(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-28
(45)【発行日】2022-04-05
(54)【発明の名称】造形予測システム、情報処理装置、プログラムおよび造形予測方法
(51)【国際特許分類】
G06F 30/10 20200101AFI20220329BHJP
B29C 64/386 20170101ALI20220329BHJP
B33Y 10/00 20150101ALI20220329BHJP
B33Y 50/00 20150101ALI20220329BHJP
G06F 30/20 20200101ALI20220329BHJP
G06F 113/10 20200101ALN20220329BHJP
【FI】
G06F30/10 100
B29C64/386
B33Y10/00
B33Y50/00
G06F30/20
G06F113:10
(21)【出願番号】P 2018064734
(22)【出願日】2018-03-29
【審査請求日】2021-02-08
(73)【特許権者】
【識別番号】000006747
【氏名又は名称】株式会社リコー
(72)【発明者】
【氏名】菅原 渉
(72)【発明者】
【氏名】松岡 司
(72)【発明者】
【氏名】竹山 佳伸
(72)【発明者】
【氏名】伊東 陽一
(72)【発明者】
【氏名】前田 博志
【審査官】堀井 啓明
(56)【参考文献】
【文献】特開2017-077671(JP,A)
【文献】米国特許出願公開第2015/0269289(US,A1)
【文献】特開2017-114114(JP,A)
【文献】特開2017-177462(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06F 30/00-30/398
B29C 64/386
B33Y 10/00
B33Y 50/00
(57)【特許請求の範囲】
【請求項1】
造形予測システムであって、
所定の造形方式に応じた造形条件設定およびモデルデータに基づき造形データを生成する生成手段と、
前記造形データおよび前記造形条件設定に基づいて、それぞれが対応する造形方式に従った複数のシミュレーション手段に共通のフォーマットを有する入力データを作成する作成手段と、
前記複数のシミュレーション手段のうちの前記所定の造形方式に対応するシミュレーション手段に前記入力データを入力し、造形物の造形予測結果を取得する予測手段と
を含む、造形予測システム。
【請求項2】
前記作成手段は、さらに、前記予測手段でのシミュレーション条件設定および造形手段のスペックデータの一方または両方に基づいて前記共通のフォーマットを有する前記入力データを作成する、請求項1に記載の造形予測システム。
【請求項3】
前記複数のシミュレーション手段は、造形方式毎に、または、造形方式および解析計算方式の組み合わせ毎に準備されており、前記所定の造形方式に対応し、かつ、指定された解析計算方式に応じたものが前記対応するシミュレーション手段として選択される、請求項1または2に記載の造形予測システム。
【請求項4】
前記造形予測システムは、前記複数のシミュレーション手段を含み、前記複数のシミュレーション手段は、それぞれ、前記共通のフォーマットを有する前記入力データから、解析で用いる情報を抽出し、抽出した情報に基づいて、前記造形物の予測される形状を前記造形予測結果として計算するよう構成されている、請求項1~3のいずれか1項に記載の造形予測システム。
【請求項5】
造形手段および前記生成手段が、造形方式が異なる複数の造形システム各々について設けられ、前記複数の造形システムとの通信を通じて前記入力データが作成され、前記入力データが前記複数の造形システムに応じた複数の造形方式に対応する複数のシミュレーション手段に対し入力されて、複数の造形予測結果が取得される、請求項2~4のいずれか1項に記載の造形予測システム。
【請求項6】
造形手段および前記生成手段が、造形システム上に具備され、前記作成手段および前記予測手段は、前記造形システムにネットワークを介して接続される情報処理装置上に具備される、請求項2~5のいずれか1項に記載の造形予測システム。
【請求項7】
情報処理装置であって、
所定の造形方式に応じた造形条件設定および造形データを取得する取得手段と、
取得した前記造形データおよび前記造形条件設定に基づいて、それぞれが対応する造形方式に従った複数のシミュレーション手段に共通のフォーマットを有する入力データを作成する作成手段と、
前記複数のシミュレーション手段のうちの前記所定の造形方式に対応するシミュレーション手段に前記入力データを入力し、造形予測結果を取得する予測手段と
を含む、情報処理装置。
【請求項8】
コンピュータを、
所定の造形方式に応じた造形条件設定および造形データを取得する取得手段、
取得した前記造形データおよび前記造形条件設定に基づいて、それぞれが対応する造形方式に従った複数のシミュレーション手段に共通のフォーマットを有する入力データを作成する作成手段、および
前記複数のシミュレーション手段のうちの前記所定の造形方式に対応するシミュレーション手段に前記入力データを入力し、造形予測結果を取得する予測手段
として機能させるためのプログラム。
【請求項9】
造形予測方法であって、
情報処理装置が、所定の造形方式に応じた造形条件設定および造形データを取得するステップと、
前記情報処理装置が、取得した前記造形データおよび前記造形条件設定に基づいて、それぞれが対応する造形方式に従った複数のシミュレーション手段に共通のフォーマットを有する入力データを作成するステップと、
前記情報処理装置が、前記複数のシミュレーション手段のうちの前記所定の造形方式に対応するシミュレーション手段に前記入力データを入力し、造形予測結果を取得するステップと
を含む、造形予測方法。
【請求項10】
前記造形データは、前記所定の造形方式に対応する造形手段を制御する前記情報処理装置または他の情報処理装置が、前記造形条件設定およびモデルデータに基づき生成したものである、請求項9に記載の造形予測方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、造形予測に関し、より詳細には、造形物の造形予測を行うための造形予測システム、情報処理装置、プログラムおよび造形予測方法に関する。
