(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-23
(45)【発行日】2022-03-31
(54)【発明の名称】放射線検出器及び放射線検出装置
(51)【国際特許分類】
G01T 1/24 20060101AFI20220324BHJP
H01J 37/244 20060101ALI20220324BHJP
G01N 23/2252 20180101ALI20220324BHJP
【FI】
G01T1/24
H01J37/244
G01N23/2252
(21)【出願番号】P 2019523462
(86)(22)【出願日】2018-05-28
(86)【国際出願番号】 JP2018020376
(87)【国際公開番号】W WO2018225563
(87)【国際公開日】2018-12-13
【審査請求日】2021-02-26
(31)【優先権主張番号】P 2017110697
(32)【優先日】2017-06-05
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】516387107
【氏名又は名称】フォンダチオーネ ブルーノ ケスラー
(73)【特許権者】
【識別番号】000155023
【氏名又は名称】株式会社堀場製作所
(74)【代理人】
【識別番号】100114557
【氏名又は名称】河野 英仁
(74)【代理人】
【識別番号】100078868
【氏名又は名称】河野 登夫
(72)【発明者】
【氏名】ピチォット アントニーノ
(72)【発明者】
【氏名】フィコレラ フランチェスコ
(72)【発明者】
【氏名】ゾルジ ニコーラ
(72)【発明者】
【氏名】松永 大輔
(72)【発明者】
【氏名】安井 健吾
【審査官】冨士 健太
(56)【参考文献】
【文献】実開昭53-066158(JP,U)
【文献】特開平06-068831(JP,A)
【文献】特開2013-224938(JP,A)
【文献】特開2008-258348(JP,A)
【文献】特開2013-160614(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 23/00 -23/2276
G01T 1/00 - 1/16
1/167- 7/12
(57)【特許請求の範囲】
【請求項1】
板状の半導体部を備え、該半導体部を貫通した貫通孔が設けられており、該半導体部の一面を放射線の入射面とした放射線検出器において、
前記半導体部の入射面を連続的に内縁まで覆った第1電極と、
前記半導体部の他面に設けられてあり、前記第1電極との間で前記半導体部に電圧を印加するための複数の第2電極とを備え
、
前記複数の第2電極は、複数組の多重のループ状電極であり、
各組の多重のループ状電極は、順々に電位が変化するように電圧が印加される構成となっており、
各組の多重のループ状電極に囲まれる位置に、信号を出力するための電極を更に備えること
を特徴とする放射線検出器。
【請求項2】
前記第1電極に連続しており、前記半導体部の内面を連続的に覆った第3電極を更に備えること
を特徴とする請求項
1に記載の放射線検出器。
【請求項3】
試料へ放射線を照射する照射部と、
請求項1
又は2に記載の放射線検出器とを備え、
前記放射線検出器は、前記照射部から前記試料へ照射される放射線が貫通孔を通過し、前記試料から発生した放射線が半導体部の入射面に入射するように配置されていること
を特徴とする放射線検出装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、放射線を検出するための放射線検出器及び放射線検出装置に関する。
【背景技術】
【0002】
X線等の放射線を検出するための放射線検出器には、半導体素子を用いて放射線を検出するものがある。半導体素子を用いた放射線検出器には、例えばSDD(Silicon Drift Detector)がある。放射線検出器を用いた放射線検出装置には、試料へ電子線又はX線等の放射線を照射し、放射線を照射された試料から発生した放射線を放射線検出器により検出するものがある。
【0003】
放射線検出装置で試料からの放射線の検出効率をより高めるためには、放射線検出器をより試料に近づければよい。特許文献1には、試料へ照射する放射線を通過させる孔を板状の放射線検出器に設けておき、放射線源と試料との間に放射線検出器を配置した放射線検出装置が開示されている。放射線源と試料との間に放射線検出器を配置することにより、放射線検出器を試料に近づけて放射線の検出効率を高めることができる。
