IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日立金属株式会社の特許一覧

<>
  • 特許-絶縁電線 図1
  • 特許-絶縁電線 図2
  • 特許-絶縁電線 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-08
(45)【発行日】2022-03-16
(54)【発明の名称】絶縁電線
(51)【国際特許分類】
   H01B 7/295 20060101AFI20220309BHJP
   B32B 1/00 20060101ALI20220309BHJP
   H01B 7/02 20060101ALI20220309BHJP
   H01B 7/282 20060101ALI20220309BHJP
【FI】
H01B7/295
B32B1/00
H01B7/02 F
H01B7/02 Z
H01B7/282
【請求項の数】 4
(21)【出願番号】P 2017071029
(22)【出願日】2017-03-31
(65)【公開番号】P2017228524
(43)【公開日】2017-12-28
【審査請求日】2019-10-11
【審判番号】
【審判請求日】2021-06-14
(31)【優先権主張番号】P 2016120692
(32)【優先日】2016-06-17
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000005083
【氏名又は名称】日立金属株式会社
(72)【発明者】
【氏名】加賀 雅文
【合議体】
【審判長】辻本 泰隆
【審判官】▲吉▼澤 雅博
【審判官】小田 浩
(56)【参考文献】
【文献】特開2006-310093(JP,A)
【文献】特開平6-44820(JP,A)
【文献】実開昭52-113389(JP,U)
(58)【調査した分野】(Int.Cl.,DB名)
H01B 7/295
B32B 1/00
H01B 7/02
H01B 7/282
(57)【特許請求の範囲】
【請求項1】
導体と、
前記導体の外周に配置され、難燃剤を含む樹脂組成物から形成される難燃絶縁層と、
前記難燃絶縁層の外周に配置され、樹脂を含み、難燃剤を含まない樹脂組成物を架橋させた架橋体から形成され、飽和吸水率が0.5%以下である遮水層と、
前記遮水層の外周に配置され、難燃剤を含む樹脂組成物から形成される難燃層とを備えた絶縁電線であって、
前記遮水層の厚さが25μm以上100μm以下であり、
前記難燃絶縁層の厚さが0.28mm以上0.5mm以下であり、
前記遮水層と前記難燃絶縁層との合計の厚さに占める前記遮水層の厚さの比率が18%以下である、
絶縁電線。
【請求項2】
前記遮水層は、前記架橋体のゲル分率が40%以上100%以下である、請求項1に記載の絶縁電線。
【請求項3】
前記樹脂が高密度ポリエチレンおよび低密度ポリエチレンの少なくとも1つである、請求項1又は2に記載の絶縁電線。
【請求項4】
前記樹脂の密度が0.85g/cm3以上1.20g/cm3以下である、請求項1乃至3に記載の絶縁電線。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、絶縁電線に関する。
【背景技術】
【0002】
鉄道車両や自動車などの配線として用いられる絶縁電線には、絶縁性だけでなく、火災時に燃えにくいような難燃性が求められている。そのため、絶縁電線の被覆層には難燃剤が配合される。例えば、特許文献1には、絶縁層の外周に難燃剤を含む難燃層を積層させて被覆層を形成した絶縁電線が開示されている。特許文献1によれば、絶縁層の外周に難
燃層を積層させて絶縁電線を構成することにより、絶縁性と難燃性とを高い水準でバランスよく得ることができる。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2013-214487号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、近年、絶縁電線には、軽量化の観点から外径を細くすることが求められている。そのため、内側に位置する絶縁層や外側に位置する難燃層の厚さを薄くすることが検討されている。
【0005】
