素構造、及び、これらの1種又は2種以上を含有する構造から選択される。
【0103】
構造単位Bの具体例として、以下が挙げられる。構造単位Bは、以下に限定されない。
【0104】
【0105】
Wは、3価の連結基を表し、例えば、炭素数2~30個のアレーントリイル基又はヘテロアレーントリイル基を表す。アレーントリイル基は、芳香族炭化水素から水素原子3個を除いた原子団である。ヘテロアレーントリイル基は、芳香族複素環から水素原子3個を除いた原子団である。Arは、それぞれ独立に2価の連結基を表し、例えば、それぞれ独立に、炭素数2~30個のアリーレン基又はヘテロアリーレン基を表す。Arは、好ましくはアリーレン基、より好ましくはフェニレン基である。Yは、2価の連結基を表し、例えば、構造単位LにおけるR(ただし、重合性官能基を含む基を除く。)のうち水素原子を1個以上有する基から、更に1個の水素原子を除いた2価の基が挙げられる。Zは、炭素原子、ケイ素原子、又はリン原子のいずれかを表す。構造単位中、ベンゼン環及びArは、置換基を有していてもよく、置換基の例として、構造単位LにおけるRが挙げられる。
【0106】
(構造単位T)
構造単位Tは、電荷輸送性ポリマーの末端部を構成する1価の構造単位であり、末端基を含む構造単位である。構造単位Tは、少なくとも、末端基Pを含む構造単位TPと、末端基EWを含む構造単位TEWとを含む。更には、構造単位Tは、構造単位TP及び構造単位TEWとは異なる任意の構造単位TOを含んでもよい。構造単位TOは、末端基P及び末端基EWを含まない。
【0107】
構造単位TPは、末端基Pを含む構造単位である。上記において説明した末端基Pが構造単位TPであってもよく、構造単位TPの例として、式(P1)で表される基が挙げられる。
【0108】
構造単位TEWは、末端基EWを含む構造単位である。上記において説明した末端基EWが構造単位TEWであってもよく、構造単位TEWの例として、式(EW1)~式(EW5)のいずれかで表される基が挙げられる。
【0109】
構造単位TOは、特に限定されず、例えば、置換又は非置換の、芳香族炭化水素構造、芳香族複素環構造、及び、これらの1種又は2種以上を含む構造から選択される。一実施形態において、構造単位TOは、電荷の輸送性を低下させずに耐久性を付与するという観点から、置換又は非置換の芳香族炭化水素構造であることが好ましく、置換又は非置換のベンゼン構造であることがより好ましい。価数を除き、構造単位TOが構造単位Lと同じ構造を有していてもよい。一実施形態において、構造単位Tは、電荷の輸送性を低下させずに耐久性を付与するという観点から、置換又は非置換の芳香族炭化水素構造であることが好ましく、置換又は非置換のベンゼン構造であることがより好ましい。
【0110】
構造単位TOの具体例として、以下が挙げられる。構造単位TOは、以下に限定されない。
【0111】
【0112】
Rは、それぞれ独立に、水素原子又は置換基を表す。好ましくは、Rは、それぞれ独立に、-R1、-OR2、-SR3、-OCOR4、-COOR5、-SiR6R7R8、及び、ハロゲン原子からなる群から選択される。R1~R8は、構造単位LにおけるR1~R8と同様である。
【0113】
電荷輸送性ポリマーにおいて、重合性官能基は、少なくとも電荷輸送性ポリマーの末端部(すなわち、構造単位T)に導入されている。重合性官能基は、末端以外の部分(すなわち、構造単位L又はB)に導入されていても、末端部と末端以外の部分の両方に導入されていてもよい。硬化性及び電荷輸送性の両立を図る観点からは、末端部のみに導入されていることが好ましい。また、電荷輸送性ポリマーが分岐構造を有する場合、重合性官能基は、電荷輸送性ポリマーの主鎖に導入されていても、側鎖に導入されていてもよく、主鎖と側鎖の両方に導入されていてもよい。
【0114】
例えば、電荷輸送性ポリマー1分子あたりの重合性官能基数は、十分な溶解度の変化を得る観点から、2個以上が好ましく、3個以上がより好ましい。また、重合性官能基数は、電荷輸送性を保つ観点から、1,000個以下が好ましく、500個以下がより好ましい。
【0115】
また、良好な硬化性を得る観点から、重合性官能基の比率は、重合性官能基と末端基EWとの合計を基準として、5モル%以上が好ましく、10モル%以上がより好ましく、20モル%以上が更に好ましい。また、重合性官能基の比率は、良好な電荷輸送性を得るという観点から、重合性官能基と末端基EWとの合計を基準として、85モル%以下が好ましく、80モル%以下がより好ましく、75モル%以下が更に好ましい。
【0116】
電荷輸送性ポリマー1分子あたりの重合性官能基の含有量及び比率は、電荷輸送性ポリマーを合成するために使用した、重合性官能基の仕込み量(例えば、重合性官能基を有するモノマーの仕込み量×該モノマーあたりの重合性官能基数)、各構造単位に対応するモノマーの仕込み量、電荷輸送性ポリマーの質量平均分子量等を用い、平均値として求めることができる。また、重合性官能基の含有量は、電荷輸送性ポリマーの1H NMR(核磁気共鳴)スペクトルにおける重合性官能基に由来するシグナルの積分値と全スペクトルの積分値との比、電荷輸送性ポリマーの質量平均分子量等を利用し、平均値として算出できる。簡便であることから、仕込み量が明らかである場合は、好ましくは、仕込み量を用いて求めた値を採用する。
【0117】
(数平均分子量)
直鎖状の電荷輸送性ポリマーの場合、電荷輸送性ポリマーの数平均分子量は、溶媒への溶解性、成膜性等を考慮して適宜、調整できる。数平均分子量は、電荷輸送性に優れるという観点から、500以上が好ましく、1,000以上がより好ましく、2,000以上が更に好ましく、3,000以上がより一層好ましい。また、数平均分子量は、溶媒への良好な溶解性を保ち、インク組成物の調製を容易にするという観点から、200,000以下が好ましく、100,000以下がより好ましく、50,000以下が更に好ましく、20,000以下がより一層好ましい。
【0118】
分岐状の電荷輸送性ポリマーの場合、電荷輸送性ポリマーの数平均分子量は、溶媒への溶解性、成膜性等を考慮して適宜、調整できる。数平均分子量は、電荷輸送性に優れるという観点から、500以上が好ましく、1,000以上がより好ましく、2,000以上が更に好ましく、5,000以上がより一層好ましい。また、数平均分子量は、溶媒への良好な溶解性を保ち、インク組成物の調製を容易にするという観点から、1,000,000以下が好ましく、100,000以下がより好ましく、50,000以下が更に好ましく、30,000以下がより一層好ましい。
【0119】
(質量平均分子量)
直鎖状の電荷輸送性ポリマーの場合、電荷輸送性ポリマーの質量平均分子量は、溶媒への溶解性、成膜性等を考慮して適宜、調整できる。質量平均分子量は、電荷輸送性に優れるという観点から、1,000以上が好ましく、3,000以上がより好ましく、5,000以上が更に好ましく、10,000以上が一層好ましい。また、質量平均分子量は、溶媒への良好な溶解性を保ち、インク組成物の調製を容易にするという観点から、500,000以下が好ましく、300,000以下がより好ましく、150,000以下が更に好ましく、100,000以下、50,000以下がこの順でより一層好ましい。
【0120】
分岐状の電荷輸送性ポリマーの場合、電荷輸送性ポリマーの質量平均分子量は、溶媒への溶解性、成膜性等を考慮して適宜、調整できる。質量平均分子量は、電荷輸送性に優れるという観点から、1,000以上が好ましく、5,000以上がより好ましく、10,000以上が更に好ましく、30,000以上が一層好ましい。また、質量平均分子量は、溶媒への良好な溶解性を保ち、インク組成物の調製を容易にするという観点から、1,000,000以下が好ましく、700,000以下がより好ましく、400,000以下が更に好ましく、200,000以下、100,000以下がこの順でより一層好ましい。
【0121】
数平均分子量及び質量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により、標準ポリスチレンの検量線を用いて測定することができる。
【0122】
(構造単位の比率)
電荷輸送性ポリマーが構造単位Lを含む場合、構造単位Lの比率は、十分な電荷輸送性を得る観点から、全構造単位を基準として、10モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上が更に好ましい。また、構造単位Lの比率は、構造単位T及び必要に応じて導入される構造単位Bを考慮すると、97モル%以下が好ましく、92モル%以下がより好ましく、85モル%以下が更に好ましい。
【0123】