【先行技術文献】
【特許文献】
【0004】
【文献】国際公開第WO2015/125603A1号
【発明の概要】
【発明が解決しようとする課題】
【0005】
半導体製の放射線検出素子を用いた板状の放射線検出器は、半導体に電圧を印加するための電極が両面に配置されている。試料へ照射する放射線を通過させる孔を設けた放射線検出器では、孔の近傍部分は、最も試料に近くなり、試料から発生した放射線が最も入射し易い。しかしながら、従来の放射線検出器では、孔の近傍部分には接地電位に接続される電極が設けられ、半導体に電圧を印加するための電極が配置されていないので、孔の近傍部分へ入射した放射線はほとんど検出されない。このため、放射線の検出効率の向上には限界があった。
【0006】
本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、放射線の検出が可能な部分を増大させることにより、放射線の検出効率を向上させた放射線検出器及び放射線検出装置を提供することにある。
【課題を解決するための手段】
【0011】
本発明に係る放射線検出器は、板状の半導体部を備え、該半導体部を貫通した貫通孔が設けられており、該半導体部の一面を放射線の入射面とした放射線検出器において、前記半導体部の入射面を連続的に内縁まで覆った第1電極と、前記半導体部の他面に設けられてあり、前記第1電極との間で前記半導体部に電圧を印加するための複数の第2電極とを備え、前記複数の第2電極は、複数組の多重のループ状電極であり、各組の多重のループ状電極は、順々に電位が変化するように電圧が印加される構成となっており、各組の多重のループ状電極に囲まれる位置に、信号を出力するための電極を更に備えることを特徴とする。
【0012】
本発明においては、放射線検出器は、板状の半導体部に貫通孔が設けられており、半導体部の一面が放射線の入射面となっている。放射線検出器には、半導体部の入射面を連続的に内縁まで覆った第1電極が設けられており、半導体部の他面に設けられた複数の第2電極と第1電極との間で半導体部に電圧が印加され、放射線が検出される。第1電極が入射面を内縁まで覆っていることにより、半導体部の入射面の内縁が有感部分に含まれる。
本発明においては、複数の第2電極は、複数組の多重のループ状電極である。各組の多重のループ状電極は、順々に電位が変化するように電圧が印加される。各組の多重のループ状電極に囲まれる位置には、信号を出力するための信号出力電極が備えられている。放射線により発生した電荷が信号出力電極へ流入して、信号出力電極から信号が出力される。多重のループ状電極及び信号出力電極が一組である場合に比べて、信号出力電極の面積が小さくなり、信号出力電極に起因する静電容量が小さくなる。
【0013】
本発明に係る放射線検出器は、前記第1電極に連続しており、前記半導体部の内面を連続的に覆った第3電極を更に備えることを特徴とする。
【0014】
本発明においては、放射線検出器は、第1電極に連続した第3電極を備え、第3電極は半導体部の内面を覆っている。第1電極及び第3電極と第2電極との間で半導体部に電圧が印加され、放射線が検出される。第1電極に連続した第3電極が半導体部の内面を覆っていることにより、入射面の内縁を含んだ部分に加えて、半導体部の内面も有感部分に含まれる。
【0017】
本発明に係る放射線検出装置は、試料へ放射線を照射する照射部と、本発明に係る放射線検出器とを備え、前記放射線検出器は、前記照射部から前記試料へ照射される放射線が貫通孔を通過し、前記試料から発生した放射線が半導体部の入射面に入射するように配置されていることを特徴とする。
【0018】
本発明においては、放射線検出装置は、試料へ放射線を照射し、試料から発生した放射線を本発明に係る放射線検出器で検出する。放射線検出器は、試料へ照射される放射線が貫通孔を通過し、試料からの放射線が半導体部の入射面へ入射するように配置される。従来に比べて、試料で発生した放射線の内で放射線検出器が検出することができる放射線の割合が増大する。
【発明の効果】
【0019】
本発明にあっては、放射線を照射した試料から発生した放射線を放射線検出器で検出する効率が向上する。従って、試料から発生する特性X線又は蛍光X線等の放射線を検出するために必要な時間を短縮することができる等、本発明は優れた効果を奏する。
