IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社SUMCOの特許一覧

特許7047797貼り合わせウェーハのテラス加工方法及びテラス加工装置
<>
  • 特許-貼り合わせウェーハのテラス加工方法及びテラス加工装置 図1
  • 特許-貼り合わせウェーハのテラス加工方法及びテラス加工装置 図2
  • 特許-貼り合わせウェーハのテラス加工方法及びテラス加工装置 図3A
  • 特許-貼り合わせウェーハのテラス加工方法及びテラス加工装置 図3B
  • 特許-貼り合わせウェーハのテラス加工方法及びテラス加工装置 図4
  • 特許-貼り合わせウェーハのテラス加工方法及びテラス加工装置 図5
  • 特許-貼り合わせウェーハのテラス加工方法及びテラス加工装置 図6
  • 特許-貼り合わせウェーハのテラス加工方法及びテラス加工装置 図7
  • 特許-貼り合わせウェーハのテラス加工方法及びテラス加工装置 図8A
  • 特許-貼り合わせウェーハのテラス加工方法及びテラス加工装置 図8B
  • 特許-貼り合わせウェーハのテラス加工方法及びテラス加工装置 図9A
  • 特許-貼り合わせウェーハのテラス加工方法及びテラス加工装置 図9B
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-28
(45)【発行日】2022-04-05
(54)【発明の名称】貼り合わせウェーハのテラス加工方法及びテラス加工装置
(51)【国際特許分類】
   B24B 9/00 20060101AFI20220329BHJP
   B24B 1/00 20060101ALI20220329BHJP
   B24B 49/04 20060101ALI20220329BHJP
   H01L 21/304 20060101ALI20220329BHJP
【FI】
B24B9/00 601H
B24B1/00 A
B24B49/04 Z
H01L21/304 601B
H01L21/304 631
【請求項の数】 6
(21)【出願番号】P 2019032054
(22)【出願日】2019-02-25
(65)【公開番号】P2020131410
(43)【公開日】2020-08-31
【審査請求日】2021-02-26
(73)【特許権者】
【識別番号】302006854
【氏名又は名称】株式会社SUMCO
(74)【代理人】
【識別番号】100147485
【弁理士】
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【弁護士】
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100165696
【弁理士】
【氏名又は名称】川原 敬祐
(74)【代理人】
【識別番号】100179903
【弁理士】
【氏名又は名称】福井 敏夫
(72)【発明者】
【氏名】森川 靖之
(72)【発明者】
【氏名】岸川 克成
(72)【発明者】
【氏名】吉丸 浩二
【審査官】須中 栄治
(56)【参考文献】
【文献】特開平09-216152(JP,A)
【文献】特開2007-096091(JP,A)
【文献】特開平10-233375(JP,A)
【文献】特開2003-151939(JP,A)
【文献】米国特許出願公開第2012/0202406(US,A1)
【文献】特開2016-112683(JP,A)
【文献】国際公開第2008/093488(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B24B1/00-1/04
B24B5/00-19/28
B24B41/00-51/00
H01L21/304;21/463
(57)【特許請求の範囲】
【請求項1】
支持基板用ウェーハ及び活性層用ウェーハが絶縁膜を介して貼り合わせられてなる貼り合わせウェーハの周縁部を、研削砥石を備える面取りホイールを用いてテラス加工し、該テラス加工を行うためのテラス加工条件を制御しつつ、該テラス加工を繰り返す貼り合わせウェーハのテラス加工方法であって、
すでにテラス加工された加工済み貼り合わせウェーハのテラス平坦部の周方向厚み分布を測定する第1工程と、
該第1工程により測定した前記周方向厚み分布における周方向厚みばらつきを補償する面内補正条件を前記テラス加工条件にフィードバックして補正後のテラス加工条件を調整する第2工程と、
前記補正後のテラス加工条件に基づき、テラス加工前の貼り合わせウェーハのテラス加工を行う第3工程と、
を含み、
前記第3工程において、前記補正後のテラス加工条件に従い前記テラス加工前の貼り合わせウェーハを回転させながらその厚み方向に追従昇降させて前記テラス加工を行うことを特徴とする貼り合わせウェーハのテラス加工方法。
【請求項2】