電荷輸送性ポリマーに含まれる構造単位Tの比率は、溶解性及び硬化性の観点から、全構造単位を基準として、3モル%以上が好ましく、8モル%以上がより好ましく、15モル%以上が更に好ましい。前記範囲は、有機エレクトロニクス素子の特性向上の観点、又は、粘度の上昇を抑え、電荷輸送性ポリマーの合成を良好に行う観点からも好ましい範囲である。また、構造単位Tの比率は、十分な電荷輸送性を得る観点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下が更に好ましい。
【0124】
電荷輸送性ポリマーが構造単位Bを含む場合、構造単位Bの比率は、有機エレクトロニクス素子の耐久性向上の観点から、全構造単位を基準として、1モル%以上が好ましく、5モル%以上がより好ましく、10モル%以上が更に好ましい。また、構造単位Bの比率は、粘度の上昇を抑え、電荷輸送性ポリマーの合成を良好に行う観点、又は、十分な電荷輸送性を得る観点から、50モル%以下が好ましく、40モル%以下がより好ましく、30モル%以下が更に好ましい。
【0125】
電荷輸送性、耐久性、生産性等のバランスを考慮すると、構造単位L及び構造単位Tの比率(モル比)は、L:T=100:1~70が好ましく、100:3~50がより好ましく、100:5~30が更に好ましい。また、電荷輸送性ポリマーが構造単位Bを含む場合、構造単位L、構造単位T、及び構造単位Bの比率(モル比)は、L:T:B=100:10~200:10~100が好ましく、100:20~180:20~90がより好ましく、100:40~160:30~80が更に好ましい。
【0126】
構造単位の比率は、電荷輸送性ポリマーを合成するために使用した、各構造単位に対応するモノマーの仕込み量を用いて求めることができる。また、構造単位の比率は、電荷輸送性ポリマーの1H NMRスペクトルにおける各構造単位に由来するスペクトルの積分値を利用し、平均値として算出することができる。簡便であることから、仕込み量が明らかである場合は、好ましくは、仕込み量を用いて求めた値を採用する。また、前述の末端基に関する比率も、同様に求めることができる。
【0127】
電荷輸送性ポリマーの重合度(構造単位の単位数)は、塗布膜の膜質を安定化させる観点から、5以上が好ましく、10以上がより好ましく、20以上が更に好ましい。また、重合度は、溶媒への溶解性の観点から、1,000以下が好ましく、700以下がより好ましく、500以下が更に好ましい。
【0128】
重合度は、電荷輸送性ポリマーの質量平均分子量、構造単位の分子量、及び構造単位の比率を利用し、平均値として求めることができる。
【0129】
(製造方法)
電荷輸送性ポリマーは、種々の合成方法により製造でき、特に限定されない。例えば、鈴木カップリング、根岸カップリング、薗頭カップリング、スティルカップリング、ブッフバルト・ハートウィッグカップリング等の公知のカップリング反応を用いることができる。鈴木カップリングは、芳香族ボロン酸誘導体と芳香族ハロゲン化物の間で、Pd触媒を用いたクロスカップリング反応を起こさせるものである。鈴木カップリングによれば、所望とする芳香環同士を結合させることにより、電荷輸送性ポリマーを簡便に製造できる。
【0130】
カップリング反応では、触媒として、例えば、Pd(0)化合物、Pd(II)化合物、Ni化合物等が用いられる。また、トリス(ジベンジリデンアセトン)ジパラジウム(0)、酢酸パラジウム(II)等を前駆体とし、ホスフィン配位子と混合することにより発生させた触媒種を用いることもできる。電荷輸送性ポリマーの合成方法については、例えば、国際公開第2010/140553号の記載を参照できる。
【0131】
<電荷輸送性材料>
一実施形態によれば、電荷輸送性材料は、少なくとも前記電荷輸送性ポリマーを含有する。電荷輸送性材料は、有機エレクトロニクス材料として好ましく用いることができる。電荷輸送性材料は、前記電荷輸送性ポリマーを1種のみ含有しても、2種以上を含有してもよい。電荷輸送性材料が前記電荷輸送性ポリマーの複数種類を含有する場合は、混合物である電荷輸送性ポリマー全体が、上記の末端基Pと末端基EWの実施形態を満たすことが好ましい。
【0132】
[ドーパント]
電荷輸送性材料は、ドーパントを更に含有してもよい。ドーパントは、電荷輸送性材料に添加することでドーピング効果を発現させ、電荷の輸送性を向上させ得る化合物であればよく、特に制限はない。ドーピングには、p型ドーピングとn型ドーピングがあり、p型ドーピングではドーパントとして電子受容体として働く物質が用いられ、n型ドーピングではドーパントとして電子供与体として働く物質が用いられる。正孔輸送性の向上にはp型ドーピング、電子輸送性の向上にはn型ドーピングを行うことが好ましい。電荷輸送性材料に用いられるドーパントは、p型ドーピング又はn型ドーピングのいずれの効果を発現させるドーパントであってもよい。また、1種のドーパントを単独で添加しても、複数種のドーパントを混合して添加してもよい。
【0133】
p型ドーピングに用いられるドーパントは、電子受容性の化合物であり、例えば、ルイス酸、プロトン酸、遷移金属化合物、イオン化合物、ハロゲン化合物、π共役系化合物等が挙げられる。具体的には、ルイス酸としては、FeCl3、PF5、AsF5、SbF5、BF5、BCl3、BBr3等;プロトン酸としては、HF、HCl、HBr、HNO5、H2SO4、HClO4等の無機酸、ベンゼンスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、ポリビニルスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸、1-ブタンスルホン酸、ビニルフェニルスルホン酸、カンファスルホン酸等の有機酸;遷移金属化合物としては、FeOCl、TiCl4、ZrCl4、HfCl4、NbF5、AlCl3、NbCl5、TaCl5、MoF5;イオン化合物としては、テトラキス(ペンタフルオロフェニル)ホウ酸イオン、トリス(トリフルオロメタンスルホニル)メチドイオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ヘキサフルオロアンチモン酸イオン、AsF6
-(ヘキサフルオロ砒酸イオン)、BF4
-(テトラフルオロホウ酸イオン)、PF6
-(ヘキサフルオロリン酸イオン)等のパーフルオロアニオンを有する塩、アニオンとして前記プロトン酸の共役塩基を有する塩など;ハロゲン化合物としては、Cl2、Br2、I2、ICl、ICl3、IBr、IF等;π共役系化合物としては、TCNE(テトラシアノエチレン)、TCNQ(テトラシアノキノジメタン)等が挙げられる。好ましくは、ルイス酸、イオン化合物、π共役系化合物等であり、より好ましくはイオン化合物である。イオン化合物のなかでも、オニウム塩が特に好ましい。オニウム塩とは、ヨードニウム及びアンモニウム等のオニウムイオンを含むカチオン部と、対するアニオン部とからなる化合物を意味する。
【0134】
n型ドーピングに用いられるドーパントは、電子供与性の化合物であり、例えば、Li、Cs等のアルカリ金属;Mg、Ca等のアルカリ土類金属;LiF、Cs2CO3等のアルカリ金属及び/又はアルカリ土類金属の塩;金属錯体;電子供与性有機化合物などが挙げられる。
【0135】
電荷輸送性ポリマーを硬化させる観点からは、ドーパントとして、重合性官能基に対する重合開始剤として作用し得る化合物を用いることが好ましい。このような化合物として、下記式(1)で表される化合物及び下記式(2)で表される化合物が挙げられる。
【0136】
【0137】
[式(1)中、Ra~Rcはそれぞれ独立に水素原子(H)、アルキル基、又はベンジル基を示し、Nはアリール基とは結合しない。Aはアニオンを示す。]
【0138】
Nは水素原子(H)、アルキル基、又はベンジル基と結合し、アリール基とは結合しない。これにより、熱及び光に対する安定性が向上する傾向がある。
【0139】
Ra~Rcは同一であってもよいし、異なっていてもよい。Ra~Rcは連結して環を形成していてもよい。アルキル基は、直鎖状、分岐状又は環状のいずれでもよく、置換又は非置換であってよく、炭素数は例えば1~20である。
【0140】
一実施形態において、溶媒への溶解性向上の観点から、Ra~Rcの少なくとも1つがアルキル基又はベンジル基であることが好ましく、Ra~Rcの少なくとも2つがアルキル基及び/又はベンジル基であることがより好ましく、Ra~Rcの全てがアルキル基及び/又はベンジル基であることが好ましい。
一実施形態において、熱安定性を向上させる観点から、Ra~Rcの全てがアルキル基であることが好ましい。
一実施形態において、芳香族炭化水素系溶媒に対する溶解性を向上させる観点から、Ra~Rcの少なくとも1つが、炭素数6以上であることが好ましく、9以上であることがより好ましく、12以上であることが更に好ましい。