【図面の簡単な説明】
【0020】
【
図1】実施形態1に係る放射線検出装置の構成を示すブロック図である。
【
図3】
図2中のIII-III線で実施形態1に係る放射線検出器を切断した断面構造及び放射線検出器の電気的な接続態様を示すブロック図である。
【
図4】従来の放射線検出器と試料との位置関係を示した模式的断面図である。
【
図5】実施形態1に係る放射線検出器と試料との位置関係を示した模式的断面図である。
【
図6】実施形態2に係る放射線検出器の断面構造及び放射線検出器の電気的な接続態様を示すブロック図である。
【
図7】実施形態2に係る放射線検出器と試料との位置関係を示した模式的断面図である。
【
図8】実施形態3に係る放射線検出装置の構成を示すブロック図である。
【発明を実施するための形態】
【0021】
以下本発明をその実施の形態を示す図面に基づき具体的に説明する。
(実施形態1)
図1は、実施形態1に係る放射線検出装置の構成を示すブロック図である。放射線検出装置は、試料4へ電子線(放射線)を照射し、電子線を照射された試料4から発生する特性X線(放射線)を放射線検出器1で検出する。例えば、放射線検出装置は、電子顕微鏡の一部である。放射線検出装置は、試料4に電子線(放射線)を照射する照射部31と、電子レンズ系32と、試料4が載置される試料台33を備えている。電子レンズ系32は、電子線の方向を変更させる走査コイルを含んでいる。電子レンズ系32と試料台33との間には、放射線検出器1が配置されている。放射線検出器1は、試料4へ照射される電子線を通過させるための貫通孔11を設けた板状に形成されている。放射線検出器1は、貫通孔11を電子線が通る位置に配置され、一面が試料台33に対向するように配置されている。
【0022】
放射線検出器1には、放射線検出を可能にするために電圧を放射線検出器1に印加する電圧印加部23が接続されている。照射部31には、照射部31の動作を制御する照射制御部28が接続されている。電圧印加部23、照射制御部28及び電子レンズ系32は、放射線検出装置全体を制御する制御部27に接続されている。制御部27は、例えば、パーソナルコンピュータで構成されている。制御部27からの制御信号に従って、照射制御部28が照射部31を制御して照射部31が電子線を放出し、電子レンズ系32が電子線の方向を定め、電子線は放射線検出器1の貫通孔11を通って試料台33上の試料4へ照射される。試料4上で、電子線を照射された部分では、特性X線が発生する。特性X線は放射線検出器1へ入射する。制御部27からの制御信号に従って、電圧印加部23は放射線検出器1に電圧を印加し、放射線検出器1は入射した特性X線を検出する。
図1には、電子線を実線矢印で示し、特性X線を破線矢印で示している。放射線検出器1は、検出した特性X線に応じた信号を出力する。放射線検出装置の構成の内、少なくとも照射部31、電子レンズ系32、放射線検出器1及び試料台33は、図示しない真空箱の中に納められている。真空箱は、電子線及びX線を遮蔽する材料で構成されており、放射線検出装置の動作中には真空箱の内部は真空に保たれている。
【0023】
また、放射線検出器1には、前置増幅器21が接続されている。前置増幅器21には、主増幅器22が接続されている。前置増幅器21は、放射線検出器1が出力した信号を変換し、主増幅器22へ出力する。主増幅器22は、前置増幅器21からの信号を増幅し、放射線検出器1へ入射した特性X線のエネルギーに応じた強度の信号を出力する。主増幅器22には、出力した信号を処理する信号処理部24が接続されている。信号処理部24は、主増幅器22が出力した各強度の信号をカウントし、特性X線のエネルギーとカウント数との関係、即ち特性X線のスペクトルを生成する処理を行う。
【0024】
電子レンズ系32が電子線の方向を順次変更することにより、電子線は試料4を走査する。電子線が試料4を走査することにより、試料4上の走査領域内の夫々の部分に電子線が順次照射される。電子線が試料4を走査することに伴い、試料4上で電子線を照射された部分から発生した特性X線が放射線検出器1で順次検出される。信号処理部24は、順次信号処理を行うことにより、試料4上の電子線を照射された複数の部分で発生した特性X線のスペクトルを順次生成する。
【0025】
