IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ギガフォトン株式会社の特許一覧

特許7044807極端紫外光生成装置及び電子デバイスの製造方法
<>
  • 特許-極端紫外光生成装置及び電子デバイスの製造方法 図1
  • 特許-極端紫外光生成装置及び電子デバイスの製造方法 図2
  • 特許-極端紫外光生成装置及び電子デバイスの製造方法 図3
  • 特許-極端紫外光生成装置及び電子デバイスの製造方法 図4
  • 特許-極端紫外光生成装置及び電子デバイスの製造方法 図5
  • 特許-極端紫外光生成装置及び電子デバイスの製造方法 図6A
  • 特許-極端紫外光生成装置及び電子デバイスの製造方法 図6B
  • 特許-極端紫外光生成装置及び電子デバイスの製造方法 図7A
  • 特許-極端紫外光生成装置及び電子デバイスの製造方法 図7B
  • 特許-極端紫外光生成装置及び電子デバイスの製造方法 図7C
  • 特許-極端紫外光生成装置及び電子デバイスの製造方法 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-22
(45)【発行日】2022-03-30
(54)【発明の名称】極端紫外光生成装置及び電子デバイスの製造方法
(51)【国際特許分類】
   G03F 7/20 20060101AFI20220323BHJP
   H05G 2/00 20060101ALI20220323BHJP
   H05G 1/02 20060101ALI20220323BHJP
【FI】
G03F7/20 503
H05G2/00 K
H05G1/02 P
【請求項の数】 20
(21)【出願番号】P 2019567486
(86)(22)【出願日】2018-01-26
(86)【国際出願番号】 JP2018002460
(87)【国際公開番号】W WO2019146064
(87)【国際公開日】2019-08-01
【審査請求日】2020-12-09
(73)【特許権者】
【識別番号】300073919
【氏名又は名称】ギガフォトン株式会社
(74)【代理人】
【識別番号】100105212
【弁理士】
【氏名又は名称】保坂 延寿
(72)【発明者】
【氏名】永井 伸治
(72)【発明者】
【氏名】斎藤 隆志
【審査官】田中 秀直
(56)【参考文献】
【文献】特開2014-154616(JP,A)
【文献】特開2012-169580(JP,A)
【文献】特表2012-523693(JP,A)
【文献】特表2013-522889(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G03F 7/20
H05G 2/00
H05G 1/02
(57)【特許請求の範囲】
【請求項1】
スズを含むターゲットにパルスレーザ光を照射して極端紫外光を生成する極端紫外光生成装置であって、
チャンバ容器と、
前記チャンバ容器の内部に水素ガスを供給する水素ガス供給部と、
前記チャンバ容器の内部において、前記ターゲットにパルスレーザ光が照射される所定領域と前記チャンバ容器との間に配置されたヒートシールドと、
前記チャンバ容器に配置された第1の冷却媒体流路と、
前記ヒートシールドに配置された第2の冷却媒体流路と、
前記ヒートシールドの温度が前記チャンバ容器の温度よりも低い温度となるように、前記第1の冷却媒体流路に第1の冷却媒体を供給し、前記第2の冷却媒体流路に第2の冷却媒体を供給する冷却装置と、
を備える極端紫外光生成装置。
【請求項2】
請求項1に記載の極端紫外光生成装置であって、
前記ヒートシールドの温度が40℃以下に維持される、極端紫外光生成装置。
【請求項3】
請求項1に記載の極端紫外光生成装置であって、
前記ヒートシールドの温度が5℃以下に維持され、
前記チャンバ容器の温度が15℃以上、25℃以下に維持される、
極端紫外光生成装置。
【請求項4】
請求項1に記載の極端紫外光生成装置であって、
前記チャンバ容器の温度を検出する第1の温度センサと、
前記第1の温度センサが検出した温度に応じて前記第1の冷却媒体の流量が変化するように、前記冷却装置を制御する制御部と、
をさらに含む、極端紫外光生成装置。
【請求項5】
請求項1に記載の極端紫外光生成装置であって、
前記ヒートシールドの温度を検出する第2の温度センサと、
前記第2の温度センサが検出した温度に応じて前記第2の冷却媒体の温度及び流量の少なくとも1つが変化するように、前記冷却装置を制御する制御部と、
をさらに含む、極端紫外光生成装置。
【請求項6】
請求項1に記載の極端紫外光生成装置であって、
前記所定領域から放射される極端紫外光を反射して集光する集光ミラーと、
前記集光ミラーに配置された第3の冷却媒体流路と、
をさらに備え、
前記冷却装置は、前記集光ミラーの温度が前記チャンバ容器の温度よりも低い温度となるように、前記第3の冷却媒体流路に第3の冷却媒体を供給する、
極端紫外光生成装置。
【請求項7】
請求項6に記載の極端紫外光生成装置であって、
前記集光ミラーの温度が40℃以下に維持される、極端紫外光生成装置。
【請求項8】
請求項6に記載の極端紫外光生成装置であって、
前記集光ミラーの温度が5℃以下に維持され、
前記チャンバ容器の温度が15℃以上、25℃以下に維持される、
極端紫外光生成装置。
【請求項9】
請求項6に記載の極端紫外光生成装置であって、
前記集光ミラーの温度を検出する第3の温度センサと、
前記第3の温度センサが検出した温度に応じて前記第3の冷却媒体の温度及び流量の少なくとも1つが変化するように、前記冷却装置を制御する制御部と、
をさらに含む、極端紫外光生成装置。
【請求項10】
請求項1に記載の極端紫外光生成装置であって、
前記ヒートシールドの表面の少なくとも一部にTiO2及びZrNの少なくとも1つがコーティングされている、極端紫外光生成装置。
【請求項11】
請求項1に記載の極端紫外光生成装置であって、
前記ヒートシールドの少なくとも一部の表面粗さRaが6.3μm以下である、極端紫外光生成装置。
【請求項12】
請求項1に記載の極端紫外光生成装置であって、
前記ヒートシールドの少なくとも一部の表面粗さRaが1.6μm以下である、極端紫外光生成装置。
【請求項13】
スズを含むターゲットにパルスレーザ光を照射して極端紫外光を生成する極端紫外光生成装置であって、
チャンバ容器と、
前記チャンバ容器の内部に水素ガスを供給する水素ガス供給部と、
前記チャンバ容器の内部において、前記ターゲットにパルスレーザ光が照射される所定領域と前記チャンバ容器との間に配置されたヒートシールドと、
前記チャンバ容器に配置された第1の冷却媒体流路と、
前記ヒートシールドに配置された第2の冷却媒体流路と、
前記ヒートシールドの温度が前記チャンバ容器の温度よりも低い温度となるように、前記第1の冷却媒体流路に第1の冷却媒体を供給し、前記第2の冷却媒体流路に前記第1の冷却媒体の温度よりも低い温度の第2の冷却媒体を供給する冷却装置と、