しかしながら、難燃層の厚さを薄くすると、難燃性を高く維持することが困難となる。一方、絶縁層の厚さを薄くすると、絶縁の信頼性が低下し、直流安定性を高く維持することが困難となる。すなわち、絶縁電線においては、外径を細径化しつつ、難燃性および直流安定性を高い水準で両立することが困難となっている。
【0006】
本発明は、上記課題に鑑みてなされたものであり、絶縁電線において難燃性および直流安定性を高く維持しつつ、外径を細径化する技術を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明の一態様によれば、
導体と、
前記導体の外周に配置され、難燃剤を含む樹脂組成物から形成される難燃絶縁層と、
前記難燃絶縁層の外周に配置され、飽和吸水率が0.5%以下である遮水層と、を備え、
前記遮水層の厚さが25μm以上である、絶縁電線が提供される。
【発明の効果】
【0008】
本発明によれば、絶縁電線において難燃性および直流安定性を高く維持しつつ、外径を細径化することができる。
【図面の簡単な説明】
【0009】
図1】本発明の一実施形態に係る絶縁電線の長さ方向に垂直な断面図である。
図2】従来の絶縁電線の長さ方向に垂直な断面図である。
図3】本発明の他の実施形態に係る絶縁電線の長さ方向に垂直な断面図である。
【発明を実施するための形態】
【0010】
まず、従来の絶縁電線について図2を用いて説明する。図2は、従来の絶縁電線の長さ方向に垂直な断面図である。
【0011】
図2に示すように、従来の絶縁電線100は、導体110と、導体110の外周に配置される絶縁層120と、絶縁層120の外周に配置され、難燃剤を配合した難燃層130と、を備えて構成されている。
【0012】
従来の絶縁電線100において、難燃層130は、絶縁層120と同様に樹脂から形成されるため、所定の絶縁性を示すものの、絶縁信頼性が低く、直流安定性が低い傾向にある。直流安定性は、後述するように、EN50305.6.7に準拠した直流安定性試験により評価される電気特性の1つであり、絶縁電線100を水中に浸漬させて所定の電圧
を課電したときに所定時間経過しても絶縁破壊しないことを示し、絶縁の信頼性についての指標となるものである。
【0013】
本発明者の検討によると、難燃層130の直流安定性が低くなるのは、難燃剤の配合により吸水率が高くなるためであることが分かった。その原因として、難燃剤の有する水酸基が吸水性を向上させる等とも考えられるが、例えば、難燃層130では、難燃層130を形成する樹脂と難燃剤との密着性が低いことに起因して、難燃剤の周囲に微小な隙間が
形成されてしまい、この隙間の形成により難燃層130は水が浸透しやすくなり、吸水しやすくなるとも考えられる。このような難燃層130では、絶縁電線100を水に浸漬させて直流安定性を評価する際に、水の浸透により導電パスが形成され、絶縁破壊が生じやすくなるため、絶縁信頼性が低い傾向にある。このように、難燃層130は、吸水により
絶縁性が低下しやすく、直流安定性が低下することになる。
【0014】
一方、絶縁層120は難燃層130で被覆されているので、難燃剤が配合されない、もしくは配合されたとしても少量である。そのため、絶縁層120は、難燃層130のように難燃性は示さないものの、吸水率が低くなるように構成され、直流安定性に寄与することになる。
【0015】
このように、従来の絶縁電線100では、絶縁層120が直流安定性に、難燃層130が難燃性に、それぞれ寄与している。そのため、直流安定性および難燃性を高い水準で両立するには、絶縁層120および難燃層130をそれぞれ厚くする必要があり、絶縁電線100の細径化のためにそれぞれを薄くすることが困難となっている。
【0016】
本発明者は、従来の絶縁電線100では、吸水しやすい難燃層130を表面に設けることにより直流安定性(絶縁の信頼性)が低くなることから、難燃層130に水が浸透しないように構成すれば、難燃層130を難燃性だけでなく直流安定性にも寄与させることができ、最終的には絶縁層120の厚さを薄くして、絶縁電線100の外径を細くできると
考えた。
【0017】
そこで、難燃層130への水の浸透を抑制する方法について検討を行った。その結果、吸水率の低い遮水層を難燃層の外周に設けるとよいことが見出された。遮水層によれば、難燃層への水の浸透を抑制できるので、難燃層を、難燃性だけでなく直流安定性を有する難燃絶縁層として機能させることができる。これにより、従来形成していた絶縁層120