前記第2工程において、前記周方向厚み分布における平均厚みと目標平均厚みとの差分の補償する厚み補正条件をさらにフィードバックして前記補正後のテラス加工条件を調整する、請求項1に記載の貼り合わせウェーハのテラス加工方法。
【請求項3】
前記第2工程を1回行い、同一の前記補正後のテラス加工条件に基づき前記第3工程を繰り返し行う、請求項1又は2に記載の貼り合わせウェーハのテラス加工方法。
【請求項4】
前記第1工程から前記3工程までを繰り返し行う、請求項1又は2に記載の貼り合わせウェーハのテラス加工方法。
【請求項5】
前記支持基板用ウェーハ及び前記活性層用ウェーハはいずれもシリコンウェーハである、請求項1~4のいずれか1項に記載の貼り合わせウェーハのテラス加工方法。
【請求項6】
請求項1~5のいずれか1項に記載の貼り合わせウェーハのテラス加工方法に用いるテラス加工装置であって、
貼り合わせウェーハを載置するステージと、
前記ステージに載置される前記貼り合わせウェーハのテラス平坦部の周方向厚み分布を測定する厚み測定器と、
前記ステージを回転させながら前記ステージを昇降させる駆動部と、を備えることを特徴とする貼り合わせウェーハのテラス加工装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、貼り合わせウェーハのテラス加工方法及びテラス加工装置に関する。
【背景技術】
【0002】
半導体ウェーハとして、単結晶シリコンからなるシリコンウェーハおよびGaAs等の化合物半導体からなるバルクのウェーハ(以下、「バルクウェーハ」と呼ぶ場合がある。)が知られている。また、バルクウェーハを支持基板用ウェーハとし、その表面に絶縁膜を設け、該絶縁膜を介して支持基板用ウェーハを活性層用ウェーハと貼り合わせた貼り合わせウェーハが知られている。貼り合わせウェーハの活性層用ウェーハを、更に薄膜化することにより活性層を形成し、該活性層を半導体デバイス形成領域して用いることが一般的である。なお、活性層用ウェーハは、バルクウェーハと同種のウェーハが用いられることもあれば、異種のウェーハが用いられることもある。
【0003】
特に近年、高集積CMOS素子や高耐圧素子、さらにはイメージセンサ分野において、SOI(Silicon on Insulator)構造を有するSOIウェーハが注目されている。このSOIウェーハは、支持基板用ウェーハ上に、酸化シリコン(SiO2)等の絶縁膜、およびデバイス活性層として使用される単結晶シリコン層などの半導体層が順次形成された構造を有する。バルクのシリコン基板では素子と基板との間に発生し得る寄生容量が比較的大きいものの、SOIウェーハは寄生容量を大幅に低減できるため、デバイスの高速化、高耐圧化、低消費電力化等の点で有利である。
【0004】
さて、SOIウェーハなどの貼り合わせウェーハには、チッピング防止などの種々の目的により、活性層の外周側に「テラス」と呼ばれる領域が形成されることが一般的である。また、テラスが設けられた部分は、貼り合わせウェーハに半導体デバイスを作製するデバイス形成プロセスにおいて、ウェーハハンドリングに用いられることもある。
【0005】
一例として、貼り合わせウェーハ100のテラスTを図1に示す。貼り合わせウェーハ100は、支持基板用ウェーハ10上に、酸化シリコン(SiO2)等の絶縁膜30、及び活性層21を有する。活性層21は、絶縁膜30を介して支持基板用ウェーハ10と活性層用ウェーハと貼り合わせ、次いで活性層用ウェーハを研削研磨して薄化することにより得られる。活性層21の外周側にはテラスTが形成されている。
【0006】
SOIウェーハなどの貼り合わせウェーハにテラスTを形成するための一般的な手法を図2の模式図を用いて説明する。図2に示すように、活性層用ウェーハ20と、研削砥石210を備える面取りホイール200をそれぞれ互いに逆方向に回転させつつ、貼り合わせウェーハ100を押し上げながら活性層用ウェーハ20の周縁部と回転接触させ、活性層用ウェーハ20の周縁部を削り取り、テラス平坦部20B及びテラス斜面部20Cを含むテラス加工部20Aを形成する。なお、面取りホイール200を高速回転させる一方、貼り合わせ状態の活性層用ウェーハ20を低速回転させることが通常である。なお、絶縁膜30上にウェーハ未除去部分20Dを残した状態でテラス加工を完了する。そして、テラス平坦部20Bより下方かつ絶縁膜30上の未除去部分20Dは、後工程であるエッチングにより最終的に除去され、テラスTとなる(図1参照)。以下、本明細書において、エッチングにより最終的なテラスを得る前の加工に相当する、テラス加工部20Aを得るまでのウェーハ周縁部の加工のことを「テラス加工」と言う。
【0007】