を備える極端紫外光生成装置。
【請求項14】
請求項13に記載の極端紫外光生成装置であって、
前記冷却装置は、
プロセス冷却水の流路に配置され、
前記第1の冷却媒体流路に前記プロセス冷却水の温度以上の温度を有する第1の冷却媒体を供給し、
前記第2の冷却媒体流路に前記プロセス冷却水の温度より低い温度を有する第2の冷却媒体を供給する、
極端紫外光生成装置。
【請求項15】
請求項13に記載の極端紫外光生成装置であって、
前記冷却装置は、
前記第1の冷却媒体流路に前記第1の冷却媒体を供給する熱交換器と、
前記第2の冷却媒体流路に前記第2の冷却媒体を供給するチラーと、
を含む、極端紫外光生成装置。
【請求項16】
請求項13に記載の極端紫外光生成装置であって、
前記所定領域から放射される極端紫外光を反射して集光する集光ミラーと、
前記集光ミラーに配置された第3の冷却媒体流路と、
をさらに備え、
前記冷却装置は、前記第3の冷却媒体流路に前記第1の冷却媒体の温度よりも低い温度の第3の冷却媒体を供給する、
極端紫外光生成装置。
【請求項17】
請求項16に記載の極端紫外光生成装置であって、
前記冷却装置は、
プロセス冷却水の流路に配置され、
前記第1の冷却媒体流路に前記プロセス冷却水の温度以上の温度を有する第1の冷却媒体を供給し、
前記第2の冷却媒体流路に前記プロセス冷却水の温度より低い温度を有する第2の冷却媒体を供給し、
前記第3の冷却媒体流路に前記プロセス冷却水の温度より低い温度を有する第3の冷却媒体を供給する、
極端紫外光生成装置。
【請求項18】
請求項16に記載の極端紫外光生成装置であって、
前記冷却装置は、
前記第1の冷却媒体流路に前記第1の冷却媒体を供給する熱交換器と、
前記第2の冷却媒体流路に前記第2の冷却媒体を供給する第1のチラーと、
前記第3の冷却媒体流路に前記第3の冷却媒体を供給する第2のチラーと、
を含む、極端紫外光生成装置。
【請求項19】
電子デバイスの製造方法であって、
チャンバ容器と、
前記チャンバ容器の内部に水素ガスを供給する水素ガス供給部と、
前記チャンバ容器の内部において、ターゲットにパルスレーザ光が照射される所定領域と前記チャンバ容器との間に配置されたヒートシールドと、
前記チャンバ容器に配置された第1の冷却媒体流路と、
前記ヒートシールドに配置された第2の冷却媒体流路と、
前記ヒートシールドの温度が前記チャンバ容器の温度よりも低い温度となるように、前記第1の冷却媒体流路に第1の冷却媒体を供給し、前記第2の冷却媒体流路に第2の冷却媒体を供給する冷却装置と、
を備える極端紫外光生成装置において、前記ターゲットにパルスレーザ光を照射して極端紫外光を生成し、
前記極端紫外光を露光装置に出力し、
電子デバイスを製造するために、前記露光装置内で感光基板上に前記極端紫外光を露光する
ことを含む電子デバイスの製造方法。
【請求項20】
電子デバイスの製造方法であって、
チャンバ容器と、
前記チャンバ容器の内部に水素ガスを供給する水素ガス供給部と、
前記チャンバ容器の内部において、ターゲットにパルスレーザ光が照射される所定領域と前記チャンバ容器との間に配置されたヒートシールドと、
前記チャンバ容器に配置された第1の冷却媒体流路と、
前記ヒートシールドに配置された第2の冷却媒体流路と、
前記ヒートシールドの温度が前記チャンバ容器の温度よりも低い温度となるように、前記第1の冷却媒体流路に第1の冷却媒体を供給し、前記第2の冷却媒体流路に前記第1の冷却媒体の温度よりも低い温度の第2の冷却媒体を供給する冷却装置と、
を備える極端紫外光生成装置において、前記ターゲットにパルスレーザ光を照射して極端紫外光を生成し、
前記極端紫外光を露光装置に出力し、
電子デバイスを製造するために、前記露光装置内で感光基板上に前記極端紫外光を露光する
ことを含む電子デバイスの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、極端紫外光生成装置及び電子デバイスの製造方法に関する。
【背景技術】
【0002】
近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、70nm~45nmの微細加工、さらには32nm以下の微細加工が要求されるようになる。このため、例えば32nm以下の微細加工の要求に応えるべく、波長13nm程度の極端紫外(EUV)光を生成する極端紫外光生成装置と縮小投影反射光学系(reduced projection reflection optics)とを組み合わせた露光装置の開発が期待されている。
【0003】
EUV光生成装置としては、ターゲット物質にパルスレーザ光を照射することによって生成されるプラズマが用いられるLPP(Laser Produced Plasma)式の装置と、放電によって生成されるプラズマが用いられるDPP(Discharge Produced Plasma)式の装置と、シンクロトロン放射光が用いられるSR(Synchrotron Radiation)式の装置との3種類の装置が提案されている。
【先行技術文献】
【特許文献】
【0004】
【文献】米国特許出願公開第2014/0217311号明細書
【文献】米国特許出願公開第2014/0246187号明細書
【文献】米国特許出願公開第2010/0258749号明細書
【非特許文献】
【0005】
【文献】D. Ugur, A.J. Storm, R. Verberk, J.C. Brouwer, W.G. Sloof, Decomposition of SnH4 molecules on metal and metal-oxide surfaces, Applied Surface Science 288 (2014) 673-676
【概要】
【0006】
本開示の1つの観点に係る極端紫外光生成装置は、スズを含むターゲットにパルスレーザ光を照射して極端紫外光を生成する極端紫外光生成装置であって、チャンバ容器と、チャンバ容器の内部に水素ガスを供給する水素ガス供給部と、チャンバ容器の内部において、ターゲットにパルスレーザ光が照射される所定領域とチャンバ容器との間に配置されたヒートシールドと、チャンバ容器に配置された第1の冷却媒体流路と、ヒートシールドに配置された第2の冷却媒体流路と、ヒートシールドの温度がチャンバ容器の温度よりも低い温度となるように、第1の冷却媒体流路に第1の冷却媒体を供給し、第2の冷却媒体流路に第2の冷却媒体を供給する冷却装置と、を備える。
【0007】
本開示の他の1つの観点に係る極端紫外光生成装置は、スズを含むターゲットにパルスレーザ光を照射して極端紫外光を生成する極端紫外光生成装置であって、チャンバ容器と、チャンバ容器の内部に水素ガスを供給する水素ガス供給部と、チャンバ容器の内部において、ターゲットにパルスレーザ光が照射される所定領域とチャンバ容器との間に配置されたヒートシールドと、チャンバ容器に配置された第1の冷却媒体流路と、ヒートシールドに配置された第2の冷却媒体流路と、ヒートシールドの温度がチャンバ容器の温度よりも低い温度となるように、第1の冷却媒体流路に第1の冷却媒体を供給し、第2の冷却媒体流路に第1の冷却媒体の温度よりも低い温度の第2の冷却媒体を供給する冷却装置と、を備える。