【0141】
式(1)中、Aは、従来公知のアニオンであれば特に限定されないが、下記式(1b)~(5b)で表されるアニオンが、駆動電圧低減、安定した長時間駆動等の特性向上の観点から好ましい。
【0142】
【0143】
[式中、E1は酸素原子、E2は窒素原子、E3は炭素原子、E4はホウ素原子又はガリウム原子、E5はリン原子又はアンチモン原子を表し、Y1~Y6は、それぞれ独立に単結合又は2価の連結基を表し、R1~R16は、それぞれ独立に電子求引性の1価の基(R2及びR3、R4~R6から選択される少なくとも2つの基、R7~R10から選択される少なくとも2つの基、及び、R11~R16から選択される少なくとも2つの基は、それぞれ互いに結合していてもよい。)を表す。]
【0144】
式(1A)~(5A)において、R1~R16は、それぞれ独立に電子求引性の1価の基を表す。電子求引性の1価の基とは、水素原子と比べて、結合する原子側から電子を引きつけやすい置換基をいう。R1~R16は、有機基であることが好ましい。有機基とは、炭素原子を1つ以上有する原子団をいう。有機基について、以下同様である。R2及びR3、R4~R6から選択される少なくとも2つの基、R7~R10から選択される少なくとも2つの基、及び、R11~R16から選択される少なくとも2つの基は、それぞれ互いに結合していてもよい。結合した基は、環状になっていてもよい。
【0145】
電子求引性の1価の基の例としては、フッ素原子、塩素原子、臭素原子等のハロゲン原子;シアノ基;チオシアノ基;ニトロ基;メシル基等のアルキルスルホニル基(例えば炭素数1~12、好ましくは炭素数1~6);トシル基等のアリールスルホニル基(例えば炭素数6~18、好ましくは炭素数6~12);メトキシスルホニル基等のアルキルオキシスルホニル基(例えば炭素数1~12、好ましくは炭素数1~6);フェノキシスルホニル基等のアリールオキシスルホニル基(例えば炭素数6~18、好ましくは炭素数6~12);ホルミル基、アセチル基、ベンゾイル基等のアシル基(例えば炭素数1~12、好ましくは炭素数1~6);ホルミルオキシ基、アセトキシ基等のアシルオキシ基(例えば炭素数1~20、好ましくは炭素数1~6);メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基(例えば炭素数2~10、好ましくは炭素数2~7);フェノキシカルボニル基、ピリジルオキシカルボニル基等の「アリールオキシカルボニル基又はヘテロアリールオキシカルボニル基」(例えば炭素数4~25、好ましくは炭素数5~15);トリフルオロメチル基、ペンタフルオロエチル基等の直鎖状、分岐状若しくは環状の「アルキル基、アルケニル基又はアルキニル基」にハロゲン原子が置換した「ハロアルキル基、ハロアルケニル基又はハロアルキニル基」(例えば炭素数1~10、好ましくは炭素数1~6);ペンタフルオロフェニル基等のアリール基にハロゲン原子が置換したハロアリール基(例えば炭素数6~20、好ましくは炭素数6~12);ペンタフルオロフェニルメチル基等のアリールアルキル基にハロゲン原子が置換したハロアリールアルキル基(例えば炭素数7~19、好ましくは炭素数7~13)等が挙げられる。
【0146】
【0147】
[R1及びR2は、それぞれ独立に水素原子又は有機基を表す。]
【0148】
R1及びR2は、イオン化合物の安定性、溶媒への溶解性等の観点から、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリールアルキル基、アリール基、又はヘテロアリール基であることが好ましい。これらの基は置換基を有していてもよい。R1及びR2は、それぞれ互いに結合し、環を形成していてもよい。R1及びR2から選択される少なくとも1つの基は、有機基であることが好ましく、R1及びR2の両方が有機基であることがより好ましく、アリール基であることが更に好ましい。
【0149】
オニウム塩の具体例として、以下の化合物が挙げられる。
【0150】
【0151】
[他の任意成分]
電荷輸送性材料は、電荷輸送性低分子化合物、他のポリマー等を更に含有してもよい。
【0152】
[含有量]
電荷輸送性ポリマーの含有量は、良好な電荷輸送性を得る観点から、電荷輸送性材料の全質量に対して、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましい。100質量%とすることも可能である。
【0153】
ドーパントを含有する場合、その含有量は、電荷輸送性材料の電荷輸送性を向上させる観点から、電荷輸送性材料の全質量に対して、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.5質量%以上が更に好ましい。また、成膜性を良好に保つ観点から、電荷輸送性材料の全質量に対して、50質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下が更に好ましい。
【0154】
<インク組成物>
一実施形態によれば、インク組成物は、前記電荷輸送性材料と該材料を溶解又は分散し得る溶媒とを含有する。インク組成物を用いることによって、塗布法といった簡便な方法によって有機層を容易に形成できる。
【0155】
[溶媒]
溶媒としては、水、有機溶媒、又はこれらの混合溶媒を使用できる。有機溶媒としては、メタノール、エタノール、イソプロピルアルコール等のアルコール;ペンタン、ヘキサン、オクタン等のアルカン;シクロヘキサン等の環状アルカン;ベンゼン、トルエン、キシレン、メシチレン、テトラリン、フェニルシクロヘキサン、ジフェニルメタン等の芳香族炭化水素;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート等の脂肪族エーテル;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール、3-フェノキシトルエン等の芳香族エーテル;酢酸エチル、酢酸n-ブチル、乳酸エチル、乳酸n-ブチル等の脂肪族エステル;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;ジメチルスルホキシド、テトラヒドロフラン、アセトン、クロロホルム、塩化メチレンなどが挙げられる。好ましくは、芳香族炭化水素、脂肪族エステル、芳香族エステル、脂肪族エーテル、及び芳香族エーテルであり、より好ましくは、芳香族炭化水素、芳香族エーテル、及び芳香族エステルであり、更に好ましくは、芳香族炭化水素である。
【0156】
[重合開始剤]
電荷輸送性ポリマーが重合性官能基を有する場合、インク組成物は、好ましくは、重合開始剤を含有する。重合開始剤として、公知のラジカル重合開始剤、カチオン重合開始剤、アニオン重合開始剤等を使用できる。インク組成物を簡便に調製できる観点から、ドーパントとしての機能と重合開始剤としての機能とを兼ねる化合物を用いることが好ましい。ドーパントとしての機能も備えたカチオン重合開始剤として、例えば、前記イオン化合物を好適に使用することができる。例えば、パーフルオロアニオンと、ヨードニウムイオン又はアンモニウムイオン等のカチオンとの塩が挙げられる。
【0157】
[添加剤]
インク組成物は、更に、任意成分として添加剤を含有してもよい。添加剤としては、例えば、重合禁止剤、安定剤、増粘剤、ゲル化剤、難燃剤、酸化防止剤、還元防止剤、酸化剤、還元剤、表面改質剤、乳化剤、消泡剤、分散剤、界面活性剤等が挙げられる。
【0158】
[含有量]
インク組成物における溶媒の含有量は、種々の塗布方法へ適用することを考慮して定めることができる。例えば、溶媒の含有量は、溶媒に対し電荷輸送性ポリマーの含有量が、0.1質量%以上となる量が好ましく、0.2質量%以上となる量がより好ましく、0.5質量%以上となる量が更に好ましい。また、溶媒の含有量は、溶媒に対し電荷輸送性ポリマーの含有量が、20質量%以下となる量が好ましく、15質量%以下となる量がより好ましく、10質量%以下となる量が更に好ましい。
【0159】
<有機層>
一実施形態によれば、有機層は、前記電荷輸送性材料又は前記インク組成物を用いて形成された層であって、前記電荷輸送性ポリマーの硬化物を含むものである。インク組成物を用いることによって、塗布法により有機層を良好に形成できる。塗布方法としては、例えば、スピンコーティング法;キャスト法;浸漬法;凸版印刷、凹版印刷、オフセット印刷、平版印刷、凸版反転オフセット印刷、スクリーン印刷、グラビア印刷等の有版印刷法;インクジェット法等の無版印刷法などの公知の方法が挙げられる。塗布法によって有機層を形成する場合、塗布後に得られた硬化前の塗布膜を、ホットプレート又はオーブンを用いて乾燥させ、溶媒を除去してもよい。