こうした貼り合わせウェーハのテラス加工に用いるためのテラス加工装置が例えば特許文献1に開示されている。特許文献1に記載のテラス加工装置は、研削ユニットのスピンドルに嵌合して固定された振動フランジと、該振動フランジに内蔵されZ方向に超音波振動する圧電素子と、外周の下面に研削砥石が設けられ、該振動フランジに嵌合された面取りホイールと、を備え、この研削砥石に前記圧電素子による超音波振動を与えながらZ方向に切り込むことで、被加工部材にテラス加工部を形成する。なお、このテラス加工装置のウェーハ送りユニットはX軸及びY軸方向のそれぞれに水平移動可能であり、かつ、Z軸方向に垂直移動可能であり、さらに、ウェーハ送りユニットのスピンドル回りに被加工部材を回転させる。また、このテラス加工装置の研削ユニットもZ軸方向に垂直移動可能であり、かつ、スピンドル回りに面取りホイールを回転させる。なお、研削ユニットをZ軸方向に垂直移動させず、面取りホイールを回転のみさせるテラス面取り装置も知られる。
【先行技術文献】
【特許文献】
【0008】
【文献】特開2017-170541号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
ところで従来技術のテラス加工方法では、テラス平坦部20Bにおける周方向厚み分布に厚みばらつきが生じていた。貼り合わせウェーハを載置するステージのステージ面の平坦度、並びに、テラス加工時の研削水の温度、加工熱及び面取りホイールの使用時間などの種々の要因により、こうした厚みばらつきを生じるものと考えられる。前述のとおり、テラス平坦部20Bより下方の未除去部分20Dをさらにエッチング除去することで貼り合わせウェーハにテラスを最終的に形成する。テラス平坦部20Bに周方向厚み分布に厚みばらつきが生じていると、テラス加工時の取り代が過大であった一部領域ではエッチングが過剰となり(「オーバーエッチング」とも称される。)、部分的なエッチングむらが生じる原因となっていた。エッチングむらのある貼り合わせウェーハは不良品扱いとなるため、エッチングむらが生じないよう、その根本原因であるテラス平坦部20Bの周方向厚みばらつきを低減する手法が求められる。
【0010】
そこで本発明は、上記課題に鑑み、テラス平坦部の周方向厚みばらつきを低減できる貼り合わせウェーハのテラス加工方法を提供することを目的とする。さらに本発明は、この貼り合わせウェーハのテラス加工方法に用いるテラス加工装置を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明者らは、上記諸課題を解決するために鋭意検討した。前述のとおり、テラス平坦部に周方向厚みばらつきが発生する要因は種々考えられるものの、本発明者らは周方向厚みばらつきには外的要因に伴う一定の傾向が見られることに着目した。そこで、所定条件により実際にテラス加工した貼り合わせウェーハのテラス平坦部における周方向厚みばらつきを測定し、当該測定結果に基づき次回以降のテラス加工条件にフィードバックして、貼り合わせウェーハを昇降させながらテラス加工を行うことを本発明者らは想起した。そして、こうしたテラス加工条件のフィードバック制御により上記課題を解決できることを知見し、本発明を完成するに至った。すなわち、本発明の要旨構成は以下のとおりである。
【0012】
(1)支持基板用ウェーハ及び活性層用ウェーハが絶縁膜を介して貼り合わせられてなる貼り合わせウェーハの周縁部を、研削砥石を備える面取りホイールを用いてテラス加工し、該テラス加工を行うためのテラス加工条件を制御しつつ、該テラス加工を繰り返す貼り合わせウェーハのテラス加工方法であって、
すでにテラス加工された加工済み貼り合わせウェーハのテラス平坦部の周方向厚み分布を測定する第1工程と、
該第1工程により測定した前記周方向厚み分布における周方向厚みばらつきを補償する面内補正条件を前記テラス加工条件にフィードバックして補正後のテラス加工条件を調整する第2工程と、
前記補正後のテラス加工条件に基づき、テラス加工前の貼り合わせウェーハのテラス加工を行う第3工程と、
を含み、
前記第3工程において、前記補正後のテラス加工条件に従い前記テラス加工前の貼り合わせウェーハを回転させながらその厚み方向に追従昇降させて前記テラス加工を行うことを特徴とする貼り合わせウェーハのテラス加工方法。
【0013】
(2)前記第2工程において、前記周方向厚み分布における平均厚みと目標平均厚みとの差分の補償する厚み補正条件をさらにフィードバックして前記補正後のテラス加工条件を調整する、上記(1)に記載の貼り合わせウェーハのテラス加工方法。
【0014】
(3)前記第2工程を1回行い、同一の前記補正後のテラス加工条件に基づき前記第3工程を繰り返し行う、上記(1)又は(2)に記載の貼り合わせウェーハのテラス加工方法。
【0015】
(4)前記支持基板用ウェーハ及び前記活性層用ウェーハはいずれもシリコンウェーハである、上記(1)~(4)のいずれかに記載の貼り合わせウェーハのテラス加工方法。
【0016】
(5)上記(1)~(5)のいずれかに記載の貼り合わせウェーハのテラス加工方法に用いるテラス加工装置であって、