【背景技術】
【0002】
入力された立体形状データモデルデータに基づいて、立体的な造形物を作製する造形装置が開発されている。立体造形においては、所望の形状、すなわちモデルデータと、実際に造形された立体造形物との間に差異が生じて造形されることがある。このため、モデルデータに基づいて、造形物を製作する際に、造形結果を予測する技術の開発も試みられている。
【0003】
例えば、特開2017-077671号公報(特許文献1)は、3Dプリンタによる高品質な造形を実現する目的とした技術を開示する。特許文献1の従来技術では、造形時に発生するそり変形や残留応力を事前に計算し、そり変形量または残留応力量が許容範囲に収まるまで、造形条件を変更しながら繰り返し造形シミュレーションを実行することで、最適な造形条件を導き出している。
【0004】
しかしながら、特許文献1を含む従来技術では、シミュレーション計算のためにユーザが入力しなければならない条件設定パラメータが多岐にわたり、ユーザに対して煩雑な作業を強いてしまうものであり、充分なものではなかった。また、造形方式は、光造形方法、インクジェット法、粉末積層造形法、熱溶融積層法、熱溶解積層法など種々のものが知られているが、造形方式が異なると造形方式に合わせた設定パラメータの入力が必要になり、この点でもユーザに対して煩雑な作業を強いてしまうものであり、充分なものではなかった。
【発明の概要】
【発明が解決しようとする課題】
【0005】
本開示は、上記点に鑑みてなされたものであり、ユーザに対し煩雑な作業を求めずに、造形方式に応じた造形結果を予測することが可能な造形予測システムを提供することを目的とする。
【課題を解決するための手段】
【0006】
本開示によれば、上記課題を解決するために、下記特徴を有する造形予測システムを提供する。本造形予測システムは、所定の造形方式に応じた造形条件設定およびモデルデータに基づき造形データを生成する生成手段を含む。本造形予測システムは、さらに、造形データおよび造形条件設定に基づいて、それぞれが対応する造形方式に従った複数のシミュレーション手段に共通のフォーマットを有する入力データを作成する作成手段と、複数のシミュレーション手段のうちの所定の造形方式に対応するシミュレーション手段に入力データを入力し、造形予測結果を取得する予測手段とを含む。
【発明の効果】
【0007】
上記構成により、ユーザに対し煩雑な作業を求めずに、造形方式に応じた造形結果を予測することが可能となる。
【図面の簡単な説明】
【0008】
【
図1】本発明の実施形態における造形システム全体のハードウェアの概略構成を示す図。
【
図2】本実施形態の造形装置および情報処理装置に含まれるハードウェア構成を示す図。
【
図3】本実施形態の情報処理装置に含まれるソフトウェアブロック図。
【
図4】本実施形態における処理のデータフローを示す図。
【
図5】モデルデータと、それに基づいて造形または予測された立体造形物の形状の例を示す図。
【
図6】本実施形態において造形した立体造形物の形状を評価する処理を示すフローチャート。
【
図7】本実施形態において予測結果に基づいて補正する処理を示すフローチャート。
【
図8】本実施形態における立体造形物の形状を予測する機能およびデータフローを説明する図。
【
図9】本実施形態において作成される共通入力ファイルのフォーマット構造を示す図。
【
図10】本実施形態において造形される立体造形物の形状を予測する処理の詳細を示すフローチャート。
【
図11】好適な実施形態における複数の造形システムおよび予測システムを含むクラウドシステムの構成を説明する図。
【
図12】好適な実施形態において最適な造形方式を選択するために複数の造形システムを用いての形状予測行う処理を示すフローチャート。
【発明を実施するための形態】
【0009】
以下、本発明を、実施形態をもって説明するが、本発明は後述する実施形態に限定されるものではない。なお、以下に参照する各図においては、共通する要素について同じ符号を用い、適宜その説明を省略するものとする。
【0010】
図1は、本発明の実施形態における造形システム100全体の概略構成を示す図である。
図1では、例として、造形装置110と、情報処理装置120とが、インターネットやLANなどの種々のネットワークを介して接続された造形システム100を示している。なお、造形装置110や情報処理装置120数は、
図1に示したものに限らず、造形システム100に含まれる造形装置110の台数に制限はない。また、造形装置110と情報処理装置120は、ネットワークを介さず、直接接続されてもよい。また、造形装置110は、情報処理装置120に含まれる機能を一部備えてもよいし、情報処理装置120に含まれる機能を全て備えてもよい。
【0011】
造形装置110は、造形処理を実行する装置である。例えば情報処理装置120から、ネットワークを経由して、所望の立体造形物を造形するための造形データを受信して、造形処理を実行する。
【0012】
立体造形には種々の造形方式が提案されており、例えば、FFF(Fused Filament Fabrication、熱溶解フィラメント製造法)、SLS(Selective Laser Sintering、粉末焼結積層造形法)、MJ(Material Jetting、マテリアルジェッティング)、EBM(Electron Beam Melting、電子ビーム溶解法)、SLA(Stereolithography Apparatus、光造形法)などが挙げられる。本発明の実施形態は、造形方式を問わず適用することができる。また、上述した造形方式以外の方式であってもよい。
【0013】
造形装置110の構成は、造形方式によって異なるが、例えば、FFF方式の場合には、造形材料を溶融する加熱機構や、造形材料を吐出するノズルなどを含む。また、SLS方式の場合には、レーザ光源などを含む。
【0014】
情報処理装置120は、造形装置110が実行する各種処理を制御する制御装置である。情報処理装置120の例としては、サーバ装置やパソコン端末などが挙げられる。また、情報処理装置120は、造形する立体造形物の形状を示すデータとしてモデルデータの作成、モデルデータを造形装置110が処理できる形式に変換する処理、造形装置110の造形条件の設定などを行うことができる。