【0160】
塗布膜に、光照射、加熱処理等の処理を加えることにより、電荷輸送性ポリマーの重合反応を進行させ、塗布膜の溶解度を変化させることができる。変化後に得られる硬化した有機層(硬化膜)の上に他の層を積層することで、有機エレクトロニクス素子の多層化を容易に図ることが可能となる。有機層の形成方法については、例えば、国際公開第2010/140553号の記載を参照できる。
【0161】
硬化後の有機層の厚さは、電荷輸送の効率を向上させる観点から、好ましくは0.1nm以上であり、より好ましくは1nm以上であり、更に好ましくは3nm以上である。また、有機層の厚さは、電気抵抗を小さくする観点から、好ましくは300nm以下であり、より好ましくは200nm以下であり、更に好ましくは100nm以下である。
【0162】
<有機エレクトロニクス素子>
一実施形態によれば、有機エレクトロニクス素子は、少なくとも前記有機層を有する。有機エレクトロニクス素子として、例えば、有機EL素子、有機光電変換素子、有機トランジスタ等が挙げられる。有機エレクトロニクス素子は、好ましくは、少なくとも一対の電極の間に有機層が配置された構造を有する。
【0163】
[有機EL素子]
一実施形態によれば、有機EL素子は、少なくとも前記有機層を有する。有機EL素子は、通常、発光層、陽極、陰極、及び基板を備えており、必要に応じて、正孔注入層、電子注入層、正孔輸送層、電子輸送層等の機能層を備えている。各層は、蒸着法により形成してもよく、塗布法により形成してもよい。各層の形成には、公知の材料を用いることができる。公知の材料について、例えば、国際公開第2010/140553号の記載を参照できる。有機EL素子は、好ましくは、有機層を発光層又は機能層として有し、より好ましくは機能層として有し、更に好ましくは正孔注入層及び正孔輸送層の少なくとも一方として有する。有機ELの構造及び製造方法については、例えば、国際公開第2010/140553号の記載を参照できる。
【0164】
前記電荷輸送性材料を用いて形成された有機層を、正孔注入層及び正孔輸送層の少なくとも一方として使用することが好ましく、少なくとも正孔注入層として使用することが一層好ましい。上記のとおり、電荷輸送性材料を含むインク組成物を用いることにより、これらの層を容易に形成することができる。
【0165】
有機EL素子が、前記電荷輸送性材料を用いて形成された有機層を正孔輸送層として有し、更に正孔注入層を有する場合、正孔注入層には公知の材料を使用できる。また、有機EL素子が、前記電荷輸送性材料を用いて形成された有機層を正孔注入層として有し、更に正孔輸送層を有する場合、正孔輸送層には公知の材料を使用できる。電荷輸送性材料を、正孔注入層及び正孔輸送層の両方に用いることも好ましい。
【0166】
<表示素子、照明装置、表示装置>
一実施形態によれば、表示素子は、前記有機EL素子を備えている。例えば、赤、緑及び青(RGB)の各画素に対応する素子として、有機EL素子を用いることで、カラーの表示素子が得られる。画像の形成方法には、マトリックス状に配置した電極でパネルに配列された個々の有機EL素子を直接駆動する単純マトリックス型と、各素子に薄膜トランジスタを配置して駆動するアクティブマトリックス型とがある。
【0167】
また、一実施形態によれば、照明装置は、前記有機EL素子を備えている。さらに、一実施形態によれば、表示装置は、照明装置と、表示手段として液晶素子とを備えている。例えば、表示装置は、バックライトとして前記照明装置を用い、表示手段として公知の液晶素子を用いた表示装置、すなわち液晶表示装置とできる。
【実施例】
【0168】
以下、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。
【0169】
<電荷輸送性ポリマーの合成>
[Pd触媒溶液の調製]
窒素雰囲気下のグローブボックス中で、室温下、サンプル容器にトリス(ジベンジリデンアセトン)ジパラジウム(0.183g、0.200mmol)を秤取り、トルエン(40.00ml)を加え、10分間撹拌した。同様に、異なるサンプル容器にトリス(tert-ブチル)ホスフィン(0.324g、1.600mmol)を秤取り、トルエン(10.00ml)を加え、10分間撹拌した。得られた溶液を混合し、室温で10分間撹拌し、Pd触媒溶液を得た。なお、Pd触媒溶液の調製における全ての溶媒は、窒素雰囲気下での供給量1l/分の窒素バブルによる脱気を30分間以上実施し、酸素濃度を0.5体積%以下とした後に使用した。
【0170】
[電荷輸送性ポリマーの合成]
合成に用いたモノマーを以下に示す。
【0171】
【0172】
以下のようにして、電荷輸送性ポリマーを合成した。
(実施例1-ポリマーE1)
三口丸底フラスコに、L1(2.767g、5.0mmol)、B1(0.964g、2.0mmol)、T1(0.542g、2.0mmol)、T12(0.450g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(39.08ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
三口丸底フラスコに撹拌子を入れ、還流管及び窒素供給ライン(窒素供給量400ml/分)を取り付けた。加熱源として、オイルバスを使用し、60℃にて、スターラー撹拌を30分間行い、上記材料を溶解させた。
別途調製した上記Pd触媒溶液(1.01ml)をこの三口丸底フラスコに加え、加熱還流を2時間行った。
なお、合成における全ての溶媒は、窒素雰囲気下での供給量1l/分の窒素バブルによる脱気を30分間以上実施し、酸素濃度を0.5体積%以下とした後に使用した。
【0173】
反応終了後、得られた有機層を水洗し、次いで、有機層をメタノール-水(9:1)に加え、生じた沈殿物を吸引ろ過した。
ナスフラスコに、得られた沈殿物と酢酸エチル(125ml)を加え、撹拌子を入れ、窒素供給ライン(窒素供給量400ml/分)を取り付けた。加熱源として、オイルバスを使用し、60℃にて、スターラー撹拌を15分間行い、沈殿物を酢酸エチルにより洗浄した。洗浄後、吸引ろ過により、洗浄した沈殿物を回収した。この洗浄した沈殿物を用いて、上記と同様の酢酸エチルによる洗浄を更に2回実施し、沈殿物中の残存モノマー及び酢酸エチルに可溶な反応物を取り除いた。次いで、酢酸エチルにて洗浄した沈殿物を真空乾燥(40℃)した。
ナスフラスコに、真空乾燥後の沈殿物とメルカプトプロピルシラン及びアモルファスシリカからなる金属吸着剤(沈殿物に対し20質量%、バイオタージ・ジャパン株式会社製「ISOLUTE Si-Thiol」)及びトルエン(沈殿物に対して10質量%)を加え、撹拌子を入れ、窒素供給ライン(窒素供給量400ml/分)を取り付けた。加熱源として、ウォーターバスを使用し、40℃にて、スターラー撹拌を行い、沈殿物を溶解させ、更に、撹拌を2時間行い、金属吸着剤による吸着処理を行った。
吸着処理後、得られた混合液をポリテトラフルオロエチレン(PTFE)フィルタ(孔径0.2μm)を用いてろ過し、金属吸着剤を取り除いた。
得られたろ液をメタノールに加え、生じた沈殿物を吸引ろ過により回収した。次いで、回収した沈殿物を真空乾燥(40℃)し、1時間毎に質量の確認と粗粒子の粉砕を行い、質量変化がなくなった時点を真空乾燥の終点として、電荷輸送性ポリマー「ポリマーE1」を得た。
【0174】
得られたポリマーE1における末端の構造単位Tのモル比率は、全構造単位のモル数を基準とし、36.4モル%であった。また、構造単位TP及び構造単位TEWのモル比率は、構造単位TPと構造単位TEWの合計のモル数を基準とし、それぞれ50モル%であった。
また、得られたポリマーE1の質量平均分子量は58,600であり、数平均分子量は16,100であった。
【0175】
質量平均分子量及び数平均分子量は、溶離液にテトラヒドロフラン(THF)を用いたGPC(ポリスチレン換算)により測定した。測定条件は以下のとおりである。
送液ユニット :LC-20AD 株式会社島津製作所
UV-VIS検出器 :SPD-20A 株式会社島津製作所
検出波長 :254nm
カラム :Gelpack(登録商標)GL-A160S/GL-A150S 日立化成株式会社
溶離液 :THF(HPLC用、安定剤を含有) 和光純薬工業株式会社
流量 :1ml/min
カラム温度 :40℃
分子量標準物質 :標準ポリスチレン(PStQuick B/C/D) 東ソー株式会社
【0176】
(実施例2-ポリマーE2)