貼り合わせウェーハを載置するステージと、
前記ステージに載置される前記貼り合わせウェーハのテラス平坦部の周方向厚み分布を測定する厚み測定器と、
前記ステージを回転させながら前記ステージを昇降させる駆動部と、を備えることを特徴とする貼り合わせウェーハのテラス加工装置。
【発明の効果】
【0017】
本発明によれば、テラス平坦部の周方向厚みばらつきを低減できる貼り合わせウェーハのテラス加工方法を提供することができる。また、本発明によれば、この貼り合わせウェーハのテラス加工方法に用いるテラス加工装置を提供することができる。
【図面の簡単な説明】
【0018】
図1】従来技術による貼り合わせウェーハの一例を示す模式断面図である。
図2】従来技術による貼り合わせウェーハへのテラス加工を示す模式断面図である。
図3A】本発明の一実施形態によるテラス加工装置の正面図である。
図3B】本発明の一実施形態によるテラス加工装置の上面図である。
図4】本発明の一実施形態におけるテラス加工方法のフローチャートである。
図5】本発明の一実施形態における貼り合わせウェーハのテラス平坦部の周方向厚み分布の測定位置の一例を説明する模式図である。
図6】本発明の別の実施形態におけるテラス加工方法のフローチャートである。
図7】実験例1における周方向厚みばらつきを示すグラフである。
図8A】実施例2におけるウェーハ間の周方向厚みばらつきを示すグラフである。
図8B】実施例2におけるウェーハ間の周方向平均厚みの推移を示すグラフである。
図9A】従来例2におけるウェーハ間の周方向厚みばらつきを示すグラフである。
図9B】従来例2におけるウェーハ間の周方向平均厚みの推移を示すグラフである。
【発明を実施するための形態】
【0019】
以下、図面を参照しつつ本発明の実施形態を詳細に説明する。なお、模式図における構成は実際の縦横比と異なり誇張して示す。まず、図3A及び図3Bを参照して、本発明による貼り合わせウェーハのテラス加工方法に用いることのできるテラス加工装置500を説明する。
【0020】
(テラス加工装置)
テラス加工装置500は、貼り合わせウェーハ100を載置するステージ310と、ステージ310に載置される貼り合わせウェーハ100の周縁部の周方向厚み分布を測定する厚み測定器500Cと、ステージ310を回転させながらステージ310を昇降させる駆動部320と、を少なくとも備える。駆動部320によるステージ310の昇降動作については、本発明によるテラス加工方法の実施形態において詳述する。
【0021】
テラス加工装置500のその他の構成は、一般的なテラス加工装置と同様のものを適用することができる。テラス加工装置500はウェーハ送りユニット500A及び研削ユニット500Bを備えることができる。ステージ310及び駆動部320をウェーハ送りユニット500Aに設けることができる。そして、ウェーハ送りユニット500Aは、ステージ310に載置される貼り合わせウェーハ100を駆動部320によりX,Y,Z方向にスライド自在に支持することができ、また、Z軸に平行なθA軸を回転軸として回転可能である。貼り合わせウェーハ100のアライメント(位置合わせ)のためにX方向及びY方向へのスライドによる調整を行うことができ、また、その他の所望の目的に応じて当該スライドを行ってもよい。ステージ310としては真空吸着ステージなどを用いることができる。研削ユニット500Bは駆動部220により面取りホイール200をZ軸方向にスライド自在に支持し、かつ、Z軸に平行なθB軸を回転軸として回転可能である。面取りホイール200は研削砥石210を備える。貼り合わせウェーハ100のX方向,Y方向及びZ方向の位置をアライメントした後、貼り合わせウェーハ100及び面取りホイール200を各回転軸周りに互いに逆方向に回転させながら貼り合わせウェーハ100を研削砥石210に接触させ、貼り合わせウェーハ100をZ軸方向に押し上げる。こうして、テラス加工装置500により貼り合わせウェーハ100の面取り加工を行うことができる。なお、研削ユニット500Bは駆動部220により面取りホイール200をZ軸方向にスライド自在に支持し、かつ、研削砥石210をZ軸方向に押し下げながら面取りホイール200を回転させてもよい。また、貼り合わせウェーハ100及び面取りホイール200は同じ回転方向であってもよい。以下、テラス加工装置500を参照しつつ、本発明の一実施形態による面取り加工方法を説明する。また、貼り合わせウェーハ100の符号については、前述の図2も参照する。
【0022】
(貼り合わせウェーハのテラス加工方法)