【0015】
次に、造形システム100を構成するハードウェアについて説明する。
図2は、本実施形態の造形装置110および情報処理装置120に含まれるハードウェア構成を示す図である。なお、
図2(a)は、造形装置110のハードウェア構成を、
図2(b)は、情報処理装置120のハードウェア構成をそれぞれ示している。
【0016】
図2(a)に示すように造形装置110は、CPU211と、RAM212と、ROM213と、インターフェース214と、造形ユニット215と、形状センサ216とを含んで構成される。各ハードウェアは、バスを介して接続されている。なお、造形装置110は、後述するHDD225に対応する記憶装置を含んで構成されてもよい。
【0017】
CPU211は、造形装置110の動作を制御するプログラムを実行し、所定の処理を行う装置である。RAM212は、CPU211が実行するプログラムの実行空間を提供するための揮発性の記憶装置であり、プログラムやデータの格納用、展開用として使用される。ROM213は、CPU211が実行するプログラムやファームウェアなどを記憶するための不揮発性の記憶装置である。
【0018】
インターフェース214は、例えば、情報処理装置120や、ネットワーク、外部記憶装置などと接続する通信インターフェースである。造形装置110は、インターフェース214を介して、造形動作の制御データや、立体造形物のモデルデータ、設定された造形条件などの各種データを送受信することができる。
【0019】
造形ユニット215は、造形材料を所望の形状に造形することで、立体造形物を造形する装置である。造形ユニット215は、ヘッドや、ステージなどを含んで、造形方式に応じて構成される。
【0020】
形状センサ216は、造形した立体造形物の形状を検出する装置であって、立体造形物の外形や高さなどの各種寸法を測定する。形状センサ216の例としては、赤外線センサ、カメラ、3D計測センサ(例えば、光切断プロファイルセンサ)などが挙げられる。
【0021】
次に情報処理装置120のハードウェア構成について説明する。
図2(b)に示すように情報処理装置120は、CPU221と、RAM222と、ROM223と、インターフェース224と、HDD225とを含んで構成される。各ハードウェアは、バスを介して接続されている。なお、CPU221、RAM222、ROM223、インターフェース224については、上述した造形装置110のハードウェアに対応するものであるため、説明は省略する。
【0022】
HDD225は、情報処理装置120を機能させるOSや各種アプリケーション、設定情報、各種データなどを記憶する、読み書き可能な不揮発性の記憶装置である。また、HDD225は、造形装置110の動作を制御するアプリケーション、モデルデータ、造形条件などのデータを記憶してもよい。なお、HDD225は記憶装置の一例であり、他の記憶装置であってもよく、例えばSSD(Solid State Drive)などの記憶装置であってもよい。
【0023】
次に、本実施形態の造形システム100に含まれる各ハードウェアによって実行される機能手段について、
図3を以て説明する。
図3は、本実施形態の造形システム100に含まれるソフトウェアブロック図である。
【0024】
本実施形態において、造形装置110は、造形部311と、形状測定部312とを含んで構成される。また、情報処理装置120は、造形データ生成部321と、形状評価部322と、記憶部323と、補正部324とを含んで構成される。
【0025】
まず、造形装置110について説明する。造形部311は、造形データに基づいて、造形動作を実行する手段である。造形部311は、造形ユニット215を制御することで、所望の形状の立体造形物を造形する。
【0026】
形状測定部312は、形状センサ216を制御することで、造形部311が造形した立体造形物の形状を測定する手段である。形状測定部312が測定した形状の測定データは、インターフェース214を介して、情報処理装置120に転送される。
【0027】
次に、情報処理装置120について説明する。造形データ生成部321は、モデルデータを造形装置110が処理できる形式に変換したデータとして、造形データを生成する手段である。造形データは、モデルデータと造形条件の設定データから生成され、一例としては、立体造形物を水平に分割したスライスデータのような形式で出力される。なお、モデルデータは、情報処理装置120上で作成してもよいし、他の装置で作成したモデルデータを情報処理装置120に入力してもよい。
【0028】
形状評価部322は、造形された立体造形物の形状と、モデルデータの形状との差分を算出し、立体造形物を造形した結果を評価する手段である。形状評価部322は、形状測定部312が測定した測定データとモデルデータとを比較し、形状の差分から、造形結果を評価する。造形結果を評価したデータは、記憶部323に記憶する。
【0029】
記憶部323は、モデルデータ、造形データ、測定データ、造形条件の設定データ、各種評価結果などの種々のデータを記憶する手段である。記憶部323は、各機能手段によって、各種データが書き込まれ、また、読み出される。また、記憶部323に記憶されるデータは、ネットワークを介して、複数の造形装置110から収集してもよい。
【0030】
補正部324は、造形を行う前に、造形される立体造形物の形状を予測し、造形処理を補正する手段である。補正部324は、造形予測部325、予測評価部326、データ修正部327を含んで構成される。
【0031】
造形予測部325は、設定されている造形条件によって、モデルデータを造形した場合に、如何なる形状の立体造形物が造形されるかを予測する手段である。造形予測部325の予測結果は、予測データとして出力される。なお、造形予測部325は、造形データ生成部321から取得した造形データに基づいて、立体造形物の形状を予測してもよい。
【0032】