三口丸底フラスコに、L1(2.767g、5.0mmol)、B1(0.964g、2.0mmol)、T1(0.542g、2.0mmol)、T13(0.386g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(38.54ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーE2」を調製した。得られたポリマーE2の質量平均分子量は58,200であり、数平均分子量は14,900であった。
【0177】
(実施例3-ポリマーE3)
三口丸底フラスコに、L1(2.767g、5.0mmol)、B1(0.964g、2.0mmol)、T1(0.054g、0.2mmol)、T15(1.113g、3.8mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(40.57ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーE3」を調製した。得られたポリマーE3の質量平均分子量は52,000であり、数平均分子量は15,500であった。
【0178】
(実施例4-ポリマーE4)
三口丸底フラスコに、L1(2.767g、5.0mmol)、B1(0.964g、2.0mmol)、T1(0.108g、0.4mmol)、T15(1.055g、3.6mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(40.53ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーE4」を調製した。得られたポリマーE4の質量平均分子量は54,700であり、数平均分子量は21,600であった。
【0179】
(実施例5-ポリマーE5)
三口丸底フラスコに、L1(2.767g、5.0mmol)、B1(0.964g、2.0mmol)、T1(0.163g、0.6mmol)、T15(0.996g、3.4mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(40.50ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーE5」を調製した。得られたポリマーE5の質量平均分子量は53,400であり、数平均分子量は21,400であった。
【0180】
(実施例6-ポリマーE6)
三口丸底フラスコに、L1(2.767g、5.0mmol)、B1(0.964g、2.0mmol)、T1(0.271g、1.0mmol)、T15(0.879g、3.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(40.42ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーE6」を調製した。得られたポリマーE6の質量平均分子量は74,200であり、数平均分子量は16,500であった。
【0181】
(実施例7-ポリマーE7)
三口丸底フラスコに、L1(2.767g、5.0mmol)、B1(0.964g、2.0mmol)、T1(0.542g、2.0mmol)、T15(0.586g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(40.24ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーE7」を調製した。得られたポリマーE7の質量平均分子量は51,600であり、数平均分子量は17,300であった。
【0182】
(実施例8-ポリマーE8)
三口丸底フラスコに、L1(2.767g、5.0mmol)、B1(0.964g、2.0mmol)、T1(0.651g、2.4mmol)、T15(0.469g、1.6mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(40.16ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーE8」を調製した。得られたポリマーE8の質量平均分子量は55,600であり、数平均分子量は17,500であった。
【0183】
(実施例9-ポリマーE9)
三口丸底フラスコに、L1(2.767g、5.0mmol)、B1(0.964g、2.0mmol)、T1(0.814g、3.0mmol)、T15(0.293g、1.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(40.05ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーE9」を調製した。得られたポリマーE9の質量平均分子量は53,000であり、数平均分子量は16,300であった。
【0184】
(実施例10-ポリマーE10)
三口丸底フラスコに、L2(2.576g、5.0mmol)、B1(0.964g、2.0mmol)、T1(0.542g、2.0mmol)、T15(0.586g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(47.62ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーE10」を調製した。得られたポリマーE10の質量平均分子量は53,400であり、数平均分子量は17,100であった。
【0185】
(実施例11-ポリマーE11)
三口丸底フラスコに、L2(2.576g、5.0mmol)、B1(0.964g、2.0mmol)、T2(0.683g、2.0mmol)、T15(0.586g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(62.97ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーE11」を調製した。得られたポリマーE11の質量平均分子量は52,000であり、数平均分子量は17,700であった。
【0186】
(実施例12-ポリマーE12)
三口丸底フラスコに、L2(2.576g、5.0mmol)、B1(0.964g、2.0mmol)、T3(0.366g、2.0mmol)、T15(0.586g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(58.77ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーE12」を調製した。得られたポリマーE12の質量平均分子量は51,900であり、数平均分子量は17,600であった。
【0187】
(実施例13-ポリマーE13)
三口丸底フラスコに、L2(2.576g、5.0mmol)、B1(0.964g、2.0mmol)、T3(0.366g、2.0mmol)、T15(0.586g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(45.78ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーE13」を調製した。得られたポリマーE13の質量平均分子量は62,200であり、数平均分子量は18,600であった。
【0188】
(実施例14-ポリマーE14)
三口丸底フラスコに、L2(2.576g、5.0mmol)、B1(0.964g、2.0mmol)、T3(0.366g、2.0mmol)、T15(0.586g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(37.13ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーE14」を調製した。得られたポリマーE14の質量平均分子量は81,000であり、数平均分子量は20,000であった。
【0189】
(実施例15-ポリマーE15)
三口丸底フラスコに、L2(2.576g、5.0mmol)、B1(0.964g、2.0mmol)、T3(0.366g、2.0mmol)、T15(0.586g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(26.31ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーE15」を調製した。得られたポリマーE15の質量平均分子量は112,700であり、数平均分子量は21,400であった。
【0190】
(実施例16-ポリマーE16)