本発明の一実施形態による貼り合わせウェーハ100のテラス加工方法は、支持基板用ウェーハ10及び活性層用ウェーハ20が絶縁膜30を介して貼り合わせられてなる貼り合わせウェーハ100の周縁部を、研削砥石210を備える面取りホイール200を用いてテラス加工し、該テラス加工を行うためのテラス加工条件を制御しつつ、該テラス加工を繰り返す。そして、本発明によるテラス加工方法は、すでにテラス加工された加工済み貼り合わせウェーハ100のテラス平坦部の周方向厚み分布を測定する第1工程と、該第1工程により測定した周方向厚み分布における周方向厚みばらつきを補償する面内補正条件を次回以降のテラス加工に適用するためのテラス加工条件にフィードバックして、補正後のテラス加工条件を調整する第2工程と、補正後のテラス加工条件に基づき、テラス加工前の貼り合わせウェーハ100(次回以降の加工対象ウェーハ)のテラス加工を行う第3工程と、を含む。そして、第3工程において、先に測定した周方向厚みばらつきを補償するよう、補正後のテラス加工条件に従いテラス加工前の貼り合わせウェーハ100(次回以降の加工対象ウェーハ)を回転させながら、その厚み方向(すなわちZ軸方向)に追従昇降させてテラス加工を行う。
【0023】
まず、図4のフローチャート及び図5の模式図を参照して、本発明に従うテラス加工方法の一実施形態を説明する。まず、1枚目の貼り合わせウェーハ100のテラス加工を所定の加工条件に従い行い、テラス加工部20Aを形成する(S10)。テラス加工部20Aは、テラス平坦部20Bと、テラス傾斜部20Cとにより構成される。なお、テラス傾斜部20Cは研削砥石210の形状の転写により形成される。以下、この1枚目の貼り合わせウェーハ100を説明の便宜上、「試験用ウェーハ」と称する。
【0024】
<第1工程>
次に、上記試験用ウェーハのテラス加工部20Aにおけるテラス平坦部20Bの周方向厚み分布を測定する第1工程S21を行う。テラス加工装置の厚み測定器500Cを用いてこの測定を行うことができる。なお、貼り合わせウェーハ100の厚みを測定する厚み測定器500Cとしては、一般的な測定器を用いればよく、分光干渉法による非接触式厚み測定機、又はロードセル等の接触式厚み測定機などを例示することができる。
【0025】
テラス平坦部20Bにおける測定位置は、貼り合わせウェーハ100の周方向に沿う限りは任意に定めればよい。測定精度を考慮すると、テラス平坦部20Bの最外周から内側に1~3mm程度以上内側の周方向位置を測定することが好ましく、研削砥石210の下面幅の半分程度の位置で測定することが好ましい。また、周方向厚み分布を測定する際の測定数は特に制限されないものの、周方向厚みばらつきの測定精度を考慮して4点(90度)、8点(45度)、16点(22.5度)などで等角度間隔に適宜設定することが好ましい。
【0026】
貼り合わせウェーハ100を載置するステージ310のステージ面の平坦度、並びに、テラス加工時の研削水の温度、加工熱及び面取りホイールの使用時間などの種々の要因があるため、試験用ウェーハにおいて測定される周方向厚み分布を完全に均一にすることは困難である。試験用ウェーハの周方向厚み分布には平均厚みよりも数μm程度で厚い箇所と薄い箇所が不可避的に発生するため、周方向厚み分布にばらつきが生じる。
【0027】
なお、例えば分光干渉器によって貼り合わせウェーハ100のテラス平坦部20Bの厚みを測定する際には、支持基板用ウェーハ10の厚みh2を含めてステージ310からの高さh1が測定されることになる。この場合、測定される高さh1と、既知の支持基板用ウェーハ10の厚みh2との差分Δh(Δh=h1-h2)からテラス平坦部20Bの厚みを求めることができる。図5では、周方向の厚みばらつきを誇張して図示している。図5では、テラス平坦部20Bの厚みが平均厚みΔhaveよりも薄かった部分を図面右方に示し、平均厚みΔhaveよりも厚かった部分を図面左方に示している。
【0028】
<第2工程>
第1工程S21に続く第2工程S22では、第1工程S21により測定した周方向厚み分布における周方向厚みばらつきを補償する面内補正条件をテラス加工条件にフィードバックして補正後のテラス加工条件を調整する。ここで、周方向厚み分布において平均厚みよりも厚い周方向位置は、当該位置ではテラス加工による取り代が平均取り代よりも少なかったことを意味する。逆に、当該周方向厚み分布において平均厚みよりも薄い周方向位置は、当該位置ではテラス加工による取り代が平均取り代よりも多かったことを意味する。ステージ310をZ軸方向にスライドして、貼り合わせウェーハ100全体をZ軸方向に引き上げればテラス加工による取り代を増量でき、貼り合わせウェーハ100全体をZ軸方向に引き下げればテラス加工による取り代を減量できる。そこで、研削砥石210と貼り合わせウェーハ100とが回転接触する際に、周方向位置の平均厚みとの差分を相殺するように貼り合わせウェーハ100をZ軸方向に昇降させる面内補正条件をテラス加工条件としてフィードバックする。
【0029】
<第3工程>