予測評価部326は、予測データとモデルデータとを比較し、両者の形状の差分から、造形の成否を評価する手段である。予測評価部326は、予測データとモデルデータの形状の差分が閾値よりも小さい場合には、造形が成功したと判定する。また、予測評価部326は、予測データとモデルデータの形状の差分が閾値以上の場合には、造形が失敗したと判定する。
【0033】
データ修正部327は、予測評価部326が造形失敗と判定した場合に、モデルデータや造形条件などを修正する手段である。データ修正部327は、記憶部323に蓄積されている造形結果評価に基づいて、モデルデータや造形条件などを修正する。
【0034】
なお、修正されたモデルデータや造形条件に基づいて、造形予測部325は、造形される立体造形物の形状を再度予測してもよい。
【0035】
なお、上述したソフトウェアブロックは、CPU211,221が本実施形態のプログラムを実行することで、各ハードウェアを機能させることにより、実現される機能手段に相当する。また、実施形態に示した機能手段は、全部がソフトウェア的に実現されても良いし、その一部または全部を同等の機能を提供するハードウェアとして実装することもできる。また、上述した各機能手段は、必ずしも全てが
図3に示すような構成で含まれていなくてもよく、他の好ましい実施形態では、各機能手段は、造形装置110と情報処理装置120との協働によって実現されてもよい。
【0036】
次に、本実施形態のデータフローについて説明する。
図4(a)は、本実施形態における立体造形物の形状を評価する処理のデータフローであり、
図4(b)は、予測結果に基づいて補正する処理のデータフローである。
【0037】
まず
図4(a)では、造形データ生成部321は、造形条件の設定データに基づいて、入力されたモデルデータから造形データを生成する。造形部311は、造形データに基づいて造形処理を行い、立体造形物を造形する。
【0038】
形状測定部312は、造形された立体造形物の形状を測定し、測定データとして出力する。形状評価部322は、測定データと、造形データの基になったモデルデータとを比較することで、造形された立体造形物の形状を評価する。例えば、外形寸法、形状の反りなどの差分を評価し、造形結果評価データとして出力する。造形結果評価データは、記憶部323に記憶される。
【0039】
立体造形物を造形するごとに、上記の評価を行うことで、種々の造形条件やモデルデータに応じた造形結果を蓄積することができ、補正の精度を向上することができる。
【0040】
図4(b)は、造形予測部325が、入力されたモデルデータを、設定データに基づいて造形した場合に造形される立体造形物の形状を予測する。なお、立体造形物の予測は、造形データ生成部321から取得した造形データに基づいて、行なってもよい。予測評価部326は、予測データと、モデルデータとを比較することで、予測された立体造形物の形状を評価する。評価は、例えば予測データとモデルデータから形状の差分を算出し、差分が閾値よりも大きいか否かによって、造形の成否を評価する。
【0041】
データ修正部327は、予測結果評価データに基づいて、予測データとモデルデータの形状の差分が小さくなるようにモデルデータや設定データを修正する。データの修正は、記憶部323に蓄積されている過去に造形された立体造形物の造形結果評価データを参照して行ってもよく、これによって補正の精度を向上できる。
【0042】
ここで、造形結果と予測結果に基づくデータの修正について説明する。
図5は、モデルデータと、それに基づいて造形または予測された立体造形物の形状の例を示す図である。例えば、
図5(a)のような直方体の形状をした造形対象モデルデータを、条件Aによって造形した場合に、造形された立体造形物がモデルデータよりも大きくなったとする。
【0043】
形状評価部322は、立体造形物の形状と、モデルデータの形状との差分を求め、造形結果を評価する。ここで、差分とは、単に形状の寸法だけでなく、反りの発生の有無、体積などを含んで評価してもよい。また、立体造形物の形状に特徴的な部分がある場合には、その部分の局所的な差分を求めてもよい。そして、差分と、モデルデータと、造形条件を対応付けた造形結果評価データを算出し、記憶部323に記憶する。
【0044】
一方で、
図5(b)のような予測対象モデルデータを条件Bで造形した場合の立体造形物の形状を予測する場合について考える。このとき、予測された立体造形物は、破線で示す領域の直方体形状部分がモデルデータよりも小さくなると予測されたとする。
【0045】
予測評価部326は、
図5(b)の予測対象モデルデータの形状と予測された立体造形物の形状との差分を算出すると、破線で示す領域の直方体形状部分が差分として抽出される。この差分が閾値よりも大きい場合には、予測対象のモデルデータを条件Bで造形すると造形失敗となる蓋然性が高いため、データ修正部327は、データの修正を行う。
【0046】
データ修正部327は、モデルデータの形状を修正することで、差分を小さくすることができる。予測では、直方体形状部分が小さくなることから、データ修正部327は、直方体形状部分の寸法を大きくするようにモデルデータを修正することで、元の予測対象モデルデータの形状に近い立体造形物を造形することができる。
【0047】
また、データ修正部327は、記憶部323に記憶されている造形結果評価データを参照してもよい。例えば
図5(a)で説明したように、記憶部323には、直方体形状のモデルデータを条件Aで造形した場合に、造形された立体造形物の寸法は、モデルデータよりも大きいという情報が記憶されている。したがって、データ修正部327は、条件Aで造形すれば直方体形状部分の寸法が大きく造形されると判断し、造形条件の設定データをBからAに修正する。これによって、実際に造形した場合に、元の予測対象モデルデータの形状に近い立体造形物を造形することができる。
【0048】
次に、形状評価部322が実行する処理の詳細について説明する。
図6は、本実施形態において造形した立体造形物の形状を評価する処理を示すフローチャートである。
【0049】
形状評価部322は、ステップS1000から処理を開始する。ステップS1001では、形状評価部322は、入力されたモデルデータと、該モデルデータに基づいて造形された立体造形物の形状を測定した測定データとを取得する。
【0050】