信号処理部24は、分析部25に接続されている。分析部25は、演算を行う演算部及びデータを記憶するメモリを含んで構成されている。主増幅器22及び分析部25は制御部27に接続されている。制御部27は、主増幅器22及び分析部25の動作を制御する。信号処理部24は、生成したスペクトルを示すデータを分析部25へ順次出力する。分析部25は、信号処理部24からのデータを入力され、入力されたデータが示すスペクトルと電子線を照射された試料4上の位置とを関連付けたスペクトル分布を生成する。分析部25は、特性X線のスペクトルに基づいて、試料4に含まれる元素の定性分析又は定量分析を行い、試料4に含まれる元素の分布を生成する処理を行ってもよい。分析部25には、液晶ディスプレイ等の表示部26が接続されている。表示部26は、分析部25による処理の結果を表示する。また、表示部26は、信号処理部24に接続されており、信号処理部24が生成したスペクトルを表示する。制御部27は、使用者の操作を受け付け、受け付けた操作に応じて放射線検出装置の各部を制御する構成であってもよい。また、制御部27及び分析部25は同一のコンピュータで構成されていてもよい。
【0026】
図2は、放射線検出器1の模式的な平面図である。
図3は、
図2中のIII-III線で実施形態1に係る放射線検出器1を切断した断面構造及び放射線検出器1の電気的な接続態様を示すブロック図である。放射線検出器1は、複数の放射線検出素子を組み合わせた構成になっている。本実施形態では、放射線検出素子がSDDである例を示している。放射線検出器1は、Si(シリコン)からなる円板状の半導体部12を備えている。半導体部12の成分は例えばn型のSiである。半導体部12の中央には、表面に交差する方向に半導体部12を貫通する貫通孔11が形成されている。半導体部12の一面は、放射線が入射するための入射面121となっている。
図3に示す半導体部12の下側の面が入射面121であり、上側の面が背面である。
図2は、半導体部12の背面側から放射線検出器1を示している。半導体部12の形状は、正方形状等、円板状以外の形状であってもよい。
【0027】
放射線検出器1には、半導体部12の入射面121を連続的に覆った第1電極13が設けられている。第1電極13は、少なくとも、入射面121上の貫通孔11の周縁部分を覆っており、入射面121の内縁122まで覆っている。内縁122は、半導体部12に貫通孔11が設けられることによって形成されており、入射面121上で貫通孔11の周縁部分に含まれる半導体部12の端である。第1電極13の成分は半導体部12とは異なる型のSiである。例えば、半導体部12の成分がn型のSiであれば、第1電極13の成分はp+Siである。第1電極13は、電圧印加部23に接続されている。
【0028】
図2に示すように、半導体部12の背面には、多重になったループ状の第2電極14が複数組設けられている。
図2には、四組の多重の第2電極14が設けられている例を示している。多重の第2電極14の組数は四組に限るものではなく、八組等、その他の数であってもよい。複数組の多重の第2電極14は、貫通孔11の周囲に均等に配置されている。一つの組の多重の第2電極14は、一つのSDDに含まれている。即ち、複数のSDDが貫通孔11の周囲に配置されている。各組の多重の第2電極14は、第2電極14間の距離がほぼ均等になるように配置されている。図中には、各組に四つの第2電極14が含まれている例を示しているが、実際にはより多くの第2電極14が設けられている。第2電極14の成分は、例えば、ホウ素等の特定の不純物がSiにドープされたp+Siである。なお、複数組の多重の第2電極14は、貫通孔11の周囲に不均等に配置されていてもよい。また、各組の多重の第2電極14は、第2電極14間の距離が不均等になるように配置されていてもよい。
【0029】
各組の多重の第2電極14で囲まれた位置には、放射線検出時に信号を出力する電極である信号出力電極15が設けられている。信号出力電極15の成分は、例えば、半導体部12と同じ型のSiであり、リン等の特定の不純物がドープされている。信号出力電極15は、前置増幅器21に接続されている。各組の多重の第2電極14の内、最も信号出力電極15に近い第2電極14と最も信号出力電極15から遠い第2電極14とは、電圧印加部23に接続されている。放射線検出器1の外縁近傍には、接地電位に接続される接地電極16が設けられている。また、放射線検出器1は、ペルチェ素子等の図示しない冷却機構を備えていてもよい。