を省略することができる。すなわち、従来の、絶縁層120および難燃層130からなる積層構造を、難燃絶縁層および遮水層で構成することができる。遮水層は、水の浸透を防ぐような厚さであり、従来の絶縁層120のように厚く形成する必要がないので、絶縁電線の外径を細径化することが可能となる。
【0018】
本発明は、上記知見に基づいてなされたものである。
【0019】
<絶縁電線の構成>
以下、本発明の一実施形態に係る絶縁電線について図面を参照しながら説明する。図1は、本発明の一実施形態に係る絶縁電線の長さ方向に垂直な断面図である。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
【0020】
図1に示すように、本実施形態に係る絶縁電線1は、導体11と、難燃絶縁層12と、遮水層13とを備えて構成されている。
【0021】
(導体11)
導体11としては、通常用いられる金属線、例えば銅線、銅合金線の他、アルミニウム線、金線、銀線などを用いることができる。また、金属線の外周に錫やニッケルなどの金属めっきを施したものを用いてもよい。さらに、金属線を撚り合わせた集合撚り導体を用いることもできる。導体11の外径は、絶縁電線1に求められる電気特性に応じて適宜変
更することが可能であり、例えば1.0mm~20.0mmである。
【0022】
(難燃絶縁層)
導体11の外周には、難燃絶縁層12が設けられている。難燃絶縁層12は、例えば、難燃剤を含む樹脂組成物を導体11の外周に押出成形することにより形成される。難燃剤を含む難燃絶縁層12は、絶縁電線1の難燃性に寄与する。また、難燃絶縁層12は、後述する遮水層13に被覆されることによって絶縁電線1を水に浸漬させて直流安定性を評
価するときに水の浸透が抑制されるので、絶縁信頼性が高く、絶縁電線1の直流安定性にも寄与することになる。
【0023】
難燃絶縁層12の厚さは、絶縁電線1に求められる難燃性および直流安定性に応じて適宜変更することが可能であり、厚くするほど、難燃性および直流安定性を高い水準で料理することが可能となる。具体的には、難燃絶縁層12の厚さは、0.2mm以上であることが好ましい。0.2mm以上であれば、例えば、EN60332-1-2に準拠する高
い難燃性と、EN50305.6.7に準拠する高い直流安定性とを両立させることが可能となる。厚さの上限値は、特に限定されないが、絶縁電線1の細径化の観点からは0.5mm以下であることが好ましい。このような厚さとすることにより、絶縁電線1を細径化しつつも、直流安定性とともに高い難燃性を得ることができる。
【0024】
難燃絶縁層12を形成する樹脂組成物は、樹脂と難燃剤とを含有する。
【0025】
難燃絶縁層12を形成する樹脂としては、絶縁電線1に求められる特性、例えば、機械特性(伸びや強度など)や難燃性、直流安定性に応じて、種類を適宜変更するとよい。例えば、ポリオレフィン樹脂やポリアミドイミド樹脂(PAI樹脂)などを用いることができる。ポリオレフィン樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂などを
用いることができ、特にポリエチレン系樹脂が好ましい。ポリエチレン系樹脂としては、例えば、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)、エチレン-酢酸ビニル共重合体(EVA)、エチレン-エチルアクリレート共重合体、エチレン-メチルアクリレート共重合体、エチレン-グリシジルメタクリレート共重合体などを用いることができる。これらのポリオレフィン系樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
【0026】
難燃絶縁層12において、より高い直流安定性を得る観点からは、特にHDPEが好ましく、例えば、密度が0.95g/cm3以上0.98g/cm3以下であるHDPEを用いることができる。また、より高い難燃性を得る観点からは、特にEVAが好ましく、例えば、酢酸ビニル含量が高いEVAを用いることができる。
【0027】
難燃剤としては、有毒ガスを発生させないことからノンハロゲン難燃剤が好ましく、例えば金属水酸化物を用いることができる。金属水酸化物は、難燃絶縁層12が加熱されて燃焼されるときに、分解して脱水し、放出した水分により難燃絶縁層12の温度を低下させ、その燃焼を抑制するものである。金属水酸化物としては、例えば、水酸化マグネシウ