ステップS1002で、形状評価部322は、測定データとモデルデータの形状の位置合わせを行う。位置合わせ処理は、例えば、モデルデータの表面形状と、測定された立体造形物の表面形状とのマッチングによって行うことができる。なお、位置合わせ処理は、上記の方法に限定するものではなく、表面形状マッチング以外の方法によって行ってもよい。例えば、モデルデータのある座標を原点として設定し、その位置に対応する立体造形物の座標が一致するように合わせてもよい。
【0051】
ステップS1003では、形状評価部322は、測定データとモデルデータとを比較し、両者の形状の差分を算出する。ステップS1004で、形状評価部322は、算出した差分と、モデルデータ、造形条件の設定データを対応付けた造形結果評価データを算出する。
【0052】
造形結果評価データは、ステップS1005で記憶部323に記憶される。そして、ステップS1006で処理を終了する。
【0053】
次に、補正部324が実行する処理の詳細について説明する。
図7は、本実施形態において予測結果に基づいて補正する処理を示すフローチャートである。
【0054】
補正部324は、ステップS2000から処理を開始する。ステップS2001では、造形予測部325は、造形条件の設定データと、予測対象となるモデルデータから、立体造形物の形状を予測する。形状の予測には、種々のシミュレーション手法を用いることができる。
【0055】
予測評価部326は、立体造形物の形状の予測データと、モデルデータとを取得し、ステップS2002で、予測された立体造形物の形状と、モデルデータの形状の位置合わせ処理を行う。位置合わせは、ステップS1002と同様の方法で行うことができる。
【0056】
予測評価部326は、ステップS2003で、予測結果とモデルデータの形状を比較し、両者の差分を算出する。ステップS2004では、算出した差分に基づいて、予測結果評価データを算出する。予測結果評価データは、例えば、寸法の差分だけでなく、反りの有無、体積、立体造形物の局所的な形状などの差分を含む。
【0057】
ステップS2005で、予測評価部326は、予測結果評価データが許容範囲内であるか否かを判定する。例えば、予測された立体造形物の形状と、モデルデータの形状に差分があったとしても、その差分が許容できる程度のものであれば、造形は成功したものとする。したがって、予測に用いた造形条件やモデルデータは、修正せずに、そのまま造形処理に使用できる。一方で、形状の差分が許容できない程度のものであれば、造形が失敗したとして、モデルデータや造形条件の設定データを修正する。なお、形状以外のパラメータについても、同様にして評価し、造形の成否を判定することができる。
【0058】
ステップS2005において、予測結果評価データが許容範囲内である場合には(YES)、ステップS2007に進み、処理を終了する。一方で、ステップS2005において、予測結果評価データが許容範囲内でない場合には(NO)、ステップS2006に進む。
【0059】
ステップS2006では、データ修正部327は、造形条件の設定データやモデルデータを修正する。データ修正部327は、記憶部323に蓄積されている、過去に造形した立体造形物の造形結果評価データに基づいて、修正をすることができる。データを修正した後、ステップS2007に進み、処理を終了する。
【0060】
なお、ステップS2006でデータを修正した後、ステップS2001に戻り、修正されたデータに基づいて再度予測し、評価する処理を繰り返してもよい。繰り返し処理は、所定回数を上限として繰り返してもよいし、ステップS2005において許容範囲内であると判定されるまで繰り返してもよい。このように予測とデータの修正を繰り返すことで、立体造形物を造形する精度を向上することができる。
【0061】
以下、
図8~
図10を参照しながら、上述した
図7のステップS2001における造形予測部325による立体造形物の形状を予測する処理について、より具体的に説明する。
【0062】
図8は、本実施形態における立体造形物の形状を予測する機能およびその際のデータフローを説明する図である。
図8には、立体造形物の形状予測に関連したコンポーネントとして、造形部311、造形データ生成部321および造形予測部325が示されている。
【0063】
造形データ生成部321は、造形部311の造形方式に応じた造形条件設定データ341に基づいて、入力されるモデルデータ340をレンダリングし、造形データ342を生成する。ここで、モデルデータ340は、3次元形状を小さな三角形などの図形単位の集合体として表現したデータである。例えば、モデルデータ340としては、STL(Standard Triangulated Language)ファイルといった、CAD(Computer Aided Design)/CAM(Computer Aided Manufacturing)で用いられている種々の形式のファイルを挙げることができる。造形データ342は、上述したようにスライスデータであり、モデルデータ340により規定される3次元形状を輪切りにして構成された、複数の層にわたる層毎のデータを含む。
【0064】
造形部311は、造形データ生成部321により生成された造形データ342に基づいて、所定の造形方式に従って造形動作を実行し、所望の形状の立体造形物を造形する。造形部311の造形方式としては、特に限定されるものではないが、FFF、SLS、MJ、EBM、SLAなどを挙げることができる。造形部311は、造形部311の造形動作のための要素の仕様を示すスペックデータ343を保持する。造形動作のための要素は、造形方式によっても異なるが、例えば、FFF方式の場合には、例えばモータやヒータなどを挙げることができ、スペックデータ343には、モータやヒータの特性情報などが含まれる。造形部311は、本実施形態における造形手段を構成する。
【0065】
造形予測部325は、上述したように、モデルデータを造形した場合に造形される立体造形物の形状を予測する手段である。
図8には、さらに、造形予測部325のより具体的な構成が示されている。
図8に示すように、本実施形態による造形予測部325は、入力ファイル作成部330と、複数のシミュレーション部333a~333zを具備した予測部332とを含み構成される。