【0008】
本開示の1つの観点に係る電子デバイスの製造方法は、チャンバ容器と、チャンバ容器の内部に水素ガスを供給する水素ガス供給部と、チャンバ容器の内部において、ターゲットにパルスレーザ光が照射される所定領域とチャンバ容器との間に配置されたヒートシールドと、チャンバ容器に配置された第1の冷却媒体流路と、ヒートシールドに配置された第2の冷却媒体流路と、ヒートシールドの温度がチャンバ容器の温度よりも低い温度となるように、第1の冷却媒体流路に第1の冷却媒体を供給し、第2の冷却媒体流路に第2の冷却媒体を供給する冷却装置と、を備える極端紫外光生成装置において、ターゲットにパルスレーザ光を照射して極端紫外光を生成し、極端紫外光を露光装置に出力し、電子デバイスを製造するために、露光装置内で感光基板上に極端紫外光を露光することを含む。
【0009】
本開示の他の1つの観点に係る電子デバイスの製造方法は、チャンバ容器と、チャンバ容器の内部に水素ガスを供給する水素ガス供給部と、チャンバ容器の内部において、ターゲットにパルスレーザ光が照射される所定領域とチャンバ容器との間に配置されたヒートシールドと、チャンバ容器に配置された第1の冷却媒体流路と、ヒートシールドに配置された第2の冷却媒体流路と、ヒートシールドの温度がチャンバ容器の温度よりも低い温度となるように、第1の冷却媒体流路に第1の冷却媒体を供給し、第2の冷却媒体流路に第1の冷却媒体の温度よりも低い温度の第2の冷却媒体を供給する冷却装置と、を備える極端紫外光生成装置において、ターゲットにパルスレーザ光を照射して極端紫外光を生成し、極端紫外光を露光装置に出力し、電子デバイスを製造するために、露光装置内で感光基板上に極端紫外光を露光することを含む。
【図面の簡単な説明】
【0010】
本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1図1は、例示的なLPP式のEUV光生成システムの構成を概略的に示す。
図2図2は、比較例に係るEUV光生成装置の構成を概略的に示す。
図3図3は、本開示の第1の実施形態に係るEUV光生成装置の構成を概略的に示す。
図4図4は、チャンバ内部品の表面の摂氏温度と、この表面の付近におけるスタンナンガスの解離反応の反応速度定数と、の関係を示すグラフである。
図5図5は、本開示の第2の実施形態に係るEUV光生成装置の構成を概略的に示す。
図6A図6Aは、第2の実施形態における制御部の動作の第1の例を示すフローチャートである。
図6B図6Bは、第2の実施形態における制御部の動作の第2の例を示すフローチャートである。
図7A図7Aは、本開示の第3の実施形態に係るEUV光生成装置に含まれるヒートシールドの斜視図である。
図7B図7Bは、第3の実施形態の第1の例におけるヒートシールドの拡大断面図である。
図7C図7Cは、第3の実施形態の第2の例におけるヒートシールドの拡大断面図である。
図8図8は、EUV光生成装置に接続された露光装置の構成を概略的に示す。
【実施形態】
【0011】
<内容>
1.極端紫外光生成システムの全体説明
1.1 構成
1.2 動作
2.比較例に係るEUV光生成装置
2.1 構成
2.1.1 チャンバ容器及び熱交換器
2.1.2 EUV集光ミラー及び熱交換器
2.1.3 レーザ光集光ミラー
2.1.4 ヒートシールド及び熱交換器
2.1.5 水素ガス供給部及び排気装置
2.2 動作
2.3 課題
3.ヒートシールドがチャンバ容器よりも低温とされるEUV光生成装置
3.1 構成
3.2 動作
3.3 作用
3.3.1 ヒートシールドの冷却
3.3.2 EUV集光ミラーの冷却
4.温度センサと制御部を有するEUV光生成装置
4.1 構成
4.2 動作及び作用
5.スズの析出を抑制する加工をしたヒートシールドを含むEUV光生成装置
5.1 第1の例
5.2 第2の例
6.その他
【0012】
以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
【0013】
1.極端紫外光生成システムの全体説明
1.1 構成
図1に、例示的なLPP式のEUV光生成システムの構成を概略的に示す。EUV光生成装置1は、少なくとも1つのレーザ装置3と共に用いられる。本願においては、EUV光生成装置1及びレーザ装置3を含むシステムを、EUV光生成システム11と称する。図1に示し、かつ、以下に詳細に説明するように、EUV光生成装置1は、チャンバ容器2、ターゲット供給部26を含む。チャンバ容器2は、密閉可能に構成されている。ターゲット供給部26は、例えば、チャンバ容器2を貫通するように取り付けられている。ターゲット供給部26から出力されるターゲット物質の材料は、スズを含む。ターゲット物質の材料は、スズと、テルビウム、ガドリニウム、リチウム、又はキセノンとの組合せを含むこともできる。
【0014】
チャンバ容器2には、少なくとも1つの貫通孔が設けられている。その貫通孔には、ウインドウ21が設けられている。ウインドウ21をレーザ装置3から出力されるパルスレーザ光32が透過する。チャンバ容器2の内部には、例えば、回転楕円面形状の反射面を有するEUV集光ミラー23が配置されている。EUV集光ミラー23は、第1及び第2の焦点を有する。EUV集光ミラー23の表面には、例えば、モリブデンとシリコンとが交互に積層された多層反射膜が形成されている。EUV集光ミラー23は、例えば、その第1の焦点がプラズマ生成領域25に位置し、その第2の焦点が中間集光点(IF)292に位置するように配置されている。EUV集光ミラー23の中央部には貫通孔24が設けられている。貫通孔24をパルスレーザ光33が通過する。
【0015】
EUV光生成装置1は、EUV光生成制御部5、ターゲットセンサ4等を含む。ターゲットセンサ4は、撮像機能を有し、ターゲット27の存在、軌跡、位置、速度等を検出するよう構成されている。
【0016】
また、EUV光生成装置1は、チャンバ容器2の内部と露光装置6の内部とを連通させる接続部29を含む。接続部29内部には、アパーチャが形成された壁291が設けられている。壁291は、そのアパーチャがEUV集光ミラー23の第2の焦点位置に位置するように配置されている。
【0017】
さらに、EUV光生成装置1は、レーザ光進行方向制御部34、レーザ光集光ミラー22、ターゲット27を回収するためのターゲット回収部28等を含む。レーザ光進行方向制御部34は、レーザ光の進行方向を規定するための光学素子と、この光学素子の位置、姿勢等を調整するためのアクチュエータとを備えている。
【0018】
1.2 動作
図1を参照に、レーザ装置3から出力されたパルスレーザ光31は、レーザ光進行方向制御部34を経て、パルスレーザ光32としてウインドウ21を透過してチャンバ容器2内に入射する。パルスレーザ光32は、少なくとも1つのレーザ光経路に沿ってチャンバ容器2内を進み、レーザ光集光ミラー22で反射されて、パルスレーザ光33として少なくとも1つのターゲット27に照射される。