【0030】
電圧印加部23は、各組の多重の第2電極14に対し、最も信号出力電極15に近い第2電極14の電位が最も高く、最も信号出力電極15から遠い第2電極14の電位が最も低くなるように、電圧を印加する。また、放射線検出器1は、隣接する第2電極14の間に、所定の電気抵抗が発生するように構成されている。例えば、隣接する第2電極14の間に位置する半導体部12の一部分の化学成分を調整することで、二つの第2電極14が接続される電気抵抗チャネルが形成されている。即ち、各組における多重の第2電極14は、電気抵抗を介して数珠つなぎに接続されている。このような多重の第2電極14に電圧印加部23から電圧が印加されることによって、夫々の第2電極14は、信号出力電極15に遠い第2電極14から信号出力電極15に近い第2電極14に向けて順々に単調に増加する電位を有する。なお、複数の第2電極14の中に、電位が同じ隣接する一対の第2電極14が含まれていてもよい。複数の第2電極14の電位によって、半導体部12内には、段階的に信号出力電極15に近いほど電位が高く信号出力電極15から遠いほど電位が低くなる電界が生成される。更に、電圧印加部23は、各組における最も電位の高い第2電極14よりも第1電極13の電位が低くなるように、第1電極13に電圧を印加する。このように、第1電極13と第2電極14との間で半導体部12に電圧が印加され、半導体部12の内部には、信号出力電極15に近づくほど電位が高くなる電界が生成される。
【0031】
放射線検出器1は、入射面121が試料台33の載置面に対向するように配置されている。即ち、試料台33に試料4が載置された状態では、入射面121は試料4に対向する。試料4からの特性X線は、第1電極13を透過し、入射面121から半導体部12内へ入射する。特性X線は半導体部12に吸収され、吸収された特性X線のエネルギーに応じた量の電荷が発生する。発生する電荷は電子及び正孔である。発生した電荷は、半導体部12の内部の電界によって移動し、一方の種類の電荷は、最も近い信号出力電極15へ流入する。本実施形態では、信号出力電極15がn型である場合、放射線の入射によって発生した電子が移動し、信号出力電極15へ流入する。信号出力電極15へ流入した電荷は電流信号となって出力され、前置増幅器21へ入力される。前置増幅器21は、電流信号を電圧信号へ変換し、主増幅器22へ出力する。主増幅器22は、前置増幅器21からの電圧信号を増幅し、放射線検出器1へ入射した放射線のエネルギーに応じた強度の信号を出力する。
【0032】
放射線検出器1では、多重の第2電極14及び信号出力電極15の組を複数組備えていることにより、多重の第2電極14及び信号出力電極15の組が一組である場合に比べて、前置増幅器21が出力する信号(S)と前置増幅器21のノイズ(N)との比(SN比)を増大させる。多重の第2電極14及び信号出力電極15の組が一組である場合は、信号出力電極15はリング状になる。この場合に比べて、多重の第2電極14及び信号出力電極15の組を複数組備えている放射線検出器1では、信号出力電極15の面積が小さくなる。信号出力電極15の面積が小さくなることによって、信号出力電極15に起因した前置増幅器21の静電容量が小さくなる。静電容量が小さくなることによって、特定の電荷から得られる電圧が大きくなり、前置増幅器21が出力する電圧信号のSN比が増大する。
【0033】
従来の放射線検出器と本実施形態に係る放射線検出器1とを比較する。
図4は、従来の放射線検出器と試料4との位置関係を示した模式的断面図である。
図5は、実施形態1に係る放射線検出器1と試料4との位置関係を示した模式的断面図である。
図4では、従来の放射線検出器の貫通孔に51を付し、半導体部に52を付し、第1電極に53を付している。
図4及び
図5では、貫通孔、半導体部及び第1電極以外の放射線検出器の構造を省略している。また、
図4及び
図5には、貫通孔の中心線を通る断面を示しており、中心線を一点鎖線で示している。
【0034】
図4に示すように、従来の放射線検出器では、半導体部52の入射面の内、内縁の近傍部分は第1電極53で覆われていない。半導体部52の中で、入射した放射線を検出することが可能な有感部分54は、第1電極53に電圧が印加されることによって、図示しない信号出力電極へ向けて電荷が流れるように電界が発生した部分である。有感部分54は、