【0066】
入力ファイル作成部330は、造形部311の造形方式に応じた造形条件設定データ341、造形データ生成部321が生成した造形データ342、および、スペックデータ343を取得する。入力ファイル作成部330は、また、シミュレーションで並列計算を行うか否か、並列計算を行う場合にはさらに使用するCPUコアやスレッドの数などのシミュレーション条件設定データ344を保持する。ここで、シミュレーション条件設定データ344は、プログラム内部で定義されていてもよいし、外部から設定させることとしてもよい。入力ファイル作成部330は、造形条件設定データ341、造形データ342、スペックデータ343およびシミュレーション条件設定データ344に基づいて、共通フォーマットの入力ファイル(以下、共通入力ファイル)345を作成する。入力ファイル作成部330は、本実施形態における作成手段および取得手段を構成する。
【0067】
ここで、共通入力ファイル345は、それぞれが対応する造形方式に従ったものである複数のシミュレーション部333a~333zに共通するフォーマットを有するものである。共通入力ファイル345については、詳細を後述する。
【0068】
予測部332は、上述したように複数のシミュレーション部333a~333zを具備する。造形方式としては、FFF、SLS、MJ、EBM、SLAなどの種々の方式が存在するところ、複数のシミュレーション部333は、それぞれ異なる造形方式毎に準備されている。また、同一の造形方式に対して複数の解析計算方式がある場合もあるので、複数のシミュレーション部333は、造形方式および解析計算方式の組み合わせ毎に準備されてもよい。予測部332は、複数のシミュレーション部333a~333zのうちの所定の造形方式に対応するシミュレーション部333に共通入力ファイル345を入力し、造形予測結果として予測データ346を取得する。ここで、対応するシミュレーション部333としては、所定の造形方式に対応するものが選択され、複数の解析計算方式がある場合には、さらに、指定された解析計算方式に応じたものが選択される。予測部332は、本実施形態による予測手段を構成する。
【0069】
シミュレーション部333は、それぞれ、共通入力ファイル345から、解析で用いる情報を抽出し、立体造形物の予測される形状を造形予測結果として計算するよう構成されている。シミュレーション部333は、それぞれ、本実施形態によるシミュレーション手段を構成する。シミュレーション部333は、形状に加えて残留応力量を計算するよう構成されていてもよい。
【0070】
なお、
図8では、複数のシミュレーション部333a~333zは、造形予測部325が具備しており、つまり、造形予測部325を備える情報処理装置120上で動作するものとして示されているが、
図8に示す実施形態に限定されるものではない。他の実施形態では、シミュレーション部333a~333zの一部または全部が、他のコンピュータ・システム上で構成されてもよい。この場合に、予測部332が、他のコンピュータ・システム上のシミュレーション部に共通入力ファイル345を送信し、シミュレーション結果である予測データ346を受信する態様としてもよい。
【0071】
図9は、本実施形態において作成される共通入力ファイルのフォーマット構造を示す図である。
図9に示すように、共通入力ファイル345は、造形条件設定セクション345aと、造形データセクション345bと、シミュレーション条件設定セクション345cと、スペックセクション345dとを含み構成される。
【0072】
造形条件設定セクション345aは、造形データ生成部321から取得された所定の造形方式に応じた造形条件設定データ341を保持する部分である。造形条件設定セクション345aに保持される情報としては、例えば、材料温度や環境温度などの温度条件や、材料の溶融温度などの物性などの情報を挙げることができる。
【0073】
造形データセクション345bは、造形データ生成部321から取得された造形データ342を保持する部分である。造形データは、例えば、FFF方式であれば、GCodeなどのフォーマットのデータを挙げることができる。
【0074】
シミュレーション条件設定セクション345cは、入力ファイル作成部330のシミュレーション条件設定データ344を保持する部分である。シミュレーション条件設定セクション345cに保持される情報としては、シミュレーションでマルチコア並列計算を行うか否か、並列計算を行う場合は使用するコアあるいはスレッドの数などの挙げることができる。
【0075】
スペックセクション345dは、造形部311から取得したスペックデータ343を保持する部分である。スペックセクション345dに保持される情報としては、モータのステッピング角度などの特性情報、ヒータの特性情報などの情報を挙げることができる。
【0076】
共通入力ファイル345は、特定の実施形態では、予測部332が具備する複数のシミュレーション部333a~333zでそれぞれ求められる設定項目を網羅的に備えたフォーマットを有する入力ファイルとして構成することができる。つまり、共通入力ファイル345は、複数のシミュレーション部333a~333zそれぞれで求められる1以上の設定項目を結合した項目を含むことができる。なお、造形データについては、複数の造形方式で共通利用できる記憶領域(造形データセクション345b)が設けられ、造形方式に応じてこの記憶領域に保存する造形データが変わることとなる。そして、シミュレーション部333a~333zは、それぞれ、自身が必要とする設定項目の値を共通入力ファイル345から抽出し、シミュレーションを実施する。なお、説明する実施形態では、入力データとして、共通入力ファイルを説明したが、ファイル形式に限らず、いかなる形式であってもよい。
【0077】
次に、
図10を参照しながら、本実施形態において造形される立体造形物の形状を予測する処理について、より詳細に説明する。
図10に示す処理は、
図7のステップS2001で呼び出されて、ステップS3000から開始される。
【0078】
ステップS3001では、入力ファイル作成部330は、造形部311の所定の造形方式に応じた造形条件設定データ341、各層の造形データ342およびスペックデータ343を取得する。