【0019】
ターゲット供給部26は、ターゲット27をチャンバ容器2内部のプラズマ生成領域25に向けて出力する。ターゲット27には、パルスレーザ光33に含まれる少なくとも1つのパルスが照射される。パルスレーザ光が照射されたターゲット27はプラズマ化し、そのプラズマから放射光251が放射される。EUV集光ミラー23は、放射光251に含まれるEUV光を、他の波長域の光に比べて高い反射率で反射する。EUV集光ミラー23によって反射されたEUV光を含む反射光252は、中間集光点292で集光され、露光装置6に出力される。なお、1つのターゲット27に、パルスレーザ光33に含まれる複数のパルスが照射されてもよい。
【0020】
EUV光生成制御部5は、EUV光生成システム11全体の制御を統括する。EUV光生成制御部5は、ターゲットセンサ4によって撮像されたターゲット27のイメージデータ等を処理する。また、EUV光生成制御部5は、例えば、ターゲット27が出力されるタイミング、ターゲット27の出力方向等を制御する。さらに、EUV光生成制御部5は、例えば、レーザ装置3の発振タイミング、パルスレーザ光32の進行方向、パルスレーザ光33の集光位置等を制御する。上述の様々な制御は単なる例示に過ぎず、必要に応じて他の制御が追加されてもよい。
【0021】
2.比較例に係るEUV光生成装置
2.1 構成
2.1.1 チャンバ容器及び熱交換器
図2は、比較例に係るEUV光生成装置の構成を概略的に示す。図2に示されるように、チャンバ容器2aは、チャンバ保持部材10によって、重力方向に対して斜めの姿勢に保持されている。以下の説明において、EUV光の出力方向を+Z方向とする。ターゲット27の出力方向を+Y方向とする。+Z方向と+Y方向との両方に垂直な方向を+X方向とする。
【0022】
チャンバ容器2aの内部には、EUV集光ミラー23aと、レーザ光集光ミラー22aと、ヒートシールド7aと、が設けられている。チャンバ容器2aの外部には、複数の熱交換器62、63、及び67が設けられている。さらに、チャンバ容器2aの外部には、水素ガス供給部50と、排気ポンプ59と、接続部29aと、が取り付けられている。
【0023】
チャンバ容器2aには、液体のチャンバ容器冷却媒体を通過させる冷却媒体流路2bが形成されている。チャンバ容器冷却媒体としては例えば水が用いられる。冷却媒体流路2bは、冷却媒体配管621を介して熱交換器62に接続されている。チャンバ容器冷却媒体は、本開示における第1の冷却媒体に相当する。冷却媒体流路2bは、本開示における第1の冷却媒体流路に相当する。
【0024】
冷却装置を構成する熱交換器62は、冷却媒体配管621の一部と、プロセス冷却水配管622の一部と、循環ポンプ624と、を含む。
冷却媒体配管621は、一端が冷却媒体流路2bの出口に接続され、他端が冷却媒体流路2bの入口に接続されている。冷却媒体配管621の途中に熱交換器62が位置している。循環ポンプ624は冷却媒体配管621に配置されている。
プロセス冷却水配管622は、装置外部から供給されるプロセス冷却水(PCW)の流路を構成する。プロセス冷却水はほぼ一定の温度を有し、その温度は例えば10℃以上14℃以下である。熱交換器62の内部において、熱伝導が効率的に行われるように、冷却媒体配管621とプロセス冷却水配管622とは近接して配置されている。
【0025】
2.1.2 EUV集光ミラー及び熱交換器
EUV集光ミラー23aは、EUV集光ミラーホルダ43によってチャンバ容器2aの内部に支持されている。
EUV集光ミラー23aには、液体の集光ミラー冷却媒体を通過させる冷却媒体流路23bが形成されている。集光ミラー冷却媒体としては例えば水が用いられる。冷却媒体流路23bは、冷却媒体配管631を介して熱交換器63に接続されている。集光ミラー冷却媒体は、本開示における第3の冷却媒体に相当する。冷却媒体流路23bは、本開示における第3の冷却媒体流路に相当する。
【0026】
熱交換器63は、冷却媒体配管631の一部と、プロセス冷却水配管632の一部と、循環ポンプ634と、を含む。
冷却媒体配管631は、一端が冷却媒体流路23bの出口に接続され、他端が冷却媒体流路23bの入口に接続されている。冷却媒体配管631の途中に熱交換器63が位置している。循環ポンプ634は冷却媒体配管631に配置されている。
プロセス冷却水配管632は、装置外部から供給されるプロセス冷却水の流路を構成する。熱交換器63の内部において、熱伝導が効率的に行われるように、冷却媒体配管631とプロセス冷却水配管632とは近接して配置されている。
【0027】
2.1.3 レーザ光集光ミラー
レーザ光集光ミラー22aは、ホルダ42によってチャンバ容器2aの内部に支持されている。レーザ光集光ミラー22aは、軸外放物面ミラーとして構成されている。軸外放物面ミラーの焦点は、プラズマ生成領域25に位置している。プラズマ生成領域25は、本開示における所定領域に相当する。
【0028】
2.1.4 ヒートシールド及び熱交換器
ヒートシールド7aは、チャンバ容器2aの内部において、EUV集光ミラー23aによって反射されたEUV光を含む反射光252の光路を囲んで位置している。すなわち、ヒートシールド7aは、プラズマ生成領域25とチャンバ容器2aとの間に位置している。ヒートシールド7aは、-Z方向側においては径が大きく、+Z方向側においては径が小さいテーパー筒状の形状を有している。ヒートシールド7aの大径側の部分はEUV集光ミラー23aの外周部の近傍に位置している。ヒートシールド7aの小径側の部分はEUV集光ミラー23aによって反射されたEUV光を含む反射光252の光路の下流側に位置している。
【0029】
ヒートシールド7aとチャンバ容器2aとは、複数の伸縮部材73によって接続されている。ヒートシールド7aには、貫通孔70が形成されている。貫通孔70は、ターゲット供給部26とプラズマ生成領域25との間のターゲット27の軌道に位置している。
【0030】
ヒートシールド7aには、液体のヒートシールド冷却媒体を通過させる冷却媒体流路7bが形成されている。ヒートシールド冷却媒体としては例えば水が用いられる。冷却媒体流路7bは、冷却媒体配管671を介して熱交換器67に接続されている。ヒートシールド冷却媒体は、本開示における第2の冷却媒体に相当する。冷却媒体流路7bは、本開示における第2の冷却媒体流路に相当する。
【0031】
熱交換器67は、冷却媒体配管671の一部と、プロセス冷却水配管672の一部と、循環ポンプ674と、を含む。
冷却媒体配管671は、一端が冷却媒体流路7bの出口に接続され、他端が冷却媒体流路7bの入口に接続されている。冷却媒体配管671の途中に熱交換器67が位置している。循環ポンプ674は冷却媒体配管671に配置されている。
プロセス冷却水配管672は、装置外部から供給されるプロセス冷却水の流路を構成する。熱交換器67の内部において、熱伝導が効率的に行われるように、冷却媒体配管671とプロセス冷却水配管672とは近接して配置されている。