第2工程S22により補正後のテラス加工条件を調整した後、第3工程では、当該テラス加工条件に従い、試験用ウェーハで測定された周方向厚みばらつきを補償するよう、2枚目以降の貼り合わせウェーハ100を回転させながらZ軸方向に追従昇降させてテラス加工を行う。こうした周方向回転位置における昇降を追従させる動作を、テラス加工装置500の駆動部320により制御すればよい。NC制御などによりこのような制御を実行することができる。
【0030】
なお、貼り合わせウェーハ100をテラス加工する際には、貼り合わせウェーハ100を複数周回転させながらテラス加工を行う。Z軸方向での貼り合わせウェーハの追従昇降を貼り合わせウェーハ100の回転に対応させて終始行ってもよいし、少なくとも最後の1周のみ行ってもよい。
【0031】
以上の第1工程~第3工程を伴いテラス加工された2枚目以降の貼り合わせウェーハ100は、試験用ウェーハに見られた周方向厚み分布のばらつきが抑制されることとなる。
【0032】
図4のフローチャートに示す実施形態では2枚目の貼り合わせウェーハ100のみならず、3枚目以降の貼り合わせウェーハ100についても、2枚目のテラス加工条件と同条件でテラス加工を行う。前述のとおり周方向厚み分布に厚みばらつきが生じる要因は種々考えられるものの、テラス加工の際には貼り合わせウェーハ100及び面取りホイール200をともに回転させながら両者を接触させる。そのため、ウェーハ面内での周方向厚みばらつきの要因としてはステージ310の平坦度の影響が比較的強いと考えられる。そこで、第2工程S22によるフィードバックを1回行い、同一の補正後のテラス加工条件に基づき第3工程S23を繰り返し行うことにより、周方向厚み分布のばらつきの抑制効果を十分に得ることができる。この場合、テラス加工後の周方向厚み分布の測定を1度とすることができ、工程数の増加を抑制できる。
【0033】
一方で、本発明によるテラス加工方法の別の実施形態として、図6のフローチャートに示すように、第1工程S21から第3工程S23までを繰り返し行ってもよい。例えば、2枚目の貼り合わせウェーハ100を第3工程S23に従いテラス加工した後に、第1工程S21に従い当該2枚目の貼り合わせウェーハ100の周方向厚み分布を測定して、第2工程に従い補正後のテラス加工条件を再度調整する。こうしたテラス加工条件の再調整を3枚目以降の貼り合わせウェーハ100についても順次行っていく。このように、テラス加工条件へのフィードバックを順次繰り返すことも、本発明における好ましい態様の一つである。この場合、補正後のテラス加工条件を都度微調整できるため、テラス加工精度の向上を期待することができる。
【0034】
なお、図4及び図6に示すフローチャートでは、3枚目以降の貼り合わせウェーハ100のテラス加工についても、所定枚数のテラス加工を終えるまで順次行う態様を示している。本発明は図4図6のフローチャートの態様に制限させることはない。1枚目の試験用ウェーハ及び2枚目の貼り合わせウェーハのみのテラス加工を本発明のテラス加工方法に従ってテラス加工しても、上述した周方向厚み分布のばらつきの抑制効果を得ることが可能であることは当然に理解される。
【0035】
これまで、周方向厚み分布のばらつきを抑制するために、周方向厚みばらつきを補償する面内補正条件を次回以降のテラス加工条件にフィードバックする態様を説明してきた。ところで前述した周方向厚みばらつきを生じさせる要因のうち、テラス加工時の研削水の温度、加工熱及び面取りホイールの使用時間などの要因は、貼り合わせウェーハへのテラス加工を繰り返すにつれて経時的に変動する。そのため、貼り合わせウェーハ100を加工した後のテラス平坦部の平均厚みも経時的に変動し、この平均厚みにばらつきが生じてしまう。そこで、本発明によるテラス加工方法による第2工程S22において、周方向厚みばらつきを補償する面内補正条件に加えて、周方向厚み分布における平均厚みと目標平均厚みとの差分の補償する厚み補正条件をさらにフィードバックして補正後のテラス加工条件を調整することも好ましい。目標平均厚みが加工後の貼り合わせウェーハ100の平均厚みよりも厚い場合は、その厚みの差を補償すべく次回のテラス加工時においてステージ310の高さを+Z軸方向に引き上げるよう、加工条件を補正すればよい。逆に、目標平均厚みが加工後の貼り合わせウェーハ100の平均厚みよりも薄い場合は、次回のテラス加工時においてステージ310の高さを引き下げるよう加工条件を補正すればよい。
【0036】
図4のフローチャートを参照する実施形態のように、最初の1枚目の試験用ウェーハにおけるテラス平坦部の平均厚みと目標平均厚みとの差にのみ基づき厚み補正条件を適用してもよい。テラス加工後の平均厚みがウェーハ間でばらつく原因として、加工熱の変動が収束するまでの時間の影響が大きいと考えられるためである。しかしながら、フィードバックによる補正精度を高めるため、図6のフローチャートを参照する実施形態のようにテラス加工を行う度に厚み補正条件の再調整を行うことも好ましい。また、本発明方法においては、周方向厚みばらつきを補正する条件を1回のみの調整としつつ、平均厚みの補正をテラス加工する度に毎回行ってもよいし、逆に、周方向厚みばらつきを補正する条件を毎回調整しつつ、平均厚みの補正は1回のみの調整としても構わない。