【0079】
ステップS3002では、入力ファイル作成部330は、自身のシミュレーション条件設定データ344を取得する。
【0080】
ステップS3003では、入力ファイル作成部330は、取得した造形条件設定データ341、各層の造形データ342、スペックデータ343およびシミュレーション条件設定データ344に基づいて、共通入力ファイル345を作成する。
【0081】
ステップS3004では、予測部332は、造形部311の所定の造形方式および指定された解析計算方式に応じたシミュレーション部333を選択する。なお、解析計算方式は、所定の造形方式について複数あるうちの特定の1つが事前に指定されてもよいし、所定の造形方式について存在する複数の解析計算方式が指定されてもよい。
【0082】
予測部332は、ステップS3005で、作成された共通入力ファイル345を、選択したシミュレーション部333に入力し、ステップS3006で、シミュレーション部333から予測データを取得する。ステップS3007では、本処理が終了される。なお、複数の解析計算方式が指定される場合、複数のシミュレーション部333が選択され、複数の予測データが得られる。
【0083】
図8~
図10を参照しながら、立体造形物の形状を予測する処理について具体的な実施形態をもって説明した。
図8~
図10に示した実施形態は、造形予測部325を、複数の造形方式に対応した共通のコンポーネントとして開発することができるという利点がある。一方、上述した共通入力ファイルを用いる造形予測機能は、異なる造形方法を採用する複数の造形システムに対する造形予測を行う共通のクラウドサービスとして提供する際に有用である。以下、
図11および
図12を参照しながら、複数の造形システムに対して共通して造形予測機能を提供する好適な実施形態について説明する。
【0084】
図11は、好適な実施形態における、複数の造形システム300および予測システム410を含むクラウドシステム400を説明する図である。
【0085】
図11に示すクラウドシステム400は、それぞれ所定の造形方式を採用する造形装置110および情報処理装置120を含む複数の造形システム300と、複数の造形システム300にインターネット402を介して接続される予測システム410とを含み構成される。本実施形態において、造形装置110は、造形部311と、形状測定部312とを含んで構成される。また、情報処理装置120は、造形データ生成部321と、記憶部323とを含んで構成される。
【0086】
各造形システム300において、造形データ生成部321は、対応する造形部311の造形方式に応じた造形条件設定データに基づいて、入力されるモデルデータをレンダリングし、造形データを生成する。記憶部323は、モデルデータ、造形データ、測定データ、造形条件設定データなどを記憶する。
【0087】
予測システム410は、補正部411と、記憶部418と、形状評価部419とを含んで構成される。
図3に示した実施形態において情報処理装置120上にあった補正部324および形状評価部322は、
図11に示す実施形態においては、それぞれ、補正部411および形状評価部419として、予測システム410上に設けられている。本実施形態における予測システム410は、それぞれ異なる造形方式を採用し得る複数の造形システム300に対し共通して、造形される立体造形物の形状を予測する機能をクラウドサービスとして提供するものである。なお、以下に説明する実施形態では、立体造形物の形状を予測する機能をクラウドサービスとして提供するものとして説明するが、必ずしもクラウドサービスに限定されるものではない。
【0088】
補正部411は、各造形システム300において、造形を行う前に、造形される立体造形物の形状を予測し、必要に応じて予測される造形物の形状の評価、造形処理の補正を行う手段である。補正部411は、造形予測部412、予測評価部416およびデータ修正部417を含んで構成され、これらは、
図3および
図8を参照して説明した造形予測部325、予測評価部326およびデータ修正部327と同様のはたらきをする。
【0089】
造形予測部412は、各造形システム300について、設定されている造形条件によって、モデルデータを造形した場合に、如何なる形状の立体造形物が造形されるかを予測する手段である。本実施形態による造形予測部412は、入力ファイル作成部413と、複数のシミュレーション部415を具備する予測部414とを含み構成される。複数のシミュレーション部415は、複数の造形システム300が有する異なる造形方式および解析計算方式の組み合わせ毎に準備されている。
【0090】
入力ファイル作成部413は、各造形システム300と通信して、それぞれの造形データ生成部321が保持する造形条件設定データ、造形データ生成部321が生成した造形データ、および、造形部311が保持するスペックデータを取得する。なお、各造形システム300側には、これらのデータを、インターネット402を介して、予測システム410に提供する機能を有しており、複数の造形システム300が予測システム410に事前に接続されているものとする。
【0091】
入力ファイル作成部413は、取得された造形条件設定データおよび造形データに基づいて、共通入力ファイルを作成する。入力ファイル作成部413は、好ましくは、上記に加えて、スペックデータおよびシミュレーション条件設定データの一方または両方に基づいて共通入力ファイルを作成する。
【0092】
予測部414は、造形システム300それぞれについて、複数のシミュレーション部415のうちの所定の造形方式および解析計算方法に対応するシミュレーション部に共通入力ファイルを入力し、造形予測結果として予測データを取得する。
【0093】
予測評価部416は、各造形システム300に関し、予測データとモデルデータとを比較し、両者の形状の差分から、造形の成否を評価する手段である。予測評価部416は、所定の造形システム300に関し、予測データとモデルデータの形状の差分が閾値よりも小さい場合には、その造形システム300での造形が成功すると判定する。また、予測評価部416は、予測データとモデルデータの形状の差分が閾値以上の場合には、その造形システム300での造形が失敗すると判定する。