図4中に示した二点鎖線と第1電極53との間に含まれる部分である。半導体部52の入射面の中でも、第1電極53で覆われていない部分は、信号出力電極へ向けて電荷が流れるような電界が発生しないので、有感部分54には含まれない。このため、半導体部52の入射面の内、内縁の近傍部分は、有感部分54には含まれない。
【0035】
図5に示すように、本実実施形態に係る放射線検出器1では、第1電極13が半導体部12の入射面121を内縁122まで覆っている。半導体部12の中で、入射した放射線を検出することが可能な有感部分18は、
図5中に示した二点鎖線と第1電極13との間に含まれる部分である。入射面121上で内縁122を含んだ部分にも、第1電極13に電圧が印加されることによって、信号出力電極15へ向けて電荷が流れるように電界が発生し、この部分も有感部分18に含まれる。即ち、本実実施形態に係る放射線検出器1では、従来の放射線検出器に比べて、有感部分18が広がっている。入射面121の内縁122の近傍部分は、入射面121の中で試料4に最も近い。このため、この部分が有感部分18に含まれることによって、試料4で発生した特性X線の内で半導体部12の有感部分18へ入射する特性X線が通る立体角が増大する。ここで、半導体部12の有感部分18へ入射する特性X線が通る立体角を有効立体角aとする。
【0036】
有効立体角aは、放射線検出器と試料4との間の距離によって変化する。有効立体角aが最大になる距離は、幾何学的に求められる。本実施形態では、従来に比べて、最大の有効立体角aが大幅に増大する。貫通孔11の直径が3mmであり、外直径が18mmである放射線検出器1では、有効立体角aが最大となる状態で、有効立体角aは3.7(ステラジアン)である。また、
図4及び
図5に示すように、貫通孔の中心線を通る断面の中で、有感部分へ入射しない特性X線が通る範囲の貫通孔の中心線周りの角度bは、本実施形態では従来に比べて小さくなる。有効立体角aが最大となる状態での角度bは、従来の放射線検出器では40°超となり、本実施形態では40°以下となる。また、電子線で試料4を走査する通常の方法で放射線検出装置を動作させる場合、貫通孔11の直径は0.5mmまで小さくすることができる。貫通孔11の直径が0.5mmであるときの角度bの最小値は14°となる。
【0037】
以上詳述した如く、本実施形態においては、第1電極13が半導体部12の入射面121を入射面121の内縁122まで覆っていることにより、入射面121の内縁122まで有感部分18に含まれる。従来に比べて、試料4に近い部分に有感部分18が増大し、試料4で発生した特性X線の内で有感部分18へ入射する特性X線が通る有効立体角が大幅に増大する。有効立体角が増大することによって、試料4から発生する特性X線の内で放射線検出器1が検出することができる特性X線の割合が増大し、特性X線を検出する効率が向上する。特性X線の検出効率が向上することによって、試料4から発生する特性X線を検出するために必要な時間を短縮することができる。更に、試料4を走査するために必要な時間が短縮され、試料4の分析に必要な時間が短縮される。
【0038】
(実施形態2)
図6は、実施形態2に係る放射線検出器1の断面構造及び放射線検出器1の電気的な接続態様を示すブロック図である。実施形態1と同様に、放射線検出器1には、半導体部12の入射面121を内縁122まで連続的に覆った第1電極13が設けられている。更に、放射線検出器1には、半導体部12の内面を連続的に覆った第3電極17が設けられている。半導体部12の内面は、半導体部12に貫通孔11が設けられることによって形成されており、貫通孔11を囲んだ半導体部12の面である。第3電極17は、第1電極13と連続している。第3電極17は、半導体部12の内面の内、少なくとも、入射面121から連続した部分を覆っている。電圧印加部23は、各組における最も電位の低い第2電極14よりも第1電極13及び第3電極17の電位が低くなるように、第1電極13及び第3電極17に電圧を印加する。このようにして、第1電極13及び第3電極17と第2電極14との間で半導体部12に電圧が印加され、半導体部12の内部に電界が生成される。放射線検出器1のその他の構成及び機能は実施形態1と同様である。また、放射線検出装置の放射線検出器1以外の構成は、実施形態1と同様である。