【0037】
これまで1枚目の貼り合わせウェーハ100をテラス加工し、その次の2枚目の貼り合わせウェーハ100のテラス加工から本発明によるテラス加工方法を適用する実施形態を説明してきた。本発明はすでにテラス加工された加工済み貼り合わせウェーハのテラス平坦部20Bの周方向厚み分布に基づきテラス加工条件にフィードバック補正すればよく、任意のテラス加工済みの貼り合わせウェーハからテラス加工条件の補正条件を求めてもよい。例えば1枚目からN枚目までは、Z軸方向の追従動作を含まない所定の初期条件でテラス加工を行ってもよい(Nは2以上の整数)。そして、(N+1)枚目以降のテラス加工を行う際に、すでにテラス加工された加工済み貼り合わせウェーハ100に相当する1~N枚目までの任意の貼り合わせウェーハに対して、本発明方法による第1工程及び第2工程を適用してもよい。この場合、(N+1)枚目以降の貼り合わせウェーハ100のテラス加工の際に面内補正条件及び厚み補正条件を適用して、Z軸方向の追従動作を伴うテラス加工をすることができる。また、先に用いた用語「試験用」の表記は便宜的なものに過ぎず、製品仕様を満足していれば必ずしも廃棄対象とはならない。
【0038】
以下で、本発明方法に適用して好適な貼り合わせウェーハ100の具体的態様を説明する。ただし、本発明方法が以下の具体例に限定されないことは当然に理解される。
【0039】
支持基板用ウェーハ10及び活性層用ウェーハ20としては、シリコン単結晶からなる単結晶シリコンウェーハを用いることができる。単結晶シリコンウェーハは、チョクラルスキー法(CZ法)や浮遊帯域溶融法(FZ法)により育成された単結晶シリコンインゴットをワイヤーソー等でスライスしたものを使用することができる。また、単結晶シリコンウェーハには炭素および/または窒素が添加されていてもよい。さらに、任意の不純物を添加して、n型またはp型としてもよい。また、支持基板用ウェーハ10及び活性層用ウェーハ20は、シリコン単結晶以外のGaAsやSiCなどのバルクの化合物半導体であっても構わない。支持基板用ウェーハ10及び活性層用ウェーハ20を互いに同種の基板としてもよいし、異種基板を用いることも可能である。また、同種基板の場合も、導電型(p型およびn型)および導電性を揃えてもよいし、異ならせても構わない。
【0040】
絶縁膜30は、シリコンウェーハを酸化雰囲気で熱処理を行うなどしてシリコンウェーハ表面に形成される酸化シリコンを用いることができる。また、絶縁膜30は酸化シリコンに限られず、電気的絶縁体を用いることができ、例えば、窒化シリコンを用いてもよいし、ダイヤモンド又はダイヤモンドライクカーボン(DLC; Diamond Like Carbon)などを用いることもできる。
【0041】
なお、活性層用ウェーハ20は、テラス加工後の後工程によるエッチング及び薄膜化を経て活性層21とすることができる(図1参照)。
【実施例
【0042】
以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。
【0043】
支持基板用ウェーハ及び活性層用ウェーハとして、直径150mmのシリコンウェーハを用意した。酸化膜を介して2枚のシリコンウェーハを貼り合わせ、貼合せ面の接合強化のための強化熱処理を行い、テラス加工前の貼り合わせウェーハ(以下、「SOIウェーハ」と称する)を得た。そして、同種のSOIウェーハを多数用意した。これらSOIウェーハのテラス加工にあたり、分光干渉法による非接触式厚み測定機を設けたウェーハテラス加工装置を用いる。
【0044】
<実験例1>
まず、Z軸方向の追従動作を含まない初期のテラス加工条件により、活性層用ウェーハに形成するテラス平坦部の高さ(未除去シリコンの目標残厚み)を30μmに設定して試験用のSOIウェーハをテラス加工した。なお、研削砥石として#800のダイヤモンド砥粒を用いた。次いで、試験用のSOIウェーハ(説明の便宜上、以下では「0枚目」と考える。)のテラス平坦部の周方向厚み分布を22.5度間隔で16点測定した。測定箇所はSOIウェーハのテラス平坦部の中央位置とした。試験用のSOIウェーハの周方向厚み分布を図7のグラフに示す。なお、図7ではテラス平坦部の目標厚み位置を基準位置(厚み:0μm)としており、図7以降のグラフにおいても同様である。
【0045】