ム、水酸化アルミニウム、水酸化カルシウム、およびこれらにニッケルが固溶した金属水酸化物を用いることができる。これらの難燃剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
【0028】
難燃剤は、難燃絶縁層12の機械特性(引張強さと伸びとのバランス)をコントロールする観点から、シランカップリング剤、チタネート系カップリング剤、ステアリン酸等の脂肪酸、ステアリン酸塩等の脂肪酸塩、ステアリン酸カルシウム等の脂肪酸金属等によって表面処理されていることが好ましい。
【0029】
難燃剤の配合量は、難燃性の観点から、樹脂100質量部に対して50質量部~300質量部であることが好ましい。配合量が50質量部未満であると、絶縁電線1において所望の高い難燃性を得られないおそれがある。配合量が300質量部を超えると、難燃絶縁層12の機械特性が低下し、伸び率が低くなるおそれがある。
【0030】
なお、難燃絶縁層12を形成する樹脂組成物には、必要に応じて、その他添加剤が含有されてもよい。例えば、難燃絶縁層12を架橋させる場合、架橋剤や架橋助剤を含有させるとよい。また例えば、架橋剤以外に、難燃助剤、酸化防止剤、滑剤、軟化剤、可塑剤、無機充填剤、相溶化剤、安定剤、カーボンブラック、着色剤などが含有されてもよい。こ
れらは、難燃絶縁層12の特性を損なわない範囲で含有させることができる。
【0031】
(遮水層)
難燃絶縁層12の外周には、遮水層13が設けられている。遮水層13は、飽和吸水率が0.5%以下であり、吸水量や水の拡散係数が小さくなるように構成されている。遮水層13は、遮水性が高く、水が浸透しにくいので、難燃絶縁層12への水の浸透を抑制することができる。飽和吸水率の下限値は、特に限定されず、0%であってもよい。なお、
本明細書において、飽和吸水率とは、JIS K7209:2000に準拠したフィックの法則から求められる水分飽和率である。
【0032】
遮水層13の厚さは、遮水性の観点から25μm以上である。25μm以上とすることにより、遮水層13の強度を高くすることができ、絶縁電線1を屈曲させた際の遮水層13の破れを抑制できる。これにより、遮水層13の遮水性を維持し、難燃絶縁層12による直流安定性と難燃性とを高い水準で両立することができる。一方、遮水層13の厚さの上限値は、特に限定されないが、絶縁電線1の外径を細くする観点からは100μm以下であることが好ましい。遮水層13は難燃剤を含まないため、絶縁電線1の難燃性を低下させるおそれがあるが、遮水層13の厚さを100μm以下とすることにより、絶縁電線1の難燃性を損なうことなく、高く維持することができる。
【0033】
また、絶縁電線1において、難燃性と直流安定性とを高い水準で両立させる観点からは、遮水層13と難燃絶縁層12との合計の厚さに占める遮水層13の比率が18%以下であることが好ましく、5%~12%であることがより好ましい。上述したように、遮水層13は、難燃剤を含まず、絶縁電線1全体の難燃性を低下させるおそれがあるが、難燃性を有する難燃絶縁層12との厚さの比率を上記範囲とすることにより、絶縁電線1において難燃性および直流安定性を高い水準で両立することが可能となる。
【0034】
遮水層13は、遮水性の観点からは、つなぎ目がなくシームレスとなるように、例えば筒状に形成されているとよい。遮水層13を形成する材料としては、飽和吸水率が小さく、遮水層13をつなぎ目がないように形成できるものであれば、特に限定されない。このような材料としては、遮水層13の成形加工性の観点からは樹脂が好ましい。樹脂としては、安全性の観点からはノンハロゲンであるポリオレフィン樹脂が好ましく、遮水性や機械特性の観点からは密度が0.85g/cm3~1.20g/cm3である樹脂が好ましい。例えば、高密度ポリエチレン(HDPE)や低密度ポリエチレン(LDPE)を用いることができる。また例えば、吸水率が小さいことから、フッ素含有樹脂(例えばPFA)などを用いてもよい。
【0035】
また、遮水層13を樹脂で形成する場合、遮水性をさらに向上させるために樹脂を架橋させることが好ましい。つまり、遮水層13は、樹脂を架橋させた架橋体で形成されることが好ましい。架橋させることにより、樹脂の分子構造を強固にし、遮水層13の遮水性を向上させることができる。しかも、遮水層13の強度も向上できるので、遮水層13の
厚さを薄くしても、強度を損なうことなく、遮水性を高く維持することができる。
【0036】