【0039】
図7は、実施形態2に係る放射線検出器1と試料4との位置関係を示した模式的断面図である。本実施形態においては、半導体部12の内面が第3電極17に覆われており、電圧印加部23によって第3電極17にも電圧が印加されるので、半導体部12の内面にも電界が発生する。このため、半導体部12の中で、入射した放射線を検出することが可能な有感部分18は、半導体部12の内面を含んでいる。有感部分18は、
図7中に示した二点鎖線と第1電極13及び第3電極17との間に含まれる部分である。半導体部12の内面は、エッチング等、結晶構造にひずみが残り難い方法で形成されている。試料4で発生した特性X線の内、第3電極17を透過し、半導体部12の内面から半導体部12へ入射した特性X線は、検出される。本実施形態では、半導体部12の内面も有感部分18に含まれるので、半導体部12の有感部分18へ入射する特性X線が通る有効立体角aは、より増大する。貫通孔11の直径が3mmであり、外直径が18mmである本実施形態に係る放射線検出器1では、有効立体角aが最大となる状態で、有効立体角aは4.0(ステラジアン)である。また、
図7に示すように、貫通孔11の中心線を通る断面の中で、有感部分18へ入射しない特性X線が通る範囲の貫通孔11の中心線周りの角度bは、本実施形態においても、40°以下となる。また、本実施形態でも、電子線で試料4を走査する通常の方法で放射線検出装置を動作させる場合、貫通孔11の直径は0.5mmまで小さくすることができる。貫通孔11の直径が0.5mmであるときの角度bの最小値は9°となる。
【0040】
以上詳述した如く、本実施形態においては、第1電極13に連続した第3電極17が半導体部12の内面を覆っていることにより、入射面121上の内縁122を含んだ部分に加えて、半導体部12の内面も有感部分18に含まれる。実施形態1に比べても有感部分18が増大し、試料4で発生した特性X線の内で有感部分18へ入射する特性X線が通る有効立体角がより増大する。このため、試料4から発生する特性X線の内で放射線検出器1が検出することができる特性X線の割合が増大し、特性X線を検出する効率が向上する。特性X線を検出するために必要な時間が短縮され、試料4の分析に必要な時間が短縮される。なお、本実施形態においては、半導体部12の内面を全て第3電極17が覆った形態を示したが、放射線検出装置は、半導体部12の内面の一部を第3電極17が覆った形態であってもよい。
【0041】
なお、放射線検出装置は、各組における貫通孔11に最も近い第2電極14が第1電極13及び第3電極17と連結した形態であってもよい。この形態では、貫通孔11に最も近い第2電極14の電位は、第1電極13及び第3電極17と同電位になる。電圧印加部23は、他の第2電極14よりも第1電極13及び第3電極17の電位が低くなるように、第1電極13及び第3電極17に電圧を印加する。
【0042】
(実施形態3)
図8は、実施形態3に係る放射線検出装置の構成を示すブロック図である。放射線検出装置は、電子線を照射する照射部31及び電子レンズ系32は備えておらず、X線を試料4へ照射する照射部34を備えている。照射部34はX線管を用いて構成されている。更に、放射線検出装置は、照射部31が放射するX線を収束させる光学系である収束部36を備えている。例えば、収束部36は、ポリキャピラリで構成されている。収束部36と放射線検出器1との間には、X線の照射範囲を制限する第1コリメータ35が配置され、照射部34と収束部36との間には第2コリメータ37が配置されている。放射線検出器1は、収束部36と試料台33との間に配置されている。放射線検出器1の構成は実施形態1又は2と同様である。また、放射線検出装置のその他の構成は、実施形態1又は2と同様である。
【0043】
照射部34は、試料台33上の試料4へX線を照射する。照射部34から放射されたX線は、第2コリメータ37で絞られ、収束部36で収束され、第1コリメータ35で絞られ、放射線検出器1の貫通孔11を通過して試料4へ照射される。また、第1コリメータ35は、照射部34からのX線が放射線検出器1に直接照射されることを防止している。X線の照射によって試料4からは蛍光X線が発生する。