【0032】
2.1.5 水素ガス供給部及び排気装置
水素ガス供給部50は、水素ガスを収容した図示しないボンベと、図示しないマスフローコントローラ又は開閉弁とを含む。水素ガス供給部50には、少なくとも1つの水素ガス供給管51が接続されている。水素ガス供給管51は、チャンバ容器2aを貫通し、水素ガス放出部52に接続されている。水素ガス放出部52は、EUV集光ミラー23aの外周に沿って環状に配置されている。
【0033】
排気ポンプ59は、チャンバ容器2a又は接続部29aの内部に接続されている。排気ポンプ59とチャンバ容器2a又は接続部29aとの間に、図示しない微粒子トラップや除害装置が配置されてもよい。
【0034】
2.2 動作
ターゲット供給部26から出力されたターゲット27は、ヒートシールド7aの貫通孔70を通過し、プラズマ生成領域25に到達する。パルスレーザ光32は、ウインドウ21を介してチャンバ容器2a内のレーザ光集光ミラー22aに入射する。レーザ光集光ミラー22aによって反射されたパルスレーザ光33は、プラズマ生成領域25に集光される。パルスレーザ光33は、ターゲット27がプラズマ生成領域25に到達するタイミングでプラズマ生成領域25に到達する。ターゲット27は、パルスレーザ光33を照射されてプラズマ化する。プラズマからEUV光を含む放射光251が放射される。
【0035】
プラズマから放射される放射光251には、輻射熱も含まれる。この輻射熱によってチャンバ容器2aの温度が上昇する。チャンバ容器2aの温度が上昇すると、チャンバ容器2aが変形してターゲット供給部26やその他の部品のアライメントがずれてしまう。そこで、チャンバ容器2aの温度上昇を抑制するために、チャンバ容器2aに配置された冷却媒体流路2bに、チャンバ容器冷却媒体が供給される。
チャンバ容器冷却媒体は、チャンバ容器2aから熱エネルギーを受け取って、冷却媒体流路2bから排出される。冷却媒体流路2bから排出された高温のチャンバ容器冷却媒体は、熱交換器62によって、プロセス冷却水の温度と同等かそれよりもわずかに高い温度にまで冷却される。例えば、チャンバ容器冷却媒体は、12℃以上16℃以下の温度にまで冷却される。冷却されたチャンバ容器冷却媒体が、冷却媒体流路2bに戻される。
【0036】
また、プラズマから放射される輻射熱によってEUV集光ミラー23aの温度が上昇する。EUV集光ミラー23aの温度が上昇すると、EUV集光ミラー23aが変形してEUV集光ミラー23aの第1及び第2の焦点の位置がずれてしまう。そこで、EUV集光ミラー23aの温度上昇を抑制するために、EUV集光ミラー23aに配置された冷却媒体流路23bに、集光ミラー冷却媒体が供給される。
集光ミラー冷却媒体は、EUV集光ミラー23aから熱エネルギーを受け取って、冷却媒体流路23bから排出される。冷却媒体流路23bから排出された高温の集光ミラー冷却媒体は、熱交換器63によって、プロセス冷却水の温度と同等かそれよりもわずかに高い温度にまで冷却される。例えば、集光ミラー冷却媒体は、12℃以上16℃以下の温度にまで冷却される。冷却された集光ミラー冷却媒体が、冷却媒体流路23bに戻される。
【0037】
さらに、プラズマ生成領域25とチャンバ容器2aとの間にヒートシールド7aが配置され、ヒートシールド7aに配置された冷却媒体流路7bにヒートシールド冷却媒体が供給される。これにより、チャンバ容器2aの温度上昇が抑制される。
ヒートシールド冷却媒体は、ヒートシールド7aから熱エネルギーを受け取って、冷却媒体流路7bから排出される。冷却媒体流路7bから排出された高温のヒートシールド冷却媒体は、熱交換機67によって、プロセス冷却水の温度と同等かそれよりもわずかに高い温度にまで冷却される。例えば、ヒートシールド冷却媒体は、12℃以上16℃以下の温度にまで冷却される。冷却されたヒートシールド冷却媒体が、冷却媒体流路7bに戻される。
【0038】
プラズマからは、スズのデブリも生成される。スズのデブリは、EUV集光ミラー23aの反射面23cに付着すると、反射面23cの反射率を低下させる。そこで、水素ガス供給部50が、水素ガス放出部52に水素ガスを供給する。水素ガス放出部52は、EUV集光ミラー23aの周辺から内側に向けて、EUV集光ミラー23aの反射面23cに沿って水素ガスを流す。これにより、反射面23cにスズが到達することが抑制される。さらに、反射面23cに付着したスズがエッチングされる。具体的には、水素ガスがEUV光などで励起されることで水素ラジカルとなり、この水素ラジカルがスズと反応することで、常温で気体であるスタンナンとなる。
【0039】
排気ポンプ59は、チャンバ容器2aの内部を大気圧未満の所定の圧力となるように排気する。これにより、水素ガス放出部52から放出された水素ガスや、水素ラジカルとスズとの反応により生成されたスタンナンガスが排気される。
【0040】
2.3 課題
水素ラジカルとスズとの反応により生成されたスタンナンガスは、排気ポンプ59によって直ちに排気できるとは限らず、生成されたスタンナンガスの一部はチャンバ容器2aの内部にしばらくとどまることがある。チャンバ容器2aの内部において、スタンナンはさらに水素ガスとスズとに解離して、チャンバ容器2aの内部の部品の表面にスズを析出させることがある。特に、高温の部品の付近ではスタンナンの解離速度が速くなる。
上述の比較例において、チャンバ容器2a、EUV集光ミラー23a、及びヒートシールド7aを冷却することは、これらの部品の変形を抑制するだけではなく、スタンナンの解離を抑制する効果も有している。
【0041】
しかしながら、ヒートシールド7aに関しては、スタンナンの解離を十分に抑制できるような温度まで下げられないことがあった。すなわち、ヒートシールド7aはプラズマ生成領域25に近く、ヒートシールド7aとプラズマ生成領域25との間に輻射熱を遮る部品がないので、ヒートシールド7aはチャンバ容器2aよりも高温になってしまうことがあった。その結果、ヒートシールド7aの表面にスズが析出してしまうことがあった。
【0042】
ヒートシールド7aの表面に凹凸がある場合、スズの析出は一様に起こるのではなく、凸部に起こりやすい傾向がある。凸部にスズが析出すると、析出したスズの厚みによって、同じ凸部にさらにスズの析出が起こりやすくなる。このため、ヒートシールド7aの表面の特定の位置で析出スズの塊が成長し、やがて反射光252の光路の一部を遮ってしまう可能性があった。また、成長した析出スズの塊がヒートシールド7aから剥がれてEUV集光ミラー23aの反射面23cに落下し、EUV集光ミラー23aの反射率を低下させてしまう可能性があった。さらに、成長した析出スズの先端は十分に冷却されないので、スズの融点以上に加熱され、EUV集光ミラー23aの反射面23cに滴り落ちてしまう可能性もあった。
【0043】
以下に説明する実施形態においては、チャンバ容器2aの温度よりもヒートシールド7aの温度の方が低温となるように、冷却媒体流路2bにチャンバ容器冷却媒体を供給し、冷却媒体流路7bにヒートシールド冷却媒体を供給する。