【0094】
データ修正部417は、各造形システム300に関し、予測評価部416が造形失敗であると判定した場合に、モデルデータや造形条件などを修正する候補を算出する手段である。
【0095】
形状評価部419は、各造形システム300で造形された立体造形物の測定形状と、モデルデータの形状との差分を算出し、立体造形物を造形した結果を評価する手段である。複数の造形システム300各々で造形結果を評価したデータは、記憶部418に集められ、蓄積される。記憶部418に蓄積されている造形結果評価は、上述したデータ修正部417によりモデルデータや造形条件などを修正する候補を算出する際に利用される。
【0096】
この好適な実施形態では、ユーザが複数の造形方式の予測結果を比較考量することによって最適な造形方式を選択可能となる。以下、
図12を参照しながら、好適な実施形態において最適な造形方式を選択するために複数の造形システムを用いての形状予測行う処理について説明する。
【0097】
図12に示す処理は、例えば、操作者からのモデルデータを指定した形状予測の要求に応答して、ステップS4000から開始される。ステップS4001では、予測システム410は、入力された形状予測対象のモデルデータを取得する。ステップS4002~ステップS4005のループでは、対象となる複数の造形システム300それぞれについて、ステップS4003およびステップS4004の処理が実行される。
【0098】
ステップS4003では、入力ファイル作成部413は、各造形システム300の造形データ生成部321に対し、入力された形状予測対象のモデルデータを入力する。ステップS4004では、入力ファイル作成部413は、各造形システム300から、造形部311の所定の造形方式に応じた造形条件設定データ、各層の造形データおよび造形部311のスペックデータを取得する。
【0099】
複数の造形システム300それぞれについて、ステップS4003~ステップS4004の処理が完了すると、処理は、ステップS4002~ステップS4005のループを抜けて、ステップS4006へ進められる。
【0100】
ステップS4006では、入力ファイル作成部330は、自身が保持するシミュレーション条件設定データ、ステップS4002~ステップS4005のループにより対象となる各造形システム300について得られた造形条件設定データ、造形データおよびスペックデータに基づいて、共通入力ファイルを作成する。
【0101】
ステップS4007では、予測部414は、複数の造形システム300各々の造形部311の所定の造形方式に応じた複数のシミュレーション部333各々に対し、作成された共通入力ファイルを入力し、複数のシミュレーション部333各々から予測データを取得する。
【0102】
ステップS4008では、予測評価部416は、各シミュレーション部333から得られた予測データに基づいて、複数の造形システム300各々での造形の成否の評価を行う。ステップS4009では、予測システム410は、各シミュレーション部333から得られた予測データおよびそれぞれの評価結果を表示し、ステップS4010で、本処理は終了する。
【0103】
ユーザは、結果を受けて、複数の造形システム300の中から、最適な造形方式の造形システムを選択することが可能となる。そして、選択した造形方式の造形システム300に対し、造形処理の開始を指示することができる。また、上述したように、必要に応じて、各造形システム300で造形するに際しての修正されたモデルデータや修正された造形条件設定を算出し、ユーザに提案する態様としてもよい。
【0104】
以上、説明した本発明の実施形態によれば、ユーザに対し煩雑な作業を求めずに、造形方式に応じた造形結果を予測することが可能な造形予測システム、情報処理装置、該情報処理装置を実現するためのプログラムおよび造形予測方法を提供することができる。
【0105】
上述した実施形態によれば、造形システムの造形データ生成部や造形部から、シミュレーション計算に必要な造形条件データ、造形データやスペックデータなどが取得される。このため、ユーザは、造形方式に依存した設定パラメータなどのシミュレーション部の特性を意識することなく、造形シミュレーションを行うことができる。さらに、造形方式が異なる複数のシミュレーション部に対して、共通フォーマットのデータファイルが作成されるので、1つの入力ファイルに対して複数の造形方式のシミュレーションを行って、ユーザが入力した条件から最適な造形方式を提案することも可能となる。
【0106】
なお、上述した本発明の実施形態の各機能は、C、C++、C#、Java(登録商標)等で記述された装置実行可能なプログラムにより実現でき、本実施形態のプログラムは、ハードディスク装置、CD-ROM、MO、DVD、フレキシブルディスク、EEPROM、EPROM等の装置可読な記録媒体に格納して頒布することができ、また他装置が可能な形式でネットワークを介して伝送することができる。
【0107】
以上、本発明について実施形態をもって説明してきたが、本発明は上述した実施形態に限定されるものではなく、当業者が推考しうる実施態様の範囲内において、本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。
【符号の説明】
【0108】
100…造形システム、110…造形装置、120…情報処理装置、211,212…CPU、212,222…RAM、213,223…ROM、214,224…インターフェース、215…造形ユニット、216…形状センサ、225…HDD、311…造形部、312…形状測定部、321…造形データ生成部、322,419…形状評価部、323,418…記憶部、324,411…補正部、325,412…造形予測部、326,416…予測評価部、327,417…データ修正部、330,413…入力ファイル作成部、332,414…予測部、333,415…シミュレーション部、340…モデルデータ、341…造形条件設定データ、342…造形データ、343…スペックデータ、344…シミュレーション条件設定データ、345…共通入力ファイル、346…予測データ、400…クラウドシステム、410…予測システム
【先行技術文献】
【特許文献】
【0109】