図8中には、試料4へ照射されるX線を実線矢印で示し、蛍光X線を破線矢印で示している。放射線検出器1は、発生した蛍光X線を検出する。信号処理部24は、蛍光X線のスペクトルを取得する。分析部25は、蛍光X線のスペクトルに基づいた分析の処理を行う。なお、放射線検出装置は、試料4を水平方向に移動させる機構を備え、照射部34からのX線ビームで試料4を走査し、蛍光X線のスペクトルの分布を生成する形態であってもよい。また、放射線検出装置は、第2コリメータ37を省略した形態であってもよい。また、放射線検出装置は、第1コリメータ35を省略し、収束部36の下端が放射線検出器1の貫通孔11に入り込んだ形態であってもよい。
【0044】
本実施形態においても、実施形態1又は2と同様に、放射線検出器1では、半導体部12の中で、放射線を検出することが可能な有感部分18が従来に比べて増大している。有感部分18が増大することにより、試料4で発生した蛍光X線の内で有感部分18へ入射する蛍光X線が通る有効立体角がより増大する。このため、試料4から発生する蛍光X線の内で放射線検出器1が検出することができる蛍光X線の割合が増大し、蛍光X線を検出する効率が向上する。蛍光X線を検出するために必要な時間が短縮され、試料4の分析に必要な時間が短縮される。
【0045】
なお、以上の実施形態1~3では、半導体部12がn型半導体でなり第2電極14がp型半導体でなる例を示したが、放射線検出器1は、半導体部12がp型半導体でなり第2電極14がn型半導体でなる形態であってもよい。また、実施形態1~3では、放射線により発生した電子が信号出力電極15へ流入する形態を主に示したが、放射線検出器1は、放射線により発生した正孔が信号出力電極15へ流入する形態であってもよい。この形態では、電圧印加部23は、信号出力電極15に遠い第2電極14から信号出力電極15に近い第2電極14へ向けて順々に電位が単調に減少するように、第2電極14に電圧を印加する。第3電極17が備えられていない場合は、電圧印加部23は、各組における最も電位の低い第2電極14よりも第1電極13の電位が高くなるように、第1電極13に電圧を印加する。第3電極17が備えられ、第2電極14が第3電極17と連結していない場合は、電圧印加部23は、各組における最も電位の高い第2電極14よりも第1電極13及び第3電極17の電位が高くなるように、第1電極13及び第3電極17に電圧を印加する。貫通孔11に最も近い第2電極14が第3電極17と連結している場合は、電圧印加部23は、他の第2電極14よりも第1電極13及び第3電極17の電位が高くなるように、第1電極13及び第3電極17に電圧を印加する。
【0046】
また、実施形態1~3では、第2電極14がループ状である形態を示したが、放射線検出器1は、多重の弧状の第2電極14を備えた形態であってもよい。また、放射線検出器1は、第2電極14と接地電極16との間の絶縁破壊を防止する防護部を備えた形態であってもよい。防護部は、リング状であり、最も信号出力電極15から遠い第2電極14と接地電極16との間に位置している。防護部の成分は第2電極14と同様である。防護部は電圧印加部23に接続されておらず、電位は浮遊電位である。防護部は、最も信号出力電極15から遠い第2電極14と接地電極16との絶縁破壊を防止する。また、実施形態1~3では、放射線検出器1の外縁近傍に接地電極16が設けられた形態を示したが、放射線検出器1は、接地電極16を備えていない形態であってもよい。放射線検出器1は、入射面121が外縁まで第1電極13で覆われた形態であってもよい。また、実施形態1~3では、放射線検出器1がSDDを用いて構成されている形態を示したが、放射線検出器1は、有感部分18が入射面121の内縁122を含んでいる形態であれば、SDD以外の素子を用いて構成された形態であってもよい。また、実施形態1及び2では試料4へ電子線を照射する形態を示し、実施形態3では試料4へX線を照射する形態を示したが、放射線検出装置は、電子線又はX線以外の放射線を試料4へ照射する形態であってもよい。また、実施形態1~3では、放射線検出器1でX線を検出する形態を示したが、放射線検出装置は、放射線検出器1でX線以外の放射線を検出する形態であってもよい。
【符号の説明】
【0047】
1 放射線検出器
11 貫通孔
12 半導体部
121 入射面
122 内縁
13 第1電極
14 第2電極
15 信号出力電極
16 接地電極
17 第3電極
18 有感部分
21 前置増幅器
22 主増幅器
23 電圧印加部
24 信号処理部
25 分析部
31、34 照射部
4 試料