【0044】
3.ヒートシールドがチャンバ容器よりも低温とされるEUV光生成装置
3.1 構成
図3は、本開示の第1の実施形態に係るEUV光生成装置の構成を概略的に示す。第1の実施形態は、図2を参照しながら説明した熱交換器67及び63の代わりに、チラー67a及び63aをそれぞれ備えている。
【0045】
チラー67aは、環状の冷媒配管673を含んでいる。冷媒配管673に、圧縮器675と、凝縮器676と、膨張弁677と、蒸発器678と、がこの順で配置されている。冷媒配管673に充填される冷媒として、例えば、蒸発時に蓄える潜熱が大きい材料が選択される。
【0046】
圧縮器675は、蒸発器678側から凝縮器676側に冷媒を圧縮して送り込むように構成されている。凝縮器676においては、冷媒配管673とプロセス冷却水配管672とが近接して配置されている。膨張弁677は、高圧の凝縮器676側から低圧の蒸発器678側への冷媒の流れを制限する絞り弁である。蒸発器678においては、冷媒配管673と冷却媒体配管671とが近接して配置されている。
【0047】
チラー63aの構成は、チラー67aの構成と同様である。但し、チラー63aの各構成要素は、「63」で始まる符号で図示されている。
他の点については、第1の実施形態の構成は比較例の構成と同様である。
【0048】
3.2 動作
チラー67aにおいて、圧縮器675によって圧縮されて高温高圧の気体となった冷媒は、凝縮器676において凝縮しながら放熱する。この熱エネルギーの一部がプロセス冷却水に与えられる。凝縮器676を通過して常温高圧の液体となった冷媒は、膨張弁677から蒸発器678に向けて噴出するときに、その圧力が低下し、低温低圧の液体となる。蒸発器678において、冷媒は蒸発しながら吸熱し、熱エネルギーを潜熱として蓄える。この熱エネルギーの一部はヒートシールド冷却媒体から与えられる。冷媒は、低温低圧の気体となって圧縮器675に戻される。
【0049】
このようにして、チラー67aは、ヒートシールド冷却媒体をプロセス冷却水よりも低い温度まで冷却することができる。ヒートシールド冷却媒体の温度は、例えば、0℃以下とすることができる。冷却されたヒートシールド冷却媒体が、冷却媒体流路7bに戻されて、ヒートシールド7aを冷却する。
【0050】
チラー63aの動作は、チラー67aの動作と同様である。但し、チラー63aは、集光ミラー冷却媒体を冷却する。
他の点については、第1の実施形態の動作は比較例の動作と同様である。
【0051】
3.3 作用
3.3.1 ヒートシールドの冷却
第1の実施形態によれば、ヒートシールド冷却媒体を、プロセス冷却水よりも低い温度まで冷却することにより、ヒートシールド7aにおけるスタンナンの解離を抑制できる程度にまでヒートシールド7aを冷却することができる。そして、ヒートシールド7aの表面でのスズの析出を抑制できる。
【0052】
チャンバ容器2aの温度上昇は、上述の比較例と同様に、熱交換器62を用いて抑制される。チャンバ容器冷却媒体をヒートシールド冷却媒体と同じ温度にまで冷却してしまうと、チャンバ容器2aを必要以上に冷却する可能性がある。例えば、チャンバ容器2aの表面に空気中の水蒸気が結露する可能性がある。チャンバ容器2aにおける結露は、EUV光生成装置の動作に支障をきたす可能性がある。そこで、冷却媒体流路2bに供給されるチャンバ容器冷却媒体の温度よりも、冷却媒体流路7bに供給されるヒートシールド冷却媒体は低い温度とすることが望ましい。
【0053】
図4は、チャンバ内部品の表面の摂氏温度と、この表面の付近におけるスタンナンガスの解離反応の反応速度定数と、の関係を示すグラフである。スタンナンガスの解離速度は、以下のアレニウスの式における反応速度定数を用いて近似することができる。
k=Ae-Ea/RT
ここで、kは反応速度定数である。Aは前指数因子である。eはネイピア数である。Eaは活性化エネルギーである。Rは気体定数である。Tは絶対温度である。図4のグラフはこの式に基づいている。
【0054】
図4に示されるように、チャンバ内部品の表面温度を高くすると、スタンナンガスの解離反応の反応速度定数が上昇し、チャンバ内部品の表面温度を高くするほど、スタンナンガスの解離反応の反応速度定数の上昇率も大きくなる。
【0055】
チャンバ内部品の表面温度を5℃以下とすれば、スタンナンガスの解離速度が遅いので、チャンバ内部品にスズが析出する速度よりも、水素ラジカルによるスズのエッチング速度の方が早い。
チャンバ内部品の表面温度が5℃を超えても、40℃程度までは、チャンバ内部品にスズが析出する速度と、水素ラジカルによるスズのエッチング速度とが拮抗することが期待できる。
チャンバ内部品の表面温度が40℃を超えると、チャンバ内部品にスズが析出する速度が、水素ラジカルによるスズのエッチング速度より速くなってしまう。
【0056】
そこで、ヒートシールド7aの温度は、40℃以下とするのが好ましい。
さらに、ヒートシールド7aの温度は、5℃以下とするのがより好ましい。
【0057】
ヒートシールド7aは、チャンバ容器2aよりも低い温度にまで冷却されることが望ましい。例えば、ヒートシールド7aが5℃以下に維持される場合、チャンバ容器2aは15℃以上25℃以下に維持されることが望ましい。
【0058】
3.3.2 EUV集光ミラーの冷却
また、第1の実施形態によれば、集光ミラー冷却媒体を、プロセス冷却水よりも低い温度まで冷却することにより、EUV集光ミラー23aにおけるスズの析出を抑制できる。
また、冷却媒体流路2bに供給されるチャンバ容器冷却媒体の温度よりも、冷却媒体流路23bに供給される集光ミラー冷却媒体は低い温度とすることが望ましい。
【0059】
ヒートシールド7aに関して上述したのと同様に、EUV集光ミラー23aの温度は、40℃以下とするのが好ましい。
さらに、EUV集光ミラー23aの温度は、5℃以下とするのがより好ましい。
EUV集光ミラー23aは、チャンバ容器2aよりも低い温度にまで冷却されることが望ましい。例えば、EUV集光ミラー23aが5℃以下に維持される場合、チャンバ容器2aは15℃以上25℃以下に維持されることが望ましい。
【0060】
4.温度センサと制御部を有するEUV光生成装置
4.1 構成
図5は、本開示の第2の実施形態に係るEUV光生成装置の構成を概略的に示す。第2の実施形態は、図3を参照しながら説明した第1の実施形態の構成に加えて、ヒートシールド温度センサ7d、チャンバ容器温度センサ2d、及び集光ミラー温度センサ23dを備えている。第2の実施形態は、さらに、制御部670、620、及び630を備えている。
【0061】
ヒートシールド温度センサ7dは、例えば、熱電対で構成される。ヒートシールド温度センサ7dは、ヒートシールド7aの温度を検出する。ヒートシールド温度センサ7dは、ヒートシールド7aの複数の位置に設けられる複数のセンサを含んでもよい。ヒートシールド7aの温度は、複数のセンサで検出された温度の平均でもよいし、複数のセンサで検出された温度の中で最も高い値でもよい。ヒートシールド温度センサ7dは、本開示における第2の温度センサに相当する。