次に、試験用のSOIウェーハにおいて測定された周方向厚みばらつきを補償するよう初期のテラス加工条件にフィードバックを行い、面内補正条件を付与した1枚目SOIウェーハを加工するための補正後のテラス加工条件を設定した。初期のテラス加工条件と、補正後のテラス加工条件とでは、平均厚みよりも厚い周方向位置ではZ軸方向にステージを引き上げ、平均厚みよりも低い周方向位置ではZ軸方向にステージを引き下げる条件での追従動作を含むか否かのみで異なる。貼り合わせウェーハ及び面取りホイールの回転数等のその他の加工条件は、初期のテラス加工条件と、補正後のテラス加工条件とで共通する。
【0046】
そして、上記のとおり設定した補正後のテラス加工条件により、1枚目の貼り合わせウェーハをZ軸方向に追従動作させながら、そのテラス加工を行った。1枚目の貼り合わせウェーハの周方向厚み分布を図7に示す。
【0047】
図7に示されるように、試験用(0枚目)の貼り合わせウェーハはウェーハ厚み方向(すなわちZ軸方向)に約±3μm程度のばらつきが見られる。これに対して1枚目のウェーハでは試験用ウェーハの周方向ばらつきを補償する条件でテラス加工を行っているため、厚み方向のばらつきを大幅に抑制することができた。
【0048】
なお、図7における1枚目の貼り合わせウェーハにおける周方向厚み分布の平均厚みと目標厚みとの差は約3μmあり、Z軸方向のプラス側に偏在している。この結果から、初期及び補正後のテラス加工条件はいずれもテラス加工による取り代が全体的に不足していることが示唆される。そこで、実験例2として、貼り合わせウェーハにおける平均厚みと目標平均厚みとの差分の補償する厚み補正条件をさらにフィードバックして2枚目以降の貼り合わせウェーハのテラス加工を行った。
【0049】
<実験例2>
1枚目SOIウェーハを加工するための補正後のテラス加工条件に対し、テラス平坦部における周方向厚み分布の平均厚みと目標平均厚みとの差分の補償するべくステージの昇降条件をさらに付与した追加補正テラス加工条件に従い、2枚目のSOIウェーハのテラス加工を行った。具体的には、上記1枚目SOIウェーハを加工するための補正後のテラス加工条件に対して、Z軸方向にステージ310を3μm押し上げるよう調整した加工条件により、2枚目のSOIウェーハのテラス加工を行った。テラス加工後には、加工後のSOIウェーハのテラス平坦部の周方向厚み分布を測定してテラス平坦部の平均厚みを求め、再度目標平均厚みとの差分の補償するべくステージの昇降条件を付与した追加補正テラス加工条件を付与した。こうしたフィードバックを繰り返して、3枚目以降のSOIウェーハのテラス加工を順次行い、15枚のSOIウェーハのテラス加工を行った。1枚目から5枚目までの周方向厚みばらつきを図8Aに示す。また、全15枚のSOIウェーハの平均厚みの推移を図8Bに示す。
【0050】
図8Aを参照すると、周方向の厚みばらつきは十分に抑制できていることが確認できる。また、図8Bを参照すると、少なくとも7枚目以降のSOIウェーハの平気厚みは目標厚みで安定している。3枚目から6枚目まではZ軸方向のマイナス側の厚みで推移しており、これは本実験例2では加工熱が収束するまでに時間を要したためではないかと推察される。
【0051】
<比較実験例>
周方向厚みばらつきを補償する面内補正条件も、目標平均厚みとの差分の補償する厚み補正条件もいずれも付与せずに、実験例1における初期のテラス加工条件に従い、SOIウェーハのテラス加工を15枚繰り返した。1枚目から5枚目までの周方向厚みばらつきを図9Aに示す。また、全15枚のSOIウェーハの平均厚みの推移を図9Bに示す。
【0052】
図9Aを参照すると、比較実験例では周方向の厚みばらつきを抑制するための追従動作を行っていないので、周方向厚みのばらつきがいずれのSOIウェーハにおいても見られる。図9Aにおいて、周方向の厚みばらつきは同じ周方向位置において比較的同様の傾向を示すことが確認できるものの、全く同じではない。図9Bを参照すると、SOIウェーハのテラス加工を繰り返すにつれて厚み平均値が収束していく傾向は観察されるものの、Z軸方向のマイナス側の厚みに偏在する。
【0053】
以上のとおり、本発明に従うテラス加工方法により、テラス平坦部の周方向厚みばらつきを低減でき、さらにはウェーハ間の平均厚みのばらつきも低減できることが確認された。
【産業上の利用可能性】
【0054】
本発明によれば、テラス平坦部の周方向厚みばらつきを低減できる貼り合わせウェーハのテラス加工方法を提供する。また、本発明によれば、この貼り合わせウェーハのテラス加工方法に用いるテラス加工装置を提供することができる。
【符号の説明】
【0055】
10 支持基板用ウェーハ
20 活性層ウェーハ
20A テラス加工部
20B テラス平坦部
20C テラス傾斜部
20D 未除去部分
21 活性層
30 絶縁膜
100 貼り合わせウェーハ
200 面取りホイール
210 研削砥石
310 ステージ
220,320 駆動部
500 テラス加工装置
500A ウェーハ送りユニット
500B 研削ユニット
500C 厚み測定器
T テラス
図1
図2
図3A
図3B
図4
図5
図6
図7
図8A
図8B
図9A
図9B