遮水層13を形成する架橋体は、ゲル分率が40%~100%となるように架橋されていることが好ましい。遮水層13では、架橋体のゲル分率を高くするほど、強度および遮水性を高めることができるので、厚さを薄くすることができる。このようなゲル分率となるように遮水層13を架橋させることで、遮水層13を薄く形成しながらも、その強度を
高く維持するとともに、飽和吸水率を0.5%以下として所望の高い遮水性を得ることができる。
【0037】
なお、遮水層13をHDPEなどの樹脂から形成する場合、HDPEを含む樹脂組成物を難燃絶縁層12の外周に押出成形して形成するとよい。架橋させる場合は、樹脂組成物に架橋剤や架橋助剤を配合するとよい。架橋としては、化学架橋や電子線架橋など公知の方法により行うことができる。
【0038】
また、遮水層13を形成する樹脂組成物には、架橋剤や架橋助剤以外に、難燃助剤、酸化防止剤、滑剤、軟化剤、可塑剤、無機充填剤、相溶化剤、安定剤、カーボンブラック、着色剤などが含有されてもよい。これらは、遮水層13の特性を損なわない範囲で含有させることができる。
【0039】
(難燃層)
図3は、本発明の他の実施形態に係る絶縁電線の長さ方向に垂直な断面図である。図3に示すように遮水層13の外周に難燃層14を設けた点以外は、本発明の一実施形態と共通する。難燃層14を設けることにより、更に難燃性を向上させることができる。難燃層は、難燃剤を含む樹脂組成物から形成されることが好ましい。また、上記難燃絶縁層において説明した樹脂組成物については、難燃層においても同様に使用することができる。
【0040】
<本実施形態にかかる効果>
本実施形態によれば、以下に示す1つ又は複数の効果を奏する。
【0041】
本実施形態では、難燃性を得る観点から、難燃剤を配合する樹脂層を導体11の外周に設けるが、その樹脂層の外周に、HDPEやLDPEなどの樹脂から形成され、飽和吸水率の小さな遮水層13を積層させている。これにより、絶縁電線1を水中に浸漬させて直流安定性を評価する際に樹脂層への水の浸透を抑制できるので、難燃剤を配合する樹脂層
を、難燃性だけでなく、直流安定性にも寄与する難燃絶縁層12として機能させることができる。これにより、図2に示す従来の絶縁電線100のように直流安定性に寄与する絶縁層120を形成することなく、所望の直流安定性を維持することができる。絶縁層120は所望の直流安定性を得るために厚く形成する必要がある一方、遮水層13は遮水性を示す程度に薄く形成すればよいので、絶縁層120の代わりに遮水層13を形成することで、その厚さの差の分だけ絶縁電線1の外径を細くすることが可能となる。したがって、本実施形態によれば、絶縁電線1において、難燃性と直流安定性とを高い水準で両立しつつ、その外径を細くすることが可能となる。
【0042】
例えば、EN60332-1-2に準拠する高い難燃性と、EN50305.6.7に準拠する直流安定性とを両立させる場合、図2に示すような従来の絶縁電線100では、外径1.0mm~20.0mmの導体110に対して、絶縁層120の厚さを0.6mm~2.0mm、難燃剤を配合する難燃層130の厚さを0.2mm~2.1mmとする必
要があり、絶縁電線100の外径としては2.4mm~32.9mmとなる。
これに対して、本実施形態では、同じ外径の導体11に対して、難燃絶縁層12の厚さを0.20mm~0.5mm、遮水層13の厚さを0.025mm~0.1mmとすればよく、絶縁電線1の外径としては1.45mm~21.2mmの範囲にまで細くすることが可能となる。
【0043】
遮水層13は、樹脂から形成されることが好ましく、密度が0.85g/cm3~1.20g/cm3であるポリオレフィン樹脂から形成されることが好ましい。これらポリオレフィン樹脂によれば、押出成形により遮水層13として容易に形成することができる。特に、HDPEは密度が高く、水を浸透させにくいので、遮水層13の遮水性を高くすることができる。また、LDPEは、架橋度を高くできるので、遮水層13の遮水性を高くすることができる。
【0044】
遮水層13は、HDPEを架橋させた架橋体から形成され、架橋体のゲル分率が40%~100%であることが好ましい。このようなゲル分率とすることにより、遮水層13の強度および遮水性を高めることができるので、遮水層13の厚さを薄く形成することができる。これにより、絶縁電線1の外径をより細くすることが可能となる。
【0045】