【0062】
チャンバ容器温度センサ2dは、例えば、熱電対で構成される。チャンバ容器温度センサ2dは、チャンバ容器2aの温度を検出する。チャンバ容器温度センサ2dは、チャンバ容器2aの複数の位置に設けられる複数のセンサを含んでもよい。チャンバ容器2aの温度は、複数のセンサで検出された温度の平均でもよいし、複数のセンサで検出された温度の中で最も高い値でもよい。チャンバ容器温度センサ2dは、本開示における第1の温度センサに相当する。
【0063】
集光ミラー温度センサ23dは、例えば、熱電対で構成される。集光ミラー温度センサ23dは、EUV集光ミラー23aの温度を検出する。集光ミラー温度センサ23dは、EUV集光ミラー23aの複数の位置に設けられる複数のセンサを含んでもよい。EUV集光ミラー23aの温度は、複数のセンサで検出された温度の平均でもよいし、複数のセンサで検出された温度の中で最も高い値でもよい。集光ミラー温度センサ23dは、本開示における第3の温度センサに相当する。
【0064】
制御部670は、ヒートシールド温度センサ7dが検出したヒートシールド7aの温度に基づいて、チラー67aを制御する。チラー67aの制御は、例えば、循環ポンプ674の制御を含む。あるいは、チラー67aの制御は、膨張弁677の制御を含む。
【0065】
制御部620は、チャンバ容器温度センサ2dが検出したチャンバ容器2aの温度に基づいて、熱交換器62を制御する。熱交換器62の制御は、例えば、循環ポンプ624の制御を含む。
【0066】
制御部630は、集光ミラー温度センサ23dが検出したEUV集光ミラー23aの温度に基づいて、チラー63aを制御する。チラー63aの制御は、例えば、循環ポンプ634の制御を含む。あるいは、チラー63aの制御は、膨張弁637の制御を含む。
他の点については、第2の実施形態の構成は第1の実施形態の構成と同様である。
【0067】
4.2 動作及び作用
図6Aは、第2の実施形態における制御部の動作の第1の例を示すフローチャートである。制御部670は、以下のようにして、チラー67aを制御してヒートシールド冷却媒体の流量を調整する。
【0068】
まず、S1において、制御部670は、ヒートシールド7aの温度Tを計測する。具体的には、制御部670は、ヒートシールド温度センサ7dからヒートシールド7aの温度を示すアナログ信号を受信し、このアナログ信号をデジタル信号に変換する。
【0069】
次に、S2において、制御部670は、ヒートシールド7aの温度Tを、下限値TLL及び上限値TULと比較する。下限値TLLは、例えば0℃であり、上限値TULは、例えば5℃である。ヒートシールド7aの温度Tが下限値TLL以下である場合、制御部670は、処理をS3に進める。ヒートシールド7aの温度Tが上限値TUL以上である場合、制御部670は、処理をS4に進める。ヒートシールド7aの温度Tが下限値TLLと上限値TULとの間である場合、制御部670は、チラー67aの制御はせずに処理をS1に戻し、本フローチャートの処理を繰り返す。
【0070】
S3において、制御部670は、ヒートシールド冷却媒体の流量を現在の流量より下げる処理を行う。例えば、制御部670は、循環ポンプ674の回転数が現在の回転数より小さくなるように、循環ポンプ674を制御する。これにより、ヒートシールド7aの温度Tが下限値TLL以下である場合に、ヒートシールド7aの温度Tが下限値TLLより高くなるように調整することができる。その後、制御部670は、処理をS1に戻して本フローチャートの処理を繰り返す。
なお、ヒートシールド7aの温度Tの上限値TULのみ判定する場合には、S2における下限値TLLの判定及びS3の処理は、省略されてもよい。
【0071】
S4において、制御部670は、ヒートシールド冷却媒体の流量を現在の流量より上げる処理を行う。例えば、制御部670は、循環ポンプ674の回転数が現在の回転数より大きくなるように、循環ポンプ674を制御する。これにより、ヒートシールド7aの温度Tが上限値TUL以上である場合に、ヒートシールド7aの温度Tが上限値TULより低くなるように調整することができる。その後、制御部670は、処理をS1に戻して本フローチャートの処理を繰り返す。
【0072】
ここでは制御部670がヒートシールド7aの温度Tに基づいてヒートシールド冷却媒体の流量を制御する場合について説明したが、同様に、制御部620が、チャンバ容器2aの温度に基づいてチャンバ容器冷却媒体の流量を制御してもよい。また同様に、制御部630が、EUV集光ミラー23aの温度に基づいて集光ミラー冷却媒体の流量を制御してもよい。
【0073】
図6Bは、第2の実施形態における制御部の動作の第2の例を示すフローチャートである。制御部670は、以下のようにして、チラー67aを制御してヒートシールド冷却媒体の温度を調整する。
【0074】
S1及びS2の処理は、図6Aを参照しながら説明したものと同様である。但し、ヒートシールド7aの温度Tが下限値TLL以下である場合、制御部670は、処理をS5に進める。ヒートシールド7aの温度Tが上限値TUL以上である場合、制御部670は、処理をS6に進める。
【0075】
S5において、制御部670は、ヒートシールド7aに供給されるヒートシールド冷却媒体の温度を現在の温度より上げる処理を行う。ヒートシールド冷却媒体の温度を調整する方法は任意である。例えば、膨張弁677がバイパス流路を備え、このバイパス流路により常温高圧側の液体を低温低圧側に導入できるように構成されている場合には、制御部670は、バイパス流路の弁開度を制御する。バイパス流路の弁開度を大きくすることにより、チラー67aの冷却能力を低下させることができる。これにより、ヒートシールド7aの温度Tが下限値TLL以下である場合に、ヒートシールド7aの温度Tが下限値TLLより高くなるように調整することができる。その後、制御部670は、処理をS1に戻して本フローチャートの処理を繰り返す。
なお、ヒートシールド7aの温度Tの上限値TULのみ判定する場合には、S2における下限値TLLの判定及びS5の処理は、省略されてもよい。
【0076】
S6において、制御部670は、ヒートシールド7aに供給されるヒートシールド冷却媒体の温度を現在の温度より下げる処理を行う。例えば、上述のバイパス流路の弁開度を小さくすることにより、チラー67aの冷却能力を向上させることができる。これにより、ヒートシールド7aの温度Tが上限値TUL以上である場合に、ヒートシールド7aの温度Tが上限値TULより低くなるように調整することができる。その後、制御部670は、処理をS1に戻して本フローチャートの処理を繰り返す。
【0077】
ここでは制御部670がヒートシールド7aの温度Tに基づいてヒートシールド冷却媒体の温度を制御する場合について説明したが、同様に、制御部630が、EUV集光ミラー23aの温度に基づいて集光ミラー冷却媒体の温度を制御してもよい。