三口丸底フラスコに、L2(2.576g、5.0mmol)、B1(0.964g、2.0mmol)、T4(0.366g、2.0mmol)、T15(0.586g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(58.77ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーE16」を調製した。得られたポリマーE16の質量平均分子量は54,200であり、数平均分子量は17,200であった。
【0191】
(実施例17-ポリマーE17)
三口丸底フラスコに、L2(2.576g、5.0mmol)、B1(0.964g、2.0mmol)、T5(0.354g、2.0mmol)、T15(0.586g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(58.61ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーE17」を調製した。得られたポリマーE17の質量平均分子量は55,500であり、数平均分子量は18,200であった。
【0192】
(実施例18-ポリマーE18)
三口丸底フラスコに、L2(2.576g、5.0mmol)、B2(0.960g、2.0mmol)、T3(0.366g、2.0mmol)、T15(0.586g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(67.98ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーE18」を調製した。得られたポリマーE18の質量平均分子量は121,000であり、数平均分子量は17,000であった。
【0193】
(実施例19-ポリマーE19)
三口丸底フラスコに、L1(3.043g、5.500mmol)、L3(2.086g、5.000mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.044g、Aliquat336/Alfa Aesar製)、トルエン(42.43ml)、及び、3.0モル%水酸化カリウム水溶液(10.13ml)を加えた。
三口丸底フラスコに撹拌子を入れ、還流管、窒素供給ライン(窒素供給量400ml/分)を取り付けた。加熱源として、オイルバスを使用し、60℃にて、スターラー撹拌を30分間行い、上記材料を溶解させた。
別途調製した上記Pd触媒溶液(1.11ml)をこの三口丸底フラスコに加え、加熱還流を30分間行った後、予め調製したトルエン溶液(トルエン(3.64ml)中に、T1(0.542g、2.0mmol)、T15(0.586g、2.0mmol)を加えた溶液)を加え、更に加熱還流を1時間行った。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーE19」を調製した。得られたポリマーE19の質量平均分子量は10,300であり、数平均分子量は6,800であった。
【0194】
(比較例1-ポリマーC1)
三口丸底フラスコに、L1(2.767g、5.0mmol)、B1(0.964g、2.0mmol)、T1(1.085g、4.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(39.87ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーC1」を調製した。得られたポリマーC1の質量平均分子量は58,800であり、数平均分子量は15,400であった。
【0195】
(比較例2-ポリマーC2)
三口丸底フラスコに、L1(2.767g、5.0mmol)、B1(0.964g、2.0mmol)、T1(0.542g、2.0mmol)、T6(0.314g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(37.93ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーC2」を調製した。得られたポリマーC2の質量平均分子量は62,400であり、数平均分子量は12,600であった。
【0196】
(比較例3-ポリマーC3)
三口丸底フラスコに、L1(2.767g、5.0mmol)、B1(0.964g、2.0mmol)、T1(0.542g、2.0mmol)、T7(0.538g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(39.83ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーC3」を調製した。得られたポリマーC3の質量平均分子量は51,500であり、数平均分子量は15,000であった。
【0197】
(比較例4-ポリマーC4)
三口丸底フラスコに、L1(2.767g、5.0mmol)、B1(0.964g、2.0mmol)、T1(0.542g、2.0mmol)、T8(0.434g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(38.95ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーC4」を調製した。得られたポリマーC4の質量平均分子量は53,700であり、数平均分子量は14,200であった。
【0198】
(比較例5-ポリマーC5)
三口丸底フラスコに、L1(2.767g、5.0mmol)、B1(0.964g、2.0mmol)、T1(0.542g、2.0mmol)、T9(0.370g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(38.41ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーC5」を調製した。得られたポリマーC5の質量平均分子量は57,500であり、数平均分子量は13,600であった。
【0199】
(比較例6-ポリマーC6)
三口丸底フラスコに、L1(2.767g、5.0mmol)、B1(0.964g、2.0mmol)、T1(0.542g、2.0mmol)、T10(0.350g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(38.24ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーC6」を調製した。得られたポリマーC6の質量平均分子量は54,300であり、数平均分子量は11,500であった。
【0200】
(比較例7-ポリマーC7)
三口丸底フラスコに、L1(2.767g、5.0mmol)、B1(0.964g、2.0mmol)、T1(0.542g、2.0mmol)、T11(0.450g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(39.08ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーC7」を調製した。得られたポリマーC7の質量平均分子量は55,900であり、数平均分子量は14,200であった。
【0201】
(比較例8-ポリマーC8)
三口丸底フラスコに、L2(2.576g、5.0mmol)、B1(0.964g、2.0mmol)、T2(1.365g、4.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(64.26ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーC8」を調製した。得られたポリマーC8の質量平均分子量は45,600であり、数平均分子量は17,100であった。
【0202】
(比較例9-ポリマーC9)
三口丸底フラスコに、L2(2.576g、5.0mmol)、B1(0.964g、2.0mmol)、T1(0.542g、2.0mmol)、T7(0.538g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(47.21ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーC9」を調製した。得られたポリマーC9の質量平均分子量は53,900であり、数平均分子量は14,900であった。
【0203】
(比較例10-ポリマーC10)
三口丸底フラスコに、L2(2.576g、5.0mmol)、B1(0.964g、2.0mmol)、T2(0.683g、2.0mmol)、T7(0.538g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(62.34ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーC10」を調製した。得られたポリマーC10の質量平均分子量は51,100であり、数平均分子量は17,300であった。