なお、本実施形態によれば、絶縁電線1を細径化せずに、従来と同様の外径となるように形成してもよい。この場合、難燃絶縁層12の厚さを大きくすることで、難燃性および直流安定性をより高めることが可能となる。
【0046】
<本発明の他の実施形態>
以上、本発明の一実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
【0047】
上述の実施形態では、遮水層13を樹脂としてHDPEで形成する場合について説明したが、本発明はこれに限定されない。遮水層13は、樹脂以外の材料から形成されてもよく、例えば、金属やセラミックス、ガラス等から形成されてもよい。
遮水層13を金属で形成する場合、例えば、銅やアルミニウムからなる金属箔を難燃絶縁層12の外周に巻き付けることにより形成することができる。
セラミックスやガラスから形成する場合、例えば、プラズマCVD法などにより難燃絶縁層12の外周をアルミナ、ジルコニア、ダイヤモンドライクカーボン(DLC)で表面処理することにより形成することができる。
【0048】
また、図1では、難燃絶縁層12および遮水層13を積層させる場合を示すが、本発明はこれに限定されない。例えば、難燃絶縁層12と遮水層13との間に、これらの密着性を向上させる密着層を設けてもよい。また、遮水層13の外周にその他の機能層を設けてもよく、例えば、難燃剤を含み難燃性を有する難燃層を設けてもよい。
【実施例
【0049】
次に、本発明について実施例に基づき、さらに詳細に説明するが、本発明はこれらの実施例に限定されない。
【0050】
実施例および比較例で用いた材料は次のとおりである。
・エチレン-酢酸ビニル共重合体(EVA1):三井・デュポンポリケミカル株式会社製「エバフレックスEV260」(VA量:28%、MFR:6)
・エチレン-酢酸ビニル共重合体(EVA2):三井・デュポンポリケミカル株式会社製「エバフレックス45X」(VA量:46%、MFR:100)
・マレイン酸変性ポリマ:三井化学株式会社製「タフマーMH7020」
・高密度ポリエチレン(HDPE、d:0.951g/cm3、MFR:0.8):プライムポリマー株式会社製「ハイゼックス5305E」
・低密度ポリエチレン(LDPE、d:0.921g/cm3、MFR:1):宇部興産株式会社製「UBE C450」
・水酸化マグネシウム(シラン処理):アルベマール株式会社製「H10A」
・水酸化マグネシウム(脂肪酸処理):アルベマール株式会社製「H10C」
・混合系の酸化防止剤:株式会社アデカ製「AO-18」
・フェノール系酸化防止剤:BASF株式会社製「イルガノックス1010」
・着色剤:旭カーボン株式会社製「FTカーボン」
・滑剤(ステアリン酸亜鉛):日東化成株式会社製
【0051】
<絶縁電線の作製>
(実施例1)
まず、上述の材料を用いて難燃絶縁層を形成するための樹脂組成物Aを調製した。
具体的には、EVA1を70質量部と、EVA2を15質量部と、マレイン酸変性ポリマを15質量部と、シラン処理された水酸化マグネシウムを80質量部と、脂肪酸処理された水酸化マグネシウムを120質量部と、混合系の酸化防止剤を1質量部と、着色剤を2質量部と、滑剤を1質量部とを混練することにより、樹脂組成物Aを調製した。
【0052】
続いて、遮水層を形成するための樹脂組成物Bを調製した。
具体的には、HDPEを100質量部と、フェノール系酸化防止剤を1質量部とを混練することにより、樹脂組成物Bを調製した。
【0053】
続いて、調製した樹脂組成物AおよびBを用いて絶縁電線を作製した。
具体的には、まず、複数の銅素線を撚り合わせた直径が1.23mmの撚り銅線の外周に樹脂組成物Aを押し出し、厚さ0.3mmの難燃絶縁層を形成した。続いて、難燃絶縁層の外周に樹脂組成物Bを押し出して電子線を照射することで架橋させ、厚さ0.05mm(50μm)の遮水層を形成した。これにより、電線外径が1.93mmの絶縁電線を
作製した。なお、遮水層は、ゲル分率が41.2%となるような架橋度であることが確認され、また飽和吸水率が0.4%であることが確認された。実施例1の絶縁電線の各構成を下記表1にまとめる。
【0054】
【表1】
【0055】
(実施例2)
実施例2では、実施例1よりも電線外径が細くなるように難燃絶縁層および遮水層の厚さを表1に示すように適宜変更した以外は、実施例1と同様に絶縁電線を作製した。
【0056】
(実施例3)