また、制御部670は、ヒートシールド冷却媒体の流量と温度の両方を制御してもよい。制御部630は、集光ミラー冷却媒体の流量と温度の両方を制御してもよい。
【0078】
チャンバ容器2a内の部品の温度は、EUV光の出力条件などによって変動する可能性がある。第2の実施形態によれば、チャンバ容器2a内の部品の温度の実測値に基づいて、チラー又は熱交換器を制御して、チャンバ容器2a内の部品の温度を所望の範囲内に調整することができる。
他の点については、第2の実施形態の動作及び作用は第1の実施形態の動作及び作用と同様である。
【0079】
5.スズの析出を抑制する加工をしたヒートシールドを含むEUV光生成装置
図7Aは、本開示の第3の実施形態に係るEUV光生成装置に含まれるヒートシールドの斜視図である。上述のように、ヒートシールド7aはテーパー筒状の形状を有している。ヒートシールド7aの内表面7eは、上述のプラズマ生成領域25に面している。このことは、ヒートシールド7aの外表面7fに比べて内表面7eにスズが析出しやすくなる要因となっている。
そこで、第3の実施形態においては、ヒートシールド7aの内表面7eにスズの析出を抑制する加工をしている。
【0080】
5.1 第1の例
図7Bは、第3の実施形態の第1の例におけるヒートシールド7aの拡大断面図である。図7Bは、図7Aの囲み線Sの付近におけるヒートシールド7aの断面を拡大したものに相当する。
【0081】
第1の例におけるヒートシールド7aは、基材71と、コーティング層72とを含む。基材71には、上述の冷却媒体流路7bが形成されている。コーティング層72は、ヒートシールド7aの内表面7e側に位置している。コーティング層72は、例えば、TiO又はZrNを含む。コーティング層72をTiO又はZrNを含む材料で構成することにより、ヒートシールド7aの内表面7eにおいてスズの析出を抑制することができる。あるいは、ヒートシールド7aの内表面7eにおいてスズのエッチングを促進することができる。
【0082】
コーティング層72は、ヒートシールド7aの内表面7e側の全体に形成するものとして説明したが、本開示はこれに限定されない。コーティング層72は、ヒートシールド7aの内表面7eのうちのEUV集光ミラー23aの外周部に近い大径側の部分にのみ形成し、小径側の部分には形成しないものとされてもよい。また、排気ポンプ59がチャンバ容器2aに接続されている場合には、ヒートシールド7aの内表面7eのうちの排気ポンプ59が接続されたチャンバ容器2aの排気口に近い位置に、コーティング層72が形成されてもよい。
また、コーティング層72は、ヒートシールド7aの外表面7fを含めたヒートシールド7aの表面全体に形成されてもよい。
【0083】
5.2 第2の例
図7Cは、第3の実施形態の第2の例におけるヒートシールド7aの拡大断面図である。図7Cは、図7Aの囲み線Sの付近におけるヒートシールド7aの断面を拡大したものに相当する。
【0084】
第2の例におけるヒートシールド7aは、上述のコーティング層72を含まなくてもよい。その代わりに、第2の例における基材71は、内表面7eの表面粗さRaが小さくなるように加工されている。例えば、内表面7eの表面粗さRaは、6.3μm以下が望ましい。内表面7eの表面粗さRaは、1.6μm以下がさらに望ましい。
他の点については、第2の例は第1の例と同様である。
【0085】
上述のように、ヒートシールド7aの表面に凹凸がある場合、スズの析出は凸部に起こりやすい傾向がある。その原因としては、冷却媒体流路7bから凸部までの熱伝導経路が、他の部分までの熱伝導経路より長いことや、冷却媒体流路7bから凸部までの熱伝導経路の断面積が、他の部分までの熱伝導経路の断面積より小さいことが考えられる。
第2の例によれば、内表面7eの表面粗さRaを小さくしたことにより、スズが析出しやすい凸部を小さくし、スズの析出を抑制することができる。
【0086】
表面粗さRaを小さくする加工は、ヒートシールド7aの内表面7e側の全体に行うものとして説明したが、本開示はこれに限定されない。表面粗さRaを小さくする加工は、ヒートシールド7aの内表面7eのうちのEUV集光ミラー23aの外周部に近い大径側の部分にのみ行い、小径側の部分には行わないものとされてもよい。また、排気ポンプ59がチャンバ容器2aに接続されている場合には、ヒートシールド7aの内表面7eのうちの排気ポンプ59が接続されたチャンバ容器2aの排気口に近い位置に、表面粗さRaを小さくする加工が行われてもよい。
また、表面粗さRaを小さくする加工は、ヒートシールド7aの外表面7fを含めたヒートシールド7aの表面全体に行われてもよい。
また、基材71をTiO又はZrNを含む材料で構成してもよい。
【0087】
さらに、第1の例におけるコーティング層72の表面粗さRaを上述の値以下とすることにより、さらにスズの析出を抑制することができる。
また、表面粗さだけでなく、ヒートシールド7aは突起部の少ない形状とすることが望ましい。
【0088】
6.その他
図8は、EUV光生成装置に接続された露光装置の構成を概略的に示す。
図8において、露光装置6は、マスク照射部60とワークピース照射部61とを含む。マスク照射部60は、EUV光生成装置1から入射したEUV光によって、反射光学系を介してマスクテーブルMTのマスクパターンを照明する。ワークピース照射部61は、マスクテーブルMTによって反射されたEUV光を、反射光学系を介してワークピーステーブルWT上に配置された図示しないワークピース上に結像させる。ワークピースはフォトレジストが塗布された半導体ウエハ等の感光基板である。露光装置6は、マスクテーブルMTとワークピーステーブルWTとを同期して平行移動させることにより、マスクパターンを反映したEUV光をワークピースに露光する。以上のような露光工程によって半導体ウエハにデバイスパターンを転写することで電子デバイスを製造することができる。
【0089】
上記の説明は、制限ではなく単なる例示を意図している。従って、特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかである。また、本開示の実施形態を組み合わせて使用することも当業者には明らかである。
【0090】
本明細書及び特許請求の範囲全体で使用される用語は、明記が無い限り「限定的でない」用語と解釈されるべきである。たとえば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、不定冠詞「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。また、「A、B及びCの少なくとも1つ」という用語は、「A」「B」「C」「A+B」「A+C」「B+C」又は「A+B+C」と解釈されるべきである。さらに、それらと「A」「B」「C」以外のものとの組み合わせも含むと解釈されるべきである。
図1
図2
図3
図4
図5
図6A
図6B
図7A
図7B
図7C
図8