【0204】
(比較例11-ポリマーC11)
三口丸底フラスコに、L2(2.576g、5.0mmol)、B1(0.964g、2.0mmol)、T3(0.366g、2.0mmol)、T7(0.538g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(67.31ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーC11」を調製した。得られたポリマーC11の質量平均分子量は52,700であり、数平均分子量は13,200であった。
【0205】
(比較例12-ポリマーC12)
三口丸底フラスコに、L2(2.576g、5.0mmol)、B1(0.964g、2.0mmol)、T4(0.366g、2.0mmol)、T7(0.538g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(67.31ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーC12」を調製した。得られたポリマーC12の質量平均分子量は60,800であり、数平均分子量は13,700であった。
【0206】
(比較例13-ポリマーC13)
三口丸底フラスコに、L2(2.576g、5.0mmol)、B1(0.964g、2.0mmol)、T5(0.354g、2.0mmol)、T7(0.538g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(67.13ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーC13」を調製した。得られたポリマーC13の質量平均分子量は57,100であり、数平均分子量は13,600であった。
【0207】
(比較例14-ポリマーC14)
三口丸底フラスコに、L2(2.576g、5.0mmol)、B2(0.960g、2.0mmol)、T3(0.366g、2.0mmol)、T7(0.538g、2.0mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.034g、Aliquat336/Alfa Aesar製)、トルエン(67.25ml)、及び、3.0モル%水酸化カリウム水溶液(7.79ml)を加えた。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーC14」を調製した。得られたポリマーC14の質量平均分子量は114,500であり、数平均分子量は16,600であった。
【0208】
(比較例15-ポリマーC15)
三口丸底フラスコに、L1(3.043g、5.500mmol)、L3(2.086g、5.000mmol)、メチルトリ-n-オクチルアンモニウムクロリド(0.044g、Aliquat336/Alfa Aesar製)、トルエン(42.43ml)、及び、3.0モル%水酸化カリウム水溶液(10.13ml)を加えた。
三口丸底フラスコに撹拌子を入れ、還流管、窒素供給ライン(窒素供給量400ml/分)を取り付けた。加熱源として、オイルバスを使用し、60℃にて、スターラー撹拌を30分間行い、上記材料を溶解させた。
別途調製した上記Pd触媒溶液(1.11ml)をこの三口丸底フラスコに加え、加熱還流を30分間行った後、予め調製したトルエン溶液(トルエン(3.66ml)中に、T1(0.542g、2.0mmol)、T7(0.538g、2.0mmol)を加えた溶液)を加え、更に加熱還流を1時間行った。
以降は、実施例1の方法と同様にして、電荷輸送性ポリマー「ポリマーC15」を調製した。得られたポリマーC15の質量平均分子量は10,400であり、数平均分子量は6,400であった。
【0209】
ポリマーE1~E19及びポリマーC1~C15について、合成に用いたモノマー(ポリマーに含まれる構造単位)、構造単位Tのモル比率(%)、構造単位TPと構造単位TEWのモル比率(%)、質量平均分子量、及び数平均分子量を、表1及び2に示す。
【0210】
【0211】
【0212】
<溶解性評価>
以下に従い、ポリマーE1~E19及びポリマーC1~C15の溶媒への溶解性の評価を実施した。
【0213】
[トルエンへの溶解性]
(溶解時間試験)
ポリマーに含まれる粗い粒子を、乳鉢を用いてすり潰し、ポリマーを一定の粒子径の粉体にした。ポリマーの含有量が溶液の質量に対し1.0質量%、溶液の体積が1mlになるように、6mlスクリュー管に、ポリマー(8.7mg)を量り採り、トルエン(865.0mg)(25℃)を加えた。続いて、撹拌子(10×Φ4mm)を入れ、ウォーターバス(25℃)中で、撹拌(600rpm)した。
撹拌開始からポリマーが完全に溶解するまでの溶解時間を計測した。なお、「完全に溶解」した状態は、目視にて、明らかに不溶のポリマーがなきこと、濁りなきこと、かつ、透明であることとした。
実施例中、一定の粒子径の粉体とは、体積基準による平均粒径が20~40μmである粉体をいう。平均粒径は、レーザー回折散乱式の粒度分布測定装置により測定されるメジアン径である。
【0214】
実施例のポリマーの溶解時間を、比較例のポリマーの溶解時間と比較することにより、短縮時間を算出した。各実施例のポリマーは、末端の構造単位TEWが異なる以外は同じ構造単位を有する比較例のポリマーと比較した。短縮時間の算出には、以下の式を用いた。
【0215】
【0216】
実施例のポリマーのトルエンに対しての「溶解時間」を、算出した「短縮時間」を用い、以下の7段階で評価した。参考として、比較例のポリマーであるポリマーC2及びC4~C7についても、溶解時間の評価を行った。
A:短縮時間50%超
B:短縮時間40%超50%以下
C:短縮時間30%超40%以下
D:短縮時間20%超30%以下
E:短縮時間10%超20%以下
F:短縮時間0%超10%以下
G:短縮時間0%以下
【0217】
(溶解濃度試験)
ポリマーに含まれる粗い粒子を、乳鉢を用いてすり潰し、ポリマーを一定の粒子径の粉体にした。6mlスクリュー管に、ポリマーの含有量が溶液の質量に対し4.0質量%、3.0質量%、2.0質量%、又は1.0質量%になるように、ポリマー及びトルエン(25℃)を加え、25℃の環境にて、振とうし、溶解の可否(可溶又は不溶)を確認した。なお、「可溶」は、目視にて、明らかに不溶のポリマーがなきこと、濁りなきこと、かつ、透明であることとした。
【0218】
ポリマーのトルエンに対しての「溶解濃度」を、以下の4段階で評価した。
A:濃度4.0質量%及び3.0質量%のときポリマーが可溶
B:濃度2.0質量%のときポリマーが可溶、濃度3.0質量%のときポリマーが不溶
C:濃度1.0質量%のときポリマーが可溶、濃度2.0質量%のときポリマーが不溶
D:濃度1.0質量%のときポリマーが不溶
【0219】
[アニソールへの溶解性]
(溶解時間試験)
ポリマーに含まれる粗い粒子を、乳鉢を用いてすり潰し、ポリマーを一定の粒子径の粉体にした。ポリマーの含有量が溶液の質量に対し1.0質量%、溶液の体積が1mlになるように、6mlスクリュー管に、ポリマー(10.1mg)を量り採り、アニソール(1002.0mg)(25℃)を加えた。続いて、撹拌子(10×Φ4mm)を入れ、ウォーターバス(25℃)中で、撹拌(600rpm)した。
撹拌開始からポリマーが完全に溶解するまでの溶解時間を計測した。なお、「完全に溶解」した状態は、目視にて、明らかに不溶のポリマーがなきこと、濁りなきこと、かつ、透明であることとした。
【0220】
トルエンへの溶解性と同様に「短縮時間」を算出し、ポリマーのアニソールに対しての「溶解時間」を、以下の7段階で評価した。
A:短縮時間50%超
B:短縮時間40%超50%以下
C:短縮時間30%超40%以下
D:短縮時間20%超30%以下
E:短縮時間10%超20%以下
F:短縮時間0%超10%以下
G:短縮時間0%以下
【0221】
(溶解濃度試験)
ポリマーに含まれる粗い粒子を、乳鉢を用いてすり潰し、ポリマーを一定の粒子径の粉体にした。6mlスクリュー管に、ポリマーの含有量が溶液の質量に対し4.0質量%、3.0質量%、2.0質量%、又は1.0質量%の濃度になるように、ポリマー及びアニソール(25℃)を加え、25℃の環境にて、振とうし、溶解の可否(可溶又は不溶)を確認した。なお、「可溶」は、目視にて、明らかに不溶のポリマーがなきこと、濁りなきこと、かつ、透明であることとした。
【0222】