実施例3では、HDPEの代わりにLDPEを用いて遮水層を形成するための樹脂組成物Bを調製した以外は、実施例1と同様に絶縁電線を作製した。
【0057】
(実施例4)
実施例4では、実施例3よりも電線外径が細くなるように難燃絶縁層および遮水層の厚さを表1に示すように適宜変更した以外は、実施例1と同様に絶縁電線を作製した。
【0058】
(比較例1)
比較例1では、表1に示すように、遮水層の厚さを0.01mm(10μm)とした以外は、実施例1と同様に絶縁電線を作製した。
【0059】
(比較例2)
比較例2では、表1に示すように、遮水層の厚さを0.005mm(5μm)とした以外は、実施例1と同様に絶縁電線を作製した。
【0060】
(比較例3)
比較例3では、図2に示す構造の絶縁電線を作製した。
具体的には、まず、LDPEを100質量部と、クレーを100質量部と、架橋助剤を7質量部と、フェノール系の酸化防止剤を1.5質量部とを混練し、絶縁層形成用の樹脂組成物を調製した。また、EVA1を100質量部と、水酸化マグネシウムを200質量部とを混練し、難燃層形成用の樹脂組成物を調製した。続いて、実施例1と同じ撚り銅線
を準備し、その外周に絶縁層形成用の樹脂組成物を押し出し、厚さ0.3mmの絶縁層を形成した。続いて、絶縁層の外周に、難燃層形成用の樹脂組成物を押し出し、電子線照射により架橋させて、厚さ0.4mmの難燃層を形成した。これにより、電線外径が2.62mmの絶縁電線を作製した。なお、絶縁電線の表面にある難燃層は、ゲル分率が82.3%となるような架橋度であるが、飽和吸水率が5%であることが確認された。比較例3の作製条件を下記表2にまとめる。
【0061】
【表2】
【0062】
(比較例4,5)
比較例4,5では、絶縁層および難燃層のそれぞれの厚さを表2に示すように変更した
以外は、比較例3と同様に絶縁電線を作製した。
【0063】
(比較例6)
比較例6では、絶縁層を形成せずに、導体上に難燃層を直接形成した以外は、比較例3
と同様に絶縁電線を作製した。
【0064】
(実施例5)
実施例5では、図1に示す構造において、遮水層の外側に難燃層を形成した絶縁電線を作製したこと、難燃層の厚さを表3に示すように適宜変更したこと以外は、実施例1と同様に絶縁電線を作製した。難燃層の配合は難燃絶縁層の配合と同じものを用いた。
【0065】
【表3】
【0066】
<評価方法>
作製した絶縁電線を以下の方法により評価した。各評価結果を表1にまとめる。
【0067】
(直流安定性)
絶縁電線の直流安定性を、EN50305.6.7に準拠した直流安定性試験により評価した。具体的には、絶縁電線を85℃で3%濃度の塩水中に浸漬させて課電し、絶縁破壊するまでの時間を測定した。本実施例では、絶縁破壊するまでの時間が30時間以上であれば、直流安定性が高く、30時間未満であれば、直流安定性が低いと評価した。
【0068】
(難燃性)
絶縁電線の難燃性を、以下に示す垂直燃焼試験により評価した。
まず、EN60332-1-2に規定される一条ケーブル垂直燃焼試験(Vertical flame propagation for a single insulated wire or cable)に準じてVFT試験を実施した。具体的には、長さ600mmの絶縁電線を垂直に保持し、絶縁電線に炎を60秒間当てた。炎を取り去った後、30秒以内に消火したものを◎、60秒以内に消火したものを○、60秒以内に消火しなかったものを×とした。
また、EN50266-2-4に規定される多条ケーブル垂直燃焼試験(Flame propagation (bunched cables))に準じてVTFT試験を実施した。具体的には、全長3.5mの絶縁電線を7本撚り合わせて1束とし、11束を等間隔に垂直に並べ、20分間燃焼させた後、自己消炎後、下端部からの炭化長を測定した。本実施例では、炭化長が1.5m以下であれば◎、炭化長が2.5m以下であれば○、炭化長が2.5mを超えれば×とした。
【0069】
<評価結果>
表1に示すように、実施例1~5では、電線外径を細径化しながらも、直流安定性と難燃性とを高い水準で両立できることが確認された。また、実施例1において、遮水層および難燃絶縁層の厚さをそれぞれ変更し、遮水層と難燃絶縁層との合計の厚さに占める遮水層の厚さの比率を検討したところ、その比率を18%以下、より好ましくは5%~12%
とすることにより、難燃性と直流安定性とをより高い水準でバランスよく得られることが確認された。