ポリマーのアニソールに対しての「溶解濃度」を、以下の4段階で評価した。
A:濃度4.0質量%及び3.0質量%以上のときポリマーが可溶
B:濃度2.0質量%のときポリマーが可溶、濃度3.0質量%のときポリマーが不溶
C:濃度1.0質量%のときポリマーが可溶、濃度2.0質量%のときポリマーが不溶
D:濃度1.0質量%のときポリマーが不溶
【0223】
[安息香酸ブチルへの溶解性]
(溶解時間試験)
ポリマーに含まれる粗い粒子を、乳鉢を用いてすり潰し、ポリマーを一定の粒子径の粉体にした。ポリマーの含有量が溶液の質量に対し1.0質量%、溶液の体積が1mlになるように、6mlスクリュー管に、ポリマー(10.2mg)を量り採り、安息香酸ブチル(1007.0mg)(25℃)を加えた。続いて、撹拌子(10×Φ4mm)を入れ、ウォーターバス(25℃)中で、撹拌(600rpm)した。
撹拌開始からポリマーが完全に溶解するまでの溶解時間を計測した。なお、「完全に溶解」した状態は、目視にて、明らかに不溶のポリマーがなきこと、濁りなきこと、かつ、透明であることとした。
【0224】
ポリマーの安息香酸ブチルに対しての「溶解時間」を、以下の4段階で評価した。
A:可溶(180分以下)
B:可溶(180分超480分以下)
C:可溶(480分超)
D:不溶
【0225】
(溶解濃度試験)
ポリマーに含まれる粗い粒子を、乳鉢を用いてすり潰し、ポリマーを一定の粒子径の粉体にした。6mlスクリュー管に、ポリマーの含有量が溶液の質量に対し4.0質量%、3.0質量%、2.0質量%、又は1.0質量%の濃度になるように、ポリマー及び安息香酸ブチル(25℃)を加え、25℃の環境にて、振とうし、溶解の可否(可溶又は不溶)を確認した。なお、「可溶」は、目視にて、明らかに不溶のポリマーがなきこと、濁りなきこと、かつ、透明であることとした。
【0226】
ポリマーの安息香酸ブチルに対しての「溶解濃度」を、以下の4段階で評価した。
A:濃度4.0質量%及び3.0質量%のときポリマーが可溶
B:濃度2.0質量%のときポリマーが可溶、濃度3.0質量%のときポリマーが不溶
C:濃度1.0質量%のときポリマーが可溶、濃度2.0質量%のときポリマーが不溶
D:濃度1.0質量%のときポリマーが不溶
【0227】
<硬化性評価>
以下に従い、ポリマーE1~E19及びポリマーC1~C15を用い、有機層を形成し、ポリマーの硬化性(有機層の耐溶剤性)の評価を実施した。
【0228】
(残膜率試験)
9mlスクリュー管に、ポリマー(50.0mg)及び下記重合開始剤(0.5mg)を量り採り、トルエン(4949.5mg)を加えポリマー及び重合開始剤を溶解させ、インク組成物を調製した。インク組成物をポリテトラフルオロエチレン(PTFE)フィルタ(孔径0.2μm)にて、ろ過し、石英基板(縦22mm×横29mm×厚0.7mm)上に滴下し、スピンコーターにより塗布膜を成膜した。続いて、210℃、30分間、大気下の条件で加熱硬化を実施し、石英基板上に膜厚30nmの有機層を形成した。
【0229】
【0230】
分光光度計(株式会社島津製作所製「UV-2700」)を用いて、石英基板上に形成した有機層の吸光度Aを測定した。続いて、測定後の有機層が上面になるように、25℃の環境下で、トルエン(10ml、25℃)に10分間浸漬した。トルエン浸漬後の有機層の吸光度Bを測定し、形成した有機層の吸光度Aとトルエン浸漬後の有機層の吸光度Bから、以下の式を用いて、残膜率を算出した。なお、吸光度の値は、有機層の極大吸収波長における値を用いた。
【0231】
【0232】
残膜率を、以下の4段階で評価した。残膜率が高いほど、ポリマーの硬化性が高く、有機層の耐溶剤性が高い。
A:残膜率99%以上100%以下
B:残膜率90%以上99%未満
C:残膜率50%以上90%未満
D:残膜率50%未満
【0233】
溶解性評価及び硬化性評価の結果を表3及び4に示す。表中、「-」は評価が行われていないことを意味する。また、表中、いくつかのポリマーについては、比較のために重複して記載されている。
【0234】
【0235】
【0236】
実施例のポリマーは、有機溶剤への優れた溶解性を有していた。また、実施例のポリマーは、優れた硬化性を有し、実施例のポリマーにより形成された有機層は、十分な耐溶剤性を有していた。
【0237】
<導電性評価及び熱安定性評価>
以下に従い、ポリマーE1~E19及びポリマーC1~C15を用い、評価用のデバイス(ホールオンリーデバイス(以下、「HOD」という。)を作製し、導電性及び熱安定性の評価を実施した。HODの断面模式図を
図1に示す。
図1において、1は基板、2は陽極、3は有機層、4は陰極を表す。
【0238】
[HODの作製]
(導電性評価用HODの作製)
9mlスクリュー管に、ポリマー(50.0mg)及び下記重合開始剤(0.5mg)を量り採り、トルエン(2449.5mg)を加えポリマー及び重合開始剤を溶解させ、インク組成物を調製した。インク組成物をポリテトラフルオロエチレン(PTFE)フィルタ(孔径0.2μm)にて、ろ過した。インク組成物を、1.6mm幅にパターニングした酸化インジウムスズ(ITO)電極を形成した石英基板(縦22mm×横29mm×厚0.7mm、以下、「ITO基板」という。)上に滴下し、スピンコーターにより塗布膜を成膜した。続いて、210℃、30分間、大気下の条件で加熱硬化を実施し、ITO基板上に膜厚100nmの有機層を形成した。
【0239】
【0240】
その後、ITO基板を、真空蒸着機中に移し、蒸着法を用い、形成した有機層の上に、蒸着により膜厚100nmのアルミニウム(Al)電極を形成し、封止処理を行って導電性評価用HODを作製した。
【0241】
(熱安定性1評価用HODの作製)
加熱硬化後に、更に200℃、60分間、窒素雰囲気下の条件で追加加熱を実施し、ITO基板上に膜厚100nmの有機層を形成した以外は、導電性評価用HODの作製と同様にして熱安定性1評価用HODを作製した。
【0242】
(熱安定性2評価用HODの作製)
加熱硬化後に、更に230℃、60分間、窒素雰囲気下の条件で追加加熱を実施し、ITO基板上に膜厚100nmの有機層を形成した以外は、導電性評価用HODの作製と同様にして熱安定性2評価用HODを作製した。
【0243】
[導電性評価]
上記で作製した導電性評価用HODに電圧を印加し、導電性の評価を実施した。
【0244】
(導電性1)
導電性の有無について、以下の2段階で評価した。評価の結果がAであれば、有機層は正孔注入機能を有する。
A:導電性-有
B:導電性-無
【0245】
(導電性2)
印加電圧を変化させ、電流密度300mA/cm2時の電圧を測定した。導電性を以下の3段階で評価した。
A:電圧3.00V未満
B:電圧3.00V以上5.00V未満
C:電圧5.00V以上
【0246】
[熱安定性評価]
(熱安定性1評価)
上記で作製した熱安定性1評価用HODに電圧を印加し、印加電圧を変化させ、電流密度300mA/cm2時の電圧を測定した。導電性評価用HODと熱安定性1評価用HODとの電圧差から、熱安定性を以下の5段階にて評価した。電圧差は、以下の式を用いて、算出した。電圧差が小さいほど、耐熱性が優れている。
【0247】
【0248】
A:電圧差0.20V未満
B:電圧差0.20V以上0.50V未満
C:電圧差0.50V以上1.00V未満
D:電圧差1.00V以上2.00V未満
E:電圧差2.00V以上
【0249】
(熱安定性2評価)
上記で作製した熱安定性2評価用HODに電圧を印加し、印加電圧を変化させ、電流密度300mA/cm2時の電圧を測定した。導電性評価用HODと熱安定性2評価用HODとの電圧差から、熱安定性を以下の5段階にて評価した。電圧差は、以下の式を用いて、算出した。電圧差が小さいほど、耐熱性が優れている。
【0250】
【0251】
A:電圧差0.20V未満
B:電圧差0.20V以上0.50V未満
C:電圧差0.50V以上1.00V未満
D:電圧差1.00V以上2.00V未満
E:電圧差2.00V以上
【0252】
導電性評価及び耐熱性評価の結果を表5及び6に示す。
【0253】
【0254】
【0255】
実施例のポリマーにより形成された有機層は、優れた導電性及び熱安定性を有していた。該有機層を含む有機エレクトロニクス素子は、優れた導電性及び熱安定性を示すものとなる。
【産業上の利用可能性】
【0256】
一実施形態によれば、電荷輸送性ポリマーは、湿式プロセスに適した高分子材料であり、湿式プロセスを用いた有機エレクトロニクス材料の作製に好ましく使用できる。また、一実施形態によれば、電荷輸送性ポリマーを用いて形成された有機層は、有機エレクトロニクス素子の特性を向上させることができる。
【符号の説明】
【0257】
1 基板
2 陽極
3 有機層
4 陰極