【0070】
これに対して、比較例1,2では、遮水層を設けたものの、その厚さを25μmよりも薄くしたため、難燃絶縁層の吸水を十分に抑制できず、直流安定性が低いことが確認された。
比較例3では、絶縁層の外周に難燃層を積層させて従来構造の絶縁電線を作製したが、各層の厚さを厚く形成することで難燃性および直流安定性を高い水準でバランスよく得られることが確認された。しかし、電線外径が過度に太く、例えば実施例1の絶縁電線よりも約35%も太いことが確認された。
比較例4,5では、難燃層または絶縁層の厚さを薄くすることで電線外径を実施例1と同程度となるように絶縁電線を作製したが、難燃性および直流安定性を両立できないことが確認された。
比較例3~5によると、飽和吸水率が高い難燃層を絶縁電線の表面に設ける場合、直流安定性を高く維持するには難燃層の内側にある絶縁層を厚く形成する必要があり、難燃性を高く維持するには難燃層を厚く形成する必要があるため、これらの特性を両立させつつ、絶縁電線を細径化できないことが確認された。
比較例6では、絶縁層を設けずに難燃層のみを設けたため、高い難燃性は得られたが、直流安定性が低いことが確認された。
【0071】
このように、絶縁電線において、難燃剤を含む樹脂層の外周に所定厚さの遮水層を設けることにより、内部に位置する樹脂層への水の浸透を抑制することができ、難燃剤を配合する樹脂層を、難燃性だけでなく、直流安定性にも寄与させ、難燃絶縁層として機能させることができる。これにより、絶縁電線の外径を細径化しながらも、直流安定性と難燃性
とを両立することが可能となる。
【0072】
<本発明の好ましい態様>
以下に、本発明の好ましい態様について付記する。
【0073】
[付記1]
本発明の一態様によれば、
導体と、
前記導体の外周に配置され、難燃剤を含む樹脂組成物から形成される難燃絶縁層と、
前記難燃絶縁層の外周に配置され、飽和吸水率が0.5%以下である材料から形成される遮水層と、を備え、
前記遮水層の厚さが25μm以上である、絶縁電線が提供される。
【0074】
[付記2]
付記1の絶縁電線において、好ましくは、
前記遮水層が樹脂、金属、セラミックスおよびガラスの少なくとも1つから形成される。
【0075】
[付記3]
付記1又は2の絶縁電線において、好ましくは、
前記遮水層は、樹脂を含む樹脂組成物を架橋させた架橋体から形成され、前記架橋体のゲル分率が40%以上100%以下である。
【0076】
[付記4]
付記3の絶縁電線において、好ましくは、
前記樹脂が高密度ポリエチレンおよび低密度ポリエチレンの少なくとも1つである。
【0077】
[付記5]
付記3又は4の絶縁電線において、好ましくは、
前記樹脂の密度が0.85g/cm3以上1.20g/cm3以下である。
【0078】
[付記6]
付記1~5のいずれかの絶縁電線において、好ましくは、
前記遮水層の厚さは25μm以上100μm以下である。
【0079】
[付記7]
付記1~6のいずれかの絶縁電線において、好ましくは、
前記難燃絶縁層の厚さが0.2mm以上である。
【0080】
[付記8]
付記1~7のいずれかの絶縁電線において、好ましくは、
前記遮水層と前記難燃絶縁層との合計の厚さに占める前記遮水層の厚さの比率が18%以下である。
【0081】
[付記9]
付記1~8のいずれかの絶縁電線において、好ましくは、
外径が1.45mm以上21.2mm以下である。
【0082】
[付記10]
付記1~9のいずれかの絶縁電線において、好ましくは、
前記導体の外径が1.0mm以上20.0mm以下である。
【0083】
[付記11]
付記1~10のいずれかの絶縁電線において、好ましくは、
前記難燃絶縁層の厚さが0.25mm以上0.5mm以下である。
【0084】
[付記12]
付記1~11のいずれかの絶縁電線において、好ましくは、
EN60332-1-2に準拠した難燃性試験において、炎を取り去った後、60秒以内に消火する難燃性と、
EN50305.6.7に準拠した直流安定性試験において、水に浸漬して30時間課電したときに絶縁破壊しないような直流安定性と、を有する。
【0085】
[付記13]
付記1~12のいずれかの絶縁電線において、好ましくは、
前記遮水層の外周に配置され、難燃剤を含む樹脂組成物から形成される難燃層をさらに含む。
【符号の説明】
【0086】
1 絶縁電線
11 導体
12 難燃絶縁層
13 遮水層
14 難燃層
図1
図2
図3